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Let G be a semisimple, or more generally a reductive, Lie group and let F be a lattice 
in G; i.e. G/F admits a finite G-invariant (Borel) measure. Let U be a horospherical 
subgroup of G; i.e. there exists g e G such that U = {x ~ G I gJx g -  j ~ e asj  ~ 0o } where 
e is the identity element in G. The action of U on G/F is called a horospherical flow. 
In [3] the author obtained a classification of all finite invariant measures of a 
certain class of horospherical flows. In the present paper we show that if F is an 
'ar i thmetic '  lattice then every locally finite ergodic invariant measure of the action 
of any unipotent subgroup (a horospherical subgroup as above is always unipotent) 
is necessarily finite. The first step is the following theorem. 

(0.1) Theorem. Let {ut}t~ ~ be a one-parameter group of unipotent matrices in 
SL(n, IR). 7hen every locally finite, ergodic, {u~}-invariant measure on 
SL(n, IR)/SL(n, 2g) is finite. 

Theorem 0.1 is closely related to the following result in [7] generally known as 
' Margulis's lemma' .  

(0.2) Theorem. Let {ut}t~be as in Theorem 0.1. Then for any x~SL(n, IR)/SL(n, Z)  
the 'positive semi-orbit' {u,x[ t_->O} does not tend to infinity. That is, there exists a 
compact subset K of SL(n, 1R)/SL(n, 7l) such that {t >= O lUtXEK } is unbounded. 

Certainly, in view of Theorem 0.1 for any xeSL(n,  IR)/SL(n,~.) the positive 
semi-orbit and the negative semi-orbit cannot  both tend to infinity. For  otherwise 
the ' t ime '  measure along the orbit would be an ergodic, locally finite measure, 
which is invariant under the flow but not finite. 

On the other hand our proof  of Theorem 0.1 involves finding a compact  set K, 
for the given x, such that the set {t > O lu, x e K }  has positive density (cf. Theorem 
2.1). As we shall show in w 3 in view of the individual ergodic theorem the last fact 
implies Theorem 0. l (cf. Theorem 3.2). Our proof of Theorem 2.t is modelled over 
M argulis's proof of Theorem 0.2. However, besides the stronger formulation, there 
is also a technical difference in our approach. We do not introduce any condition 
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analogus to A2 in [7], which in our view makes that proof somewhat cumbersome 
and unnatural. 

Later we generalise Theorem 0.1 to actions of unipotent subgroups firstly on 
SL(n, IR)/SL(n, 7Z) and then more generally on any arithmetic homogeneous space 
of finite invariant measure (cf. Theorem 3.3 and Theorem 4.1). In w167 5 and 6 we 
briefly recall the main results of[3]  and reinterpret them in the light of the results in 
earlier sections. As an application we prove the following result (cf. Theorem 6.3). 

(0.3) Theorem. Consider the natural action of F=SL(n,  7l) on lR" via a basis 
{el, e 2 . . . .  ,e,}. Then any locally finite, ergodic, F-invariant measure is a scalar 
multiple of either the Lebesgue measure on lR" or the counting measure on the discrete 

orbit of a point x~lR" of the form x = t  ~ qiei where telR and qi~(l~. 
i = 1  

It may be worthwhile to point out that the assumption in Theorem 0.3 about 
local finiteness is irredundant. Indeed in view of the results in [4] there exist 
uncountably many distinct, t~-finite, ergodic, F-invariant, continuous (non-atomic) 
measures which are not locally finite. 

In w 7 we apply the study of invariant measures to the study of closed invariant 
and minimal sets of horospherical flows. In particular it is shown that for certain 
horospherical flows every minimal set arises from a closed double coset (cf. 
Theorem 7.2). 

At this juncture I wish to express my gratitude to Professor S. Kakutani; 
Though he was not directly involved, the paper might not have been written but for 
my association with him. 

w 1. Preliminaries on Lattices 

Let A be a lattice (a discrete co-compact subgroup) in IR". For any subgroup A oflR" 
let An~denote the lR-vector subspace generated by A. A subgroup A of A is said to be 
complete (in A) if A~c~ A = A. The set of all complete non-zero subgroups of A is 
denoted by ~(A). Let S be a subset (possibly empty) of ~(A)  which is totally 
ordered with respect to inclusion as the partial order. We set 

B(S)={A~Sf(A)[Ar and Sw{A}  is a totally ordered subset of 5~(A)}. 

On IR" we shall fix an inner product ( , ) .  For  any subspace V let #v denote the 
Lebesgue measure on V which assigns unit measure to a parallelepiped whose 
vertices include an orthonormal basis and 0. For  any non-zero discrete subgroup A 
let d(A) denote the number FLAR(F) where F is a (any) fundamental domain of A in 
A R. As a convention we shall let d({0})= 1. 

(1.1) Lemma. Let {ut}t~n~ be a one-parameter group of unipotent matrices in 
SL(n, IR). Let A be any discrete subgroup oflR". Then d2(utA) is a polynomial in t of 
degree at most 2n 2. 

