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Introduction

Let B be a real nondegenerate indefinite quadratic form on R”, where n2 3, which is
not a multiple of a rational form (that is, B is not of the form ¢B, where te R and B,
a quadratic form whose coefficients with respect to the standard basis are rational).
It was shown in [13], (see also [11] and [12]) that for any ¢ > 0 there exists x € Z”,
namely an integral vector, such that

0<|B(x)| <¢. (1

The result was conjectured by Oppenheim (around 1930 in a somewhat weaker
form and in the 1950’s in the present form) and has been a subject of considerable
work by Davenport, Oppenheim and various other mathematicians. We refer the
reader to [9] and [13] for details on the developments and other references. It is
well known that the above result also implies that B(Z"), namely the set of values at
integer points is dense in R(cf. [9, 13]). We now consider the set of values of B at
primitive elements in Z", namely on P(Z") = {x e Z"|x + ky for any ye Z" and ke Z
with [k|=2}. While it is evident that the element x in (1) above can be chosen to be
primitive, it no longer follows from this that B({B(Z")) is dense in R. In fact hardly
anything seems to be known about the set. We now prove the following

1. Theorem. Let B be a real nondegenerate indefinite quadratic form on R", where
n 3, which is not a multiple of a rational form. Let B, be the corresponding bilinear
form, defined by B,(v, w)=1{B(v+w)—B(v—w)} for all v, we R". Let a, b, ce R be
such that there exist v, we R" for which B(v) = a, B(w) = b, B, (v, w) = c. Then for any
e>0 there exist x, ye B(Z") such that

|B(x) —al<e, |B(y)—b|<e and |B,(x, y)—c|<t.
In particular {B(x)| x € B(Z")} is a dense subset of R.

It is enough to prove the theorem for the case n=73 (see §5). As in the case of the
above mentioned result from [13], Theorem 1 is deduced from a result on flows on
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the homogeneous space SL(3, R)/SL(3, Z). Let H be the connected component of
the identity in the subgroup of G=SL(3, R) consisting of all elements leaving
invariant the quadratic form 2x,x;—x32, X, X,, X3 being the coordinates of x.
Oppenheim’s conjecture described above was deduced in [13] by proving that
every relatively compact H-orbit on SL(3, R)/SL(3, Z) is compact (and hence
closed). We now prove the following strengthening of this result and deduce
Theorem 1.

2. Theorem. Any H-orbit in SL(3, R)/SL(3, Z) is either closed or dense.

The deduction of Theorem 1 from Theorem 2 is similar to (in fact simpler than)
the deduction of Oppenheim’s conjecture in [13]; the details are given in §5. The
homogeneous space approach for studying values of quadratic forms was noted by
M.S. Raghunathan who conjectured in this connection that if G is a semisimple Lie
group, I' is a lattice in G and U is a connected unipotent subgroup of G then for any
xeG/T there exists a closed subgroup F such that the closure of Ux in G/T" is Fx.
The reader is referred to [13] for some details regarding the status of the conjecture.
The results involved in the proof of Theorem 2 go some way towards verification of
Raghunathan’s conjecture for a unipotent one-parameter subgroup contained in
H. In a forthcoming paper (to appear in Math. Ann.) we use the result to verify the
conjecture for this one-parameter subgroup of the group SL(3, R). The technique
here involves, as in [13], finding orbits of larger subgroups inside closed invariant
sets of unipotent subgroups; however unlike in [13] we now deal with noncompact
closed invariant sets as well.

The paper is organized as follows. The first two sections contain various general
results on orbits, closed invariant sets, minimal sets etc. for flows on homogeneous
spaces of Lie groups; these would be of independent interest. In §3 we collect some
further preliminaries and complete the proof of Theorem 2 in §4. The deduction of
Theorem 1 from Theorem 2 is indicated in §5, where we also make some more
observations.

Acknowledgements. The authors are thankful to the Max-Planck-Institut fiir Mathematik, Bonn
and Professor G. Harder in particular for gracious support, making this collaborative work
possible. The authors are also thankful to Gopal Prasad for some useful comments on a
preliminary version of the paper.

§1. Minimal closed invariant sets

This section is devoted to various general results on minimal closed invariant
subsets of actions on homogeneous spaces G/I', where G is a Lie group and I'is a
lattice in G, of subgroups of G (acting on the left). For the most part these are
deduced from results in [5] after recalling them suitably.

Let R” be the n-dimensional euclidean space equipped with the usual inner
product <, » and the corresponding norm | « |. For any discrete subgroup 4 of R"
we denote by A the subspace of R” spanned by 4 and by d(4) the volume of the
torus 4g/4 (or equivalently that of any fundamental domain for 4 in 4g) with
respect to the inner product induced by (, > on 4dg. If 4 is a lattice in R" then a
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subgroup 4 is said to be complete if AgnA=4. We denote by [ the Lebesgue
measure on R. We have the following

1.1. Theorem. Given £>0 and 0> 0 there exists >0 such that for any lattice A of
R", any unipotent one-parameter subgroup {u,} of SL(n, R) and T=0 at least one of
the following conditions holds:

i) [({te[0, TY Hu,zl| 26 for all ze AO)})=(1—¢&)T

ii) there exists a complete subgroup A of A such that d*(u,4)<6 for all
tef0, T1.

Proof. Follows directly from Proposition 2.7 of [ 5] if we choose (in the notation of
[5]) S to be empty, h and k satisfying condition (2.3) formulated there, a=0 and
b=Tk™.

We deduce the following

1.2. Theorem. Let G=SL(n, R) and I'=S1L.(n, Z). Let 08>0 be given. Then there

exists a compact subset C of G/I" such that for any connected unipotent subgroup U of
G and any geG at least one of the following conditions holds:

i) there exists a one-parameter subgroup {u,} of U such that {t20|u,gl'eC}
and {t=0|u,gl'eC} are both unbounded subsets of R.

i) there exists a proper nonzero U-invariant subspace W such that WngA, is a

lattice in Wand d*>(WngAy) <0, where Ay=Z" is the standard lattice in R".

In particular, g~ ' Ug is contained in a parabolic subgroup of G defined over Q.

Proof. Let >0 be as in Theorem 1.1 corresponding to the given 6 and some
0<e<1. Let C be the subset of G/I" consisting of all g/ such that gA, contains no
nonzero element in the J neighbourhood of 0. Then by Mabhler criterion (cf. [16]) C
is a compact subset and Theorem 1.1 implies (by a simple argument as in the proof
of Theorem 2.1 of [5]) that if for a geG, assertion i) of the present theorem fails to
hold for a (any) one-parameter subgroup {u,} of U then there exists a {u, }-invariant
proper nonzero subspace W such that WngA, is a lattice in W and
d*(WngAy) < 0. An argument as in the proof of Theorem 3.8 of [5], using the
countability of the set of rational subspaces, shows that W can be chosen indepen-
dent of the one-parameter subgroup {u, }, and hence U-invariant. This shows that
the first part of condition ii) holds. Observe that g~!Ug leaves invariant the
subspace ¢~ ' W and that g7 Wn A, is a lattice in g~ ' W. The latter condition
implies that g~ ! W is a rational subspace. Hence {xeG|xg ' W=¢g 'W} is a
parabolic subgroup defined over @ containing g~ Ug.

