Proc. Indian Acad. Sci. (Earth Planet. Sci.), Vol. 100, No. 2, June 1991, pp. 205-218.
© Printed in India.

Static deformation of an orthotropic multilayered elastic half-space by
two-dimensional surface loads
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Abstract. The transfer matrix approach is used to solve the problem of static deformation
of an orthotropic multilayered elastic half-space by two-dimensional surface loads. The
general problem is decoupled into two independent problems. The antiplane strain problem
and the plane strain problem are considered in detail. Integral expressions for displacements
and stresses at any point of the medium due to a normal line load and a shear line load,
acting parallel to a symmetry axis, are obtained. In the case of a uniform half-space, closed
form analytic expressions for displacements and stresses are derived. The procedure develo ped
is quite easy and convenient for numerical computations.
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1. Introduction

The behaviour of horizontally layered elastic materials under surface loads is of great
interest in engineering, soil mechanics and geophysics. Laminated composite materials
are finding increasing applications in engineering. Many earthworks, such as fills or
pavements, consist of horizontal layers of materials of different types. Quite often
natural deposits in the earth are also horizontally layered. However, the elastic
properties of the material at a point of a layer may be different in different directions,
Le., the medium may be anisotropic. Most anisotropic media of interest in seismology
have, at least approximately, a horizontal plane of symmetry. The most general system
with one plane of symmetry is the monoclinic system. A material with three mutually
perpendicular planes of elastic symmetry at a point is said to possess orthotropic or
orthorhombic symmetry. This symmetry is exhibited by olivine and orthopyroxenes,
the principal rock-forming minerals of the deep crust and upper mantle. Therefore,
it is useful to determine the static field due to surface loads acting on the surface of
an orthotropic multilayered elastic half-space. It may also find applications in the
study of reservoir-induced seismicity.

Garg and Singh (1985) studied the static deformation of an isotropic multilayered
half-space by two-dimensional surface loads. Singh (1986), Garg and Singh (1987)
and Pan (1989) assumed the multilayered half-space to be transversely isotropic in
which there are five elastic constants. Chaudhuri and Bhowal (1989) extended the
results of Garg and Singh (1987) by introducing nonhomogeneity. They assumed
exponential type variations of elastic parameters with depth. The static deformation
of a multilayered semi-infinite medium by surface loads has also been studied by Kuo
(1969) and Small and Booker (1984).

The transfer matrix approach is used in the present paper to solve the problem of
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the static deformation of an orthotropic multilayered semi-infinite elastic medium by
two-dimensional surface loads. In an orthotropic material there are nine elastic
constants as against five in a transversely isotropic material considered by Garg and
Singh (1987). The results for a tetragonal material with six elastic coefficients, for a
transversely isotropic material with five elastic coefficients and for a cubic material
with three elastic coefficients can be derived as particular cases. We have verified that

the results for a transversely isotropic material derived as a special case coincide with

the corresponding results of Garg and Singh (1987).

2. Basic equations

In the cartesian coordinates (x;,X,,X3), the equations of equilibrium for zero body
forces are

Opy1 . Op12 op13
- —2 =0, 1
0x,4 + 0x, T 0x3 ' M
0p21 | OP22 0pa3 :

=0 ' 2
0x, + 0x, + oxs | @)
0p3; +5P32 +5P33 =0, 3) -

O0x, 0x, 0x3

where p;;is the stress tensor. Let (u; , u,, u3) denote the components of the displacement
vector. The strain-displacement relations are

1 5ui auj . . ‘
.ei,-——z-(é-x—+a—£> Li=123). @

i
For an orthotropic elastic medium, with coordinate planes coinciding with the planes
~ of symmetry, the stress-strain relations are !

mpu] [ G2 Gis O 0 07 e
Paz || €12 €2 €23 O 0 0 €2
P33z |_| €13 C23 YA 0 0 €33 ‘ (5)
D23 0 0 0 ¢ O O 2e,, : Lo
P13 0 0 0 0 cs5 0 || 2es L :
| pad LO 0 0 0 0 ceedl2e,]

