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Introduction 

Let B be a real nondegenerate  indefinite quadrat ic  form on E", where n > 3, which is 
not a multiple of a rational form (that is, B is not of the form tB o where t e E and B o 
a quadrat ic  form whose coefficients with respect to the s tandard basis are rational). 
It was shown in [13], (see also [11] and [12]) that  for any e > 0 there exists x e 2 " ,  
namely  an integral vector, such that  

0 < IB(x)l <~:. (1) 

The result was conjectured by Oppenhe im (around 1930 in a somewhat  weaker  
form and in the 1950's in the present  form) and has been a subject of considerable 
work by Davenpor t ,  Oppenhe im and various other  mathematicians .  We refer the 
reader to [9] and [13] for details on the developments  and other references. It is 
well known that  the above result also implies that  B(Z"), namely the set of values at 
integer points is dense in ~(cf. [9, 13]). We now consider the set of values of B at 
primitive elements in Z", namely  on ~(Z")  = { x e Z " l x + - k y  for any y e Z  n and k e Z  
with Ikl>2}.  While it is evident that  the element x in (1) above can be chosen to be 
primitive, it no longer follows from this that  Bp]3(Y")) is dense in R. In fact hardly 
anything seems to be known abou t  the set. We now prove the following 

1. Theorem. Let  B be a real nondegenerate indefinite quadratic form on ~", where 
n > 3, which is not a multiple o f  a rational form. Let  B 2 be the corresponding bilinear 

form, defined by B2(v , w )=  �88 { B(v + w ) -  B ( v -  w) } for  all v, w e •". Let a, b, c e R be 
such that there exist v, w e  R" for  which B(v) = a, B(w) = b, B2(v, w) = c. Then for any 
e > 0  there exist x, ye~3(Z")  such that 

[B(x) -- a[ <e,  ]B (y ) -  b] < e  and ]Bz(x  , y ) -  e] < e,. 

In particular {B(x)l xe~,3(~")} is a dense subset o f  ~. 

It  is enough to prove the theorem for the case n = 3 (see w As in the case of  the 
above ment ioned result from [13], Theorem 1 is deduced from a result on flows on 
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the homogeneous space SL(3, ~)/SL(3, 7/). Let H be the connected component of 
the identity in the subgroup of G=SL(3,  ~) consisting of all elements leaving 
invariant the quadratic form 2 x l x 3 - x  ~, xl, xz, x3 being the coordinates of x. 
Oppenheim's conjecture described above was deduced in [13] by proving that 
every relatively compact H-orbit on SL(3, ~)/SL(3, 7/) is compact (and hence 
closed). We now prove the following strengthening of this result and deduce 
Theorem 1. 

2. Theorem. Any H-orbit in SL(3, ~)/SL(3, 7/) is either closed or dense. 

The deduction of Theorem 1 from Theorem 2 is similar to (in fact simpler than) 
the deduction of Oppenheim's conjecture in [13]; the details are given in w The 
homogeneous space approach for studying values of quadratic forms was noted by 
M.S. Raghunathan who conjectured in this connection that if G is a semisimple Lie 
group, F is a lattice in G and U is a connected unipotent subgroup of G then for any 
x~G/F there exists a closed subgroup F such that the closure of Ux in G/F is Fx. 
The reader is referred to [ 13] for some details regarding the status of the conjecture. 
The results involved in the proof of Theorem 2 go some way towards verification of 
Raghunathan's conjecture for a unipotent one-parameter subgroup contained in 
H. In a forthcoming paper (to appear in Math. Ann.) we use the result to verify the 
conjecture for this one-parameter subgroup of the group SL(3, ~). The technique 
here involves, as in [13], finding orbits of larger stJbgroups inside closed invariant 
sets of unipotent subgroups; however unlike in [13] we now deal with noncompact 
closed invariant sets as well. 

The paper is organized as follows. The first two sections contain various general 
results on orbits, closed invariant sets, minimal sets etc. for flows on homogeneous 
spaces of Lie groups; these would be of independent interest. In w we collect some 
further preliminaries and complete the proof of Theorem 2 in w The deduction of 
Theorem l from Theorem 2 is indicated in w where we also make some more 
observations. 

Acknowledoernents. The authors are thankful to the Max-Planck-lnstitut f/Jr Mathematik, Bonn 
and Professor G. Harder in particular for gracious support, making this collaborative work 
possible. The authors are also thankful to Gopal Prasad for some useful comments on a 
preliminary version of the paper. 

w Minimal closed invariant sets 

This section is devoted to various general results on minimal closed invariant 
subsets of actions on homogeneous spaces G/F, where G is a Lie group and F is a 
lattice in G, of subgroups of G (acting on the left). For the most part these are 
deduced from results in [5] after recalling them suitably. 

Let R" be the n-dimensional euclidean space equipped with the usual inner 
product ( , )  and the corresponding norm t[" H- For any discrete subgroup A of ~" 
we denote by AR the subspace of ~" spanned by A and by d(A) the volume of the 
torus 3R/A (or equivalently that of any fundamental domain for A in AR) with 
respect to the inner product induced by ~, ) on A~. If A is a lattice in R" then a 
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subgroup A is said to be complete if Anc~A=A. We denote by l the Lebesgue 
measure on [~. We have the following 

1.1. Theorem, Given ~>0 and 0 > 0  there exists 6 > 0  such that for any lattice A of 
~", any unipotent one-parameter subgroup {ut} of SL(n, [~) and T>O at least one of 
the following conditions holds: 

i) l({te[O, T]I Itu, zll > 6 for all zeA-(O)})>(1-e)T 

ii) there exists a complete subgroup A of A such that d2(utA)<O for all 
ts[0,  T]. 

Proof Follows directly from Proposition 2.7 of [5] if we choose (in the notation of 
[5]) S to be empty, h and k satisfying condition (2.3) formulated there, a = 0 and 
b = T k  -I. 

We deduce the following 

1.2. Theorem. Let G=SL(n,  ~) and F=SL(n ,  ~). Let 0 > 0  be given. Then there 
exists a compact subset C of G/F such that for any connected unipotent subgroup U of 
G and any geG at least one of the following conditions holds: 

i) there exists a one-parameter subgroup {ut} of U such that { t>Olu,gFeC} 
and { t <= 0] uzgF6 C } are both unbounded subsets of ~. 

ii) there exists a proper nonzero U-invariant subspace W such that Wc~gAo is a 
lattice in Wand d2(Wc~gAo)<O, where A o = Y ~ is the standard lattice in W'. 
In particular, g- 1 Ug is contained in a parabolic subgroup of G defined over Q. 

Proof Let 6 > 0  be as in Theorem 1.1 corresponding to the given 0 and some 
0 < e < 1. Let C be the subset of G/F consisting of all gF such that gA o contains no 
nonzero element in the 6 neighbourhood of 0. Then by Mahler criterion (cf. [16]) C 
is a compact subset and Theorem t.1 implies (by a simple argument as in the proof 
of Theorem 2.1 of [5]) that if for a gr assertion i) of the present theorem fails to 
hold for a (any) one-parameter subgroup {u,} of U then there exists a {u,}-invariant 
proper nonzero subspace W such that Wc~gAo is a lattice in W and 
d z ( W n g A o )  < 0. An argument as in the proof of Theorem 3.8 of [5], using the 
countability of the set of rational subspaces, shows that W can be chosen indepen- 
dent of the one-parameter subgroup {ut}, and hence U-invariant. This shows that 
the first part of condition ii)holds. Observe that g-~ Ug leaves invariant the 
subspace g-~ W and that g-~ Wc~A o is a lattice in g-~ W. The latter condition 
implies that g-~ W is a rational subspace. Hence {xeG[x,q ~ W= q  -~ W} is a 
parabolic subgroup defined over Q containing g-  ~ Ug. 

1.3. Corollary. Let G = SL(n, E) and F = SL(n, Z) and let C be a compact subset of 
G/F as in Theorem 1.2. Let U be a connected unipotent subgroup of G. Let N(U) be 
the normaliser of U in G and let { f(t)},=>o be a curve in N ( U ) such that if L is a proper 
nonzero U-invariant subspace then L is invariant under f ( t ) . lor  all t and 
I de t f ( t ) lL l~  m as t ~  0o (det f(t)]i, denotes the determinant of the restriction off(t) to 
L). Then.for all geG, Cc~ Uf(t)gF/F is nonemptyfi)r all large t. l f  F is the subgroup 
generated by U and {f(t)]t>=O}, then every nonempty closed F-invariant subset 
contains a minimal closed F-invariant subset. 