1.3. Corollary. Let G=S8SL(n, R) and ' =SL(n, Z) and let C be a compact subset of
G/T as in Theorem 1.2. Let U be a connected unipotent subgroup of G. Let N(U) be
the normaliser of U in G and let { f(t)}, o be a curve in N(U) such that if L is a proper
nonzero U-invariant subspace then L is invariant under f(¢t) for all t and
|det f(0)l,| — oo as t— oo (det f(1)|,, denotes the determinant of the restriction of f(t) to
L). Then for all ge G, CnUf(t)gI'/T is nonempty for all large 1. If F is the subgroup
generated by U and {f(t)|t=0}, then every nonempty closed F-invariant subset
contains a minimal closed F-invariant subset.
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Proof. We note that if L is a U-invariant subspace and geG is such that L~gA, is
a lattice in L then for { f(t)},5 as above d*(L f(t)gAo)=|det f(t)||?d*(LngA,)
and hence for all large t condition ii) in Theorem 1.2 is violated. Therefore
condition i) must hold, which proves the first part of the corollary. Let F be the
subgroup generated by U and {f(¢)},5,. Then the first part implies that every
F-orbit intersects C, that is Cn FgI'/I" is nonempty for all geG. Now if Y is a
nonempty closed F-invariant subset then any totally ordered family { Y, },. , (where
A is an indexing set and the ordering is by inclusion) of nonempty closed F-
invariant subsets has a common point in C and therefore by Zorn’s lemma Y
contains a minimal closed F-invariant subset.

1.4. Theorem. Let G be a connected Lie group and I' be a lattice in G. Then there
exists a compact subset C of G/I" such that for any connected Ad-unipotent subgroup
U of G (namely Ad u is unipotent for all ue U} and geG at least one of the following
conditions holds:

1) there exists a one-parameter subgroup {u,} of U such that {t 20|u,gI'€C} and
{t 0] ugl'eC} are unbounded subsets of R,

ii) there exists a proper closed subgroup L of G containing g~ *Ug such that LT is
closed and LT is a lattice in L.

This is only a slight variation of Theorem 3.8 of [ 5] whose validity is clear from
the proof of the latter.

1.5. Corollary. Let G be a connected Lie group and I be a lattice in G. Let U be a
connected Ad-unipotent subgroup of G. Then any nonempty closed U-invariant subset
of G/T" contains a minimal closed U-invariant subset.

Proof. We proceed by induction on the dimension of G. For low dimensions the
assertion is obvious. Now suppose it to be true for dimensions less than n and let G
be a n-dimensional Lie group. Let I and U be as in the hypothesis. Let C be the
compact subset of G/I" as in Theorem 1.4. Let Y be a given nonempty closed U-
invariant subset of G/I". First suppose that C~ Uy is nonempty for all ye Y. Then
any totally ordered family {Y,},.,, where 4 is an indexing set, of nonempty
closed U-invariant subsets of Y (ordering by inclusion) has a common element in C.
Hence by Zorn’s lemma there exists a minimal (nonempty) closed U-invariant
subset contained in Y. Now suppose that there exists ye Y such that CnUy= .
Let geG be such that y=gI'. Then by Theorem 1.4 there exists a proper closed
subgroup L such that g~ *Ug is contained in L, LI is closed and L ~ T is a lattice in
L. Replacing L by its connected component of the identity, we may assume L to be
connected. Now g 'Y LI/I is a closed nonempty g~ !Ug-invariant subset of
LIJT. Since LI'/T is canonically equivalent to L/L~I and L is of dimension
<n-1, by the induction hypothesis g~ *¥~ LI/l contains a minimal closed
g~ 'Ug-invariant subset. Hence Y ngLI'/I" contains a minimal closed U-invariant
subset. This proves the corollary.

We next show that the minimal sets of Ad-unipotent one-parameter subgroups
are compact. For this we need the following lemma inspired by Lemma K in [8].
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1.6. Lemma. Let T be a homeomorphism of a locally compact space Z. Suppose that
there exists a compact subset K of Z such that for each zeZ the sets { je N|T'z e K}
and {je N|T ze K} of natural numbers, are both unbounded. Then Z is compact.

Proof. Let K, be a compact neighbourhood of K in Z and let Q=Z-K,. Let
B=()2oT'Q Then T-'B< B< Qfor all j20. Since K nQ = ¥ the condition in
the hypothesis implies that B must be empty. Hence TB is also empty. Since Z — Q
= K, is compact it follows that there exists m = 1 such that (|7 77Q is contained in
Q. Then (g 7/Q=[)7T7Q; call the set D. Then TD<=D and hence T'DcQc
Z—K for all j. Hence by hypothesis D must be empty. This implies that

Z=\)".,T'K, and hence it is compact.

=
1.7. Corollary. Let G be a connected Lie group and T be a lattice in G. Let {u,} be a
Ad-unipotent one-parameter subgroup of G. Let X be a closed {u, }-invariant subset.
Suppose that for any x=gI'eX the one-parameter subgroup {g~ 'u,g} is not con-
tained in any proper closed subgroup L such that LI is closed and LT is a lattice in
L. Then X is compact. In particular every minimal closed {u,}-invariant set is
compact.

Proof. Let C be a compact subset of G/I' as in Theorem 1.4. Let u=u, and
D={ux|0=t=1 and xeC}. By Theorem 1.4 the condition in the hypothesis
implies that for any xe X the subsets {=0luxeC} and {t=0|uxeC} are
unbounded. Hence the subsets { jeN|u/xeD} and { jeN|u “xe D} are unbounded
for all xe X. Thus the condition in Lemma 1.6 is satisfied for the action of u on X.
Hence the Lemma implies that X is compact.

Now suppose that X is a minimal closed {u, }-invariant subset. If the condition
in the first part is satisfied then we are through. Otherwise there exists x =gI" such
that {g~'u,g} is contained in a proper closed connected subgroup L such that LI is
closed and L~ 1T is a lattice in L. Then X ngLI'/I" is a nonempty closed {u,}-
invariant subset and hence, by minimality, X is contained in gLI'/I". The latter is
canonically equivalent to gLg~'/g(LnT)g~"' and therefore we can conclude
compactness of X by repeating the above argument or equivalently by an obvious
inductive procedure.

1.8 Remark. Theorem 1.2 shows that in the case when G=SL(n, R) and
I' = SL(n, Z) the subgroup L as in condition ii) of Theorem 1.4 can be chosen to be
the subgroup generated by all unipotent elements in a parabolic subgroup; given W
as in condition ii) of Theorem 1.2 the subgroup L = {xeGixg™ ' W =g~ ' Wand det
X |w =1} has these properties and satisfies condition ii) of Theorem 1.4 (cf. [2] §2, for
instance). It turns out that in the general case also L can be chosen such that LR/R,
where R is the radical of G, is the subgroup generated by all unipotent elements in a
parabolic subgroup of G/R. Similarly it is also possible to generalize Corollary 1.3.
The results are achieved by recasting the proofs in [5] in terms of general reduction
theory. However a substantial amount of work is involved in supplying the details.
As our main interest here lies in the lattice SL(3, Z) in SL(3, R) we shall not go into
the details of the general case. However, it would be worthwhile to note for future
reference that the arguments in the following sections including the proof of
Theorem 2 apply to any lattice I' in G = SL(3, R) which is known to satisfy the
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following condition for the action of the one-parameter subgroup ¥, = {v(t)}
consisting of all upper triangular unipotent matrices contained in the subgroup H
as in the introduction (see also §3).

Condition (*) There exists a compact subset C of G/I' such that for any geG, (a) the
sets {t=0Jv,(t)gl'eC} and {t<0|v,(t)gl €C} are both unbounded unless there
exists a proper parabolic subgroup P such that if L is the closed subgroup
generated by all unipotent elements in P then g~ 'V g < L, LI is closed and LN T
is a lattice in L and (b) if {f{t)},5, is a curve in N(¥;) (the normaliser of V/;) such
that |det f(t}|w | — 0 as t — o, for every proper nonzero N (¥ )-invariant subspace
W of B then CnV f(t)gI'/T is nonempty for all large .

In view of Theorem 1.2 and Corollary 1.3 (together with the fact that any V-
invariant subspace is N (V,)-invariant} Condition (*) holds for the lattice SL(3, Z).
Elsewhere we shall show that it in fact holds for all lattices.

§2. Topological limits and inclusion of orbits

As noted in the introduction the proof of Theorem 2 depends on the technique of
finding orbits of larger subgroups inside a given closed subset invariant under a
(unipotent) subgroup. In this section we collect the details in this regard. We begin
by recalling the following result from [13] (see also [11] and [12]).