A transversely isotropic elastic medium, x; axis coinciding with the axis of symmetry,
is a special case of an orthotropic elastic medium for which

€22 =Cyy, C33=0C13; Cs5=C4q; C662%'(011"“(312) (6)

and the number of independent elastic constants reduces from 9 to 5. For an isotropic
elastic medium | '

Cu=022=c33=;{+2#; C12=C13=Co3 =4, Casa=Cs5=Ce6= I ()

where A and p are the Lamé constants.
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We shall consider a two-dimensional deformation in which the displacement
components are independent of x; so that d/dx, =0. Then, the general problem is
decoupled into two independent problems—plane strain problem (u; =0) and the
antiplane strain problem (u, = u; = 0). We discuss both the problems separately. In
the following, we shall write (x, y, z) for (x, x,, x5) and (4, v, w) for (uy,u,,us).

3. Antiplane strain problem
For this problem
u=u(y,z), v=w=0. (8)
The non-zero strain and stress components are
e13 =3(0u/0z), ey, =3(0u/dy), ©)
P12 = es(0u/0Y), pys=css(dufoz). | (10)

Equilibrium equations (2) and (3) are identically satisfied and equation (1) becomes

82(0%u/dy?) + (8*u/dz2) = 0, | ' (11)
where
o= Ce6/Css. ' (12)

A solution of (11) is of the form

® ‘ sink
U= L [Aexp(— 4, kz") + Bexp(d,kz)] (cos kf})dk’ (13)

where A4, B are functions of k only. From (10) and (13), we find

_ @ sinky
P13 =0, fo‘ [— Aexp(—d,kz) + Bexp (6, kz)] (cosky)kdk’ (14)

where
) = (css 066)%- . (15)

We write (13) and (15) in the form

® sinky \ , , ; ; . . ‘

“= Jl, ve (cos kJ’)dk’ | ‘ 16)
@ sinky

Pis= J:) T(z)(cosky>kdk, (17

The functions U, T are given by the matrix relation T
[Y(2)]=[Z()][K], (18)
[Y(2)]=[U(2), T(z)]",[K]=[4,B]" (19)

where
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and [---]7 denote the transpose of the matrix [---]. The matrix [Z(z)] is given below

exp(—d,kz) exp (9, kz) :l 20
[Z(Z)]z[-ézexp(—-(slkz) 526Xp(51kz) : ( )

When the medium is isotropic
§;=1, o,=u (21)

and the matrix [Z(z)] becomes identical with the corresponding matrix given by
Garg and Singh (1985).

4. Plane strain problem

In this case
v=o(y,2), w=w(z), u=0. (22)

The non-zero strain and stress components are

e,, = 00/3y, e33=0w/0z, ‘ (23)
. %[g; +Z—ﬂ 4
P11 =Ci12€3; tC13€33, - (25)
P22=C22€22 23833, (26)
P33 = C33€33 + C33€33, 27
P23 =2C44€23. ; (28)

For the plane strain deformation, the equilibrium equation (1) is identically satisfied
and equations (2) and (3) reduce to

0 0 '
Oz O3 _

dy 0z ’ @)
9pa3 | Ops3
—f23  R3s _,
3y + pe (30)
Therefore, there exists an Airy stress function U*(y, z) such that
P22 =0*U*/02%, py3=—0*U*/0ydz, pas=02U*/dy>. (31)

Using (31), we note that the equilibrium equations (29) and (30) are identically satisfied.
The non-zero compatibility equation is

0ey, 52933_252323
dz2 ay*  “oyoz

(32)

Fs,
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From equations (26)~(28), (31) and (32), we find
o*U* o*U* O*U*