408 S.G. Dani and G.A. Margulis 

Proof We note that i fL  is a U-invariant subspace and ( leg is such that L•(lA o is 
a lattice in L then for [f(t)},> o as above dZ(Lc~f(t)(lAo)= Idetf(t)lLI2d2(Ln(lAo) 
and hence for all large t condition ii) in Theorem 1.2 is violated. Therefore 
condition i) must hold, which proves the first part of the corollary. Let F be the 
subgroup generated by U and {f(t)}t_>o. Then the first part implies that every 
F-orbit intersects C, that is Cc~F(IF/F is nonempty for all (lEG. Now if Y is a 
nonempty closed F-invariant subset then any totally ordered family { Y, }~A (where 
A is an indexing set and the ordering is by inclusion) of nonempty closed F- 
invariant subsets has a common point in C and therefore by Zorn's lemma Y 
contains a minimal closed F-invariant subset. 

1.4. Theorem. Let G be a connected Lie (lroup and F be a lattice in G. Then there 
exists a compact subset C of G/F such that for any connected Ad-unipotent sub(lrou p 
U of G (namely Ad u is unipotent.fi~r all u~U) and (leG at least one ofthefollowin(l 
conditions holds: 

i) there exists a one-parameter subgroup {u, } of  U such that { t > O[u,(lF6 C } and 
{t < 01 u~(lFsC } are unbounded subsets of ~, 

ii) there exists a proper closed sub(lroup L of G containin(l (l - 1Ug such that LF  is 
closed and L n F is a lattice in L. 

This is only a slight variation of Theorem 3.8 of [5] whose validity is clear from 
the proof of the latter. 

1.5. Corollary. Let G be a connected Lie group and F be a lattice in G. Let U be a 
connected Ad-unipotent sub(lroup of G. Then any nonempty closed U-invariant subset 
of G/F contains a minimal closed U-invariant subset. 

Proof We proceed by induction on the dimension of G. For low dimensions the 
assertion is obvious. Now suppose it to be true for dimensions less than n and let G 
be a n-dimensional Lie group. Let F and U be as in the hypothesis. Let C be the 
compact subset of G/F as in Theorem 1.4. Let Y be a given nonempty closed U- 
invariant subset of G/F. First suppose that C n  Uy is nonempty for all y~ Y. Then 
any totally ordered family { Y~},~A, where A is an indexing set, of nonempty 
closed U-invariant subsets of Y(ordering by inclusion) has a common element in C. 
Hence by Zorn's lemma there exists a minimal (nonempty) closed U-invariant 
subset contained in Y. Now suppose that there exists ye  Y such that C n  Uy= ~ .  
Let (l~G be such that y=(lF. Then by Theorem 1.4 there exists a proper closed 
subgroup L such that g - 1U(l is contained in L, LF  is closed and L n F is a lattice in 
L. Replacing L by its connected component of the identity, we may assume L to be 
connected. Now ( l - I Y n L F / Y  is a closed nonempty (l-~U(l-invariant subset of 
LF/F. Since LF/Y  is canonically equivalent to L / L n F  and L is of dimension 
< n - 1 ,  by the induction hypothesis ( l - lYc~LF/F  contains a minimal closed 
(l-lu(l-invariant subset. Hence Yc~(lLF/F contains a minimal closed U-invariant 
subset. This proves the corollary. 

We next show that the minimal sets of Ad-unipotent one-parameter subgroups 
are compact. For this we need the following lemma inspired by Lemma K in [-8]. 
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1.6. Lemma. Let T be a homeomorphism of a locally compact space Z. Suppose that 
there exists a compact subset K of Z such that for each z~Z the sets { j ~ ~1TJz ~ K} 
and {j~ ~ ] T-Jz 6 K} of natural numbers, are both unbounded. Then Z is compact. 

Proof Let K 1 be a compact neighbourhood of K in Z and let f2 = Z - K  1. Let 
B = ~ = o  T/~. Then T-JB c_ B c_ ~ for all j > 0 .  Since K c ~  = ~ the condition in 
the hypothesis implies that B must be empty. Hence TB is also empty. Since Z -  f2 
= K1 is compact it follows that there exists m > 1 such that ~ '  T i ~  is contained in 

m j . f2. Then ( ~ o ' T J f 2 = ~ l  T f2, call the set D. Then T D c D  and hence T ~ O c f 2 c  
Z - K  for all j. Hence by hypothesis D mu~t be empty. This implies that 
Z =  ~5"=o TJK1 and hence it is compact. 

1.7. Corollary. Let G be a connected Lie 9roup and F be a lattice in G. Let {u,} be a 
Ad-unipotent one-parameter subgroup of G. Let X be a closed {u,}-invariant subset. 
Suppose that for any x = g F e X  the one-parameter subgroup {9-lud4} is not con- 
tained in any proper closed subgroup L such that LF is closed and L c~ F is a lattice in 
L. Then X is compact. In particular every minimal closed {ht}-invariant set is 
compact. 

Proof Let C be a compact subset of G/F as in Theorem 1.4. Let u = u l  and 
D= {u,xlO<t<_ 1 and xeC} .  By Theorem 1.4 the condition in the hypothesis 
implies that for any x e X  the subsets { t>Olu ,xeC}  and {t<O[u, x e C }  are 
unbounded. Hence the subsets {jEN luJxeD} and {j~N [u-JxED} are unbounded 
for all x ~ X. Thus the condition in Lemma 1.6 is satisfied for the action of u on X. 
Hence the Lemma implies that X is compact. 

Now suppose that X is a minimal closed {u,}-invariant subset. If the condition 
in the first part is satisfied then we are through. Otherwise there exists x =gF such 
that {9-1 u,9} is contained in a proper closed connected subgroup L such that LF is 
closed and Lc~F is a lattice in L. Then Xc~qLF/F is a nonempty closed {u,}- 
invariant subset and hence, by minimality, X is contained in gLF/F. The latter is 
canonically equivalent to gLg-1/g(LcaF)9 -~ and therefore we can conclude 
compactness of X by repeating the above argument or equivalently by an obvious 
inductive procedure. 

1.8 Remark. Theorem 12 shows that in the case when G = S L ( n , ~ )  and 
F = SL(n, g) the subgroup L as in condition ii) of Theorem 1.4 can be chosen to be 
the subgroup generated by all unipotent elements in a parabolic subgroup; given W 
as in condition ii) of Theorem 1.2 the subgroup L = {xeG[xg- 1 W =  9-  ~ Wand det 
x Iw = 1 } has these properties and satisfies condition ii) of Theorem 1.4 (cf. [2] w for 
instance). It turns out that in the general case also L can be chosen such that LR/R,  
where R is the radical of G, is the subgroup generated by all unipotent elements in a 
parabolic subgroup of G/R. Similarly it is also possible to generalize Corollary 1.3. 
The results are achieved by recasting the proofs in [5] in terms of general reduction 
theory. However a substantial amount of work is involved in supplying the details. 
As our main interest here lies in the lattice SL(3, Z) in SL(3, ~) we shall not go into 
the details of the general case. However, it would be worthwhile to note for future 
reference that the arguments in the following sections including the proof of 
Theorem 2 apply to any lattice F in G = SL(3, ~) which is known to satisfy the 
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following condition for the action of the one-parameter subgroup V~ = {v~(t)} 
consisting of all upper triangular unipotent matrices contained in the subgroup H 
as in the introduction (see also w 

Condition (*) There exists a compact subset C of G/F such that for any gEG, (a) the 
sets {t>OIvt( t)gFsC} and {t<Olv~(t)gF~C} are both unbounded unless there 
exists a proper parabolic subgroup P such that if L is the closed subgroup 
generated by all unipotent elements in P then g-  ~ V~g c L, LF is closed and L c~ F 
is a lattice in L and (b) if {f(t)},> o is a curve in N(V1) (the normaliser of V1) such 
that Idetf(t)lwl ~ oo as t ~ oo, for every proper nonzero N ( V  1 )-invariant subspace 
W of {~3 then Cr~ V~f(t)gF/T is nonempty for all large t. 

In view of Theorem 1.2 and Corollary 1.3 (together with the fact that any Vx- 
invariant subspace is N(V~)-invariant) Condition (*) holds for the lattice SL(3, Y). 
Elsewhere we shall show that it in fact holds for all lattices. 

w Topological limits and inclusion of orbits 

As noted in the introduction the proof of Theorem 2 depends on the technique of 
finding orbits of larger subgroups inside a given closed subset invariant under a 
(unipotent) subgroup. In this section we collect the details in this regard. We begin 
by recalling the following result from [13] (see also [11] and [12]). 

