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Rayleigh wave group velocity in a spherically symmetric gravitating
earth model
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Abstract. Expressions for kinetic energy, elastic potential energy and gravitational
potential energy for the spheroidal oscillations of a spherically symmetric, self-
gravitating, elastic earth model have been obtained, Some inconsistencies in the
expressions given by earlier authors have been pointed out. The principle of equi-
partition of energy and the Rayleigh principle have been used 10 derive a formula
for Rayleigh wave group velocity in terms of energy integals, This formula can
be used to compute the group velocity without the numerical differentiation implicd
in its definition.
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1. Introduction

After the fundamental work by Pekeris and Jarosch (1958), numerous investi-
gators have studied the analytical and numerical aspects of the problem of the
spheroidal oscillations of a spherically symmetric, self-gravitating, elastic model
of the earth. Recent theoretical studies on the subject include the works of Saito
(1967), Dahlen (1968), Singh and Ben-Menahem (1969), Phinney and Burridge
(1973), Luh (1974), and Dahlen and Smith (1975).  Ottelet (1966) proved a
variational principle applicable to these oscillations.

In this paper, we have derived the expressions for the kinetic energy, elastic
potential energy and gravitational potential energy for the spheroidal oscillations
of a spherically symmetric, self-gravitating, elastic model of the earth. The
principle of equipartition of energy asserts that in any normal mode mean kinetic
energy is equal to the mean potential energy. This principle together with the
Rayleigh principle are applied to get a formula for the Rayleigh wave group velo-
city in terms of energy integrals. This formula is very useful for computing the
group velocity.

2. Energy integrals

In the case of spheroidal oscillations, the radial component of the curl of the dis-
placement vanishes identically. We consider a spherical coordinate system
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(r, 0, ¢) with its origin at the centre of the earth. Then, for the spheroidal mode
w,, the displacement may be taken in the form

u=[U@O P+ V@) i+ 1)/2 BEy] cos ( t) = q cos (@, 1), O]
where ¢ = ¢ (for cosing) or s (for sine),

Pveﬁl =& Y:Il’

d 1 2 .
1/2 Re = L . €
{10+ D3 B (eg 5+ 5 ¢> Ye, @)
ot = P (cos () (cos mg, sin mg).

The vector spherical harmonics satisfy the following orthogonality relations:
Pe, By =0, _
{7 PE, - Py, sin 0 4O dg
= [a7 [T B, " By sin 0 df df

= }_‘See' (Smm' 5”’ th (3)

€m

where §,, denotes the Kronecker delta,

4 q+m
O =737 (=m) “)

and ¢, is the Neumann factor
(6n=1,f m=0and en =2, if m>0).
The kinetic energy at time ¢ is given by

K(f) = 5 of sin® (w;t)j plat dv,
v

where ¥ denotes the volume and p the density. Therefore, the kinetic energy
averaged over a cycle Is

k=2 ["k@d
-p [ K0

I

1 .
pot [ plar ©
where T is the period of the oscillation. From (1) to (5), we find
1 .
K=E’Qm;a)f L+ 10+ 1) L], ()

where

L=lipUsrd,

L=[p V& rdr (M
a being the radius of the earth, '
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The potential energy of deformation may be expressed in the form
r :
M@ =508 @) [ (& af+ % EE,

where 2E = VVq + qV/,

A, @ are the Lamé parameters and the colon ( :) denotes the double dot product
(Ben-Menahem and Singh 1981) Averaging over a cycle we find

1 T
m=g [ Hou
=£fv[l|divq12+2/tE:E]dV. ®)

Substituting for ¢ from (1) and using (3), we get

1
W1 =Z?le[[3+15+ l(l+ 1) (I7 -‘2[,1)

+ {1+ D I+ 20, 9

where

Iy = 8 A U, + r U dr,

I, = L AQU, + r U) ¥, dr,
IE = fﬂ A‘ Vlz dl’,
Iy =2[3u QU? + 1 UR) dr,
Li=[u{Ut = Vi =60V, + 2r (Uy = V) Vi + 1* Vi}dr,
IS = .fg:u Vi: dl',
and U, = dUy/dr, etc.
The gravitational potential energy is given by