03 % +555y2@zz+55 5 0, (33)

where
0y = C22/Ca4, 4= C23/C4q, Os= C33/C4a, Og= 0305 — 52 — 20,. (34)

Let « and f be given by the relations
o? + B% = 54 /55, a?B* =6,/ (39)

Then (33) is factorized as
0% 92 0 92
<0625—y7+‘5;2—) (ﬁz“a—y—z'l'a—zi) U* =0, (36)
In the case of an isotropic medium

a=p=1 (37)

and U* becomes biharmonic,
A solution of (36) is of the type (assuming o # f)

U* = fw [Aexp(— akz) + Bexp (okz) + Cekp(m Bkz) + D exp (Bkz)]
0

sinky ,
dk. 38
x (cos ky) (38)
Corresponding to the Airy stress function (38), the stress can be obtained from (31)
and then the displacements can be obtained by integrating the stress-displacement

relations (25)-(28). F ollowing Singh and Garg ( 1985) and Garg and Singh (1987), we
write .

o= f : V(z)( _s;"z;‘y )kdk, (39)
W= f : W(z)( ::: ’g )kdk, | (40)
Pas = f: S(z)( S nkzy) K*dk, | (41)
Pay = f : N(z)(::: ”?y’ )kz dk. (42)

The functions ¥V, W, S, N are given by the matrix relation
[Y(@)1=[Z()][K], (43)

LY(2)]=[V,W,S,N1", [K]=[A4,B,C,D]". (44)

where
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The matrix [Z(z)] is given below

re”®  re®  re? rpe

sie”? —se? seTt —sye?
[(Z(=2)]= e ? —ae Be—qb «—ﬂe‘f’ >
—et —f et =
where
_ c330% + €33 _ c33B% +Ca3

1= 7> 2™ 2
C33C32 — €23 C33C22 —C23

€30+ (/%) s 3B +(c22/B)
(=3, = 3
033022”‘0%3 ’ C33C33 —C33

0=ckz, ¢=pk.

5. Deformation of a multilayered half-space

(45)

We consider a semi-infinite elastic medium made up of p— 1 parallel homogeneous
orthotropic elastic layers lying over a homogeneous orthotropic elastic half-space.
The layers are assumed to be in welded contact implying the continuity of the
displacements and stresses across the interfaces. The layers are numbered serially, the
layer at the top being layer 1 and the half-space, layer p. The origin of the cartesian
coordinate system (x, y, z) is taken at the boundary of the semi-infinite medium and
the z-axis is drawn into the medium. The nth layer is bounded by the interfaces
z=z,_; and z=1z, and is of thickness d, where d,=z,—z,_,. Clearly z, =0 and

z,-, = H, where H denotes the depth of the last interface [figure 1].

Z 9 »>Y
° Layer ¢ ' -
Z
Zn
n
Zn
H
p
Y
Z

Figure 1. Multilayered half-space.
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5.1 Antiplane strain deformation

Introducing the subscript n to the quantities related to the nth-layer, (18) becomes
LY. (2)]=[Z,()][K,], (48)

where the matrix [Z,(z)] is obtained from the matrix [Z(z)], given in (20) on replacing
9, and 8, respectively, by the corresponding elastic constants of the nth layer.

It has been shown by Singh (1970) and Singh and Garg (1985) that the deformation
fields at the boundaries of the consecutive layers satisfy the relation

(Y- 1)1 = 4,1 Y, (2)], “9)
where the transfer matrix [a,] is

" ch(6,kd)  — 57 sh(6, kd) %0

[—5zsh(51kd) ch (6, kd) (50)

with ch = cosh and sh = sinh.
For the p-th layer, B, =0, otherwise U,(z) > o0 as z— oo. Making a repeated use

of (48) and (49), we find
[U1(0), T2 (01" = [F1[4,,017, (51)
LF1=[a;]1[a;1[a;][a,-,I[Z,(H)]. (52)

