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1 Introduction

Over the years, the exact solution of N -body problems has attracted consid-
erable attention because of its possible relevance in statistical mechanics as
well as in atomic, nuclear and gravitational many-body problems. Whereas
exact solution of several N -body problems in one dimension is known by now
[1,2], a class of exact solutions including the bosonic ground state have been
obtained for several N -body problems in higher dimensions when they are
interacting via a harmonic oscillator potential [3,4,5,6,7,8]. Clearly it is of
considerable interest to discover other exactly solvable N -body problems in
one as well as in higher dimensions.

The purpose of this paper is to show that a class of exact solutions in-
cluding the bosonic ground state of all these N -body problems in higher
dimensions can also be obtained in case they are interacting via an N -body
potential of the form

V (r1, r2, ..., rN) = − e2
√

∑

i r
2
i

(1)

In this context, I may add that recently I have already obtained a class of
exact solutions of the N -anyon problem (in two dimensions) in case they are
interacting via this N -body potential [9]. Further, last year, I also obtained
the complete bound state spectrum of the N -particle problem in one dimen-
sion in case they are interacting via a variant of the above potential as given
by [10,11,12]

V (x1, x2, ..., xN ) = − e2
√

∑

i,j(xi − xj)2
. (2)

Subsequently, Gurappa et al. [13] showed that the complete bound state
spectrum can also be obtained in case an N -body potential of the form
β2/

∑

i<j(xi − xj)
2 is added either to the oscillator or to the N -body potential

(2).
Based on all these results, I conjecture that whenever an N -body problem

is solvable in case these N particles are interacting via an external one body
( or pairwise) oscillator potential, the same N -body problem is also solvable
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in case they interact via the N -body potential as given by eq. (1) or by

V (r1, r2, ..., rN) = − e2
√

∑

i<j(ri − rj)2
. (3)

I further conjecture that in either case, one can also add an N -body potential
of the form

V (r1, r2, ..., rN) = − δ2

∑

i<j(ri − rj)2
(4)

or its variant

V (r1, r2, ..., rN) = − δ2

∑

i r
2
i

(5)

and the problem is still solvable except that the degeneracy in the spectrum
is now much reduced. Clearly, it is necessary to examine the known solvable
N -body problems with the oscillator potential and check if these conjectures
are valid or not.This is precisely what I propose to do in this paper.

The plan of the paper is as follows. In Sec.II, I discuss the N -body
Calogero-Marchioro [3] model in D-dimensions [4] and show that a la the
oscillator case, even for the N -body potential as given by eq. (3), one can
obtain some exact eigenstates including the (bosonic) ground state. I also
consider the Sutherland variant of the problem and as in the oscillator case,
I obtain the exact (bosonic) ground state when the N -bodies are interacting
via the N -body potential as given by eq. (1). In Sec.III, I discuss the two-
dimensional model of Murthy et al. [5] in which they have obtained some
exact eigenstates including the (bosonic) ground state all of which show novel
correlations. I show that similar exact solutions with novel correlations can
also be obtained in case one replaces the one-body oscillator potential by
the potential as given in eq. (1). I also discuss the two-body problem in
great detail and show that as in [6], in this case too it is completely solvable.
In Sec.IV, I consider the D-dimensional generalization [7] of Murthy et al’s

model [5,6] and show that exact solutions including the (bosonic) ground
state can again be obtained in case they are interacting via the N -body
potential (1). In Sec.V, I consider a Calogero type model in D-dimensions
[8] which has only two-body interactions and show that one can obtain some
exact eigenstates including the (bosonic) ground state in case the N -bodies
are interacting via the N -body potential (1). Finally, in Sec.VI, I obtain the
entire discrete bosonic spectrum in case the N -particles are interacting in
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D-dimensions purely via the N -body potential as given by (3). Further, in
all the above cases I show that the discrete spectrum can still be obtained
even if one adds the N -body potential as given by eq. (5) (or (4)) to the
oscillator or our N -body potential except that the degeneracy in the discrete
spectrum is now much reduced.

2 Calogero-Marchioro Model With N-body

Potential

Long time ago, in an effort to generalize the original Calogero model [2]
to dimensions higher than one, Calogero and Marchioro [3] considered a
model in three dimensions in which the N-particles are interacting via the
two-body and the three-body inverse square interactions as well as by the
pairwise harmonic oscillator potential. They were able to obtain some exact
eigenstates including the bosonic ground state of the system. Recently, we
[4] have been able to generalize their work to arbitrary space dimensions. In
particular we considered the following N -body Hamiltonian in D-dimensions

H = − h̄2

2m

N
∑

i=1

∇2
i +

gh̄2

2m

N
∑

i<j

1

r2
ij

+
Gh̄2

2m

∑

i<j

rki · rkj

r2
kir

2
kj

+
mω2

4

N
∑

i<j

r2
ij (6)

and showed that some eigenstates including the bosonic ground state for the
system are given by

ψnr = (
∏

i<j

r2
ij)

ΛD/2exp(−1

2

√

1

2N

∑

i<j

r2
ij)L

ΓD
nr

(

√

1

2N

∑

i<j

r2
ij) (7)

with energy

Enr =

√

N

2
(2nr + ΓD + 1) , nr = 0, 1, 2, ... . (8)

Here ri is the D-dimensional position vector of the i’th particle and rij =
ri − rj denotes the relative separation of the i’th and j’th particles while rij

denotes its magnitude. In writing this exact solution, we have scaled all dis-

tances ri →
√

h̄
mω

ri and the energy is measured in units of h̄ω. Throughout
this paper, whenever we discuss the exact solutions for the oscillator poten-
tial, we shall always be working with these scaled coordinates and the energy
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will always be measured in units of h̄ω. The parameters g and G character-
ize the (dimension-less) two-body and three-body coupling constants respec-
tively while Lb

a denotes the Laguerre polynomial. Here g > −1/2 to stop
the fall to the origin. Further, ΛD and ΓD are two parameters determined in
terms of the parameters of the Hamiltonian by

ΛD ≡
√
G =

1

2

[

√

(D − 2)2 + 4g − (D − 2)
]

(9)

ΓD =
1

2

[

D(N − 1) − 2 + ΛDN(N − 1)
]

. (10)

Let us now consider the same many body problem as given by eq. (6)
but with the oscillator potential being replaced by the N -body potential as
given by eq. (3). Throughout this paper, whenever we talk of the exact
solutions with the N -body potential as given by eqs. (1) or (3), we shall
rescale all distances ri → h̄2ri/me

2 and measure energy in units of me4/h̄2

so that m, e, h̄ are all scaled away.
On substituting the ansatz

ψ = (
∏

i<j

r2
ij)

ΛD/2φ(ρ) (11)

in the Schrödinger equation for the potential (3) one obtains

ρφ′′(ρ) + (2ΓD + 1)φ′(ρ) + (
2√
N

− 2ρ | E |)φ(ρ) = 0 (12)

where ΓD is as given by eq. (10) while

ρ2 =
1

N

∑

i<j

r2
ij . (13)

On further substituting

φ(ρ) = exp(−
√

2 | E |ρ)χ(ρ) (14)

it is easily shown that χ(ρ) satisfies the equation

ρχ′′(ρ)+(2ΓD+1−2
√

2 | E |ρ)χ′(ρ)+[
2√
N

−(2ΓD+1)
√

2 | E |]χ(ρ) = 0 (15)
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whose solution is a Laguerre polynomial

χ(ρ) = L2ΓD
nr

(2
√

2 | E |ρ) (16)

with the corresponding energy eigenvalues being (in units of me4/h̄2)

Enr = − 1

2N(nr + ΓD + 1
2
)2
. (17)

Several comments are in order at this stage.