Proof Let {e 1, e2, ..., ek} be a Z-basis of A. Then 

d 2 (ut A) = [det (alj(t))l 
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where (aii(t))l<__i,j<k is the matrix given by aij(t)=(u~e i, u, ej). The latter is a 
polynomial  of  degree at most  2 n. Hence d2(ut A) is a polynomial  of  degree at most  
2n 2. 

(1.2) Lemma.LetAbealat t iceinlR".Letc>O. Thenthesetof discretesubgroupsA 
of A for which d(A)< c is .finite. 

Proof is obvious. 

(1.3) Lemma.  Let r be a closed interval contained in IR* =(0, Qo) and let f l > 0  and 
n 6IN be given. Then there exists 7 = 7(r,/~) > 0 such that the following holds: I f  A is a 
lattice in lR" and S is a totally ordered subset of ,9~(A) such that 

(i) d(A)6r Jor all A~S and 

(ii) d(A)>fl for all A~B(S) 
then I]zl] >~  Jor all z~A -(0). 

Proof This follows easily from the following fact: Let A and A' be two discrete 
subgroups of 1R" such that A~5~(A ') and A'/A is cyclic. Then for any z ~ A ' - A ,  
qlzt[ >=d(A'). d(A)- 1. 

We also need the following alternative realisation of  d(A). For  p > 0  let E p 
denote the pth  exterior power of  1R" (where n is assumed to be fixed) and let E 

= ~ E p be the exterior algebra. Recall that E 1 may be identified with IR". We 
p=0 

extend the norm [I-L[ on E 1 to E as follows. Let {e 1, e 2 . . . . .  en}, be an or thonormal  
basis of E 1 . On E p, p > 1 choose the norm so that 
{ei,/~ el2 A ... /x eip ] 1 < i 1 < iz.. .  < ip < n} is an o r thonormal  basis. It is easy to check 
that the above norm depends only on the no rm on E 1 and not  on the choice of the 
o r thonormal  basis. On E ~  choose any norm. The norms on E p, p > 0  extend 
uniquely to a (Hilbert) norm on E (which also we shall denote by I1. H), such that 
{EP}p~o are mutual ly  or thogonal .  

(1.4) Lemma.  Let A be a discrete subgroup of IR" and let {hi, h 2 . . . . .  hk} be a Z-basis 
of A. Then d(A)= ]lh 1/x h 2 A . . .  A hk[ [. 

Proof Let {fl ,  f2 . . . . .  fk} be an o r thonormal  basis of A~. Then d(A) is [det A[ where 
A : Ar A~ is given by Af~ = h i for i = 1, 2 ... k. But by s tandard multilinear algebra 
we also have. 

Ilh 1 A h z A  . . .  /x hk]l = ]l(det A ) f  1 A f z A  ... Afk[I = lde t  A[. 

(1.5) Lemma.  Let {u~}~ be a one-parameter group in S L(n, IR). Then the function 

v(t) = s u p  ~d(u,A) A an), discrete subgroup of IR"} 
d(A) 

is continuous. 

Proof By L e m m a  1.4 for any t~IR, v(t) as above is the norm of  the linear 
t ransformation /x u t of E obtained as the exterior power of u,. Since {/x ut}t~ ~ is a 
one parameter  group of  linear t ransformations our content ion is obvious. 
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(1.6) Lemma. Let { Aa}~s A be a family of (discrete) subgroups of a lattice A, where 
A is some indexing set. Let tl, t 2 e I R  , t 1 < t  2 and p > 0  be such that d(utlA~)> p for all 
s e a  and d(u,~A~)<p for some seA.  Let 

~=inf{ te [ t l ,  tz][d(utA,)< p for some aeA}.  

Then there exists a~A such that d(uiA~)= p. 

Proof By Lemma 1.5 there exists e > 0  such that v(t)<2 whenever It[<e. By 
definition of ~ there exist sequences { tj}i~= ~ in IR and { ~j}j~ ~ in A such that tj'-~ ~ and 
d(ut jA,)= p for all j eN .  We may assume t j < i + e  for all j eN.  Then d(u~A~) 
=d(ui_, j .u~jA,)<2 p. Hence by Lemma 1.2 the set {A~IjeN} must be finite. 
Passing to a subsequence if necessary we may assume that As, = A for a l l jeN.  Now 
since tj--*~ and d(u ,A)=p  we deduce that d(u~A)=p. 

w 2. The Recurrence Lemma 

The aim of this section is to prove the following. 

(2.1) Theorem. Let A be a lattice in IR" and let {ut}t~ be a one parameter group of 
unipotent matrices in SL(n, IR). Let k > 1 be given. Then there exists c > 0 and p > 0 
such that for any t o > O. 

2{rE[t0, kto] [ llutzl] >=c for all z e A  -(0)} > pt o 

where 2 is the Lebesgue measure on IR such that 2([a, b]) = b - a for all a, beN,  a <= b. 

We need the following lemmas as in [7]. In the sequel let @ denote the space of 
all non-negative polynomials on IR of degree at most I. 

(2.2) Lemma. For any k > 1 and t e n  there exist constants el(k, l) and e2(k, l) such 
that if P e ~ ,  P(1) = 1 and P(t) < 1 for all re[0, 1] then the values of P at all points of 
one of  the intervals 

[k, k23, [k 3, k 4] . . . . .  [k 2~+' , k 2~+2 ] 

belong to [el(k, l), e2(k, l)]. 