When the surface load is prescribed, the boundary condition is of the type

where

Pi3=f(y) at z=0. (53a)
We write [see, (17)]
®_ sin ky Fon L 2 @ sinky
fo)= f f(k)(cos ky)kdk, Fo == L f(y)<cos ky)dy. (530)

This determines the value of Ay

Ap=.f(k)/F21- ‘ (54)
The deformation field at any point z of the nth layer can be obtained from the relation

(U.(2), T.(2)]" = [G(2)1[4,,0]7, (55)
where ,

[G(2)] =[au(z, — 2)[ans 1] [a,~, [ Z,(H)]. (56)

From the relations (16), (17), (54) and (55), the stress and the displacement at any
point of the nth layer caused by the surface load acting on the boundary is given
below in the integral form:

| ®°(Gy1\ 5, [ sinky '
| u—fo <F;>f(k)(cosky)dk’ (57

* (G \ = sinky) ,
= a2 dk. 58
pis= | (Fm)f(k)(cos o ®
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5.2 Plane strain deformation
When the surface load is prescribed, the boundary conditions are of the form
P23 =9(), p3z=h(y) atz=0. (59)
We write [see, (41) and (42)]
@ _ cosky \ , I cos ky d 60
g(y)=J g(’c)(_qsmky)k dk, g(k)=—7 L g(y)<_ sinky )& (60)

0
® _ (sinky - __2_ ® sin ky
h(y)=L h(k)<cosky)k2dk’ h(k)—.nk2 L h(y)(cosky>dy' | (61)

Proceeding as in the case of the antiplane strain deformation, the expressions for the
displacements and stresses at any point of the nth layer are:

°° . o on — o[ —cosky
UZL [G11(F43§ — F33h) + Gy3(F3.h— F4;9)1Q 1( sin ky )kdk,

(62)
® _ — e[ Sink
W=J [G,1(F43g — F33h) + Gy3(Fa h— Fyy §)1Q 1( y>kdka (63)
0 cos ky
[0 — — o[ cosky
P23 = [G31(F43d — Faah) + G33(F3 1 h— Fyq,§)1Q 1( sin k )kzdk,
Jo —SimKy
(64)
[ _ - _ o _, [ sinky
1733'-'-‘UO [G41(Fa3d — F3sh)+ Gu3(F3 h—F4,9)1Q 1(cosky>k2dk’
(65).
where .
Q=F31F43“F33F41- (66)

The transfer matrix [a,] for the plane strain problem is given in Appendix I.

6. Specified surface loads

In this section, we consider a few particular cases in which the surface loads are
specified.

6.1 Antiplane strain problem

Let R be the shear line load per unit length in the positive direction of the x-axis. If
the line load passes through the origin, the boundary condition is

P13 = —Rd(y), (67)
where

5(») =% J " cos kydk ' ~(68) |

0

#p
N
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is the Dirac delta function. From (53), (67) and (68), we find that
J»)=—Rd(y), f(k)=—R/ak (69)

and that we must choose the lower solution, cos ky, in the expression (13) for u and
the corresponding solution in all the succeeding equations related to . Substituting
this value of f(k) in (57) and (58), we obtain

"R © G11> —

U=— — |Jcoskyk™!dk, 70
T Jo (F21 (70
= —== dk.

P13 x 1 <F21)COSky (71)

6.2 Plane strain problem

In this case, we consider the particular cases of a normal line load and a shear line load.

Normal line load: Let a normal line load P per unit length be acting in the positive
z-direction [figure 2]. Then the boundary conditions are

P23 =0, pi3=—P3(y). (72)
From (59)-(61) and (72), we find
gky=0, h(k)= — P/nk? (73)

and that we must choose the lower solution, cos ky, in the expression (38) for U* and
the corresponding solution in all the succeeding equations related to U*. From (73)
and (62)-(65), we find

U=:;£f [G13F3; — Gy F33 1k~ Q™ sin ky dk, (74)
0

>y

_Jv

Figure 2. Normal line load P per unit length acting on the boundary of a semi-infinite
medium..