2.1. Lemma. Let G be a locally compact (second countable) group and let Z be a 
locally compact space with a given G-action. Let F, P and Q be closed subgroups of G 
such that F c P c~ Q. Let X and Y be closed subsets of Z invariant under the actions of 
P and Q respectively. Suppose also that X is compa(t. Let M be a subset of G such 

that 9X r~ Y is nonemptyfor all geM.  Then hX c~ Y is nonemptyfor all h~QMP. I f  X 

is a minimal F-invariant subset then hX ~ Y for all h~QMP c~N(F), where N(F) is 
the normaliser of F in G. I f  further X = Y and P = Q then Y is invariant under the 

closed subgroup generated by QMP nN(F) .  [] 

In applying this in the present instance we use the following variation of 
Lemma 13 of [13] and Lemma 1 of [1]. (Though an appropriate analogue of the 
following lemma holds for any connected unipotent subgroup, for simplicity we 
restrict to one-parameter subgroups, which is the case needed in the sequel). 

2.2. Lemma. Let {u~} be a unipotent one-parameter subgroup oJ SL(n, ~)  and 
consider the natural action of {ut } on ITS", Let L = {x e  ~"1 u,x = x for all t~ ~). Let  Mo 
be a subset of ~"-L and suppose that pEMoc~L. Then there exists a nonconstant 
polynomial function O: ~ ~ L such that 4)(0)--p and the following condition holds: 
there exist sequences {x,} in M o and {C} in ~, such that tl--*oo and for any 
convergent sequence {~i} in R, say ~ i ~ ,  u~,,,xi--*O(~). 

Proof By Jordan canonical form there exists a basis {e(j, k)}, where l<_k<_l, for 
some l, and 1 <=j<=mk for suitable mx . . . . .  ml such that 

1 
u,e(j, k )= e(j, k)+ t e ( j - 1 ,  k)+ �89  k ) + . .  . + ~ j _ ~ t  ~-le(I,  k) 
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for all j, k. For  xeMo let x(j, k) denote the e(j, k) -component  with respect to the 
basis and put 

0 (x )=  min {Ix(j, k)l-l/IJ-l~[1 <k<l ,  2<j<mk} .  

Then  Ix(j, k) O(x); 11 =< 1 whenever j  > 2 and the equality holds for at least one (j, k) 
such that  j >  2. Now let {xi} be a sequence in M o converging to p. By passing to a 
subsequence we can arrange so that  there exists a fixed (Jo, ko) withJo > 2 such that  
Ixi(Jo, ko)O J~ l(xi)[ = 1 for all i. Passing to subsequence once again we may further 
assume that xi(j, k)OJ-l(xi) converges for all (j ,  k); let 2(j ,  k) denote the limit 
corresponding to (j, k). Now choose 

1 
O(s) = ~ ;-v---;-;7)~(j, k)sJ-l e(1, k) . 

ij, k)tJ-- t). 

Then it is s t ra ightforward to verify that  4~ has the required properties; for this, one 
chooses x i as above and ti = O(xi). 

We note that  if P is the isotropy subgroup of p as in the Lemma,  

M = { g l g p e M o }  and Q = {u,} then the Lemma implies that  Q MP contains all h 
such that  hp lies in the image of q~. Thus the Lemma  enables us to conclude 
existence of certain subsets of elements h such that  hX ~ K under appropr ia te  
conditions. We complement  this by the following lemma to get orbits of subgroups.  

2.3. Lemma.  Let G be a connected Lie group and F be a lattice in G. Let U be a 
connected Ad-unipotent subgroup of G. Let U1 be a subset ( f  U such that the fi~ltowing 
condition is satisfied: there exists a one-parameter subgroup {u, } of U such that.for 
any ueU, uu,~Ut for all large t (say t > t,, t, depending on u). Let Y be a closed 
subset o[ G/l" containing an element x such that u'x~ Y Jbr all u'~U 1. Then Y 
contains a U-orbit. 

Proof Let u~U be given and let {u,} be a one-parameter  subgroup  of U as above. 
There exists a compact  subset C of G/F such that  {t > 0I u,xeC} is unbounded  (cf. 
[4], Theorem 4.1; the result may  also be deduced from Theorem 1.4). Therefore 
there exists a sequence {ti} in ~, t~-, 0% such that u,x  converges, say u , x - , y .  Then 
uu~,x-,uy. Since t i n g e ,  for all large i, uu, eU 1 and hence uu~xeY. Since Y is 
closed, it follows that uye K As ueU is arbi t rary this means that Ycontains the U- 
orbit  of y. 

Now let A be a semidirect product  of the groups N* and R. We take the 
underlying set of  A as {(or, v ) I~e~* ,  v ~ }  and the product  as given by (~', v')(a, v) 
= (a'cs, a-ev'+v),  where d e n  is fixed. By a rat ional  function on R we mean the 
quotient  ~//3 of  two polynomials  with real coefficients, its value being defined at 
points where [ /does  not vanish. The number  (degree cQ-(degree/3)  is called the 
degree of ~/fl. 

2.4. Proposition. Let a and v be two rational functions on ~ and suppose that the 
degree oJ'a is nonzero. Let 4): N-- .Au{  oo} be the function defined by 4)(t)~ 
(g(t), v(t)) if cr(t)6N* and v(t)eN, and go otherwise. Then there exist a nontrivial one- 
parameter subgroup { p~ }.~e~ of A and a family offunctions a~: ~ + --* ~, se~, such that 
as t~oo,  

t + a~(t)--* go and c~(t +a~(t))(a(t) -1 ~ p.~ 
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for all s in a subset E o f  N, where E =  ~ unless {psIseN}  = {(1, s)ls~N} and in the 
latter case E = [0, oe). 

Proof. Let d e n  be as above. For  any t and ~eN we have 

O(t + 4) r  i = (a(t + ~), v(t + ~))(o(t), v(t)) -1 

= (a(t + ~)a( t ) -  1, a(t)a(v(t + 4 ) -  v(t))) 

whenever it is finite. Let v(t) = ~(t)/fl(t) where ~ and/3 are coprime polynomials.  Let 
k and l be the degrees of :~ and /3 respectively. The function r ~ct ( t+~) /3( t )  
- :~( t ) /3 ( t+r  is a polynomial  in ~ whose constant  coefficient is zero and other 
coefficients are polynomials in t of degree < k + l -  1. For  i >= 1 let m i be the degree in 
t of the coefficient of  ~; m~ = - oQ by convention,  if the coefficient polynomial  is 0. 

Let p be the degree of or(as a rational function) and for each i > l  let 
ql = p d + m i - 2 l .  Let q = max/__>_ 1 {qi/i}. We now consider two cases: First suppose 
that q > - l .  Then we put a. , ( t )=st  q for all s, teN, t > 0 .  The condit ion q > - I  
ensures that fi(t + a~(t))//3(t) converges to 1 as t - ,  or. O n  the other  hand using the 
fact that  qi < iq it can be readily verified, substituting for as(t), that  

a(t  )d fl(t ) -  2 {c~(t + a~(t )) /3(O --~(t)/3(t + a,(t)) } 

converges to a polynomial  ~ i % l c i s  i in s, where m =  max{k, l} and c~ is nonzero if 
and only if qi = iq; in particular at least one c~ is nonzero. Therefore a(t) d {v(t + a,(t)) 
- v ( t ) }  which is the same as 

a(t )a fl(t + a,(t)) -1 [J(t ) -  l { o~(t + a~(t )) [3(t ) -  ~(t ) /3(t + as(t )) } 

converges to a nonconstant  polynomial  in s. Also as a~(t)/t--,O as t - ,  0% we have 
a(t + a~(t))a(t)-  ~ --, 1. Combining,  we find that 43(t + a~(t)) ~ ( t ) -  ~ converges for 
each s to an element of {(1, v)l veN} and (I, v) is such a limit if v = s ~ for some s. 
By altering the parameterisation of the family of functions a~ we can adjust so that 
r 1 6 2  converges to p~ for all s>0 ,  where p~=(1, _+s), the sign being the 
same throughout .  Observe also that for any s, t+as( t ) - - ,  ~ as t ~  ,~o. This proves 
the proposi t ion for the case at hand. 

Next suppose that q < -  1. We put  a~(t)= (e s -  l)t. Computa t ions  as before 
re~tdily show that in this case a(t)d{v(t  + a~( t ) ) -v ( t ) }  converges to a polynomial in 
e~; this could however be zero. On  the other hand a( t+a~( t ) )~ ( t ) -  ~ = ~r(e~t)a(t) - 
--,e ~p. Thus r  43(t) -~ converges in A for all s e~ .  Let p~ denote the limit of  
43 (t + a~(t))O(t)- ~ as t ~ Go. Then clearly Ps, + ~ = P~, P~ and p_~ = (p~)- ~ for all s~, 
s2 and seN. Also s ~ p ~  is continuous. Since p + 0  the one-parameter  subgroup is 
nontrivial. Also t + a ~ ( t ) =  e~t--, oo as t ~  oQ. This proves the proposition. 