Proof The set of polynomials in ~ which are uniformly bounded over a closed 
interval is compact. In particular they are uniformly bounded over the interval 
[1, k 2t+ 2]. Thus we only need to find the lower bound e x(k, l). If such a bound did 
not exist then for any jEN there exists P f i ~  such that Pj(1)=I, P~(t)=<l for all 
tel0, 1] and each of the above intervals contains a point t such that Pi(t)< 1/j. Let 
P e ~  be a limit point of {Pj} ]~. Then P(1)= 1 and P has a zero in each of the l + l  
intervals - this is a contradiction. 

(2.3) Lemma For any k > 1 and l~lN there exists a constant-~(k, l) such that if P ~ ,  
P( t ) -1  for some te[0, 1] and P(1)<2(k, l) then there exists t6[1, k] such that P(t) 
=~(k, l). 
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Proof. For otherwise for a n y j e N  there exists ~ e ~  and tie [0, 1] such that Pj(tj) = 1 
and Pj(t)< 1/j for all te[1, k]. Since {P~} is uniformly bounded on [1, k] there exists 
P s ~  which is a limit point of {Pj}. However P(t) =0 for all tel1,  k] and P(t) = 1 for 
any limit point t of {tj}, which is a contradiction. 

The following two lemmas may be obtained from the preceding two by linear 
substitutions. 

(2.4) Lemma. For any k >  1 and I ~ N  there exist constants el(k, l) and e2(k, 1) such 
that the following holds: Let  c > 0 and 0 < t 1 <= t2. I f  P ~ is such that P(t) <= c for  all 
tE[ - t l ,  rE] and P ( t 2 ) = c  then the values of  P at all points o f  one of  the intervals 

It1 + k ( t 2 - t l ) ,  t 1 +k2(t2-- t l )] , [ t l  +k3( t2- t l ) ,  t 1 + k 4 ( t 2 - t l )  ] 
. . .  I t  1 + k 21+ l ( t  2 - t l )  , t l  -}- k 21+ 2(t 2 - t l )  ] 

lie in the range [Cel(k, 1), ce2(k, 1)3. 

(2.5) Lemma. For any k >  1 and I ~ N  there exists a constant ~(k, l) such that the 
following holds: Let c>O and O<t  1 ~ t  2. I f  P ~  is such that P ( t ) = c  for  some 
t~[ t l ,  t2], P(ta)<c~(k,I)  then there exists t~[tz ,  q + k ( t z - t l )  ] such that P(t) 
= c~(k, 1). 

Now let A be a fixed lattice in IR". Also let k > 1 be fixed throughout. Given a 
closed interval ~ contained in IR* =(0, oo), 6>0, a > 0  and to>0  we denote by 
~'(z, 6, a, to) the set of all totally ordered subsets S (possibly empty) of 5~(A) 
satisfying the following. 

A1. For any A~B(S)  there exists t~[0, to] such that dZ(ua+,A)>6 and 
A2. For any A6S,  dZ(u~+td)~z for all te[ to ,  kto]. 

(2.6) Remark. The empty subset belongs to ~r 6, 0, to) for a suitable 6 and 
arbitrary z and t o. 

(2.7) Proposition. Let  A be a lattice in IR" and let k > l be f i x e d  as before. Then for  
any closed interval z in (0, ~ ) and 6 > 0 there exist constants 0 < c I < c z and p > 0 such 
that the following h o l d s : I f  S is a totally ordered subset o f  SO(A)and a>O and 
t o >=0 are such that S6~r 6, a, to) and if X and Y are the sets defined by 

X = {t~[to,  kto] l llu~+~z]l > c I for  all z~A-[0)} (2.8) 

and 

(2.9) Y = {te[to, kto] I there exists a maximal totally ordered 

subset L o f  B(S) such that c 1 <d2(u ,+tA)<c2 for  all A e L }  

then 

2(X u Y) > p to. 

Proof  Clearly it is enough to find the constants ca, c 2 and p such that the contention 
holds for all totally ordered subsets S of a given cardinality, say p. We proceed by 
induction on n - p .  If p=n ,  then the result is obvious. Now we shall assume the 
result for the class of totally ordered subsets of cardinality > p + 1. Let z c (0, 00) 



244 S.G. Dani 

and 6 > 0 be given as in the statement of the Proposition. Let z' be the smallest 
closed interval containing ~ and [6-i.(kl)el(k), 6~(kl)e2(k)] where k l = l + ( 1 / ~  
- 1 )  k -(4"2+2). Here and in the sequel for any k '>  1, el(k'), e2(k' ) and ~(k') denote 
el(k', 2n2), e2(k', 2n 2) and 2(k', 2n 2) respectively. Let 6' =(1/2)62(k 0. By induction 
hypothesis there exist c], c~, 0 < c' 1 < c 2 and p' > 0 such that the contention of the 
Proposition holds if S'ed(z',6',a',t'o) for some a ' > 0  and t~>0, provided the 
cardinal ity of S' is at least p + 1. Now put p = ( l / ~ -  1) p'/k, c 1 = min {c'~, 62(k Oe~(k), 
?(z, �89 (7 as in Lemma 1.3) and c2=max{c'2,6-g(kl)e,2(k)}. We shall 
complete the proof of the Proposition by showing that with these values for the 
constants the contention of the Proposition holds for any S~sr 3, a, to) (for some 
a > 0 and t o > 0) of cardinality p. 