1. For D = 1 this expression agrees with the one derived by us earlier
[10].

2. For nr = 0, the eigenfunction

ψ0 = (
∏

i<j

r2
ij)

ΛD/2 exp(−
√

2 | E0 |ρ) (18)

has no nodes besides those coming from the singular centrifugal poten-
tial which forces the eigenfunction to vanish whenever the coordinates
of any two particles coincide. Thus ψ0 corresponds to the ground state
of the system with the corresponding ground state energy being as
given by eq. (17) with nr = 0. For nr > 0, we have radial excitations
over the ground state.

3. As g → 0, we see from eq. (9) that also G → 0 and the wave func-
tion (18) becomes the ground state eigenfunction of the hyperspherical
“Coulomb problem” in D-dimensions without centrifugal barrier and
with Bose statistics. Thus the situation is different from the one di-
mensional problem [10] where as g → 0, the eigenfunction is the ground
state of the “Coulomb problem” but with Fermi statistics. We shall
in fact see that in all the higher dimensional many body problems
(D > 1), unlike the one dimensional case, as the coupling is switched
off, the eigenfunction corresponds to that of Bose statistics. It is not
clear whether this difference in statistics between the one and the higher
dimensions has any deeper physical significance.

4. TheN -body problem is still solvable if apart from ourN -body potential
(3) we also add the potential (4) to the Hamiltonian (6). In this case,
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on substituting the ansatz (11) in the Schrödinger equation for the
combined potential yields

φ′′(ρ) +
(2ΓD + 1)

ρ
φ′(ρ) + (

2

ρ
√
N

− δ2

Nρ2
− 2 | E |)φ(ρ) = 0 . (19)

On following the steps as given by eqs. (13) to (17) it is easily shown
that the exact eigenstates are given by (in units of me4/h̄2)

Enr = − 1

2N(nr + γ + 1
2
)2

(20)

φ(ρ) = ρ(γ−ΓD)exp(−
√

2 | E |ρ)L2γ
nr

(2
√

2 | E |ρ) (21)

where
γ =

√

Γ2
D + δ2/N . (22)

5. In the same way, the N -body problem with the oscillator potential as
given by eq. (6) is also solvable in case we also add theN -body potential
(4) to it. In particular, it is easily shown that the corresponding exact
eigenstates are

Enr =

√

N

2
[2nr + 1 + γ] (23)

ψnr = (
∏

i<j

r2
ij)

ΛD/2exp(−1

2

√

1

2N

∑

i<j

r2
ij)ρ

(γ−ΓD)Lγ
nr

(

√

1

2N

∑

i<j

r2
ij) . (24)

It may be added here that following Calogero and Marchioro [3], we can
also obtain a subset of the (spin-less) fermionic eigenfunctions in the special
case of N = 3 and 4 when these particles are interacting via the N -body
potential as given by eq. (3). In particular, it is easily shown that for N = 3,
a set of completely antisymmetric eigenstates in three space dimensions are

ψnr = (r12 × r23)(
∏

i<j

r2
ij)

f/2exp(−
√

2 | E |ρ)L2F
nr

(2
√

2 | E |ρ) (25)

Enr = − 1

6(nr + F + 1
2
)2

(26)
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where

f =
√
G =

3

2

[

√

1 +
4g

9
− 1

]

, F = 3f + 3 . (27)

Generalization to D dimensions is straight forward.
On the other hand for N = 4, a set of completely anti-symmetrical eigen-

states in three space dimensions are given by

ψnr = [(r12 × r23) · r34](
∏

i<j

r2
ij)

f/2exp(−
√

2 | E |ρ)L2F ′

nr
(2

√

2 | E |ρ) (28)

Enr = − 1

8(nr + F ′ + 1
2
)2

(29)

where f is as given by eq. (27) while F ′ = 6f + 5. Again, generalization to
D dimensions is straight forward.

I might add here that a la the oscillator case [4], we can also obtain the
exact ground state of the corresponding Sutherland variant of the problem.
In particular, consider the Hamiltonian as given by eq. (6) but with the
oscillator potential being replaced by the potential as given by eq. (1). It is
easily shown that the exact ground state of the system is given by

ψ0 = (
∏

i<j

r2
ij)

ΛD/2 exp(−
√

2 | E |
∑

i

r2
i ) (30)

where

E0 = − 2

(N − 1)2[1 +NΛD]2
. (31)

One of the unsolved problem is whether one can map this problem (at least
in some specific dimension D) to some random matrix problem and obtain
exact results for the corresponding many-body theory. In this context it may
be noted that for g = 2, the corresponding oscillator problem (see eq. (6))
in two dimensions has been shown to be connected to the random matrix
problem for the complex matrices [4].

3 Novel Correlations With an N-body Poten-

tial

In a recent paper, Murthy et al. [5] have proposed a model in two dimensions
with two-body and three-body interactions. They were able to obtain the
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bosonic ground state and a class of excited states of the system exactly by
adding an external (one body) harmonic oscillator potential. The model was
constructed in such a way that the solutions have a novel correlation of the
from

Xij = xiyj − xjyi (32)

built into them. Note that unlike the Jastrow-Laughlin form, Xij is a pseudo-
scalar. However, unlike the Laughlin type of correlation, this correlation is
not translationally invariant unless the radial degrees of freedom are frozen. I
now show that the bosonic ground state and the radial excitations over it can
also be obtained in case the oscillator potential is replaced by the N -body
potential as given by eq. (1). Further, I also obtain the complete solution of
the two-body problem. Notice that the two-body problem is quite nontrivial
since the center of mass motion cannot be separated.

Following Murthy et al. [5], we start with the N -particle Hamiltonian (in
the scaled variables) as given by

2H = −
N

∑

i=1

∇2
i + g1

N
∑

i6=j

r2
j

X2
ij

+ g2

N
∑

i6=j 6=k

rj · rk

XijXik

− 2
√

∑

r2
i

(33)

where Xij is as given by eq. (32) while g1 and g2 are dimension-less coupling
constants of the two-body and the three-body interactions respectively.