214 Nat Ram Garg, Sarva Jit Singh and Sushma Manchanda

W—_—._—l_)f [Gy3F3; — Gy Fa3 1k~ 1Q ™ cos ky dk, (75)
T Jo
P[® .
P23='n‘j [G33F3; — G531 F33]1Q7 ' sinky dk, (76)
0
—p (= —1
p33=——7—[— [G43F31 —G41F33]Q COSICydk (77)
0

Tangential line load: We assume that a shear line load Q per unit length is acting in
the positive y-direction [figure 3]. Then, the boundary conditions are

P23=—Q0(y), p33=0 atz=0. (78)
From (59)-(61) and (78), we obtain
g(k)= —Q/nk?® h(k)=0 (79)

and that the upper solution, sin ky, in the expression (38) for U* must be taken. As
before, we obtain the following integral expressions for the displacements and stresses
caused by a shear line load:

”=%f [G11Fa3 = Gi3Far Jk™'Q 7 cos kydk, (80)
o ,
_."Q ” -10~1 g
W=—= [Ga1Fy3 —Ga3Fyy Jk™1Q ™ Lsinky dk, (81)
0
_—e¢" -1
st“T . [G31Fa3— Ga3Fyy JQ™ ' cos kydk, (82)
i 2 -5
P33—T . [Ga1Fa3— Gy3Fay1Q 7 sinkydk. .(83)

2
Fig;re 3. Tangential line load Q per unit length acting on the boundary of a semi-infinite
medium, : ‘ ‘

S
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7. Uniform half-space

In the previous section, we have obtained the integral expressions for the displacements
and the stresses at an arbitrary point of the medium caused by the surface line loads
acting on the boundary of an orthotropic elastic multilayered half-space. These
integrals can be computed numerically by using the method given by Jovanovich -
et al (1974a,b). In the case of an orthotropic elastic uniform half-space (p = 1) the
integrals giving the stresses can be evaluated anlytically. For a half-space

[F1=[Z(0)], [G]1=[Z()] (84)

7.1 Antiplane strain problem .

[t 1 B exp(— 0, kz) exp (6, kz) |
I N v O I

From (10), (70), (71) and (85), we obtain, using the integrals given in Appendix 11,

u= —(R/216,)log(y* + 1 2?), (86a)
Ré, z '

Pi3=— T [y2+5%22J3 v ‘ (86b)
Ro y |

Pia=— nl I:yz n 5§22:|- (86¢)

In the case of an isotropic elastic half-space &, = 1, 6, = p and (86a—c) reduce to

—R —R z - R
T BT T R T P
TTU .

n \y*+2z2 . \y*+z?

7.2 Plane strain problem

Here
ry r r, r | v
s —s s -8, o
(F1=tzon=| 3 T % TRl e=p-a (88)

~1 -1 -1 -1
and [G] =[Z(z)], where [Z(z)] is given in (45).
7.2a Normal line load: From (45), (74)~(77) and (88), we find

n(ﬁl_)_a)[ﬁrltan-l(a-yz;)—arztan-l(l%)], (89)

'W = _‘"—“2”(;_ 2 [@2 log(yz + 2z%) — Bs, log (y* + o222)], | (90)
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afP y y
= - , 91
P23 E(B_m)[yz_i_ﬁzzz y2+06222] ( )
oaffP z z
= - . 92
P33 n(f — &) [,\12+[J’Zz2 y2+a222j| ®2)

When the half-space is isotropic, « = f = 1 and the stresses given in (91) and (92) reduce

to
—2P yz2 —2P z3
_ | _ 93

Ps =" [(y2 +22)? ]’ P33 T [(y2 + z2)? ] ©3)

which are identical with the corresponding results of Sneddon (1951).