Let S be any totally ordered subset of 5P(A) of cardinality p and let a > 0 and 
t o > 0 be such that Se~4(r, 3, a, to). Let cr >0  be such that the function v(t) as defined 
in Lemma 1.5 satisfies v( t )<l f2  for all t such that It] <a .  Let X and Y be the sets 
defined by (2.8) and (2.9) respectively. Finally let ko =] /k .  

Sublemma. Let the notation be as above. For any se[t o, koto] there exists s'e(s, kos ) 
such that either Is, s') ~ X or s' > s + a and 

,~,((X k..) Y ) v " ~ [ s , s ' ] ) ~ ( k  0 - 1 ) -  1 p ( s ' - s ) = k  - 1 p '  ( s ' -  s). 

We first show that validity of the sublemma implies that 2(X u Y)>pto,  thus 
proving the Proposition. Inductively we construct a finite sequence 
So,S 1 ... . .  srE[to,kto] as follows. Choose So=t  0. Now suppose So,S 1 .... ,s i have 
been chosen. If s~r koto] we choose r=i  thus terminating the sequence. If 
si~[tokoto] by Sublemma there exists si+ 1 such that either a) [si,si+ ~)~X and 
[si ,s ' )r  for s'>si+ 1 or b) s i+i>si+a and ,~,((XkJY)~[si,si+l])>=(ko 
-1)-~ p(s~+ ~-s~). Observe that in view of the construction for any i > 0  either s~ 
-Si_l>=a or s i+l - s i>a .  Hence there exists r such that s~(~[to,koto] and the 
sequence terminates. Now 

2(X w Y) >= ~, 2((X w Y) c~ [si_ l, si]) 
i = l  

> ( k o - 1 ) - l P  ~ (* i -s i -O 
i = 1  

=(k o -  1)- 1 p(s,-So) 

> pto 

since s~r koto]. 

Proof of the Sublemma. Let se [t o, k o to] be given. Put 

cg = {A ~B(S)ldZ(u,+~ A) < (1/2)62(k 0}. 

We consider two cases separately. 

Case i) Assume that cg is non-empty. 
By Lemma 2.5 for every A scg the set H(A) = {te[s, k~ s]Id 2 (Ua+sA) =6~(k~)} is 

non-empty. For AeCg put t(A)=inf{t~H(A)} and y=sup{t(A)lAeCg}. Since by 
Lemma 1.1 ~ is finite there exists z/such that t(zt)=y. 
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By L e m m a  2.4 there exists an interval [sa, S2] contained in [s, kos ] such that  

(a) there exists j, O<j<2n 2 such that  s~ =s+kZS+l(y-s)  and s2=s+kZJ+Z(y 
- s) and 

(b) for all re[s1, sz] , dZ(ua +,d)e[6~(kl)~1 (k), 3-g(kOe2(k)]. 
Let S' = S ~ { zt}. It is easy to verify that  S' ~s~'(z', 3', a + s, s t - s). Here  A 1 follows 

f rom the fact that  ,% > s + k ( y -  s) > y and A 2 follows f rom (b), since s z - s = k(s ~ - s). 
Since S' has cardinali ty p + 1 by induction hypothesis  if 

X ' = { t e [ s  I - s , k ( s  I - s ) ]{  [lu~,+~+,zl[ > c '  1 for all z e A - ( 0 ) }  

and 

Y' #te[s,-s,k(s,-s)]Ithereexistsamaximaltotallyordered 
= ( s u b s e t / 2  of B(S') such that  c 1 <dZ(ua+s+ta)<cz for all ae/2J 

then 2 ( X ' w  Y')>p'(s 1 -s).  
It  is obvious  from the definition that  the set X ' +  s ( =  {r + s lteX'}) is contained 

in X ~ [s, s2]. Also, if/2 is a maximal  totally ordered subset o fB  (S') then L =/2 • {z~} 
is a maximal  totally ordered subset of  B(S). Since k ( s l - s ) = s 2 - s  and 
dZ(u,+tA)E[b-g(kOsl(k), 6-~(kOea(k)] for all te[sl,s2] it follows that  Y'+s is 
contained in Y ~  Is, s2]. Hence  

2((X ~ Y) c~ Is, s2] ) >__ 2((X' + s) u (Y' + s ) ) -  2(X' u r') >= p'(s I - s) 

=k- lp'(s 2-s).  

Recall  that  s2e[s, kos]. Also since d2(u,+,J)<�89 and dZ(uo+~.A)=cS-~(kO it 
follows that  v ( y - s ) > I / 2 .  Hence  ( y - s ) > a .  But by definition s2>s 1 >y. Hence  
s z > s+ o- .  Thus the sub lemma holds with s' = s  2. 

Case it) Assume ~ is empty.  
Consider  the set 

E = {te[s, kos]ldZ(ua+tA)>�89 for all AeB(S)}. 