In  the proof  of Theorem 2 we also need to deal with situations where X as in 
Lemma 2.1 is a noncompac t  closed subset. For  this purpose we need the following 
notion. 

2.5. Definition. Let {t),} be a flow on a locally compact  space Z. An element z e Z  is 
said to be a point ofun!form recurrence in linear time if for any ne ighbourhood ~2 o fz  
and ct>0, there exists a ne ighbourhood  f f  of  z and ToeR such that for any yef~'  
and T >  To the set ~2 c~ {~,(y)[ T <  t < (1 + ~) T} is nonempty.  
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How this together with the later part of Lemma 2.2 substitutes for the 
compactness condition in Lemma 2.1 may be seen in the proof of Proposition 4.3. 
We shall not abstract it since it would seem too cumbersome and artificial that 
way. For  the argument there we need the following instance of uniform recurrence 
in linear time. 

2.6. Theorem. Let G = SL(2, ~) and F be a lattice in G. Let u~ = (~ ~)for all t ~ .  Let 
xeG/F be such that utx + x for every t #O. Then x is a point of un!form recurrence in 
linear time for the flow induced by the action of{u,} on G/F. 

Proof Suppose this is not true. Then there exist an element xe G/F such that u,x # x 
for every t0:0, a neighbourhood ~ of x, an ~ > 0  and sequences {xj} in Q and {Tj} 
in ~ such that x~--*x, T j ~  and Qc~{u,xjlT~<t<(1 +c 0Tj} = ~ for all j =  1, 
2 . . . . .  Without loss of generality we may assume (2 to be relatively compact. Let X 
=G/F u{ov} be the one-point compactification of G/F and set u,v~ =oQ for all 
te~.  For j =  l, 2 . . . . .  let ~j be the probability measure on X defined by ~j(E) 
=l({ t lT j<t<(1  +~)Tj, u,xjeE})/~Tj for any Borel subset E of X, where / i s  the 
Lebesgue measure. Since X is a compact second countable space, the space of 
probability measures on X is compact and second countable when equipped with 
the usual weak topology. Hence the sequence {Trj} has a convergent subsequence 
and by replacing the sequence {x j} by a suitable subsequence we may assume {Trj} 
to be convergent, say 7rj ~ ~. It is straightforward to verify that ~z is invariant under 
the action of {ut} and that ~(fl)= 0. 

The proof of Proposition 1.2 in [4] shows that given ~>0  and a relatively 
compact subset, say Q as above, there exists a compact subset C of G/F and a 
constant bo such that / ({ te l0 ,  T ] l u , y r  o for all yeQ and T>b0; in the 
set up as on page 31 in [4] choose S to be such that ~ is disjoint from X(a, S) for all 
a e 2  and having chosen s as required there, depending on S, choose C to be a 
compact subset of G/F whose complement is contained in U~X(~, s). (We note that 
the boundedness of the {u~ }-orbit assumed in [4] is involved only to ensure that for 
any a > 0 ,  {utylt>a } is not contained in X(a, S) for any a, which is automatic in the 
above variation). Since xjeQ for all j we get that ~zj(X- C) < ~- ~ (1 + e)~ + bo/Tje 
and hence 7r(X - C) < e -  ~ (1 + e)e,. In particular this implies that ~({ ~ }) = 0. 

Thus ~z is a {ut}-invariant measure on X such that ~r(Q)=0 and ~({~})=0 .  By 
the classification theorem for {ut}-invariant measures (cf. [2]) this implies that ~ is 
supported on the set of periodic orbits, namely ~(P)=  1, where P =  {ylu,y=y for 
some t>0}.  We claim that actually ~(P)=0,  the contradiction showing that the 
theorem is true. 

The proof of ~(P) being 0 is very similar to that of Corollary 3.8 in [7]. 
Therefore, rather than going through the whole argument, we only give a sketch 
indicating the comparable steps in [7]. For this purpose we also follow the 
notation as in [7], without further mention. As in [7] it is enough to prove that 
~z(Pi)=0 for all i=  1, 2 . . . . .  r. Again for each i, considered fixed as in [7], it is 
enough to show that ~(jo (0, p)) = 0 for all p > 0. Let p > 0 and e > 0 be arbitrary and 
let M and ~ be as in the proof of Proposition 3.2 in [7]. Then the argument as in 
that Proposition shows that I({te [0, T] l u,yeJO(O, p) }) < eT for all T >  0, 0 < 6 < 
and y not belonging to J~(0, M). Since u,x#-x for any t # 0  it follows that 
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x#J~ M)). Hence there exists a 0 < 6 < a  and a neighbourhood f2' of x 
such that Ja(0, M)c~O' = ~ .  For all large j, xjef2' and hence l({te[0,(1 +e)Tj ] l  
u,xjejo(O, p)})<e(l+~)Tj.  Hence ~zj(J~(O,p))<c(-l(l+~)e. This implies that 
z~(J~(0, p))< e-1(1 +c~)e for all p such that ~(jO(p, p))=0 (cf. [3] Lemma 3.2). As 
e > 0 is arbitrary we get that ~(J~ p))= 0 for all p such that rc(J~ p))= 0. Since 
is a probability measure the latter condition holds for all but countably many p and 
hence, by monotonicity, re(J~ p))=0 for all p. This completes the proof. 

w Some more preliminary results 

We now set up notation and note some more (specialized) results which will be used 
in the next section in proving Theorem 2. 

Let G = SL(3, ~) and F be a lattice in G satisfying Condition (*) formulated in 
Remark 1.8; we draw the readers' attention to the comments following the 
statement of the condition. We denote by e the identity element in G. Let, for t e n  

Let H be 

titi 2j2) ti~ vl(t) = 1 and vz(t)= 1 , 

0 0 

I/1 -= {v,( t ) l teN},  V2 = {Vz(t)lte~}, V =  V, V2 , 

V~" = {v2(t)[t>O} V; =- {v2(t)]t<O} 

{(i i) I {(i~176 l } W =  1 a, b, ceN and D = 1 0 d>O 
0 0 d -1 

the subgroup as in the introduction; namely H is the connected 
component of e in the subgroup of G of elements leaving invariant the quadratic 
form 2xlx 3 -x~ .  We note that D normalises V1, V2, Vand W, the subgroup DV1 is 
contained in H and H/DV1 is compact. 

3.1. Proposition. Let X be a closed H-orbit in G/F. Then the followin9 conditions are 
satisfied: 

i) X admits a finite H-invariant measure #. 
ii) For all x e X ,  DV~x is dense in X; that is, the DV~-action on X is minimal. 

iii) The V~-action on X is ergodic with respect to l~. For x e X  the V~-orbit of X is 
either periodic (that is, v l ( t ) x=x  for some t>0)  or dense and uniformly 
distributed with respect to p. 

iv) l f  x e X  is such that the Vl-orbit is not periodic then x is a point of uniform 
recurrence in linear time for the V~-action. 

Proof It is well-known and easy to see that H is locally isomorphic to SL(2, ~R). 
Therefore Theorem 3.11 of [14] implies assertion i) as above. In view of this, X can 
be realized as SL(2, ~)/A for some lattice A in SL(2, R), with the DV~ and VI 
actions on X corresponding to the actions on SL(2, R)/A of {(~ ba-,)l a, be ~, a > 0} 
and {(~ '~)lteR} respectively. Assertions ii) and iii) therefore follows from the 
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corresponding well-known results for the latter actions (cf, [6], for instance). 
Assertion iv) follows in the same way from Theorem 2.6. 

3.2. Proposition. Consider the action of D V 1 on G/F. Then we have the following: 
i) every nonempty closed invariant set contains a minimal closed invariant set. 

ii) there are no closed orbits. 

Proof Letf( t )  = diag(e t, 1, e -t) for all t6~.  Then detf( t ) ls-~ oo as t ~  ~ ,  S being 
any of the two proper nonzero V~-invariant subspaces. Hence, by Corollary 1.3 in 
the case of S L(3, Z) and by Condition (*) in the general case, there exists a compact 
subset C such that for each geG, C n  V~f(t)gF/F is nonempty for all large t. 
Assertion i) now follows from a simple argument as in Corollary 1.3. Now suppose, 
if possible, that there exists #eG such that the DVl-orbit ofgF in G/F, namely the 
set Y= D V~gF/F is closed. We note that since D V~ is not unimodutar Y cannot be 
compact. Let X be a minimal V~-invariant subset of Y(cf. Corollary 1.5). For each 
d~D, dX is V~-invariant. By minimality of X this implies that d X n X  = ~ unless 
dX = X. Since X is compact (cf. Corollary 1.7), Y= DX and Y is not compact, there 
does not exist any nontrivial d such that dX = X. Hence dX c~ X = ~ for all d 4: e. 
Since Y= D X  this implies that X is a V~-orbit. As X is compact this means that the 
isotropy subgroup ofgF/F for the D V~-action is a nontrivial cyclic subgroup of V1. 
Let A be the isotropy subgroup. Since Y is a closed D Vl-orbit, the canonical orbit 
map q: D VI/A ~ G/F must be a proper map, However as A is contained in V1 this 
contradicts the fact that C c~ V~f(t)gF/F is nonempty for all large t. Hence there are 
no closed DV~-orbits, which proves ii). 