7.2b Tangential line load: From (45), (80)—(83) and (88), we obtain

v =-——(—2—'~——[r1 log(y? + a?z%) —rylog (2 + f22%)], (94)
2=
w= 0 s, tan™! ¥ —s,tan”! A . (95)
(B — o) 0z Bz
Q o’z Bz
= — 9
P23 TL'(B—CZ) l:yz +(XZZZ yz +ﬁ222 ’ ( 6)
. Q y Y
p33—n(ﬁ—a) |:y2+[)’222 y2+azzz] (97)
For an isotropid uniform half-space, stresses given in (96) and (97) become
=20 )z —20[ yz?
Pz = - [(y2+22)2 Ja P33z = T [(y2+zz)2 . ‘ (98)

These stresses coincide with the corresponding results given by Garg and Singh (1985).

8. Conclusions

We have solved the problém of the static deformation of an orthotropic multilayered
elastic half-space by two-dimensional surface loads. The results for a tetragonal
medium can be found by putting

C22=Cyy5 Cp3=Cy3, C55=Cyq.
The results for a transversely isotropic medium can be obtained by taking

— — — — = L —
C22=C11, C23=0C13," Cs55=Caq, Cg6=73(C11—Cy3)

The results for a cubic material can be obtained on taking

€22 =C33=Cyy, €13 =0C13=C3, C4q4=_Cs5=Cgq-
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While the problem of a transversely isotropic material has been discussed by Garg
and Singh (1987), the solutions of the problems for tetragonal and cubic materials
have not been reported in the literature.
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Appendix I: Transfer matrix for the plane strain problem

From (45), we write

[Z(z)]=[Z(0)]1[X(z)]. (A.1)

where
e 0 0 0 i ry ry  r,
0o €& 0 o | s =8y sy, —s,
X@1=| o o e o L2OIS T TR 2 TEla
0 0 0 ¢ -1 -1 -1 -1
We find
-Qp fQ,  —s5Q, -rQ
_ -Q;, —=BQ, 50 —1r,Q
1 __ 1 2 2942 2841
[ZO)] = Q -, 59, 0 (A.3)
Q, Q,  —5Q, rQ
where
Q =[2(r;—r )17 Qy=[2(Bs; —asy)] ™% (Ad4)
Following Singh (1970), we find that the transfer matrix [a,] is given by
 [B]=[Z(- 412,07 | (A5)
The elements of the matrix [a,] are (omitting the subscript n)
(11)=2(—ry;chf+r,ch¢)Q,, (12)=2(Br,sh —r,ash$)Q,,
\ (13):2(“71828h9+r2815h¢)92, (14)=2(-~Ch9+0h¢)7‘17‘291,
(21) = 2(—s,sh 0+ s,sh¢)Q,, (22) =2(s; fch B — s,ach )2,
(23) = 25y 55(—ch 8 + ch ¢)Q,, (24) =2(—s,r,sh0+s,7,sh¢)Q,,
(31)=2(—ash8 + Bsh)Q,, (32) = 2a8(ch § — ch $)Q,,
(33)=2(—as,chf+ Bs; ch9)Q,,  (34)=2(—ar,shf+ fr, sh )Q,,
(41) =2(ch8 —ch ¢)Q,, (42) = 2(~ BshO + ash d)Q,,
(43) =2(s,sh 8 — s, sh)Q,, ' (44)=2(r,ch6—r,ch¢)Q,.

In (A2) § = atkz, ¢ = Bkz while in (A.5) § = okd and ¢ = Bkd.
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Appendix II (z> 0): Integrals used

o] 1
1) f k™ texp(— kz)coskydk = —Elog(yz+zz),
0
) - f k~'exp(— kz)sinkydk = tan™!(y/z),
0
3) - J(‘ exp (— kz) cos ky dk = z/(y* + z*),
0
(4) J exp (— kz)sinky dk = y/(y* + z?).
0
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