Then by assumpt ion  see.  By L e m m a  1.3 for every tee ,  Ilua+tzll >7(r , �89  for 
all zeA- (0 ) .  Hence  E c X .  If E =  [s, kos) then we are through. Otherwise let 

s ' =  inf {re [s, kos][t~E }. 

By L e m  ma  1.6 there exists A e B (S) such th at d z (uo + s, A) = �89 62 (k 1)- Hence  s ' r  E. I n 
par t icular  s' > s. Also Is, s') c E c X, which proves the sublemma.  

Proof of Theorem 2.1. Recall  that  there exists 6 > 0 such that  the empty  set r belongs 
to d ( z ,  6, 0, to) for any closed interval z ~ (0, oo) and t o > 0. Let  c 1 , c 2 and p be the 
constants  as in Propos i t ion  2.7 corresponding to b as above and an arbi t rar i ly  
chosen z. Let t o > 0  be arbi t rary.  Let  X and Y be as defined in (2.8) and (2.9) 
respectively, for the special case being considered. Consider  any te  Y. There  exists a 
max imal  totally ordered subset L of B(~)=5~(A)  such that  c 1 <dZ(utA)<c2 . 
Applying  L e m m a  1.3 to S = L  we conclude that  for t e  Y,, ][u,z[] > 7  = ? ( [ c  I , c2], c') for 
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all z e A -  (0) where c' may be chosen arbitrarily. Hence for any reX w Y, Lt ut z I[ > c 
=min  {cl,7} since 2 ( X u  Y)>pt  o the theorem is proved. 

Theorem 2.1 can be reinterpreted in terms of the action of the one parameter 
group {u,}t~ ~ on SL(n, IR)/SL(n,Z) as follows. 

(2.10) Theorem. Let {ut}t~ ~ be a one-parameter group of unipotent matrices in 
SL(n,]R). Let xeSL(n, lR)/SL(n, 7l). Then there exists a compact subset K of 
SL(n, IR)/SL(n, TI) and p > 0  such that Jbr any t o > 0  

2 {t~ [0, to]lUtxeK } >pt  o. 

Proof Consider the action ofSL(n, ~,) on lR" with respect to a basis {ea, e 2 . . . . .  en}. 
This induces an action of SL(n, lR) on the set of lattices in IR'. Via this action 
SL(n, IR)/SL(n, Z) can be identified with the set of lattices A in lR" such that d(A) 
=d(Ao) where A o is the lattice with {e~, e 2 . . . . .  en} as a :E-basis. By the well-known 
Mahler criterion (cf. [8], Corollary 10.9) for any c >0  the set of lattices A such that 
d(A)=d(Ao) and Ilzll >=c for all z e A - ( 0 )  corresponds, under the above identifi- 
cation, to a compact subset K of SL(n, IR)/SL(n,Z). Thus by Theorem 2.1 given 
xeSL(n, IR)/SL(n,Z) there exists a compact set K of SL(n, IR)/SL(n,2~) and p' >0  
such that for any t o > 0, 2 {re[to~2, to]lU~xeK } > p' to~2. Hence putting p = p'/2 we 
get 2{tel0,  to] lutx~K } >pt  o. 

We conclude this section with a similar recurrence property for the action of 
(iterates of) a single unipotent matrix ueSL(n, IR). 

(2.11) Theorem. Let ueSL(n, lR) be a unipotent matrix. Then for any 
xeSL(n, 1R)/SL(n, 7l) there exists a compact subset K of SL(n, IR)/SL(n, 7l) and p > 0 
such that 

l m - 1  

- F ,  p 
m j = o  

for all meN,  where XK denotes the characteristic function of K. 

Proof Given any unipotent matrix u there exists a one-parameter group {ut}t~ ~ of 
unipotent matrices such that ua =u. Indeed since (U--I)m=0 for some meN, 

=log u=  ~ (--1)l(u--I)l/l  is defined and consequntly ut=ex p t~ defines a one 
~=o 

parameter group having the above properties. Let x eSL(n, IR)/SL(n, 7l) be given. By 
Theorem 2.10 there exists a compact set K'  and p'>O such that 

2 {tel0, to] lutxeK' } >pt  o. 

Put 

K={u ty i yeK '  and -l_<t_<0}. 

Then K is a compact subset of SL(n, N)/SL(n, Z). Clearly fo r j eN,  uJx eK whenever 
there exists te[j , j  + 1] such that utxeK'.  Hence the Theorem. 
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w 3. lnvariant Measures on Lattice Spaces 

Using the results of the preceding section we now prove Theorem 0.1 (and also a 
discrete analogue). We need the following theorem. 

(3.1) Theorem. (Individual ergodic theorem.) Let (X, Iz) be a a-finite (finite or 
infinite) measure space and let T(respectively {~ot},~r,) be a (jointly) measurable #- 
preserving transformation (resp. flow). Then for any f e L 1 (X, #) 

m E f ( T j x )  resp. s f(~~ 
j = O  

converges a.e. as m-~c~ (resp. s-*oo). The limit function J* is contained in 
L 1 (X, p). Also there exists a measurable T-(resp. {~0,}t~) invariant set N with #(N) 
= 0  such that for all x e X - N ,  f * ( T x ) = f * ( x )  (resp.f*(~otx)=f*(x) for all teN).  
Fur ther / fp (X)<  oo then ~ f*  dlz= ~ f d#. 