3.3. Proposition. Let X be a minimal closed V-invariant subset." Then X is compact. 
Further, either it is a V-orbit or it contains a W-orbit. 

Proof. First suppose that there exists geG such that g F e X  and g-  1 Vlg is contained 
in a subgroup L as in Condition (*), namely L is generated by all unipotent 
elements in a proper parabolic subgroup P, LF is closed and L c~ F is a lattice in L. 
Then gPg-  1 is a parabolic subgroup containing V1 and hence it contains V. Hence 
g-  1 Vg is contained in P. Since L contains all unipotent elements in P it follows that 
g-~Vg is contained in L. Then VgF/F is contained in gLF/F, which is a closed 
subset, and hence, by minimality of X as a closed V-invariant subset, X is con- 
tained in gLF/F. Hence to prove the compactness of X it is enough to prove that 
any minimal closed g-  1 Vg-invariant subset, say Y, of L/Lc~ F is compact. Since L 
is the closed subgroup generated by all unipotent elements in P we see that either 
L = g - I W g  or L/N,  where N is the radical of L, is topologically isomorphic to 
SL(2, ~). Recall that Lc~F is a lattice in L. Now if L = g - ~ W g  then L/Lc~F is 
compact and hence so is Y. In the other case N e f F  is a lattice in N and 
consequently the canonical quotient map ~/: L/L m F--, L /N(L  c~ F) is a proper map. 
(cf. [16] for instance). Therefore to prove compactness of Y we have only to show 
that t/(Y) is compact. But this follows from Corollary t.7, since q(Y) is a minimal 
closed g- lVgN/N- invar iant  subset and g - ~ V g N / N  is, as can be readily seen, a 
(unipotent) one-parameter subgroup of L/N. Therefore Y is compact and hence 
so is X. 
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We now suppose that there does not exist any 9 as above. Then, by Theorem 1.2 
in the case of SL(3, Z) and by Condition {*) in the general case, there exists a 
compact subset C of G/F such that for all x = gF6G/F the sets {t>OIv~(t)xeC} 
and {t <= OI vx ( t )xeC} are both unbounded. Then the argument as in Corollary 1.7, 
using Lemma 1.6, implies that X is compact. 

Lemma 4 of [13] now implies that either X is a (compact) V-orbit or there exists 
a subset M of G-V such that e e M  and gXc~X#: (g for all geM. In the latter case, 
by Lemma 2.1, X is invariant under the closed subgroup, say F, generated by 

VMV c~N(V), where N(V) is the normaliser of V. It is easy to see that N(V)=DW.  
By Lemma 8 i) of [13] F contains a one-parameter subgroup of D W not contained 
in V. It follows that F contains either W or w(D V)w-~ for some we IV. By Lemma 
6 of [13], W c F  if M c G - N ( V ) .  As DV has no compact orbits on G/Y the two 
assertions together imply that X contains a W-orbit, which proves the proposition. 

Now let g be the Lie algebra of G, realised as the Lie algebra of 3 x 3 matrices of 
trace 0. Let b be the Lie subalgebra corresponding to H. Let p be the orthocomple- 
merit of b in g with respect to the Killing form (this can be expressed explicit ly-- see 
[13]). Then g = b G p and b and p are invariant under the restriction of the adjoint 
action (of G on g) to H. 

3.4. Proposition. Let M be a subset ofexp p such that Men V 2 = ~  and ee M. Then 
there exists a polynomial map 4?: ~--* V 2 such that ~(~) contains V ~ or V ~ and there 
exist sequences {9i} in M and {tl} in ~+ such that for any convergent sequence (fl,} of 
real numbers, say fli-~ fl, Vl (fliti)giVt (-- fllti.)--*~p(fl). 

Proof Let M o = {~ep[exp CeM}. Then the conditions of Lemlna 2.2 satisfied for 
the action of the one-parameter subgroup {vl (t)} on p, obtained by restricting the 
adjoint action as above, with p=0;  we note that for ~ep, Advx(t)~=r for all t if 
and only if exp ~e V 2. Hence by that Lemma there exists a non-constant poly- 
nomial map qS: I ~  V z such that ~b(0)=e and there exist sequences {~z} in M o 
and {t~} in ~+ such that for any convergent sequence {ill} in ~, say fl~--*fl, 
exp Ad vl (fl~ti)(~i)-" ~b(fl); setting g~ =exp ~_~ yields the assertion as in the Propositi- 
on. Since ~b is a nonconstant polynomial map and ~b(0)= e it follows that ~b(~) 
contains either V2 + or Vz-. 

3.5. Corollary. For any subset M c G - H V 2  such ~hat eeM, D V t M V I contains 
either V~ or V Z. 

Proof Let {g~} be a sequence in M such that gi~e .  Since g = b+p ,  there exist 
neighbourhoods A and B of e in H and expp respectively, such that the map 
(a, b) --, ab is a homeomorphism of A x B onto a neighbourhood of e in G and hence 
for all large i, gi has the form hlqi, where hieH, q/Eexp p, with h i ~ e  and q i ~ e  as 
i ~ oo. We also note that since M c G -  H V:, ql ~ V z. Let ~b be the polynomial as in 
Proposition 3.4 for the subset {q~li = 1, 2,. �9 .} (in the place of M there). Then by the 
Proposition there exist sequences {kg} in N and {t~} in ~+ such that vl(t~s ) 
qkVl(--tiS)~ffg(S) for all seR. Clearly ti--, oo. Recall that H is a quotient group of 
SL(2, ~) and DV1 is a parabolic subgroup in H. A straightforward computation 
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shows that if P is a parabolic subgroup of SL(2, R) if {u~} is a unipotent one- 
parameter subgroup contained in P and if {hi} is a sequence in SL(2, R) then given 
{tl} as above, the sequence of cosets Ph~u(-tls) converges to the coset P (in the 
quotient space P\SL(2, E)), except possibly for one particular value of s. It follows 
that there exists SoeN such that for every s 4: So, the sequence of cose t s  DVlhkv 1 
( - t : )  converges to the coset DVx in DVI \H.  It follows that for every s # s  o, 
D V 1 g k V l  ( - -  t i s  ) = D V l h k , v l (  - -  t i s ) ' v  I ( t  iS ) qk~ V l ( - -  t iS)  -'~ D V 10(s). But then ~b (s) must 
be contained in DV1MV 1 for all sEE. Since the image of ~b contains either V] or 

V 2 it follows that D VMVI contains either V~- or V 2. 

3.6. Proposition. Let Y be the closure of a V:orbit  in G/F. Then either Y is a V 1- 
orbit or it contains an orbit of V or v(DV~)v-l for some ve V 2. 

Proof Let X be a minimal closed V~-invariant subset contained in Y; such a subset 
exists by Corollary 1.5 and is compact by Corollary 1.7. Let x e X  be fixed, First 
suppose that there exists a neighbourhood ~ of e in G such that 
{get2lgxE Y} c N(V1) , the normaliser of V 1 in G. Then ((2c~N(V~))x~ Yis open in 
Y and hence contains an element y such that V~y is dense in Y. Let y = p x  where 
peN(V~). Then Vly= V~px=pV~x c p X  and hence Y c p X .  But since peN(V1) 
and X is a minimal closed V:invariant  subset, pX and X are disjoint unless pX 
= X .  Since X ~ Y c  pX we get that Y=X.  Thus Y is a compact minimal V~- 
invariant set. Then by Lemma 4 of [13] either Y is a Vl-orbit or there exists a 
subset M ~ G -  V 1 such that e e M  and gxe Y for all 9eM.  If the second condition 
holds then by Lemma 2.1 Y is invariant under the subgroup generated by 

V~ M V 1 c~ N (V1) and by Lemma 8 of [ 13] the latter contains either V or v(D V~) v-  1 
for some ve V 2. Hence the proposition holds in this case. 