2.1. Lemma. Let G be a locally compact (second countable) group and let Z be a
locally compact space with a given G-action. Let F, P and Q be closed subgroups of G
such that F < PnQ. Let X and Y be closed subsets of Z invariant under the actions of
P and Q respectively. Suppose also that X is compact. Let M be a subset of G such
that X n'Y is nonempty for all ge M. Then hX nY is nonempty for all he QM P. If X

is a minimal F-invariant subset then hX < Y for all heQMP ~ N(F), where N(F) is
the normaliser of F in G. If further X = Y and P = Q then Y is invariant under the

closed subgroup generated by é]_\l—ﬁmN(F). O

In applying this in the present instance we use the following varation of
Lemma 13 of [13] and Lemma 1 of [1]. (Though an appropriate analogue of the
following lemma holds for any connected unipotent subgroup, for simplicity we
restrict to one-parameter subgroups, which is the case needed in the sequel).

2.2. Lemma. Let {u,} be a unipotent one-parameter subgroup of SL(n, R} and
consider the natural action of {u,} on R". Let L = {xeR"|u,x = x for all teR}. Let M,
be a subset of R"-L and suppose that pe My L. Then there exists a nonconstant
polynomial function ¢: R— L such that ¢(0) = p and the following condition holds:
there exist sequences {x;} in My and {t;} in R, such that t;—cc and for any
convergent sequence {o;} in R, say o;— o, ty,, X; = ¢(a).

Proof. By Jordan canonical form there exists a basis {e(/, k)}, where 1 £k </, for
some [, and 1 £j<m, for suitable m,, .. ., m; such that

uelj, ky=e(j, k)+re(j—1, k)+3t%e(j—2, k)+.. .+ He(l, k)

(=Dt
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for all j, k. For xe M, let x(j, k) denote the e(j, k)-component with respect to the
basis and put

O(xy=min{|x(j, k)| VU1 k<L 25 <m,}.

Then |x(j, K}0(x)’ "' < 1 whenever j 2 2 and the equality holds for at least one (J, k)
such that j=2. Now let {x;} be a sequence in M, converging to p. By passing to a
subsequence we can arrange so that there exists a fixed ( jo, ko) with j; = 2 such that
[x:(jo» ko) 090~ (x;)| = 1 for all i. Passing to subsequence once again we may further
assume that x,(j, k)& ~!(x;) converges for all {j, k); let A(j, k) denote the limit
corresponding to (j, k). Now choose

=y e
o(s) (sz)(j_ 1)!)_(1, kysi=le(l, k) .
Then it is straightforward to verify that ¢ has the required properties; for this, one
chooses x; as above and ¢; = 6(x;).

We note that if P is the isotropy subgroup of p as in the Lemma,
M={glgpeM,} and Q = {u,} then the Lemma implies that QM P contains ali h
such that hp lies in the image of ¢. Thus the Lemma enables us to conclude
existence of certain subsets of elements h such that hX < Y, under appropriate
conditions. We complement this by the following lemma to get orbits of subgroups.

2.3. Lemma. Let G be a connected Lie group and T be a lattice in G. Let U be a
connected Ad-unipotent subgroup of G. Let U, be a subset of U such that the following
condition is satisfied: there exists a one-parameter subgroup {u,} of U such that for
any ueU, uu,eU, for all large t (say = t,, t, depending on u). Let Y be a closed
subset of G/I' containing an element x such that w'xeY for all weU,. Then Y
contains a U-orbit.

Proof. Let ue U be given and let {u,} be a one-parameter subgroup of U as above.
There exists a compact subset C of G/I" such that {t 20|u,xeC} is unbounded (cf.
[4], Theorem 4.1; the result may also be deduced from Theorem 1.4). Therefore
there exists a sequence {¢;} in R, t; - 00, such that u, x converges, say u, x —y. Then
uu, x —>uy. Since t;— o, for all large i, uu, €U, and hence uu, xe Y. Since Y is
closed, it follows that uye Y. As ue U is arbitrary this means that Y contains the U-
orbit of y.

Now let A be a semidirect product of the groups R* and R. We take the
underlying set of A as { (g, v)|ceR*, veR} and the product as given by (¢’, v')(q, v)
=(¢'c, 6~ +v), where deR is fixed. By a rational function on R we mean the
quotient «/f of two polynomials with real coefficients, its value being defined at
points where f# does not vanish. The number (degree o) —(degree f) is called the
degree of o/f.

2.4. Proposition. Let o and v be two rational functions on R and suppose that the
degree of o is nonzero. Let ¢: R—Au{cw} be the function defined by ¢(t)=
(o (1), v(t)) if o()eR* and v(1)eR, and oo otherwise. Then there exist a nontrivial one-
parameter subgroup { p,} e of A and a family of functions a;: R* - R, seR, such that

as 1— w0,
t+ay(t)— oo and Gt +a () (t)™ 1 = p,
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for all s in a subset E of R, where E =R unless {p,|seR} = {(1, s)|seR} and in the
latter case E = [0, c0).

Proof. Let deR be as above. For any ¢t and &€k we have
P+ p)~ ! = (a(t+&), v(t+E))(a(t), v(t)™
= (a(t+&)a(t)™ ", oty (vt + &) —v(1))

whenever it is finite. Let v(t) = «(¢)/f(t) where o and ff are coprime polynomials. Let
k and | be the degrees of x and f respectively. The function & —a(t+E)f(t)
—a(t)B(t+¢&) is a polynomial in ¢ whose constant coefficient is zero and other
coefficients are polynomials in ¢ of degree <k +/—1.Fori=1 let m; be the degree in
t of the coefficient of & m; = — o0 by convention, if the coefficient polynomial is 0.

Let p be the degree of o(as a rational function) and for each i=1 let
g; = pd+m;—2l. Let g = max,,, {g;/i}. We now consider two cases: First suppose
that g> —1. Then we put a,(¢t) =st 9 for all s, teR, t>0. The condition g> —1
ensures that St +a,(t))/B(t) converges to 1 as - oo. On the other hand using the
fact that g, <iq it can be readily verified, substituting for a,(t), that

oty ()2 {u(t+a () 1) —x(t) e+ a (1))}

converges to a polynomial Y I, ¢;s' in s, where m=max {k, I} and c; is nonzero if
and only if ¢;=q; in particular at least one c; is nonzero. Therefore a(t)*{v(t +a,(r))
—v(t)} which is the same as

a(t) Bt +a,(e) "' B() " ot +a, (1) Blt) —a(t) Bt +ay(1)}

converges to a nonconstant polynomial in s. Also as ay(r)/t -0 as t— oo, we have
o(t+a,(t))o(t)” ' — 1. Combining, we find that ¢(t+ay(r))¢(¢)”" converges for
each s to an element of {(1, v){veR} and (1, v) is such a limit if v = Z¢;s' for some s.
By altering the parameterisation of the family of functions a; we can adjust so that
Pt +a ) d(r)”* converges to p, for all s=0, where p,=(1, +5), the sign being the
same throughout. Observe also that for any s, t+a,(t)— 20 as ¢t — co. This proves
the proposition for the case at hand.

Next suppose that g< —1. We put a,(tr) = (¢’—1)t. Computations as before
readily show that in this case a(t)? {v(¢ + a,(t)) — v(t}} converges to a polynomial in
¢5 this could however be zero. On the other hand o(t +ay(t))a(t) "' = a(e’t)a(t)™!
—¢*?. Thus ¢(t+a,(1)) ¢(t)” ! converges in A for all seR. Let p, denote the limit of
P(t+a,(t)p(t) ' as t— oo. Then clearly p, ., = p;, Py, and p_,=(p,)” " for all s,,
s, and seR. Also s — p, is continuous. Since p+0 the one-parameter subgroup is
nontrivial. Also ¢+ a,(t) = et - 20 as t — ov. This proves the proposition.

In the proof of Theorem 2 we also need to deal with situations where X as in
Lemma 2.1 is a noncompact closed subset. For this purpose we need the following
notion.