X x 

For a transformation this is usually the first theorem that one learns in ergodic 
theory. Somehow it is usually not stated for a flow in most standard books. 
However the theorem for a (measurable) flow {~ot}t~ ~ can be deduced by applying 

1 
the theorem for the transformation qh to the function ~f(~otx)dt. 

0 

(3.2) Theorem. Let X=SL(n ,  IR)/SL(n,Z). Let U be a cyclic or a one-parameter 
group of unipotent matrices in SL(n, IR). Consider the left action of U on X. Let n be a 
locally finite, U-invariant (Borel) measure on X. Then there exists a sequence 
{Xi}i~ 1 of measurable U-invariant subsets of X such that n(Xi) < oo for all i e N  and 

n ( X - @ X i ) = O .  In particular every locallyfinite ergodic U-invariant measure is 

finite. 

Proof Let f be a continuous function on X such that f (x)  > 0 for all x eX and ~ fdn  
X 

1 m - 1  

= 1. Let f * ( x ) =  lim ~- ~ f(uJx) if U is the cyclic subgroup generated by u and 
m ~ o e  m j = 0  

f *  (x)= lira f (u tx  ) dt if U = {u~},~ a. By Theorem 3.1, f* (x )  is defined rt a.e. and is 
S~c t O  o O 

contained in Lx(X, zr). We show that f * ( x ) > 0  rc a.e. Assume that U =  {ut}t~ ~. Let  
x e X be such that f *  (x) is defined (by convergence of the integral). By Theorem 2.10 
there exists a compact set K and p > 0  such that for any t o > 0  

2 {tel0, to] [utxeK } > p t  o 

Put 

0-- inf  {f(y) ly~K}. 
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Since f is continuous and positive 0 > 0. Hence 

1 s 
f*(x)  = lira - ~f(u,x) dt > Op >0.  

s ~  SO 

If  U is cyclic we can produce a similar argument using Theorem 2.11. 
Recall that by Theorem 3.1 there exists a measurable U-invariant subset N of X 

such that ~(N) = 0 and for all x e X -  N , f*  (ux) = f *  (x) for all ue U. Now for i e N  put 

Then each X i is U-invariant. Also since f*eL l (X ,  rc), rc(Xi)<oc. Finally since 

Our next aim is to generalise Theorem 3.2 to action of an arbitrary unipotent 
subgroup of SL(n, IR). We recall that a subgroup U is said to be unipotent if every 
element of U is unipotent. A unipotent subgroup is necessarily nilpotent. 

(3.3) Theorem. Let U be a unipotent subgroup of SL(n, IR). Consider the action (on 
the left) of U on X = SL(n, IR)/SL(n, 7Z). Let ~ be a locally finite, U-invariant ( Borel ) 
measure on X. Then there exists a sequence {Xi} ]0 of measurable U-invariant subsets 

of X such that ~(Xi) < oo for all i~N and ~ ( X -  ~ Xi)  =O. ln particular every locally 

finite ergodic U-invariant measure is finite. 

(3.4) Remark. There is no loss of generality in assuming U to be a closed subgroup. 
This is because the subgroup of elements which preserve a locally finite measure is 
closed. 

Proof Any closed unipotent subgroup U admits a normal series 

(e)=UocUI C...  CUm_I C Um=U 

such that for each j =  1,2 ... m, Uj is a closed subgroup and U~/Uj_ 1 is either 
cyclic or isomorphic to IR. Further the length m of such a normal series depends 
only on U; we shall call it the rank of U. 

We shall prove by induction on the rank that if U is a closed unipotent subgroup 
and rt is a U-invariant measure on X then there exists f eL l (X ,  rc),f > 0 and f #  0, 
which is U-invariant. If the rank is 1 then U is either cyclic or a one-parameter 
group. In this case the assertion follows from Theorem 3.2. Now assume that the 
above assertion holds for all closed unipotent subgroups of rank < m and let U be a 
closed unipotent subgroup of rank m. It is obvious from the definition of the rank 
that U admits a closed unipotent normal subgroup V of rank m - 1 such that U/V is 
isomorphic to either Z or IR. Let n be a U-invariant measure on X. By induction 
hypothesis there exists f e L  1 (X, r O, f > 0 and f ~ 0 such that f is V-invariant. 

Since U/V is either cyclic or a one-parameter group there exists a subgroup H of 
U, such that U = /4 .  V (semi-direct product). By Theorem 3.2 there exists a sequence 
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of measurable H-invariant subsets such that n(Xi) < oo for all i eN  and n (X 

- y  X i )=0 .  Clearly Xi may be assumed to be pairwise disjoint. Now let f*  bethe  \ 

function defined by 

1 r 1 
~=of(uJx) f*(x) = ,~oolim r i=  

if H={u"[je7Z} and 

f *  (x) = lim u, x) dt 
S ~  old ~ 0 

if H = {ut}t~ ~. Note that by Theorem 3.1 there exists a H-invariant subset N of X 
such that n ( N ) = 0  and for all x ~ X - N  f*(x) is defined and f*(hx)=f(x) for all 
heH. Now 

X i = l  X~ i = l  X, X 

Here the middle step follows from Theorem 3.1 since X i is a H-invariant set of finite 
measure. Hence f *  eL ~ (X, n) and f * ~ 0 .  Since H normalises V, f *  is V-invariant. 
Since U = H .  V it now follows that f *  is U-invariant. This proves the claim. 