It is easily shown that

ψ0(xi, yi) =
N
∏

i<j

| Xij |g exp(−
√

2 | E0 |
∑

i

r2
i ) (34)

is the exact ground state of the system with the corresponding ground state
energy being (in units of me4/h̄2)

E0 = − 1

2[gN(N − 1) +N − 1
2
]2

(35)

provided g1 and g2 are related to g by

g1 = g(g − 1), g2 = g2 . (36)

It may be noted that this ψ0 is regular for g ≥ 0 which implies that g1 ≥
−1/4, g2 ≥ 0.
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There is a neat way of proving that we have indeed obtained the ground
state by using the method of operators [14]. In particular, let us define the
operators

Qxi
= pxi

+ ig
N

∑

j 6=i

yj

Xij

− iαxi
√

∑

j r2
j

Qyi
= pyi

− ig
N

∑

j 6=i

xj

Xij
− iαyi

√

∑

j r2
j

(37)

and their Hermitian conjugates Q+
xi

and Q+
yi

. It is easy to see that the Q’s
annihilate the ground state (34) i.e. Qxi

ψ0 = Qyi
ψ0 = 0. Further, the

Hamiltonian (33) can now be recasted in terms of these operators as

H =
1

2

∑

i

[

Q+
xi
Qxi

+Q+
yi
Qyi

]

+ E0 (38)

where E0(= −α2/2) is as given by eq. (35). Since the operator on the right
hand side is positive definite and annihilates the ground state wave function
(34) hence E0 must be the (bosonic) ground state energy of the system. Note
that as in the other two- ( and multi-) dimensional problems, we are unable
to obtain the fermionic ground state of the system analytically. In fact, we
do not know of any N -body problem in two or more space dimensions whose
fermionic ground state has been analytically obtained.

3.1 A class of Excited States

We now show that a la the oscillator case, even in our case, a class of excited
states can be obtained analytically. To that end, we consider the ansatz

ψ(xi, yi) =
N
∏

i<j

| Xij |g exp(−α
√

∑

i

r2
i )φ(xi, yi) (39)

On using eqs. (33) and (39) it is easily shown that α2 = −2E while φ satisfies
the eigenvalue equation

[

− 1

2

∑

i

∇2
i + α

∑

i=1

ri · ∇i
√

∑

j r2
j

+
A

√

∑

j r2
j

+ g
∑

i6=j

(xj
∂

∂yi

− yj
∂

∂xi

)
]

φ = 0 (40)

10



where

A = α[gN(N − 1) +N − 1

2
] − 1 (41)

The exact solutions of this differential equation are best studied in terms of
the complex coordinates z = x+ iy, z∗ = x− iy, and their partial derivatives
∂ ≡ ∂

∂z
= 1

2
( ∂

∂x
− i ∂

∂y
) and ∂∗ ≡ ∂

∂z∗
= 1

2
( ∂

∂x
+ i ∂

∂y
). In terms of these

coordinates the differential equation for φ take the form
[

−2
∑

i

∂i∂
∗
i +α

∑

i

zi∂i + z∗i ∂
∗
i

√

∑

j zjz∗j
+

A
√

∑

j zjz∗j
+2g

∑

i6=j

zi∂i − z∗i ∂
∗
i

ziz
∗
j − zjz

∗
i

]

φ = 0 . (42)

It is worth remarking that φ is also an eigenstate of the total angular momen-
tum operator i.e. LΦ = lΦ. We now classify some exact solutions according
to their angular momentum.

(a) l = 0 Solutions

Let us define an auxiliary parameter t by t = 2α
√

∑

i ziz
∗
i and let φ = φ(t).

On using this in eq. (42), the differential equation for φ reduces to

tφ′′(t) + (b− t)φ′(t) − a = 0 (43)

where b = 2N(N−1)g+2N−1 , and a = A/α. The allowed solutions are [15]
confluent hypergeometric functions, φ(t) = M(a, b, t). Thus the polynomial
solutions are obtained when a = −nr with nr being positive integer. Here,
the subscript r denotes radial excitations. The corresponding eigenvalues are

Enr = − 1

2[nr + gN(N − 1) +N − 1
2
]2
. (44)

Note that all these states have zero angular momentum.
(b) l > 0 Solutions

Let tz =
∑

i z
2
i and let φ = φ(tz). All the mixed derivative terms in eq.

(42) drop out and we obtain

2αtzφ
′(tz) + Aφ = 0 (45)

whose solution is φ(tz) = tmz where m = −A/2α. Note that φ(tz) is also an
eigenfunction of the angular momentum operator with the eigenvalue l = 2m
. Hence the energy eigenvalues in this case are given by

El = − 1

2[gN(N − 1) +N + l − 1
2
]2
. (46)
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(c) l < 0 Solutions

Similarly let tz =
∑

i(z
∗
i )

2 and φ = φ(tz∗). In this case φ satisfies the
differential equation

2αtz∗φ
′(tz∗) + Aφ = 0 (47)

whose solution is φ(tz∗) = tmz∗ where m = −A/2α. In this case φ(tz∗) is
an eigenfunction of the angular momentum operator with the eigenvalue
l = −2m < 0. Thus the energy eigenvalues in this case are given by

El = − 1

2[gN(N − 1) +N − l − 1
2
]2
. (48)

(d) Tower of Excited States

We can now combine solutions in cases (b) and (c) (with nonzero l) with
the solutions in (a) and obtain an even more general class of excited states.
For example, let us define

φ(zi, z
∗
i ) = φ1(t)φ2(tz) (49)

where φ1 is the solution with l = 0, while φ2 is the solution with l > 0. The
differential equation for φ1 is again a confluent hypergeometric equation and
the energy eigenvalues are given by

Enr ,l = − 1

2[nr + gN(N − 1) +N + l − 1
2
]2

(50)

One may repeat the same procedure to obtain exact solutions for a tower of
excited states with l < 0. Combining all these states, it is then clear that
the exact energy eigenvalues may be written in the form

Enr,m = − 1

2[nr + gN(N − 1) +N + 2 | m | −1
2
]2

(51)

We thus see that for both l > 0 and l < 0, one has a tower of excited
states. Actually, the existence of a tower is a general result applicable to all
excited states of which the exact solutions shown above form a subset. In
particular, following the arguments given in Bhaduri et al. [6], let us separate

the coordinates (xi, yi) into one radial coordinate t = 2α
√

∑

i r
2
i as above and

12



2N − 1 angular coordinates collectively denoted by Ωi say. Then eq. (40)
can be expressed as

tφ′′(t) + [2N(N − 1)g + 2N − 1 − t]φ′(t) − [
A

α
+

2

αt
T ]φ = 0 (52)

where T = D2 + gD1. Here Dn is an n’th order differential operator which
only acts on functions of the angles Ωi. On further factorizing