Now suppose that there does not exist any (2 as above. Then there exists a 
subset M c G - N ( V O  such that eeM and gxe Yfor all 9eM.  Then by Lemma 2.1 

hX c Y for all he V1MV ~ c~N(V~). For 2eE* let d(2) denote the diagonal matrix 
diag(2, 1, 2-1). We shall show that there exist rational functions a and v on E such 
that the following conditions are satisfied: i) a and a2v are polynomials, a(0) = 1 and 
at least one of a and v is nonconstant and ii) for any t e e  such that a(t) + 0 the 

element d(a(t))v 2(v(t)) is contained in V1M Va. 
Let g be the Lie algebra of G and ~ be the space of all symmetric 3 x 3 matrices. 

Let t = g |  and consider the linear action of G on t obtained as the direct sum of 
the adjoint action on g and the action on ~ defined by (g, 0 ) ~  gong (where 'g is the 
transpose of g). Let p = ~o + 0o, where ~0 is a nonzero element in the Lie subalgebra 
of .q corresponding to V 1 and 0o is a nonzero element fixed by the action of H (say 
the matrix corresponding to the quadratic form 2x~x3-x2) .  Then V~ is the 
isotropy subgroup of p under the G action on t. Let o be the Lie subalgebra of g 
corresponding to V, viewed as a subspace of t in a natural way. Let 01= 
v2(1 ) 0 o - - 0  o (action as above) and let 0o and 0~ be viewed as elements of ~. Let L 
be the subspace of x consisting of all elements fixed by //1. It is easy to see that L is 
precisely the subspace spanned by o~{0o, 01}. By Lemma 2.2 there exists a 
nonconstant polynomial map 4~: E ~ L such that 4~(0)= p and the image of ~ is 

contained in V~Mp. Since the G-orbit of p is locally closed, the contention of the 
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Lemma also implies that for all t in a suitable neighbourhood of 0 in N, q~(t) is 
contained in the closure of Gp c~ L. It is straightforward to verify that the latter set is 
precisely E := {~o + 0o +/30,1 ~,/3eN). Since q~ is a polynomial map it follows that 
r  for all te~ .  Hence we can write 4~(t) as 05o(t)~o+Oo+O~(t)O, (uniquely), 
where r and r are polynomials on N. We define ~ = r  and v = r 1 6 2  2. We note 
that since q~(0)=p, ~(0)= 05o(0)= 1 and hence in particular v is a genuine rational 
function. Clearly a and a2v are polynomials. Also since q~ is nonconstant, either 
r or r  and hence cr or v is nonconstant. It is easy to verify that for any 2E~*, 
d(2)~o=2~ o, d(2)Oo=O o and d(2)01=220, and for any seN, v2(s)~0=~ o and 
v2(s)Oo=Oo+sO ,. Hence for any 2 ~ *  and se~ ,  d()~)Vz(s)p=2~o+Oo+~,ZsOa. 
Substituting, we find that if t e n  is such that a(t)4=0 then d(~r(t))v2(v(t))p= 

a(t)~o + Oo + a 2 (t)v(t)O, = 05o(t)~o + Oo + qS, (t)01 = ('o(t)t V1M p and consequently 

d(a(t))vz(v(t))t V, M V x. Thus ~ and v have the desired properties. 
Now first suppose that ~r is constant, namely a(t)= 1 for all t. Then v(t) is a 

nonconstant polynomial and v2(v(t))t V : M V ,  and hence v2(v(t))X c Yfor all teN. 
By Lemma 2.3 this implies that Ycontains a V2-orbit. Being Vl-invariant it must in 
turn contain a V-orbit as desired. Next suppose that a is a non-constant 
polynomial. Let 05(t)= d(a(t))v2(v(t)). Then by Proposition 2.4 there exist a non- 
trivial one-parameter subgroup {p,} of D V 2 and a family of functions a~: ~ + ~  N, 
s t  N, such that as t --+ oc, t + as(t) -+ oo and O(t + as(t))05 (t)-  ' ~ p~ for all s in a subset 
E of N, where E =  N unless {p, lseN} = V 2 and in the latter case E = [ 0 ,  oo). 

Observe that Idet 05(t)lLI where L is any of the two proper nonzero V,-invariant 
subspaces, tends to oo as t ~  oo. Hence by Corollary 1.3 or Condition (*) there 
exists a compact subset C of G/F such that qS(t) V l X n  C is nonempty for all large t. 
Hence there exist sequences {tl} in ~ and {v~} in V1 such that t~--+ c~ and O(t~)v~x 
converges, to say an element y. Since 05(t)X c Yfor all large t (for which e(t)  4 = 0 as 
above) it follows that ye  Y. Now for any seE we have 

05(ti + a~(ti))vix = 05(ti + a~(ti)) 05 (ti)- I 05(ti)vlx --+ p~y . 

Since t i+as( t i )~  Go as i--+ c~ and 05(t)X c Yfor all large t it follows that p~yt  Yfor 
all seE.  Recall that if E is a proper subset of • then we have E = [ 0 ,  oo) and 
{Ps [st  ~} = V 2. Hence using Lemma 2.3 we conclude that in any case Y contains a 
{p~}-orbit. Recall that {Ps} is a nontrivial one-parameter subgroup of 01/'2. Let F 
be the (closed) subgroup generated by {p,} and V,. Since Yis a V,-invariant subset 
and contains a {p,}-orbit and {Ps} normalises V, it follows that Y contains a F- 
orbit. Clearly F is a two dimensional connected Lie subgroup of DV. It is well 
known and easy to check that such a subgroup is either V or v(D V1)v- '  for some 
w V 2. This proves the proposition. 

3.7. Remark. Following the method of Proposition 3.6 one can prove that if Yis the 
closure of a U-orbit where U is one of the subgroups V or W then Y is either a 
(compact) U-orbit or it contains an orbit of  a closed connected subgroup F 
properly containing U and contained in the normaliser of U. 
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w Proof of Theorem 2 

In this section we complete the proof of Theorem 2. We follow the notation as in w 
We recall in particular, that F is allowed to be any lattice in G = SL(3, JR) satisfying 
Condition (*) formulated in Remark 1.8, which is seen to hold for SL(3, ;g) and 
would be upheld for an arbitrary lattice elsewhere. 

4.1. Proposition. Let Y be the closure of a DVl-orbit. Then Y contains either a 
V-orbit or a closed H-orbit. 

Proof In view of Proposition 3.2 without loss of generality we may assume Y to be 
a minimal closed DVl-invariant subset. Let X be a minimal closed Vl-invariant 
subset contained in Y; it may be recalled that such a subset exists by Corollary 1.5 
and is compact by Corollary 1.7. Let x ~ X  be fixed. 

First suppose that there exists a subset M of G -  H I/2 such that e e M  and 9xe Y 
for all 9E M. Since X is a compact minimal Vl-invariant set and Y is D Vl-invariant, 

Lemma 2.1 implies that hX c Y for all hEDV1MV1 ~N(VI), where N(V1) is the 

normaliser of V1 in G. Since M c G - H V z  and e6M, by Corollary 3.5 DV~MV 1 
contains either V~- or V 2. Since V2 c N(V~) we get that either V f X  or V2 X is 
contained in Y. By Lemma 2.3 this implies that Y contains a V-orbit. 

Now suppose that there does not exist any subset M as above. Then there exists 
an open neighbourhood f2 ofe  in G such that { g ~ l g x c  Y} c HV 2. By replacing O 
by a smaller neighbourhood we may further assume that g ~ g x ,  (geQ), is a 
homeomorphism of f~ onto g2x and that the map (h, v)--*hv, ( h e ~ n H  and 
vef2 c~ V2)is a homeomorphism of(Qc~ H) x (t?~ V2) onto a neighbourhood ore in 
H V z contained in O. 

Let y E ( ~ H V z ) x ~  Y, say y =  hvx with hE~caH and w O  c~V2,be arbitrary; we 
show that then vxe Y. Since X is a minimal closed V~-invariant subset there exists a 
sequence {ui} in V 1 such that u i ~  (namely it has no limit point in V1) and 
u i x~x .  In the group/4,  which is locally isomorphic to SL(2, N), for h and {ui} as 
above there exists a sequence {p~ } in D V~ such that p~huF t __+ e; one only has to note 
that (DV1)hui-I~DV1 in the quotient space DV~\H. Hence piy=p~hvx= 
(plhui- 1 ) (ulvx) = (pihui- 1)v(uix ) __. vx. This shows that vxe Y. 