To complete the proof we proceed as follows. Let v be a probability measure 

equivalent to n. Let cg be the class of measurable sets E such that E = 0 E~ where 
1 

each Ei, i = 1 , 2 . . ,  is a measurable U-invariant set and n(E~)<~.  Put fl 
= Sup {v(E) ] E ecg}. A routine argument shows that there exists Eo e ~  such that 
v(Eo) = ft. If fl = 1 then clearly the theorem stands proved. Suppose fl < 1. Consider 
the measure n' on SL(n, IR)/SL(n,Z) defined by n'(E)=n(EnE o) where Eo is the 
complement of E 0. Clearly n' is a locally finite U-invariant (non-zero) measure. 
Hence there exists an integrable U-invariant function f such that ~fdn' >0. It is 
obvious that the set El={xeEolf(x)>O} belongs to cg and v (E0>0 .  This 
contradicts the definition of fi since E o u E 1 ~cg and v(E o u El) > ft. 

w 4. Invariant Measures on Arithmetic Homogeneous Spaces 

Theorem 3.3 can be readily generalised to more general arithmetic homogeneous 
spaces. Let G be a (connected) Lie group. A subgroup F of G is said to be arithmetic 
if there exists a linear lR-algebraic group L (the group of IR-rational elements) 
defined over tI~ and a surjective homomorphism ~o of L ~ the connected component 
of the identity in L, onto G satisfying the following two conditions. 

i) The kernel of 4o is compact. 

ii) Let Lzbe the subgroup consisting of all integral elements (with respect to the 
given ll~-structure) in L ~ with determinant _+ 1. Then F is commensurable with 
q~(Lz) i.e. Fnq)(Lz) is a subgroup of finite index in both F and tp(Lz). 
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A discrete subgroup F of a Lie group G is said to be a lattice if the homogeneous 
space G/F admits a finite G-invariant (Borel) measure. An arithmetic group which 
is also a lattice is called an arithmetic lattice. 

Let G be a Lie group. A subgroup V of G is said to be horospherical if there exists 
gcG such that 

V={u~GlgJug-J--+e as j-+ov} 

where e is the identity element in G. Any subgroup U ofa horospherical subgroup V 
is said to be horocyclic. 

We note that any horospherical subgroup is a nilpotent analytic subgroup. 
Further if G is an IR-algebraic group then any horospherical subgroup is a 
unipotent algebraic subgroup of G. A partial converse is also true; viz. any 
unipotent subgroup in a reducivte R-algebraic group is horocyclic. These results 
are wellknown (cf. for instance, [5], w for a general idea of the proofs). The 
generalisation of Theorem 3.3 sought after is the following: 

(4.1) Theorem. Let G be a Lie group and F be an arithmetic lattice in G. Let U be a 
horocyclic subgrou p of G. Let n be a locallyfinite U-invariant measure on G/F. Then 
there exists a seauence {Xi}i~ i of measurable U-invariant subsets of G/F such that 

re(X,) < c~ for all i= 1, 2, ... and re (G/F - U Xi} =0. In particular an ergodic, 
g 

locally 
\ 1 / 

.finite, U-invariant measure is finite. 
in the proof of the theorem we need the following lemma. 

(4.2) Lemma. Let r : G 1 ~ G a be a surjective homomorphism of Lie Groups. Let U 2 be 
a horocyclic subgroup o f  G 2. Then there exists a horocyclic subgroup U 1 o fG 1 such 
that r = U z. 

Proof. Let V 2 be a horospherical subgroup containing U 2. Thus there exists gz~G 2 
such that 

V z = { u z G G 2 l g J 2 u z g 2  j - + e  2 as j--+ c~} 

e 2 being the identity element in G 2. Let gleG1 be such that ~p(gl)=g2 and let 

Vl={u~eGl[g~ulg~J--+el  as j-+oo} 

e, being the identity element in G,. Indeed Vii, i=  1, 2 are analytic subgroups ofGi, i 
= 1, 2 respectively and the Lie subalgebra of Vii is the maximal Ad gi invariant 
subspace 4 of the Lie algebra of G~, on which all the eigenvalues of Ad & are of 
absolute value less than 1. Hence we must have (0(1/1)= V 2. Now choose U~ 
= V 1 c~ ~0-1(U2). Then ~o(U1) = U 2. 

Proof of  the Theorem. Firstly consider the case when G is a IR-algebraic group 
defined over Q and F is a subgroup of finite index in G z. Since G admits a lattice 
there exists no non-trivial character (algebraic homomorphism into GL(1)) of G 
defined over ~ .  Hence there exists a homomorphism p of G into SL(n, IR), for some 
n, defined over ~ such that p(F) is contained in SL(n, TI) and the natural map 
~: G/F-+SL(n, IR)/SL(n, 7l) is proper (cf. [8], Proposition 10.15). Let n be a locally 
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finite U-invariant measure on G/F. Then the measure ~n on SL(n, IR)/SL(n,Z), 
defined by pn(E) = n(fi- 1 E) for any Borel set E, is locally finite and p(U)-invariant. 
Recall that U is a unipotent subgroup of G. Hence p (U) is a unipotent subgroup of 
SL(n, lR). For the particular case at hand Theorem 4.1 follows immediately from 
Theorem 3.3. 