φ(xi, yi) = R(t)Y (Ωi) (53)

where Y is a generalized spherical harmonics on the (2N-1)-dimensional
sphere S2N−1 it is easily seen that Y is an eigenfunction of the operator
T . Let us say that the corresponding eigenvalue is λ (of course it must be
admitted here that the hard part of the problem is to find λ). On further
writing R(t) = tµR̃(t), it is easily shown that R̃(t) satisfies a confluent hy-
pergeometric equation

tR̃′′(t) + (b− t)R̃′(t) − aR̃(t) = 0 (54)

provided

µ =
(

[N(N − 1)g +N − 1]2 + 4λ
)1/2

− [N(N − 1)g +N − 1] . (55)

Here b = 2N(N − 1)g + 2N − 1 + 2µ while a = µ + A/α. We thus get
normalizable polynomial solutions of degree nr where a = −nr. Here nr =
0, 1, 2... denote the number of radial nodes. Hence the energy eigenvalues are
given by

Enr = − 1

2[nr + gN(N − 1) +N − 1
2

+ µ]2
. (56)

It may be noted that µ is in general a complicated function of the coupling
constant g. We thus see that for a given value of µ (which in general is
unknown) there is an infinite tower of energy eigenvalues for which (−E)−1/2

is separated by a spacing of one unit. This tower structure is a characteristic
of the N -body potential as given by eq. (1) or eq. (6) and will be present in
any N -body problem in D-dimensions. Note that a similar tower structure
also exists in the case of any N -body problem in D-dimensions if they are
interacting via an oscillator potential except that in that case, for a given
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value of µ, there is an infinite tower of energy eigenvalues separated by a
spacing of two units. A la Bhaduri et al. [6], in our case too, the tower
structure and the angular momentum are useful in organizing a numerical or
analytical study of the energy spectrum. In particular, note that, the radial
quantum number nr, and the angular momentum l, are integers, and hence
they cannot change as the parameter g is varied continuously.

Before ending this discussion it is worth pointing out that the class of
excited states can also be obtained if we add the N -body potential (5) to our
N -body potential as given by eq. (1). In particular, on proceeding from eq.
(39) and repeating the steps, instead of eq. (42) one now has

[

− 2
∑

i

∂i∂
∗
i + α

∑

i

zi∂i + z∗i ∂
∗
i

√

∑

j zjz
∗
j

+ 2g
∑

i6=j

zi∂i − z∗i ∂
∗
i

ziz∗j − zjz∗i

+
A

√

∑

j zjz
∗
j

+
δ2

2
∑

j zjz∗j

]

φ = 0 . (57)

On following the steps as given above it is then easy to show that the exact
energy eigenvalues are now given by

Enr,m = − 1

2[nr + γ + 1
2
]2

(58)

where

γ =
(

[gN(N − 1) +N + 2 | m | −1]2 + δ2
)1/2

. (59)

The corresponding energy eigenstates are also easily written down.
It is worth pointing out that if instead we add the N -body potential (5)

to the oscillator potential, then on following the steps as given in [6], the
exact energy eigenvalues can be shown to be

Enr ,m = 2nr + 1 + γ . (60)

3.2 The Two-Body Problem: Complete Solution

As in the oscillator case [6], we now explicitly show that the two-body prob-
lem is integrable and exactly solvable when the two bodies are interacting
via the N -body potential as given by eq. (1). As in [6] this is best done by
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going over to the hyperspherical formalism in two dimensions [16,17]. It may
be noted that the two-body problem is quite non-trivial here since the center
of mass cannot be separated.

The two body Hamiltonian is given by (see eq. (33))

H = −1

2
(∇2

1 + ∇2
2) −

1
√

r2
1 + r2

2

+
g1

2

(r2
1 + r2

2)

X
(61)

where X = x1y2 − x2y1. Note that the three-body term is obviously not
there in the two-body problem ! The two body problem is best solved in the
hyperspherical coordinates. To that end, let us parameterize the coordinates
r1, r2 in terms of three angles and one length, (R, θ, φ, ψ) as follows:

x1 + iy1 = R(cos θ cosφ− i sin θ sinφ)exp(iψ)

x2 + iy2 = R(cos θ sin φ+ i sin θ cos φ)exp(iψ) . (62)

For a fixed R, these coordinates define a sphere in four dimensions with
radius R(R2 = r2

1 + r2
2) and θ, φ and ψ are in the interval

− π/4 ≤ θ ≤ π/4 , −π/2 ≤ φ ≤ π/2 , −π ≤ ψ ≤ π . (63)

The important point to note is that X = x1y2 − x2y1 = R2

2
sin(2θ) depends

only on R and θ and is independent of φ and ψ. As a result the two integrals
of motion are the angular momentum operator L

L =
∑

i

(xipyi
− yipxi

) = −i ∂
∂ψ

(64)

and the supersymmetry operator

Q = i[x2
∂

∂x1
+ y2

∂

∂y1
− x1

∂

∂x2
− y1

∂

∂y2
] = −i ∂

∂φ
. (65)

Thus with SUSY, the two body problem as given by eq. (61) is integrable
with the four constants of motion being the Hamiltonian H , the angular part
of H,L and Q.

It is easy to check that the bosonic ground state has the quantum numbers
l and q of the angular momentum and SUSY operators equal to zero. In this
context it is worth noting that the eigenstates of the SUSY operator Q are
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neither symmetric nor asymmetric, unless the eigenvalue q = 0. After finding
a simultaneous eigenstate of H,L and Q, we can separate it into symmetric
(bosonic) and asymmetric (fermionic) parts. Note that these symmetric and
anti-symmetric parts are eigenstates of Q2 but not of Q.

The two-body Hamiltonian in terms of the hyperspherical coordinates is
given by

H = −1

2

[

∂2

∂R2
+

3

R

∂

∂R
− Λ2

R2
+

2

R

]

+
2g1

R2 sin2(2θ)
(66)

where the operator Λ2 is the Laplacian on the sphere S3 and is given by

− Λ2 =
∂

∂θ2
− 2 sin(2θ)

cos(2θ)

∂

∂θ
+

1

cos2(2θ)
[
∂2

∂φ2
+ 2 sin(2θ)

∂2

∂φ∂ψ
+

∂2

∂ψ2
] . (67)

As in the oscillator case, the interaction term i.e. 2g1/R
2 sin2(2θ) is indepen-

dent of φ and ψ. Hence the operators L andQ commute with the Hamiltonian
(66) (since they also commute with the noninteracting (g1 = 0) Hamiltonian).
Hence, for all g1, we label the states with the eigenvalues of L and Q. Each
of these states is four-fold degenerate under parity L→ −L, Q→ Q and the
Hamiltonian is also invariant under parity. Hence the states labeled by the
quantum numbers (l, q) have the same energy as (−l, q). The Hamiltonian
is also invariant under the discrete transformation r1 → −r1 and r2 → r2.
Note that under this transformation L → L and Q → −Q. Thus the states
labeled by the quantum numbers (l, q) have the same energy as (l,−q). In
this way we obtain the four-fold degeneracy of the states. In fact we shall
see below that the states with (l, q ) have the same energy as (q, l) since
interchanging q and l leaves the differential equation invariant. As a result,
one has in fact an eight-fold degeneracy for the levels for which | q | and
| l | are non-zero and different from each other. However, the degeneracy
is only four-fold if | l |=| q |6= 0. Similarly, there is a four-fold degeneracy
between the states (±l, 0) and (0,±l) if l 6= 0. It must be noted here that
the degeneracy that we are talking about is a subset of the degeneracy of the
noninteracting system.