In view of the above observation either there exists a neighbourhood Q' of e, 
contained in Q, such that {ge~2'l'.qxe Y} c H or there exists a sequence {vi} in 
Vz{e } such that v~--,e and v~xe Y for all i. Suppose the first condition holds. Then 
(~2' c~H)xc~ Yis open in Yand as the D V~-action on Yis minimal it follows that Yis 
contained in D V~ (f2'c~ H)x and hence in Hx. Since HID V~ is compact and Y is 
D V~-invariant, H Y is a closed subset. But then, since Hx = H Y, Hx is a closed H- 
orbit and hence, by Proposition 3.1, the DV~-action on Hx is minimal. As Y is a 
closed D Vl-invariant subset of Hx it follows that Y= Hx, namely a closed H-orbit. 
Thus we are through in this case. 

Now suppose that there exists a sequence {v~} in Vz-{e } such that v ~ e  and 
v~xe Y for all i. Let pEDVI be any element such that pxeOx.  Then, by the choice 
of O, we have px~(Qc~HVz)x and hence there exist h ' ~ H  and v'~Qc~ V2 
such that px=h'v'x. For each i we have pv+x=(pvip-~)px=(pv+p-t)h'v'x 
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= h'(h' 1 pviP- lh')v'x. Also, since vixe Y, pvixe Y for all i and since vi --* e, pvixeg2x 
for all large i. Hence pvixe~xc~Y=(Qc~HV2)xc~ Y for all large i. Therefore 
h'(h'-lpvip-lh')v'xe(~-2~HV2)x for all large i. Since v i ~ e  and the map g--*gx is 
injective on Q, this readily implies that h'- lpvip-lh 'eHV2 for all large i. By 
considering the action of H on the subspace p as in w obtained by restriction of the 
adjoint action of G, it is easy to see that there exists a neighbourhood N of e in V 2 
such that for any v e N -{e}  and he H, hvh- le  H V2 if and only if heD V 1 . Therefore 
the preceding condition yields that h'eDV 1. Hence px=h'v'x~(~2c~DV)x. Thus 
~ x m D V l x  is contained in ((2~DV)x. 

In view of the above conclusion and the D Vl-invariance of Y, either there exists 
a neighbourhood Q" of e contained in Q such that Q"xc~DV~x is contained in 
(~2"c~DV1)x or there exists a sequence {vl} in V2-{e } such that vl--*e and 
v~xeDV~x for all i. If the first condition holds then DV~x is open in Yand hence by 
minimality of Y it is the whole of Y; but that is a contradiction since by Proposition 
3.1 D V~ has no closed orbits on G/F. Hence the second condition must hold. Let 
{v~} be a sequence as above and let A={g~DVIgx=x} .  Then A is a discrete 
subgroup of D V containing for each i an element of the form diuivl, where dieD and 
uge V~. An elementary argument shows that any discrete subgroup of D V is either 
contained in V or it is a cyclic subgroup generated by an element of the form wdw- 
with d~D and we V. It is also easy to see that in the latter case the subgroup does 
not contain any sequence of elements of the form {dguiv~} with dieD, uge V~ and 
vle V2-{e} with v~--*e. Hence A as above must be contained in V and dl = e  for all i. 
Thus A contains uiv; for all i, where u~c V~, vie V2-{e} and v~ ~ e. In particular this 
forces that u i is nontrivial for all large i. Thus x is fixed by an element uiv~, where 
uie V~-{e} and v~e V2-{e }. We deduce from this that Wx is compact; this may be 
done either by applying Theorem 6.4 of [10] or, if we grant F being arithmetic then, 

by a direct argument. Since X = V~x it is contained in Wx and it follows from the 
well-known results on flows on nilmanifolds (cf. [16], Chapter II) that V2x is 
compact and X is an orbit of one of the subgroups V1, V and W. It is easy to see 
that since V2x is compact the subgroup A as above cannot contain a sequence of 
elements of the form uiv~ with uieV 1 and vleV2-{e } with v ~ e  if Vlx is also 
compact. Hence X must be an orbit of V or W, in which case the contention of the 
proposition is satisfied. 

4.2. Proposition. Every D F-orbit is dense in G/F. 

Proof. Let Y be the closure of a D F-orbit. If Y contains a W-orbit then, since it is 
D-invariant and D normalises W, it would contain a D W-orbit; since every D W- 
orbit is dense (cf. [6] Proposition 1.2) this implies that Y= G/F as desired. Now 
suppose, if possible, Ydoes not contain any W-orbit. Let X be a minimal closed F- 
invariant subset of Y; such a subset exists by Corollary 1.5. Since Y does not 
contain any W-orbit, by Proposition 3.3, X must be a (compact) F-orbit. By an 
argument in the proof  of Proposition 3.2 (ii) this implies that DX is not closed. 
Hence in particular DX 4: Y. By replacing X by another minimal subset (compact 
orbit) if necessary, we may also assume that DX is not open in Y. 
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Let x e X  and suppose that there exists an open neighbourhood t2 ofe in G such 
that f~ is compact and {gef2[gxeY } c O W c  N(V),  the normaliser of V. Then 
(~2caDW)xn Y is a neighbourhood of x in Y and hence it contains an element y 
such that DVy is dense in Y. Let y=dwx  where deD and weW.  Then DVy 
=DVdwx=D(dw) V x = D w V x = D w X .  Let A = { g ~ D W l g x = x  }. Since X = V x  
is compact it follows as in the last Proposition that A is a lattice in W; thus the map 
(d, z) --* dz of D x Wx into G/F is injective and its restriction to any compact subset 
is a homeomorphism onto the image. In particular (f2n D W)x n DwX is a closed 
subset of ((2c~DW)x. As DVy is dense in Y it follows that ( fJc~DW)xn Y is 
contained in DwX. Since xeY,  this further implies that w X = X .  Hence ~?xnY 
= ( f 2 n D W ) x n  Yis contained in DX. This implies that DX is open in Y, contrary 
to our assumption. Hence there does not exist any t2 as above. Therefore there 
exists M ~ G - D W s u c h  that e e M  and gxe Yfor all 9eM. By Lemma 2.1 we have 

hX ~ Yfor all he D VM V c~ N ( V). Since M c G - D W, D VM V contains either W + 
or W (cf. [13] proof of Lemma 6), where W + = {9 = (gkt)e WI912 > g23 } and W- 
= {g= (gkl) e m[gl2 ~ g23}, (gkl) being the matrix form of g in G. Since W c  N(V) 
this implies that either W+X or W - X  is contained in Y. By Lemma 2.3 this implies 
that Y contains a W-orbit, contrary to our assumption. This shows that Y= G/F. 

4.3. Proposition. Let Y be the closure of a Vl-orbit and suppose that it contains a 
closed orbit of H, say X. Then either Y= X or Y= G/F. 

Proof First suppose that there exist x e X  and a neighbourhood ~2 of e in G such 
that {g~Qlgxe Y} is contained in VEH. Then (Qn  V2H)x~ Yis open in Y. As Yis 
the closure o fa  Vl-orbit there exists ye(~2c~ VEH)X such that V~y is dense in Y. Let 
y = v2hx, where v2e V2 and he l l  such that vzh~Q. Then for any v 1 e VI, vly = v]v2hx 
=V2VlhXev2Hx--:v2 X. Hence V~y is contained in v:X and since the latter set is 

closed it also follows that Y-- V~y c v2 X. Thus we have X c Y c  VE X. Since X is a 
closed H-orbit  this is impossible unless vzX = X and consequently Y--X.  

Now suppose that the above condition is not satisfied and let x e X  be such that 
the Vl-orbit of x is not periodic. Then there exists M c G -  V2H such that e e M  
and gxe Y for all geM. Let 7 /be  any compact neighbourhood of x and let 

H(q/) = { h e H l x = h y  for some y e ~ }  

The set of g such that gTJn Y ~  ~ is closed and contains V:MH(TJ); therefore it 

contains V~MH(tP). We now claim that V~MH(~P) contains either V~ or V 2. 
Let g, b and p be as in w Since g = b + p there exist neighbourhoods A and B of 

e in H and exp p respectively such that the map (a, b)--* ba is a homeomorphism of 
A x B onto a neighbourhood o fe  in G. Let {m j} be a sequence in M converging to e 
and M l = { g e B l m j e g A  for some j}. Clearly eeM1 and Mln Vz= ,@.  Then by 
Proposition 3.4 there exists a polynomial map q~: R-* V2 such that q~(E) contains 
V~ or V; and there exist sequences {ti} in R + and {gi} in M~ such that gi--*e and 
h([liti)glv~(-flitl)-*q>(fl) for any sequence {//i} in ~ such that fli--*/?. Since X is a 
closed H-orbit, by Proposition 3.1 the element x as above is a point of uniform 
recurrence in linear time for the W-action. Thus given ~ > 0  there exists a 
neighbourhood 7 j '  of x in X and T0e[R such that for all yeT"  and T >  T o there 
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exists te[T, (1 +cr such that v~(t)ye7 j. Let s e n  be given. Observe that there 
exists a sequence {hl} in H such that h ~ e  and g~hiEM for all i. The elements hlx 
are contained in 7 j '  for all large i and hence there exists a sequence {fl~} in [1, 1 +cr 
such that vl(flitis)hlxe~P. Hence for i, hi-lvl(--[3itzs)eH(7 j) and in turn Vlgiv 1 
( _ flltis) = V1 (gihi)hi- 1 vl (_  [3itls)e V1MH(q~). As 1 < fll < 1 + c~ for all i, passing to a 
subsequence we may assume that {fli} converges, say [31~ fl, where 1__</~<1 +~. 