2.5. Definition. Let {i,} be a flow on a locally compact space Z. An element zeZ is
said to be a point of uniform recurrence in linear time if for any neighbourhood £ of z
and a>0, there exists a neighbourhood Q' of z and 7,eR such that for any ye&
and T2 T, the set Qn{y,(y)| T<t=<(1+a)T} is nonempty.
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How this together with the later part of Lemma 2.2 substitutes for the
compactness condition in Lemma 2.1 may be seen in the proof of Proposition 4.3.
We shall not abstract it since it would seem too cumbersome and artificial that
way. For the argument there we need the following instance of uniform recurrence
in linear time.

2.6. Theorem. Let G =SL(2, R) and I be a lattice in G. Let u,= (} ) for all teR. Let
xeG/T be such that u,x % x for every t =0. Then x is a point of uniform recurrence in
linear time for the flow induced by the action of {u,} on G/I.

Proof. Suppose this is not true. Then there exist an element xe G/I" such that u,x +x
for every t=0, a neighbourhood Q of x, an x>0 and sequences {x;} in Q and {7}
in R such that x;—»x, T;— o0 and Qn{ux;|T;Zt<(140)7T;} =& for all j=1,
2. .. .. Without loss of generality we may assume 2 to be relatively compact. Let X
=G/ u{w} be the one-point compactification of G/I' and set u, o0 = for all
teR. For j=1, 2, .. .. let n; be the probability measure on X defined by n;(E)
=1({tIT;<t<(1+a)T;, ux;eE})/aT; for any Borel subset E of X, where [ is the
Lebesgue measure. Since X is a compact second countable space, the space of
probability measures on X is compact and second countable when equipped with
the usual weak topology. Hence the sequence {n;} has a convergent subsequence
and by replacing the sequence {x,} by a suitable subsequence we may assume {7}
to be convergent, say m;— . It is straightforward to verify that = is invariant under
the action of {u,} and that n(Q)=0.

The proof of Proposition 1.2 in [4] shows that given £¢>0 and a relatively
compact subset, say Q as above, there exists a compact subset C of G/I" and a
constant b, such that [({te[0, T]ju,y¢ C})<eT+b, for all yeQ and T>b; in the
set up as on page 31 in [4] choose S to be such that Q is disjoint from X (o, §) for all
ceZ and having chosen s as required there, depending on S, choose C to be a
compact subset of G/I" whose complement is contained in { J, X (o, 5). (We note that
the boundedness of the {, }-orbit assumed in [4] is involved only to ensure that for
any a>0, {u,y|t >a} is not contained in X (o, S} for any g, which is automatic in the
above variation). Since x;€Q for all j we get that 7;(X —C)<a™ (1 +a)e+bo/T
and hence n(X —C)<a *(1 +a)e. In particular this implies that n{{o0})=0.

Thus 7 is a {u, }-invariant measure on X such that 7(£2)=0 and n({o0})=0. By
the classification theorem for {u, }-invariant measures (cf. [2]) this implies that = is
supported on the set of periodic orbits, namely n(P)=1, where P={y|uy=y for
some t>0}. We claim that actually z{P)=0, the contradiction showing that the
theorem is true.

The proof of n(P) being 0 is very similar to that of Corollary 3.8 in [7].
Therefore, rather than going through the whole argument, we only give a sketch
indicating the comparable steps in [7]. For this purpose we also follow the
notation as in [7], without further mention. As in [7] it is enough to prove that
n(P)=0 for all i=1, 2, ..., r. Again for each i, considered fixed as in [7], it is
enough to show that n(J°(0, p))=0 for all p>0. Let p>0and ¢>0 be arbitrary and
let M and ¢ be as in the proof of Proposition 3.2 in [7]. Then the argument as in
that Proposition shows that I({te[0, T]|u,yeJ’(0, p)})<¢T for all T20,0<d=<a
and y not belonging to J°(0, M). Since ux=+x for any t+0 it follows that
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x&J(0, M)). Hence there exists a 0<d<o and a neighbourhood € of x
such that J°(0, M)nQ' = . For all large j, x;€Q and hence [({te[0,(1+0a)T;]]
ux;€j°(0, p)})<e(l+x)T;, Hence m;(J*0,p))<a”'(1+a)e. This implies that
n(J%(0, p)) < o™ (1 +a)e for all p such that n(J°(p, p))=0 (cf. [3] Lemma 3.2). As
¢ > 0 is arbitrary we get that (J°(0, p)) =0 for all p such that z(J°(p, p))=0. Since ©
is a probability measure the latter condition holds for all but countably many p and
hence, by monotonicity, n(J°(0, p))=0 for all p. This completes the proof.

§3. Some more preliminary results

We now set up notation and note some more (specialized) results which will be used
in the next section in proving Theorem 2.

Let G=SL(3, R) and I be a lattice in G satisfying Condition (*) formulated in
Remark 1.8; we draw the readers’ attention to the comments following the
statement of the condition. We denote by e the identity element in G. Let, for teR

1 t 22 1 0 ¢
v, (¢)=10 1 ¢ and v,(t)=(0 1 O],
0 01 0 0 1

V, = {0;(0)teR}, ¥, = {0,(1)[teR}, V = V.V, ,
Vi ={0,(0)[tz0} V5 = {v,(t)|t <0}

1 a b d 00
W={l0 1 cl|la,bceR)y and D={|0 1 O d>0
0 0 1 0 0 d!

Let H be the subgroup as in the introduction; namely H is the connected
component of e in the subgroup of G of elements leaving invariant the quadratic
form 2x,x;— x2. We note that D normalises V', V,, V and W, the subgroup DV, is
contained in H and H/DV, is compact.

3.1. Proposition. Let X be a closed H-orbit in G/I". Then the following conditions are
satisfied.
1) X admits a finite H-invariant measure .
i) For all xeX, DV ,x is dense in X; that is, the DV |-action on X is minimal.
iii) The V-action on X is ergodic with respect to u. For xe X the V-orbit of X is
either periodic (that is, v,(t)x=x for some t>0) or dense and uniformly
distributed with respect to .
iv) If xeX is such that the Vi -orbit is not periodic then x is a point of uniform
recurrence in linear time for the V -action.

Proof. It is well-known and easy to see that H is locally isomorphic to SL(2, R).
Therefore Theorem 3.11 of [14] implies assertion i) as above. In view of this, X can
be realized as SL(2, R)/4 for some lattice 4 in SL(2, R), with the DV, and ¥V,
actions on X corresponding to the actions on SL(2, R)/4 of {(§ - 1)]a, beR, a>0}
and {(§ )lteR} respectively. Assertions ii) and iii) therefore follows from the
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corresponding well-known results for the latter actions (cf. [6], for instance).
Assertion iv) follows in the same way from Theorem 2.6.

3.2. Proposition. Consider the action of DV, on G/I'. Then we have the following:
i) every nonempty closed invariant set contains a minimal closed invariant set.
ii) there are no closed orbits.

Proof. Let f(t) = diag(ée', 1, e7") for all teR. Then det f(t)}s— o0 as t — 0, S being
any of the two proper nonzero V-invariant subspaces. Hence, by Corollary 1.3 in
the case of SL(3, Z) and by Condition (*) in the general case, there exists a compact
subset C such that for each geG, CnV,f(t)gl'/T" is nonempty for all large ¢.
Assertion i) now follows from a simple argument as in Corollary 1.3. Now suppose,
if possible, that there exists ge G such that the DV -orbit of ¢I" in G/I', namely the
set Y=DV gI'/T" is closed. We note that since DV, is not unimodular Y cannot be
compact. Let X be a minimal V;-invariant subset of ¥ (cf. Corollary 1.5). For each
deD, dX is V,-invariant. By minimality of X this implies that dX n X = (J unless
dX = X. Since X is compact (cf. Corollary 1.7), Y=DX and Y is not compact, there
does not exist any nontrivial d such that dX =X. Hence dX n X = for all d*e.
Since Y=DX this implies that X is a ¥|-orbit. As X is compact this means that the
isotropy subgroup of gI'/T for the DV';-action is a nontrivial cyclic subgroup of V.
Let 4 be the isotropy subgroup. Since Y is a closed DV -orbit, the canonical orbit
map n: DV /4 — G/’ must be a proper map. However as 4 is contained in V; this
contradicts the fact that Cn V', f(t)gI'/T is nonempty for all large ¢t. Hence there are
no closed DV -orbits, which proves ii).