Let us now try to solve the eigenvalue equation Hψ = Eψ with H being
as given by eq. (66). It is easily seen that if we write

ψ(R, θ, φ, ψ) = F (R)Φ(θ, φ, φ) (68)
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then the eigenvalue equation separates into angular and radial equations. In
particular, the angular equation is given by

[Λ2 +
4g1

sin2 2θ
]Φ = β(β + 2)Φ (69)

where β ≥ −1, while the radial equation is given by

F ′′(R) +
3

R
F ′(R) + (2E +

2

R
− β(β + 2)

R2
)F (R) = 0 . (70)

The radial equation is easily solved, yielding

F (R) = Rβexp(−
√

2 | E |R)M(a, b, 2
√

2 | E |R) (71)

where b = 2β + 3, a = 3/2 + β − 1/
√

2 | E | and M(a, b, x) is the confluent
hypergeometric function. Demanding a = −nr, where nr is a positive integer,
yields the bound state energy eigenvalues as

E = − 1

2(nr + β + 3
2
)2
. (72)

The tower structure of the eigenvalues built on the radial excitations of the
ground state is obvious from eq. (72).

It must be emphasized here that β is still unknown and has to be obtained
by solving the angular equation (69). We now note that the angular equation
is in fact identical in the oscillator and our case and it has been analyzed in
great detail by Bhaduri et al. [6]. We can therefore borrow their results and
draw conclusions about the value of β and hence the spectrum as given by
eq. (72). Some of the conclusions in our case are

1. On substituting

Φ(θ, φ, ψ) = P (x)exp(iqφ)exp(ilψ) (73)

where
P (x) =| x |a (1 − x)b(1 + x)cΘa,b,c(x) (74)

with x = sin θ, b =| l + q | /4, c =| l − q | /4, a(a− 1) = g1 = g(g − 1)
and l, q being integers, it is easily shown that Θ(x) satisfies the Heun’s
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equation

(1 − x2)Θ′′(x) + 2[
a

x
− (b− c) − (a + b+ c+ 1)x]Θ′(x)

+ [
(β + 1)2

4
− (a + b+ c+

1

2
)2 + 2

a(c− b)

x
]Θ(x) = 0 (75)

whose solutions are characterized by the so-called P -symbol [18]. Note
that unlike the hypergeometric case, Heun’s equation has four regular
singular points.

2. In case b = c (i.e. either l = 0 or/and q = 0), the Heun’s eq. (75) is
exactly solvable [6] with corresponding β being

β = 2m+ 2a+ 4b , m = 0, 1, 2, .... (76)

Thus in this case E−1/2 varies linearly with a (as is the case for the
exact solutions of the many-body problem). As pointed out in [5], this
is an example of a conditionally exactly solvable (CES) problem [19].

3. There are quasi-exactly solvable (QES) [20] polynomial solutions of
degree p(p ≥ 1) in case there is a specific relationship between a, b and
c . As a result, β and hence E−1/2 is nonlinear in a. In particular, in
this case β is given by

β = 2a+ 2b+ 2c+ 2p . (77)

It is worth emphasizing that the equation is exactly solvable at an
infinite number of isolated points in the space of parameters (a, b, c).
These are isolated points because if we vary a slightly away from any
one of them, the equation is not exactly solvable since b, c can only take
discrete values and hence cannot be varied continuously.

4. Bhaduri et al. [6] have done a detailed numerical, perturbative and
large-g analysis of β as a function of g both when 0 ≤ g < 1 and also
for large g. Their analysis is also valid in our case. For example, their
Figs. 1 and 2 are also valid in our case except that in our case, Fig.1
represents a plot of β+2nr +2 as a function of g while Fig.2 represents
a plot of β + 2− 2g vs. g. Most of their discussion goes through in our
case with this obvious modification.
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5. The two body problem is also completely solvable in case we add the
two-body potential as given by eq. (5) to the Hamiltonian as given by
eq. (61). In this case, the entire discussion about the angular part as
given above is still valid. The only modification is in the radial equation
as given by (70). In particular, instead of (70) we now have

F ′′(R) +
3

R
F ′(R) + (2E +

2

R
− β(β + 2) + δ2

R2
)F (R) = 0 . (78)

whose solution is

F (R) = Rγexp(−
√

2 | E |R)M(a, b, 2
√

2 | E |R) (79)

E = − 1

2(nr + γ + 3
2
)2
. (80)

where b = 2γ+3, a = γ+3/2−1/
√

2 | E | with γ =
√

(1 + β)2 + δ2−1,

while M(a, b, x) is the confluent hypergeometric function.

6. If instead if we add the two-body potential (5) to the corresponding
oscillator problem, then it is easily seen that the angular part is again
unchanged while the solution to the radial part is given by

Enr = 2nr + γ + 1 (81)

F (R) = Rγexp(−R2/2)M(a, b, R2) (82)

where a = 1 + (γ − E)/2, b = γ + 2.

4 Novel correlations in Arbitrary Dimensions

In the last section we have obtained the exact bosonic ground state with
Novel correlation as well as radial excitations over it in case the N -particles
in two dimensions also interact through the N -body potential. The purpose
of this section is to generalize these arguments to arbitrary number (D) of
dimensions. In this context it is worth recalling that in case the N particles
are interacting via the oscillator potential, such a generalization has recently
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been carried out by Ghosh [7]. Following him, let us consider the following
many-body Hamiltonian in D-dimensions

H = −1

2

N
∑

i=1

∇2
i −

1
√

∑

i=1 r2
i

+
g1

2

∑

R

Q2
i2i3...iD

P 2
i1i2...iD

+
g2

2

∑

R

Qi2i3...iD ×Qj2j3...jD

Piii2...iDPiij2...jD

(83)

where R denotes the sum over all the indices from 1 to N with the restriction
that no two indices can have the same value simultaneously. Here

Qi2i3...iD = ri2 × ri3 × ...× riD

Pi1i2...iD = ri1 · Qi2i3...iD . (84)

Thus the Hamiltonian has D-body and (2D − 1)-body interactions only.
Note that both Qi2i3...iD and Pi1i2...iD are antisymmetric under the exchange
of particle coordinates. Further, Pi1i2...iD vanishes when the relative angle
between any two of the particles is zero or π.