Wo(t) = ~ % [y (F.u) dV, (10)
where
F = p [grad (l//—'gur) + ge, div “] (11)

is the body force contributed by the gravity, g denotes the acceleration due to
gravity and y is the perturbation in the gravitational potential. Putting

W= P; (r) Y:ﬂ Ccos (0); t), (12)

and averaging over a cycle, we find
1 T
W, =1 fo W, () dt

= e Oy = By + 10+ D) @ ~ Bl (13)
]
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where
L =3 p(nprG — Ut rdr,
Lo = [8 pUB, 1 dr,
Iy = [¢ pgUi¥yr dr,
L, = [4 pV Py dr. (14)

The above expression for the gravitational potential energy agrees with the
expressions given by Kovach and Anderson (1967) and Ward (1980) but differs
by a factor of half from the one given by Ben-Menahem and Singh (1981).
However, the definitions of the displacements, the spherical harmonics and
gravitational potential energy of Kovachand Anderson (1967). are not consistent
with their subsequent results.

3. Group velocity

According to the principle of equipartition of energy, the mean kinetic and poten-
tial enetgies in any normal mode are equal. The mean kinetic energy is K while
the mean potential energy is W = W, + W,. Therefore, (6), (9) and (13) yield
w%[]1+l(l‘l' 1) 12]=I3+IG+4IQ—1;0
+I10+ 1) (@G =20 + 2Ly - L)

+ [+ DI + 20 (15)
By Jeans formula, we have the following approximation
10 +1) = a2k = @ /e, (16)

valid for large values of /. Here, k, denotes the wave number and ¢, the Rayleigh
wave phase velocity cortesponding to the eigen frequency w. With the above
approximation, (15) becomes

@ (L + k) =1+ I+ 4, — Iy

+ k2 (I, — 20, + 2Ly — ) + a'kt (L + 21). 17

According to Rayleigh’s principle, when o, changes to o, + by and k; to &y +
6k, the corresponding changes in the eigen functions (i.e., in I to L) are of the
second order and, therefore, may be neglected. Applying this principle to (17),
we get the following formula for the group velocity (Up) of Rayleigh waves

do

cRUH= Cn-a—k-ll

_a@L -2+ 2y =L+ 20+ 1)+ 2I) — ¥ L),
- L +10+ DL

- (13)

In the absence of gravity, (18) reduces to the corresponding result for a non-gravita-
ting earth given by Ben-Menahem and Singh (1981). -
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The main advantage of the expression (18) for group velocity lies in the fact
that one can use it to compute the group velocity without the differentiation implied
in its definition U = dw/dk.

4. Conclusions

Equation (10) gives the group velocity of Rayleigh waves on a spherical earth
model in terms of the energy integrals. Since these integrals can be computed
easily this gives a convenient method of calculating the group velocity.

References

Ben-Menahem A and Singh $ J 1981 Seiwmic waves and sources (New York : Springe r-Verlag)

Dahlen F A 1968 Geaphys. J. R. Astr. Soc. 16 329

Dahlen F A and Smith M L 1975 Phil. Trans. Roy. Soc. A2T9 583

Kovach R and Anderson D L 1967 J. Geophys. Res. T2 2155

Luh P C 1974 Geophys. J. R. Astr. Soc. 38 187

Ottelet I 1966 Astrophys. J. 143 253

Pekeris 'C L and Jarosch H 1958 in Contributions in geophysics ; In hononr of Beno Gutenberg
(New York : Pergamon) 171-192

Phinney R A and Burridge R 1973 Geophys. J. R. Astr. Soc. 34 451

Saito M 1967 J. Geophys. Res. T2 3689

Singh S J and Ben-Menahem A 1969 Geophys. J. R. Astr. Soc. 17 333

Ward S N 1980 J. Phys. Earth 28 441