3.3. Proposition. Let X be a minimal closed V-invariant subset.” Then X is compact.
Further, either it is a V-orbit or it contains a W-orbit.

Proof. First suppose that there exists ge G such that gI'e X and g~ 'V, g is contained
in a subgroup L as in Condition (*), namely L is generated by all unipotent
elements in a proper parabolic subgroup P, LI is closed and L~ is a lattice in L.
Then gPg ™! is a parabolic subgroup containing V| and hence it contains V. Hence
g~ Vg is contained in P. Since L contains all unipotent elements in P it follows that
g~ Vg is contained in L. Then VgI'/T is contained in gLI'/I", which is a closed
subset, and hence, by minimality of X as a closed V-invariant subset, X is con-
tained in gLI'/T". Hence to prove the compactness of X it is enough to prove that
any minimal closed g~ ! Vg-invariant subset, say Y, of L/L T is compact. Since L
is the closed subgroup generated by all unipotent elements in P we see that either
L=g 'Wg or L/N, where N is the radical of L, is topologically isomorphic to
SL(2, R). Recall that LT is a lattice in L. Now if L=g~ 'Wg then L/LT is
compact and hence so is Y. In the other case NI is a lattice in N and
consequently the canonical quotient map #: L/LNT — L/N(LNT)is a proper map.
(cf. [16] for instance). Therefore to prove compactness of Y we have only to show
that #(Y) is compact. But this follows from Corollary 1.7, since #(Y) is a minimal
closed g~ 'VgN/N-invariant subset and ¢~ 'VgN/N is, as can be readily seen, a
(unipotent) one-parameter subgroup of L/N. Therefore Y is compact and hence
sois X.
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We now suppose that there does not exist any g as above. Then, by Thearem 1.2
in the case of SL(3, Z) and by Condition {*) in the general case, there exists a
compact subset C of G/I" such that for all x = gl'eG/I" the sets {t=0lv,(t)xeC}
and {t <0|v,(t)xeC} are both unbounded. Then the argument as in Corollary 1.7,
using Lemma 1.6, implies that X is compact.

Lemma 4 of [13] now implies that either X is a (compact) V-orbit or there exists
a subset M of G-V such that ee M and gX n X #+ J for all ge M. In the latter case,
by Lemma 2.1, X is invariant under the closed subgroup, say F, generated by
VMV ~N(V), where N(V)is the normaliser of V. It is easy to see that N(V)>DW.
By Lemma 8 i) of [ 13] F contains a one-parameter subgroup of DW not contained
in V. It follows that F contains either W or w(DV)w™! for some we W. By Lemma
6 of [13], W Fif McG—N(V). As DV has no compact orbits on G/I' the two
assertions together imply that X contains a W-orbit, which proves the proposition.

Now let g be the Lie algebra of G, realised as the Lie algebra of 3 x 3 matnices of
trace 0. Let b be the Lie subalgebra corresponding to H. Let p be the orthocomple-
ment of b in g with respect to the Killing form (this can be expressed explicitly — see
[13]). Then g =h@ p and b and p are invariant under the restriction of the adjoint
action (of G on g) to H.

3.4. Proposition. Let M be a subset of exp p such that M~ V,=f and ee M. Then
there exists a polynomial map ¢: R— V, such that ¢(R) contains V'3 or V ; and there
exist sequences {g;} in M and {1;} in R* such that for any convergent sequence { B;} of
real numbers, say fi— P, v,(Bit;)g;v (- B:t:) > D ().

Proof. Let M, = {{ep|exp £eM}. Then the conditions of Lemma 2.2 satisfied for
the action of the one-parameter subgroup {v,(t)} on p, obtained by restricting the
adjoint action as above, with p=0; we note that for £ep, Adv,(t)é=¢ for all £ if
and only if expeV,. Hence by that Lemma there exists a non-constant poly-
nomial map ¢: R— ¥, such that ¢(0)=e and there exist sequences {&,} in M,
and {t;} in R* such that for any convergent sequence {f;} in R, say f;—p,
exp Ad v, (Bit;) (&) — ¢(B); setting g, =exp &, yields the assertion as in the Propositi-
on. Since ¢ is a nonconstant polynomial map and ¢(0)=e it follows that ¢(R)
contains either V5" or V.

3.5. Corallary. For any subset M <G —HV, such that eeM, DV MV, coniains
either V3 or V5.

Proof. Let {g;} be a sequence in M such that g;—e. Since g=b+p, there exist
neighbourhoods 4 and B of e in H and expp respectively, such that the map
(a, b)— ab is a homeomorphism of 4 x B onto a neighbourhood of e in G and hence
for all large i, g; has the form h,q;, where h,cH, q;cexp p, with h; > e and q;— e as
i — 00. We also note that since M = G—HV,, q; ¢ V,. Let ¢ be the polynomial as in
Proposition 3.4 for the subset {g;|i=1,2,. . .} (in the place of M there). Then by the
Proposition there exist sequences {k;} in N and {t;} in R™ such that v,(t;s)
g v,(—t;5)— ¢(s) for all seR. Clearly ¢;— c0. Recall that H is a quotient group of
SL(2, R) and DV, is a parabolic subgroup in H. A straightforward computation
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shows that if P is a parabolic subgroup of SL(2, R) if {u,} is a unipotent one-
parameter subgroup contained in P and if {h;} is a sequence in SL(2, R) then given
{t;} as above, the sequence of cosets Ph;u(—t;s) converges to the coset P (in the
quotient space P\SL(2, R)), except possibly for one particular value of s. It follows
that there exists so€R such that for every s = s,, the sequence of cosets DV hy, v,
(—1;5) converges to the coset DV, in DV \ H. It follows that for every s s,,
DV, g, v (—t8) =DV h v, (—1;5) v, (t:;8) 9,01 (—t:5) = DV ¢(s). But then ¢(s) must
bé¢ contained in DV, MV, for all seR. Since the image of ¢ contains either V5 or
V5 it follows that DVMV, contains either V3 or V.

3.6. Proposition. Let Y be the closure of a V-orbit in G/I'. Then either Y is a V-
orbit or it contains an orbit of V or v(DV )v~* for some veV,.

Proof. Let X be a minimal closed V,-invariant subset contained in Y; such a subset
exists by Corollary 1.5 and is compact by Corollary 1.7. Let xe X be fixed. First
suppose that there exists a neighbourhood £ of e in G such that
{geQ|gxeY} c N(V,), the normaliser of ¥, in G. Then (2N (V;))x Y is open in
Y and hence contains an element y such that V' y is dense in Y. Let y=px where
peN(V,). Then V,y=V,px=pV,x < pX and hence Y < pX. But since peN(V,)
and X is a minimal closed V,-invariant subset, pX and X are disjoint unless pX
=X. Since X ¢ Yc pX we get that Y=X. Thus Y is a compact minimal V-
invariant set. Then by Lemma 4 of [13] either Y is a V/;-orbit or there exists a
subset M = G — ¥V, such that ee M and gxe Y for all ge M. If the second condition
holds then by Lemma 2.1 Y is invariant under the subgroup generated by

V,MV,N(V,)and by Lemma 8 of [ 13] the latter contains either ¥ or vo(DV ) ™!
for some veV,. Hence the proposition holds in this case.