For simplicity, let us first discuss the D = 3 case is some detail and then
merely quote the results for the general case of D-dimensions. It is easily
seen that the exact bosonic ground state in 3-dimensions is given by

Ψ0 =
∏

R

| Pijk |g exp(−α
√

∑

i

r2
i ) (85)

where E0 = −α2/2 provided

g1 =
g

2
(
g

2
− 1) , g2 =

g2

4
. (86)

The corresponding ground state energy E0 is given by

E0 = − 1

2[3
2
gN(N − 1)(N − 2) + 3N

2
− 1

2
]2
. (87)

The fact that this is indeed the ground state is easily shown as follows.
Consider the following annihilation operators in three dimensions (note that
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ri = xiî+ yiĵ + zik̂)

Axi
= pxi

+
ig

2

∑

S

(Qjk)xi

Pijk
− iαxi

√

∑

j r2
j

Ayi
= pyi

− ig

2

∑

S

(Qjk)yi

Pijk
− iαyi

√

∑

j r2
j

Azi
= pzi

+
ig

2

∑

S

(Qjk)zi

Pijk
− iαzi

√

∑

j r2
j

(88)

where S denotes the sum over all the repeated indices from 1 to N with the
constraint that any two indices cannot have the same value simultaneously.
It is easily shown that the Hamiltonian (83) in 3-dimensions can be written
down as

H =
1

2

N
∑

i=1

(

A+
xi
Axi

+ A+
yi
Ayi

+ A+
zi
Azi

)

+ E0 (89)

Further, it is easily checked that the annihilation operators A’s annihilate
the wave function ψ0 as given by eq. (85) and hence ψ0 is indeed the ground
state with the ground state energy being E0 as given by eq. (87).

The excited states can also be obtained in our case [7]. To that end we
write

ψ(xi, yi, zi) = ψ0(xi, yi, zi)φ(xi, yi, zi) (90)

where ψ0 is as given by eq. (85) except that α is now given by E = −α2/2.
On substituting this ansatz in the Schrödinger equation for the Hamiltonian
(83), it is easily shown φ satisfies the equation

[

− 1

2

∑

i

∇2
i −

g

2

∑ Qjk · ∇i

Pijk
+ α

∑ ri · ∇i
√

∑

r2
i

+
A

√

∑

r2
j

]

φ = 0 (91)

where

A = α
[

g

2
N(N − 1)(N − 2) +

3N

2
− 1

2

]

− 1 . (92)

On assuming that φ is a function of t = 2α
√

∑

r2
i , it is easily seen that eq.

(91) for φ(t) reduces to the confluent hypergeometric equation

tφ′′(t) + (b− t)φ′(t) − aφ(t) = 0 (93)
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when a = A/α, b = 2(A+ 1)/α. Hence the admissible normalizable solutions
of eq. (93) are M(a = −nr, b, t) with the corresponding energy eigenvalues
being

Enr = − 1

2[nr + g
2
N(N − 1)(N − 2) + 3N

2
− 1

2
]2
. (94)

Note again the tower structure and the fact that (−Enr)
1/2 is linear in g for

the exact solutions.
We can also obtain the exact solutions in case we add the N -body po-

tential (5) to the Hamiltonian (83). In particular the energy eigenvalues are
now given by

Enr = − 1

2[nr + γ + 1
2
]2

(95)

where

γ =
(

[
3N + gN(N − 1)(N − 2)

2
− 1]2 + δ2

)1/2

. (96)

The corresponding eigenfunctions can be easily written down. if instead one
adds the N -body potential (5) to the oscillator potential, then the energy
eigenvalues are given by

Enr = 2nr + 1 + γ . (97)

The corresponding eigenfunctions can again be easily written down.
The generalization of the above results to D-dimensions is straight for-

ward. In particular, it is easily shown that the exact bosonic ground state and
the tower of excitations over it in the case of the D-dimensional many-body
Hamiltonian (83) are given by

ψn =
∏

R

| Pi1i2...iD |g M(a = −nr, b, t)exp(−α
√

∑

i

r2

i
) (98)

where

Enr = −α
2

2
= − 1

2[nr + DN
2

+ gD(NCD) − 1
2
]2

(99)

provided

g2 = (
g

(D − 1)!
)2, g1 =

g

(D − 1)!
[

g

(D − 1)!
− 1] (100)
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so that

g =
(D − 1)!

2
[1 ±

√

1 + 4g1] (101)

It is interesting to note that whereas the relation between g1 and g2 and also
between g and g1 is D-dependent, the allowed ranges of g1 are independent
of D i.e. in any dimensions, whereas the solutions in the upper branch are
regular for g1 ≥ −1

4
, in the lower branch the regular solutions are only allowed

in the limited range −1
4
≤ g1 ≤ 0. Here a = A/α, b = 2(A+1)

α
where

A = α
(

D

2
[N + 2g(NCD)] − 1

2

)

− 1 . (102)

The exact solutions are also obtained if we add the N -body potential (5)
to the Hamiltonian (83) and the exact energy eigenvalues are given by

Enr = − 1

2[nr + γ + 1
2
]2

(103)

where

γ =
(

[
ND

2
+ gD(NCD) − 1]2 + δ2

)1/2

. (104)

Similarly, if we add the N -body potential (5) to the Hamiltonian (83) but
with the oscillator potential then the exact solutions are given by

Enr = 2nr + 1 + γ . (105)

The corresponding eigenfunctions can be easily written down in both the
cases.

5 Calogero-Sutherland Type Models in Higher

Dimensions with N body Interaction

In Sec.II, we have considered one possible generalization of the Calogero-
Sutherland type models in higher dimensions. The key point there was to
have a long-ranged three-body interaction term. This is over and above
the long ranged two-body interaction term which is present in one dimen-
sion. Only then it was possible to obtain a class of exact solutions includ-
ing the bosonic ground state. Another possible generalization of Calogero-
Sutherland model to higher dimensions was considered recently by Ghosh [8]
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when he introduced two models with purely two-body long ranged interac-
tions and in both the cases he was able to obtain the exact bosonic ground
state and radial excitations over it in case the N -particle also interact via a
(one-body) oscillator potential. In this section we shall show that the exact
ground state and radial excitations over it can also be obtained in case the
oscillator potential is replaced by the N -body potential as given by eq. (1).

Following Ghosh [8], let us consider the Hamiltonian

H = −1

2

N
∑

k=1

∇2
k −

1
√

∑

k r2
k

+ V1(β) + V2(β) +W3(β) (106)

where

V1(β) =
β2

2
g(g − 1)

∑

k 6=j

| rk |2(β−1)

(| rk |β −(rj |β)2

V2(β) =
gβ

2
(D + β − 2)

∑

k 6=j

| rk |(β−2)

(| rk |β −(rj |β)

W3(β) =
β2

2
g(g − 1)

∑

i6=j 6=k

| ri |2(β−1)

(| ri |β − | rj |β)(ri |β − | rk |β) (107)

where g is a dimension-less constant. Note that for β = 1 and 2 the three
body interaction term W3 vanishes. Thus even though we give results for
arbitrary positive values of β, it must be noted that one has long ranged
two-body interaction alone only if β = 1,2.