Therefore V191vl(-flitis)~ Vl(o([ls) and hence (o(/3s)eV1MH(~P). Thus we have 
shown that for any s e e  and e > 0  there exists fl such that l < f l < l + ~  and 

c b(fls)e V1MH(CP). This implies that (a(s)eV1MH(7 j) for all seN. As the image of q5 
contains V; or V 2, this proves the claim. 

Thus 9q~c~ Y is nonempty for all 9 in V; or V~-. Since 7 j was an arbitrary 
compact  neighbourhood o fx  this implies that either V~x or V 2 x is contained in Y. 
Since Y is a closed V~-invariant set this means that Y contains the closure of either 
V1V] x or V~ V2 x. But V~ V~- x = V~- V~ x, V~ V2- x = V2 VlX and by Proposition 
3.1 V~x is dense in X. Therefore Y contains either V~X or V~X. We complete the 
proof by showing that Vf X and V2 X are dense in G/F,. Let Y1 be the closure of 
say V~X. Since DVxV ~ = VfD'V~, it follows that Y~ is DVl-invariant. On the 
other hand, by Lemma 2.3, Y~ contains an orbit of V2. Together the two assertions 
imply that Y~ contains an orbit of D V. Hence by Proposition 4.2, Y~ = G/F which 
means that V] X is dense in G/F. A similar argument shows that V 2 X is also dense 
in G/F. 

4.4. Corollary. Let Y be the closure of a V~-orbit in G/F. Suppose that it contains an 
orbit of D Vt. Then either Y is a H-orbit or Y= G/F. 

Proof Let Y~ be the closure of a DV~-orbit in Y. By Proposition 4.1 Y1 contains 
either a V-orbit or a closed H-orbit. If Y~ contains a closed H-orbit  then so does Y 
and hence Proposition 4.3 implies the Corollary. Now suppose that Y~ contains a 
V-orbit. Since Y1 is D V~-invariant and D normalises V, this implies that Y1 
contains a D V-orbit. Hence by Proposition 4.2 Ya = G / F  which proves the 
Corollary. 

Proof of Theorem 2. Let y =9FeG/F, where 9eG, and let Y= Hy. For hell, Vlhy is 
compact if and only if g-~h-~Vth9 contains a nontrivial element of F. As 
{g- ~h- ~ V~hg}h~B is an uncountable family of subgroups no two of which have any 
nontrivial element in common it follows that there exists hell  such that V~hy is not 

compact. Then by Proposition 3.6 VI hy contains an orbit of either V or v(D V~)v- 
for some veV. Suppose V~hy, and hence Y, contains a V-orbit. Since Y is D- 
invariant and D normalises V this implies that Y contains a D V-orbit and hence Y 

= G/F by Proposition 4.2. Now suppose that there exists ve V such that V~hy 
contains a v(D V~ )v-~ orbit, say of a point zeG/F. First consider the case where v is 
not contained in V 1. Then DvD contains {dvd-~]dsD} which is dense in either V] 

or V~-. As V~hy contains vD V~v-~z, Y contains DvD V~v-~z and hence it contains 
either V2 + v-  ~z or V~- v- lz, by the preceding observation. Hence by Lemma 2.3 Y 
contains a V orbit and, as seen above, this implies that Y= G/F. Now suppose that 

ve V~, which means that V~hy contains a D V~-orbit. Hence by Corollary 4.4 V~hy 
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is either a closed H-orbit or G/F. Then clearly either Y= Hy, a closed H-orbit, or 
Y= G/F, which proves the theorem 

w Proof  of Theorem 1 

We now deduce Theorem 1 from Theorem 2. We first note that it is enough to 
prove Theorem 1 for n = 3. While an expert may  readily recognize this, a proof  is 
indicated for the convenience of the general reader. Let the notat ion be as in the 
statement of the theorem, with n > 4. We can find linearly independent rational 
vectors vo and w o arbitrarily close to v and w respectively such that the restriction 
of B to the subspace spanned by {v o, w o } is nondegenerate. Hence by modifying the 
data  we may assume v and w linearly independent rational vectors such that the 
restriction of B to the of span of {v, w} is nondegenerate. As B is nondegenerate and 
indefinite there exists: a rational vector wl such that v, w and w 1 are linearly 
independent and the restriction of B to the subspace spanned by them is non- 
degenerate and indefinite; we first find a w l  e N", using or thogonal  decomposition, 
and then observe that the required properties continue to hold if it is replaced by a 
rational vector close to it. By adjoining more rational vectors we find a rational 
hyperplane L containing v and w such that the restriction of B to L is non- 
degenerate and indefinite. Let 2 be a nonzero rational linear form on L such that 
2 (v )=~(w)=0 .  Let x be a rational vector in ~ " - L  and for te[R let L, be the 
hyperplane {z+ t2(z)xlzeL}. Then L, is a rational hyperplane for each rational t 
and for all small t the restriction of B to L, is nondegenerate and indefinite. We 
claim that there exists such a t for which the restriction of B to L, is not  a multiple of 
a rational form. Suppose this is not true. Since the restriction of B to LolL, is 
nonzero we can conclude from this that there exists a common  ~elR* such that the 
restrictions of 0~B to L and L t are rational forms. Since this applies to any L, as 
above we get that  c~B is a rational form, contradicting the hypothesis. Therefore the 
claim holds. Now if x and y are primitive elements in L ~ 7/" or Lt ~ 2 z" for which the 
conclusion of the theorem holds then the theorem will stand proved for ~" as well. 
This shows that for n > 4 the theorem holds for a value of n whenever it holds for 
n -  1. Hence it is enough to prove the theorem for n = 3. 

Now let n = 3. Let the notat ion be as in the theorem and w Let L be the identity 
component  of the subgroup of G leaving invariant the quadratic form B. Since for 
n = 3 any nondegenerate indefinite quadratic form is equivalent over IR, to one of 
the forms _+ (2xlx 3 -  x~) it follows that L=vHg-~ for some 9eG. Now consider 
the function f N 3 x N3__,N3 defined byJtv, w)=(B(v), B(w), B2(v, w)) for all v, 
w e n  3. Let F = SL(3, Z) and E c N 3 x N 3 be a nonempty  subset invariant under the 
(componentwise)F-action on N3 x R 3, Since B is invariant under elements of L it 

follows that f (E)  =f(LE) =f(LFE). Sincefis  continuous we get thatf(LFE) =f(E). 
By Theorem 2, Hg-IF is either G or Hg-IF. Hence LF which is the same as 

9H9-iF coincides with either G or LF. Therefore we get t ha t f (E)  containsf(GE) 
unless LF is closed. An argument  as in [13] shows that as B is not a multiple of a 

rational form LF is not closed. Hence f(E) contains f(GE) for any nonempty F- 
invariant subset of []~3 X ~ 3 .  Now choose E = ~,~(7/3) X ~,][~(7/3). Then GE = ~3 x N 3 
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and  hence f (E) is dense in the image o f f ,  which is precisely the assert ion of the 
theorem. 

Remark. Raghuna than ' s  conjecture s tated in the in t roduc t ion  entails  that  if B is a 
nondegenera te  indefinite quadra t ic  form on R" and L is the subgroup  of SL(n, R) 
leaving B invar iant  then any L-orb i t  is either closed or  dense. By the a rgument  
as in the deduc t ion  of Theorem 1 above  this implies that  if B as above  is not  a 
mul t ip le  of a ra t iona l  form and B 2 is the cor responding  bi l inear  form then for any 
{aijli, j = l ,  2 . . . .  , n - l }  c ~ for which there exist v l , . . . ,  Un-1 E~n such that  
Bz(vi, vj)= alj and e > 0  there also exist x 1 . . . . .  x , _ l  ~ ] ( Y  ") such that 

IBz (x i ,  x~)  - aij[ < 

f o r  a l l  i, j = 1 . . . . .  n -  1. 
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Note added in proof 

A simpler proof is now obtained for the last part of Theorem 1, on values at primitive integral 
points, and will appear elsewhere. 