Now suppose that there does not exist any € as above. Then there exists a
subset M = G —N(V,) such that eeM and gxe ¥ for all ge M. Then by Lemma 2.1
hX < Y for all he VMV, nN(V,). For AeR* let d(4) denote the diagonal matrix
diag(4, 1, A7 1). We shall show that there exist rational functions ¢ and v on R such
that the following conditions are satisfied: i) ¢ and ¢?v are polynomials, 6(0)= 1 and
at least one of ¢ and v is nonconstant and ii) for any teR such that o(t) =0 the
element d(a(t))v,(v(¢)) is contained in V' MV,.

Let g be the Lie algebra of G and s be the space of all symmetric 3 x 3 matrices.
Let x = ¢@®s and consider the linear action of G on x obtained as the direct sum of
the adjoint action on g and the action on s defined by (g, 6) » g6'g (where ‘g is the
transpose of g). Let p= &, + 0, where &, is a nonzero element in the Lie subalgebra
of g corresponding to ¥V, and 6, is a nonzero element fixed by the action of H (say
the matrix corresponding to the quadratic form 2x,;x;—x3). Then V, is the
isotropy subgroup of p under the G action on x. Let v be the Lie subalgebra of g
corresponding to V, viewed as a subspace of ¥ in a natural way. Let 8, =
v,(1) 8, — 8, (action as above) and let 8, and 6, be viewed as elements of x. Let L
be the subspace of x consisting of all elements fixed by V. It is easy to see that L is
precisely the subspace spanned by vu {6, 6,}. By Lemma 2.2 there exists a
nonconstant polynomial map ¢: R— L such that #(0)=p and the image of @ is

contained in ¥, Mp. Since the G-orbit of p is locally closed, the contention of the
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Lemma also implies that for all ¢ in a suitable neighbourhood of 0 in R, ¢(1) is
contained in the closure of Gp L. It is straightforward to verify that the latter set is
precisely E : = {af,+ 0, + 0, ] o, feR}. Since ¢ is a polynomial map it follows that
@(1)eE for all reR. Hence we can write ¢(t) as ¢o(1)&o+ 0, + ¢, (1)0, (uniquely),
where ¢, and ¢, are polynomials on R. We define o= ¢, and v=¢,/¢3. We note
that since ¢(0)=p, 6(0)=¢,(0)=1 and hence in particular v is a genuine rational
function. Clearly o and ¢?v are polynomials. Also since ¢ is nonconstant, either
¢, or ¢, and hence ¢ or v is nonconstant. It is easy to verify that for any AeR*,
d(Wég=AE,, d(N)0,=0, and d(A)8, =420, and for any seR, v,(s)¢,=¢&, and
05(5)0,=0,+50,. Hence for any 1eR* and seR, d(A)v,(s)p= A&y +0,+ A2s0,.
Substituting, we find that if teR is such that o(t)%0 then d(a(t)v,(v(t)p=

o(t)éo+ 00+ 020, = Po()Eq+ 0+ b, (08, =¢()eV,Mp and consequently
d(a(t)v,(v(t))e VMV ,. Thus ¢ and v have the desired properties.
Now first suppose that ¢ is constant, namely a(t)=1 for all t. Then v(t) is a

nonconstant polynomial and v, (v(¢))e ¥ MV, and hence v,(v(¢))X < Y for all teR.
By Lemma 2.3 this implies that ¥ contains a V,-orbit. Being V| -invariant it must in
turn contain a V-orbit as desired. Next suppose that ¢ is a non-constant
polynomial. Let ¢(t)=d(o(t))v,(v(t)). Then by Proposition 2.4 there exist a non-
trivial one-parameter subgroup {p,} of DV, and a family of functions a; R* - R,
seR, such that as t — oo, t +a,(t) = 00 and ¢(t + a,(t)) ()~ — p, for all s in a subset
E of R, where E=R unless {p,|seR} =V, and in the latter case E=[0, c0).

Observe that [det ¢(¢)| .| where L is any of the two proper nonzero V,-invariant
subspaces, tends to oo as t— o0. Hence by Corollary 1.3 or Condition (*) there
exists a compact subset C of G/I" such that ¢(r) V,xn C is nonempty for all large t.
Hence there exist sequences {t;} in R and {v;} in ¥, such that t;— o0 and ¢(t;)v;x
converges, to say an element y. Since ¢(t) X < Y for all large ¢ (for which 6(t) =0 as
above) it follows that ye Y. Now for any se E we have

Pt;+a,t)vix = d(t;+a (L) d(t) ™ Pt vx —pyy .

Since t;+a,(t;}) > o0 as i— oo and ¢(t) X < Y for all large ¢ it follows that p,ye Y for
all seE. Recall that if E is a proper subset of R then we have E=[0, o) and
{p,|seR} = V,. Hence using Lemma 2.3 we conclude that in any case Y contains a
{p,}-orbit. Recall that {p,} is a nontrivial one-parameter subgroup of DV,. Let F
be the (closed) subgroup generated by {p,} and V,. Since Y is a V;-invariant subset
and contains a {p,}-orbit and {p,} normalises V', it follows that Y contains a F-
orbit. Clearly F is a two dimensional connected Lie subgroup of DV. It is well
known and easy to check that such a subgroup is either ¥V or v(D¥;)v™! for some
veV,. This proves the proposition.

3.7. Remark. Following the method of Proposition 3.6 one can prove that if Yis the
closure of a U-orbit where U is one of the subgroups V or W then Y is either a
(compact) U-orbit or it contains an orbit of a closed connected subgroup F
properly containing U and contained in the normaliser of U.
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§4. Proof of Theorem 2

In this section we complete the proof of Theorem 2. We follow the notation as in §3.
We recall in particular, that I' is allowed to be any lattice in G =SL(3, R) satisfying
Condition (*) formulated in Remark 1.8, which is seen to hold for SL(3, Z) and
would be upheld for an arbitrary lattice elsewhere.

4.1. Proposition. Let Y be the closure of a DV ,-orbit. Then Y contains either a
V-orbit or a closed H-orbit.

Proof. In view of Proposition 3.2 without loss of generality we may assume Y to be
a minimal closed DV -invariant subset. Let X be a minimal closed V,-invariant
subset contained in Y; it may be recalled that such a subset exists by Corollary 1.5
and is compact by Corollary 1.7. Let xe X be fixed. -

First suppose that there exists a subset M of G— HV, such that ee M and gxeY
for all ge M. Since X is a compact minimal V,-invariant set and Yis DV -invariant,

Lemma 2.1 implies that hX < Y for all he DV MV, nN(V,), where N(V,) is the

normaliser of ¥} in G. Since M < G—HV, and ee M, by Corollary 3.5 DV, MV,
contains either ¥V or V5. Since V, = N(V,) we get that either V5 X or V; X is
contained in Y. By Lemma 2.3 this implies that Y contains a V-orbit.

Now suppose that there does not exist any subset M as above. Then there exists
an open neighbourhood @ of e in G such that {geQ{gxe Y} = HV,. By replacing Q
by a smaller neighbourhood we may further assume that g—gx, (ge€), is a
homeomorphism of Q onto Qx and that the map (h, v)—ho, (heQ@nH and
veQn V,)is a homeomorphism of (2 H) x (€~ V,) onto a neighbourhood of ein
HYV, contained in Q.

Let ye(QHV,)xn Y, say y=hvx with he 2~ H and ve Q2 nV/,,be arbitrary; we
show that then vxe Y. Since X is a minimal closed V| -invariant subset there exists a
sequence {u;} in V; such that u,— co (namely it has no limit point in V) and
u;x — x. In the group H, which is locally isomorphic to SL(2, R), for h and {u;} as
above there exists a sequence {p;} in DV, such that p;hu; ' > e; one only has to note
that (DV,)hu;7 ' >DV, in the quotient space DV ,\H. Hence p;y=phvx=
(p;hu; 1) (wox) = (p;hu;” MYo(u;x) — vx. This shows that vxeY.