We first note that the Hamiltonian (106) can be written as

H =
1

2

∑

i

A+
i · Ai + E0 (108)

where the annihilation operators Ai are given by

Ai = −i∇i + iβg
∑

i6=j

| ri |β−2

(| ri |β − | rj |β
ri −

iαri
∑

j r2
j

(109)

while the ground state energy E0(= −α2/2) is

E0 = − 1

2[ND
2

+ gβ
2
N(N − 1) − 1]2

. (110)
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The fact that E0 is the bosonic ground state energy is verified by noting that
each of the operators Ai annihilate the ground state wave function

ψ0 =
∏

i<j

(| ri |β − | rj |β)gexp(−
√

2 | E0 |
∑

i

r2
i ) . (111)

It is straight forward to obtain the radial excitation spectrum. In partic-
ular, it is easily shown that the corresponding exact eigenfunctions are

ψ =
∏

i<j

(| ri |β − | rj |β)gM(a = −nr, b, t)exp(−
√

2 | E |
∑

i

r2
i ) . (112)

with the corresponding eigenvalues being

Enr = − 1

2[nr + ND
2

+ gβ
2
N(N − 1) − 1]2

. (113)

Here t = 2α
√

∑

i r
2
i , a = A/α, b = 2(A + 1)/α while E = −α2/2 and A =

α[ND/2 + gβN(N − 1)/2 − 1].
One can also obtain the spectrum in case one adds the N -body poten-

tial (5) to the Hamiltonian (106). In particular, it is easily shown that the
corresponding energy eigenvalues are

Enr = − 1

2[nr + λ+ 1
2
]2

(114)

where

λ =
(

[
ND

2
+
gβN(N − 1)

2
− 1]2 + δ2

)1/2

. (115)

The corresponding eigenfunctions can also be easily written down. Similarly,
in the oscillator case too, the spectrum can be written down in the presence
of the N -body potential (5).

6 Complete Bosonic spectrum of an N-body

problem in D dimensions

Over the years, the exact solution of an N -body problem in three (and even
arbitrary) space dimensions has attracted considerable attention because of
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its obvious implications in several areas. So far, the only N -body problem
which is completely solvable in two and higher dimensions is when N -bosons
are interacting pair-wise via harmonic interaction. The purpose of this sec-
tion is to show that there is one more N -body problem in two and higher
dimensions for which the complete discrete spectrum can also be obtained.
In particular I show that the full bound state spectrum can also be obtained
in case N -bosons are interacting via the N -body potential as given by eq.
(4).

In particular, consider the Hamiltonian

H = −1

2

N
∑

i=1

∇2
i −

1
√

∑

i<j(ri − rj)2
. (116)

After the separation of the center of mass (which in this case moves as a
free particle), the relative problem is usually discussed in terms of the Jacobi
coordinates ζj(j = 1, 2, ..., N − 1) defined by

ζj = (
j

j + 1
)1/2[

1

j
(ri + ...+ rj) − rj+1] . (117)

However, it is more convenient to consider the problem in hyperspherical
coordinates (ζ, ω) of the (N−1)-dimensional vector ξ. Here the hyper-radius
ζ(0 ≤ ζ ≤ ∞) is given by

ζ2 =
N−1
∑

j=1

ζ2
j (118)

while ω is a set of [(N − 1)D-1] angular coordinates. With this choice, the
Hamiltonian takes the form

H = −1

2

[

∂2

∂ζ2
+

(N − 1)D − 1

ζ

∂

∂ζ
− L2(ω)

ζ2

]

− 1√
Nζ

(119)

where L2(ω) is the “grand angular” operator whose eigen functions are the
orthonormal hyper-spherical harmonics Y[L](ω) with eigenvalues −k[k+(N−
1)D−2]. Here k = 0,1,2,... is the grand angular quantum number. It is thus
clear that if we write the eigenfunction ψ in the form

ψ(ζ, ω) = φ(ζ)Y[L](ω) (120)

26



then in the ζ variable one has essentially a one dimensional Schrödinger
equation

[

∂2

∂ζ2
+

(N − 1)D − 1

ζ

∂

∂ζ
− k[k + (N − 1)D − 2]

ζ2
+

2√
Nζ

]

φ(ζ) = −2Eφ(ζ)

(121)
for the Kepler problem in (N − 1)D-dimensions. The corresponding discrete
energy energy values and eigen functions are given by

Enr,k = − 1

2N [nr + k + (N−1)D−1
2

]2
(122)

φ(ζ) = ykexp(−y/2)L2a
nr

(y) (123)

where a = (N − 1)D/2 + k − 1, y = 2
√

2 | E |ζ and nr = 0, 1, 2, ... is the
radial quantum number.

It is worth pointing out that in eq. (119), apart from theN -body potential
(3), the only other potential for which the Schrödinger equation can be solved
for all values of k is the two-body harmonic oscillator potential. Besides, in
both the cases one can also add the N -body potential (4) and the problem
is still analytically solvable. In particular, instead of (122) the spectrum is
now given by

Enr,k = − 1

2N [nr + 1
2

+ λ]2
(124)

where
λ =

√
a2 + δ2 . (125)

The corresponding eigenfunctions can also be easily written down. Note
however that the degeneracy in the spectrum is now very much reduced.

Our N -body potential is in a way richer than the oscillator potential
in that here one not only has an infinite number of negative energy bound
states, but one also has positive energy scattering states. In particular, for
E > 0, the solution to the Schrödinger eq. (121) is given by

φi(ζ) = exp(ipζ)ζkF
(

k +
(N − 1)D − 1

2
− i

p
, (N − 1)D + 2K − 1,−2ipζ

)

(126)
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where E = p2/2. Hence the phase shifts for this problem are

e2iδp =
Γ(k + (N−1)D−1

2
− i

p
)

Γ(k + (N−1)D−1
2

+ i
p
)

(127)

Unfortunately, we are unable to draw any simple conclusion about the N -
particle scattering from this expression of the phase shift.

7 Summary and Open Problems

In this paper, we have discussed several N -body problems in two and higher
dimensions and have provided support to the conjecture that whenever an N -
body problem is (partially) solvable in case the N -bodies are interacting by
the harmonic forces, then the same problem will also be (partially) solvable
in case they are interacting by an N -body potential as given by eq. (1) (or
(3)). Our conjecture is based on the following simple observation. In all the
many-body problems with harmonic forces discussed in [2-8,13,17], after the
short distance correlation etc. is taken out, the problem essentially reduces to
that of harmonic oscillator in dimensions higher than one. Now the only two
problems for which the bound state spectrum can be analytically obtained
for all partial waves in two and higher dimensions are the oscillator and the
Coulomb problems. This strongly suggests that those N -body problems for
which the Schrödinger equation essentially reduces to Coulomb problem in
two and higher dimensions, after the short distance correlation part etc. is
taken out, must also be (partially) solvable. While we have no proof for
this conjecture, we have not come across any counter example either. We
have also studied other models in one and two dimensions with this N -body
potential [9,10] which also provide support to this conjecture. It is clearly
necessary to examine other solvable many-body problems with the harmonic
forces and check if our conjecture is true in those cases or not.