In view of the above observation either there exists a neighbourhood Q' of e,
contained in €, such that {geQ'[gxeY} < H or there exists a sequence {v;} in
V,{e} such that y;—»e and v,xe Y for all i. Suppose the first condition holds. Then
(2 nH)xnYisopenin Yand as the DV,-action on Y is minimal it follows that Yis
contained in DV ('~ H)x and hence in Hx. Since H/DV, is compact and Y is
DV -invariant, HY is a closed subset. But then, since Hx=HY, Hx is a closed H-
orbit and hence, by Proposition 3.1, the DV;-action on Hx is minimal. As Yis a
closed DV ,-invariant subset of Hx it follows that Y= Hx, namely a closed H-orbit.
Thus we are through in this case.

Now suppose that there exists a sequence {;} in V,-{e} such that v;—e and
v,xe Y for all i. Let peDV, be any element such that px e Qx. Then, by the choice
of Q, we have pxe(QnHV,)x and hence there exist h'eQnH and veQnV,
such that px=h'v'x. For each i we have pox=(pv,p~")px={(pup " )Hv'x




420 S.G. Dani and G.A. Margulis

=K (! pup” W)W x. Also, since v;xe Y, pv;xe Y for all i and since v, — e, pv;xeQx
for all large i. Hence puxeQxnY=(QnHV,)xnY for all large i. Therefore
(W tpop” W) xe(QAHV,)x for all large i. Since v;— e and the map g — gx is
injective on Q, this readily implies that h' " 'pu,p *WeHV, for all large i. By
considering the action of H on the subspace p as in §3, obtained by restriction of the
adjoint action of G, it is easy to see that there exists a neighbourhood N of e in V,
such that for any ve N — {e} and he H, hvh~ e HV, if and only if he DV,. Therefore
the preceding condition yields that WeDV,. Hence px=hv'xe(2nDV)x. Thus
Qxn DV, x is contained in (2N DV)x.

In view of the above conclusion and the DV';-invariance of 7, either there exists
a neighbourhood @ of e contained in @ such that Q"xnDV,x is contained in
(2'nDV,)x or there exists a sequence {vj} in V,-{e} such that vj—>e and
vixeDV,x for all i. If the first condition holds then DV, x is open in ¥ and hence by
minimality of Y it is the whole of Y; but that is a contradiction since by Proposition
3.1 DV, has no closed orbits on G/I'. Hence the second condition must hold. Let
{v{} be a sequence as above and let 4={geDV|gx=x}. Then 4 is a discrete
subgroup of DV containing for each i an element of the form du,v;, where d,eD and
u;e V.. An elementary argument shows that any discrete subgroup of DV is either
contained in V or it is a cyclic subgroup generated by an element of the form wdw ™!
with deD and we V. It is also easy to see that in the latter case the subgroup does
not contain any sequence of elements of the form {duw}} with d;eD, eV, and
vie V,-{e} with v —e. Hence 4 as above must be contained in ¥ and d;=e for all i.
Thus 4 contains uw; for all i, where ;e V|, vieV,-{e} and v] —e. In particular this
forces that u; is nontrivial for all large i. Thus x is fixed by an element ], where
ueV-{e} and vieV,-{e}. We deduce from this that Wx is compact; this may be
done either by applying Theorem 6.4 of [10] or, if we grant I being arithmetic then,

by a direct argument. Since X = V,x it is contained in Wx and it follows from the
well-known results on flows on nilmanifolds (cf. [16], Chapter II) that V,x is
compact and X is an orbit of one of the subgroups V;, V" and W. It is easy to see
that since V,x is compact the subgroup 4 as above cannot contain a sequence of
elements of the form ww; with w,eV, and vieV,-{e} with v;—e if V,x is also
compact. Hence X must be an orbit of V or W, in which case the contention of the
proposition is satisfied.

4.2. Proposition. Every DV-orbit is dense in G/I'.

Proof. Let Y be the closure of a DV-orbit. If Y contains a W-orbit then, since it is
D-invariant and D normalises W, it would contain a DW-orbit; since every D W-
orbit is dense (cf. [6] Proposition 1.2) this implies that ¥Y=G/I" as desired. Now
suppose, if possible, ¥ does not contain any W-orbit. Let X be a minimal closed V-
invariant subset of Y; such a subset exists by Corollary 1.5. Since Y does not
contain any W-orbit, by Proposition 3.3, X must be a (compact) V-orbit. By an
argument in the proof of Proposition 3.2 (ii) this implies that DX is not closed.
Hence in particular DX #+ Y. By replacing X by another minimal subset (compact
orbit) if necessary, we may also assume that DX is not open in Y.
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Let xe X and suppose that there exists an open neighbourhood Q of e in G such
that Q is compact and {geQ|gxeY} = DW < N(V), the normaliser of V. Then
(QNDW)xn Y is a neighbourhood of x in ¥ and hence it contains an element y
such that DVy is dense in Y. Let y=dwx where deD and weW. Then DVy
=DVdwx=D(dw)Vx=DwVx=DwX. Let A={geDW|gx=x}. Since X=Vx
is compact it follows as in the last Proposition that 4 is a lattice in W; thus the map
(d, z)—dz of D x Wx into G/I is injective and its restriction to any compact subset
is a homeomorphism onto the image. In particular (QDW)xnDwX is a closed
subset of (2N DW)x. As DVy is dense in Y it follows that (QNDW)xnY is
contained in DwX. Since xeY, this further implies that wX =X. Hence QxnY
= (2N DW)xn Y is contained in DX. This implies that DX is open in Y, contrary
to our assumption. Hence there does not exist any @ as above. Therefore there
exists M = G —DW such that ee M and gxe Y for all ge M. By Lemma 2.1 we have
hX < Y for all e DVMV nN(V). Since M =« G—DW, DVMV contains either W+
or W (cf. [13] proof of Lemma 6), where W* ={g= (g )e Wlg,, 29,5} and W~
={g=(9)EWI|d12 < 923}, (gu) being the matrix form of g in G. Since W = N(V)
this implies that either W* X or W™ X is contained in Y. By Lemma 2.3 this implies
that Y contains a W-orbit, contrary to our assumption. This shows that Y=G/I".

4.3. Proposition. Let Y be the closure of a V,-orbit and suppose that it contains a
closed orbit of H, say X. Then either Y=X or Y=G/I.

Proof. First suppose that there exist xe X and a neighbourhood Q of ¢ in G such
that {geQ|gxe Y} is contained in V,H. Then (2n V,H)x~ Y is openin Y. As Yis
the closure of a V/,-orbit there exists ye(2n V,H)x such that V,y is dense in Y. Let
y=u,hx, where v,€ V', and he H such that v,he Q. Then for any v, eV, v,y =0v,v,hx
=v,v hxev,Hx=v,X. Hence V,y is contained in v,X and since the latter set is
closed it also follows that Y= ¥,y < v,X. Thus we have X <« Y < v,X. Since X isa
closed H-orbit this is impossible unless v,X = X and consequently Y= X.

Now suppose that the above condition is not satisfied and let xe X be such that
the V;-orbit of x is not periodic. Then there exists M = G— V,H such that eeM
and gxeY for all ge M. Let ¥ be any compact neighbourhood of x and let

H(¥)= {heH|x=hy for some ye¥}

The set of g such that g¥ n Y = & is closed and contains V| MH (¥); therefore it
contains VM H(¥). We now claim that ¥, MH(¥) contains either V' or V;.
Let g, § and p be as in §3. Since g=1 + p there exist neighbourhoods 4 and B of
e in H and exp p respectively such that the map (a, b) - ba is a homeomorphism of
A x B onto a neighbourhood of e in G. Let {m;} be a sequence in M converging to e
and M, ={geB|m;egA for some j}. Clearly eeM, and M ,nV,=. Then by
Proposition 3.4 there exists a polynomial map ¢: R— V, such that ¢(R) contains
V3 or V; and there exist sequences {t;} in R* and {g;} in M such that g;—»e and
v (Bit)gw (— Bit;) — ¢(B) for any sequence {f;} in R such that §;— f. Since X is a
closed H-orbit, by Proposition 3.1 the element x as above is a point of uniform
recurrence in linear time for the V,-action. Thus given a>0 there exists a
neighbourhood ¥’ of x in X and T,eR such that for all ye¥’ and T= T, there
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exists te[ 7, (1 +4) T] such that v (t)ye¥. Let seR be given. Observe that there
exists a sequence {A;} in H such that h;—e and g;h;e M for all i. The elements h,x
are contained in ¥’ for all large i and hence there exists a sequence {§;} in [1, 1 +o]
such that v, (Bt,5)hxe¥. Hence for i, h, v, (—B;t;s)eH(¥) and in turn V g,
(= Bitis) =V (g:h)h Lo (= Bit;s)e VIMH(Y). As 1 £, < 1 +afor all i, passing to a
subsequence we may assume that {f;} converges, say f;— f, where 1Sf<1+4x
Therefore Vg, (—Bit:s)— Vo (Bs) and hence ¢(fs)eV; MH(¥). Thus we have
shown that for any seR and «>0 there exists § such that 1 <f<1+o and

contains V5 or V5, this proves the claim.