Another well known fact in non-relativistic quantum mechanics is that
both the Coulomb and the oscillator problems in two and higher dimensions
are also exactly solvable for all partial waves if one adds a potential of the
form h̄2δ2/2mr2 to either one of them. Based on this observation, we have
conjectured that for the N -body problems with the oscillator or our N -body
potential as given by eq. (1) (or (3)), one can also add the N -body potential
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as given by eq. (5) (or by (4)) and the problem is still (partially) solvable
but now the degeneracy in the spectrum is much reduced. While we have
no proof for this conjecture, we as well as Gurappa et al [13] have provided
support to this conjecture through several examples. Besides, we have not
come across any counter example either.

Apart from the oscillator and the N -body potential (1), are there other
potentials for which any of these N -body problems in higher dimensions can
be (partially) solved? While we have no definite answer, it appears that
all other potentials will only be quasi-exactly solvable [21] since we know of
no other potentials in non-relativistic quantum mechanics in two and higher
dimensions for which the bound state spectra can be analytically obtained
for all partial waves.

There are several common features in all the N -body problems that we
have studied in this paper and before [9,12] as well as those studied with the
oscillator potential. Some of these are as follows.

1. By now several N -body problems exist in two and higher dimensions
for which a class of eigenstates including the bosonic ground state have
been exactly obtained in case they also interact either via the oscillator
or the N -body potential (1). All these problems have long ranged two-
body and in most cases also the long ranged three-body interactions. In
the special case of one dimension, there are only long ranged two-body
interactions and the complete bound state spectrum has been obtained
in both the cases [2,10].

2. In all the N -body problems with the oscillator or the N -body potential
studied so far, one always obtains the tower of states characteristic
of the oscillator or the Coulomb problem as the case may be. We
conjecture that this will be a general feature of any many-body problem
with either of these forces. While we have no general proof, we have
not come across any counter example either.

3. All the N -body problems in two and higher dimensions (that have been
studied so far) with either the oscillator or the N -body potential are
only partially solvable in the sense that while the bosonic ground state
and radial excitations over it are known, the full bosonic spectrum is
still unknown (except the one studied in the last section or its oscillator
analogue). It is worth pointing out that the same is also true in the
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case of N -anyons interacting either via the oscillator or via our N -body
potential [17]. Further, for none of these problems, the ground state
of N -fermions is analytically known. I conjecture that the same will
be true for any other N -body problem in two and higher dimensions
interacting via either of these potentials.

4. If anyon example is any guide, then it would seem that in the case of
any N -body problem in two and higher dimensions with the oscillator
potential, a part of the spectrum will be linear in the coupling constant
(say ΛD in Sec.II) while a part of the spectrum will be nonlinear in
the coupling constant. On the other hand, in the case of our N -body
potential (1), a part of (−E)−1/2 will be linear and a part will be
nonlinear in the coupling constant. So far, in all the examples discussed
in the literature, one has only been able to obtain the linear part of E
(or (−E)1/2) in the case of the oscillator (or N -body) potential. While
it is not clear if one has obtained the full linear spectrum in all the
cases or not, it is certainly true that so far exact solution has not been
obtained for even one nonlinear state in any of the N -body problems
in two and higher dimensions with either of the potentials. I believe
that if one can obtain exact solution for even one nonlinear state in any
of these problems, it will be a major breakthrough.

It must be added here though that the oscillator potential is perhaps more
useful than our N -body potential since whereas the clustering property holds
in the case of the oscillator potential it does not hold in the case of theN -body
potential. On the other hand, the N -body potential is in a way richer than
the oscillator potential in that unlike it, one has both bound and continuous
spectrum in this case. The most important and of course difficult problem is
to find some physical application of the N -body potential. Hopefully, some
application will be found in the near future.

30



References

[1] See for example D.C. Mattis, The Many Body Problems: An Encyclo-

pedia of Exactly Solvable Models in One Dimension (World Scientific,
Singapore, 1995).

[2] F. Calogero, J. Math. Phys. 10 (1969) 2191, 2197, ibid 12 (1971) 419;
For an exhaustive review of various exactly solvable N-body problems
see, M.A. Olshanetsky and A.M. Perelomov, Phys. Rev. 71 (1981) 314;
ibid 94 (1983) 6.

[3] F. Calogero and C. Marchioro, J. Math. Phys. 14 (1973) 182.

[4] A. Khare and K. Ray, Phys. Lett. A230 (1997) 139.

[5] M.V.N. Murthy, R.K. Bhaduri and D. Sen, Phys. Rev, Lett. 76 (1996)
4103.

[6] R.K. Bhaduri, A. Khare, J. Law, M.V.N. Murthy and D.Sen, J. Phys.
A30 (1997) 2557.

[7] P.K. Ghosh, MRI-PHY/96-20, cond-mat/9607009.

[8] P.K. Ghosh, Phys. Lett. A229 (1997) 365.

[9] A. Khare, Phys. Lett. A221 (1996) 365.

[10] A. Khare, J. Phys. A29 (1996) L45.

[11] F. Calogero, J. Phys. A29 (1996) 6455.

[12] A. Khare, J. Phys. A29 (1996) 6459.

[13] N. Gurappa, C.Nagaraja Kumar and P.K. Panigrahi, Mod. Phys. Lett.
A11 (1996) 1737.

[14] A.P. Polychronakos, Phys. Rev.Lett. 69 (1992) 703.

[15] L.D. Landau and E.M. Lifshitz, Quantum Mechanics, (Reading, MA,
U.S.A. Addison-Wesley), appendix D, p 496 (1958).

[16] J.E. Kilpatrick and S.Y. Larsen, Few Body Syst. 3 (1987) 75.

31

http://arXiv.org/abs/cond-mat/9607009


[17] A. Khare and J. McCabe, Phys. Lett. B269 (1991) 330.

[18] A. Erdelyi, Higher Transcendental Functions, Bateman manuscript

Project, Vol. III, McGraw Hill, New York, U.S.A., p 57 (1955).

[19] A. de Dutra, Phys. Rev. A47 (1993) R2435; R. Dutt, A. Khare and
Y.P. Varshni, J. Phys. A28 (1995) L107.

[20] A. Ushveridze, Quasi-exactly Solvable Models in Quantum Mechanics,
Inst. of Phys. Publishing, Bristol, U.K. (1994); F. Cooper, A. Khare
and U.P. Sukhatme, Phys. Rep. 251 (1995) 267.

[21] A. Khare and B.P. Mondal, To Be Published.

32