Thus g¥ N Y is nonempty for all g in ¥y or V5. Since ¥ was an arbitrary
compact neighbourhood of x this implies that either V) x or ¥'; x is contained in Y.
Since Y'is a closed V,-invariant set this means that Y contains the closure of either
ViVixor VVix. But V\Vix=V;Vx, V,Vyx=V; ¥V x and by Proposition
3.1 V,x is dense in X. Therefore Y contains either V5 X or V'; X. We complete the
proof by showing that V7 X and V7 X are dense in G/I'. Let Y, be the closure of
say V5 X. Since DV, V] =V D-V,, it follows that Y, is DV;-invariant. On the
other hand, by Lemma 2.3, Y, contains an orbit of V,. Together the two assertions
imply that Y, contains an orbit of DV. Hence by Proposition 4.2, Y, =G/I" which
means that V; X is dense in G/I'. A similar argument shows that V', X is also dense
in G/T.

4.4. Corollary. Let Y be the closure of a V-orbit in G/I'. Suppose that it contains an
orbit of DV . Then either Y is a H-orbit or Y=G/I.

Proof. Let Y, be the closure of a DV -orbit in Y. By Proposition 4.1 Y, contains
either a V-orbit or a closed H-orbit. If Y, contains a closed H-orbit then so does Y
and hence Proposition 4.3 implies the Corollary. Now suppose that Y, contains a
V-orbit. Since Y; is DV, -invariant and D normalises V, this implies that Y,
contains a DV-orbit. Hence by Proposition 42 Y, =G/I" which proves the
Corollary.

Proof of Theorem 2. Let y=gI'eG/I', where geG, and let Y=Hy. For heH, Vihyis
compact if and only if g~'h~'V hg contains a nontrivial element of I'. As
{g”'h™ 'V hg},cy is an uncountable family of subgroups no two of which have any
nontrivial element in common it follows that there exists he H such that V', hy is not

compact. Then by Proposition 3.6 ?/?z; contains an orbit of either V or v(DV,)}p ™!

for some veV. Suppose V,hy, and hence Y, contains a V-orbit. Since Y is D-
invariant and D normalises ¥ this implies that ¥ contains a D V-orbit and hence ¥
=G/I" by Proposition 4.2. Now suppose that there exists ve V' such that V' hy
contains a v(DV,)v~! orbit, say of a point ze G/T". First consider the case where v is
not contained in ¥,. Then DvD contains {dvd " '|deD} which is dense in either V)
or V5. As V hy contains vDV, v~ 'z, Y contains DoDV v™ 'z and hence it contains
either V5 v~ 1z or V5 v 'z, by the preceding observation. Hence by Lemma 2.3 Y
contains a V orbit and, as seen above, this implies that Y=G/I". Now suppose that
veV,, which means that V' hy contains a DV ,-orbit. Hence by Corollary 4.4 V', hy
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is either a closed H-orbit or G/I'. Then clearly either Y=Hy, a closed H-orbit, or
Y =G/I', which proves the theorem.

§5. Proof of Theorem 1

We now deduce Theorem 1 from Theorem 2. We first note that it is enough to
prove Theorem 1 for n=3. While an expert may readily recognize this, a proof is
indicated for the convenience of the general reader. Let the notation be as in the
statement of the theorem, with n>4. We can find linearly independent rational
vectors vy and wy arbitrarily close to v and w respectively such that the restriction
of B to the subspace spanned by {vq, wy } is nondegenerate. Hence by modifying the
data we may assume v and w linearly independent rational vectors such that the
restriction of B to the of span of {v, w} is nondegenerate. As B is nondegenerate and
indefinite there exists' a rational vector w, such that v, w and w, are linearly
independent and the restriction of B to the subspace spanned by them is non-
degenerate and indefinite; we first find a w, eR", using orthogonal decomposition,
and then observe that the required properties continue to hold if it is replaced by a
rational vector close to it. By adjoining more rational vectors we find a rational
hyperplane L containing v and w such that the restriction of B to L is non-
degenerate and indefinite. Let 4 be a nonzero rational linear form on L such that
A()=4(w)=0. Let x be a rational vector in R"—L and for teR let L, be the
hyperplane {z+tA(z)x|zeL}. Then L, is a rational hyperplane for each rational ¢
and for all small ¢ the restriction of B to L, is nondegenerate and indefinite. We
claim that there exists such a ¢ for which the restriction of B to L, is not a multiple of
a rational form. Suppose this is not true. Since the restriction of B to LN L, 1s
nonzero we can conclude from this that there exists a common xeR* such that the
restrictions of aB to L and L, are rational forms. Since this applies to any L, as
above we get that aB is a rational form, contradicting the hypothesis. Therefore the
claim holds. Now if x and y are primitive elements in L~Z" or L,~Z" for which the
conclusion of the theorem holds then the theorem will stand proved for R" as well.
This shows that for n = 4 the theorem holds for a value of n whenever it holds for
n—1. Hence it is enough to prove the theorem for n=3.

Now let n=3. Let the notation be as in the theorem and §3. Let L be the identity
component of the subgroup of G leaving invariant the quadratic form B. Since for
n=3 any nondegenerate indefinite quadratic form is equivalent over R, to one of
the forms + {2x,x;—x3} it follows that L=gHg ' for some geG. Now consider
the function f R* x R® > R® defined by f{v, w)=(B(v), B(w), B, (v, w)) for all v,
weR? Let I’ =SL(3, Z) and E = R? x R be a nonempty subset invariant under the
(componentwise)-action on R* x R?, Since B is invariant under elements of L it

follows that flE) = f(LE) = f(LI'E). Since fis continuous we get thatf(iTE—) « m
By Theorem 2, Hg 'I is either G or Hg™'I". Hence LT which is the same as
gHg T coincides with either G or LI'. Therefore we get that f(E) contains f(GE)
unless LT is closed. An argument as in [13] shows that as B is not a multiple of a
rational form LI is not closed. Hence ]_’(E) contains f(EE) for any nonempty I-
invariant subset of R*xR>. Now choose E=R(Z3 x P(Z3). Then GE =R> x R?
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and hence f(E) is dense in the image of f, which is precisely the assertion of the
theorem.

Remark. Raghunathan’s conjecture stated in the introduction entails that if B is a
nondegenerate indefinite quadratic form on R” and L is the subgroup of SL(n, R)
leaving B invariant then any L-orbit is either closed or dense. By the argument
as in the deduction of Theorem 1 above this implies that if B as above is not a
multiple of a rational form and B, is the corresponding bilinear form then for any
{a;li, j=1,2, ..., n—1} c R for which there exist v;, ..., v, ,€R" such that
B,(v;, v) = a;; and &>0 there also exist x,, .. ., x,1€PB(Z") such that

[B,(x;, x;)— a;l <e

foralli, j=1,...,n—1.
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Oblatum 17-X-1988

Note added in proof

A simpler proof is now obtained for the last part of Theorem 1, on values at primitive integral
points, and will appear elsewhere.