We now consider the general case. By hypothesis there exists an lR-algebraic 
group L defined over I1) and a surjective homomorphism ~0: L~ with 
compact kernel such that q)(Lz) and F are commensurable. Hence there exists a 
subgroup A of finite index in L z such that ~o(A) is a normal subgroup of F of 
finite index. Now let n be a locally finite U-invariant measure on G/F. We lift n 
to a measure on L~ as follows. Set K = ker q~ and let m be the normalised Haar  
measure on K. Also let 71,72 . . . . .  7p be a set of representatives of F/q~(A). For 
any bounded measurable function 0 on G/~o(A) let 0t be the function defined by 
Ol(grp(A))=~J(gTlq0(A)). Observe that since r is normal  in F, Ot is a well- 

p 

defined function on G/q~(A). Further ~ ~ is constant over fibers of the natural 
l = 1  

map of G/q~(A) onto G/F. Now let OECc(L~ Put 

O(xA,da= ~ [l~ {!O(kxA)dm(k)}l] dn" 
L ~  G / F  = 

(Functions constant over the fibers of a quotient map are viewed as functions on 
the quotient space in a natural way.) This defines a locally finite measure a on 
L~ It is straightforward to verify that a is ~o-l(U)-invariant. By Lemma 4.2 
there exists a horocyclic subgroup V of L ~ such that ~o(V)--U. Since a is V- 
invariant, by the special case of the theorem considered earlier it follows that 
there exists a sequence {Y~}~=1 of measurable U-invariant subsets such that 

a(Y/) < ~ for all i~N and a(L~ Yi)--0. For any i,.j~N put 
\ 1 / 

where Zi denotes the characteristic function of Y~. Let us U be given. Choose 
ve V such that ~0(v)= u. Then 

uq)(x) F =~o(vx) F 

and 

zi(k vxA) dm(k )= f )~i(v(v -1 kv) x A) din(k) 
K K 

= ~ Zi(vkx A) din(k) 
K 

= ~ zi(kx A) dm(k). 
K 

The last step follows since Y~ is V-invariant. Thus we deduce that for each i,j, Xij 
is U-invariant. Further clearly for any i,j, n(Yi)>n(Xij)(1/j ). Hence for each 
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i , j , n (X i )<  oQ. Lastly since a ( L ~  Yi)=O by Fubini's theorem for n-almost 
1 

every x, ~ {~ zi(kxA) dm(k)}l>O for some i; In other words, n G / F -  X u 
/=1 K i , j = l  

=0,  which completes the proof. 

(4.3) Remark. The part  of the assertion in Theorem 4.1 pertaining to ergodic 
invariant measures is also true for an arbitrary arithmetic subgroup which is not 
a lattice. This can be deduced as follows. Given an arithmetic subgroup F of a 
Lie group G there exists a closed normal subgroup H of G such that i) H c~ F is 
of finite index in F, ii) H c~ F is an arithmetic lattice in H and iii) H contains 
every horospherical subgroup of G. Indeed if G is a N-algebraic group defined 
over ~ and F = G  z then the intersection of the kernels of all characters of G 
which are defined over Q has the above-mentioned properties. In general, the 
image under q~, the homomorphism as in the definition of arithmeticity, of the 
corresponding group has the requisite properties. Now let U be a horocyclic 
subgroup of G and let n be a locally finite, ergodic, U-invariant measure on G/F. 
The sets xHF/F ,  x~G form a measurable partition of G/F and each x H F / F  
= H x F / F  is U-invariant. Hence by ergodicity of n there exists xoeG such that n 
is concentrated on HxoF/F;  i.e. the complement has zero z-measure. But the 
restriction of the U-action on HxoF/F  is equivalent, in a natural way, to the 
action of U on H/(x o F x o 1) ~ H. Also (x o Fx o 1) c~ H = x o (F c~ H) x o 1 is an arith- 
metic lattice in H. Viewing n as a U-invariant measure on H/xo(Fc~H)x o ~ and 
applying Theorem 4.1 we conclude that n is finite. 

Presumably, the assertion in Theorem 4.1 for a non-ergodic U-invariant 
measure n is also true for any arithmetic subgroup and may be proved using a 
form of direct integral decomposition of n into ergodic measures (cf. [10]). 
However the author does not wish to go into the details. 

(4.4) Remark. It may be pointed out that the analogue of Theorem 4.1 is 
generally not true for subgroups which are not horocyclic. We offer the 
following example. Let G =SL(2, IR)/{ +l} ,  F =SL(2, 7~)/{ _I}  and 

We first show that FH is closed. Let o ~ =  {z~ll~l I m z  >0} be the upper half plane 
and let S denote the space of all line elements (a point together with a unit 
tangent direction) over ~ .  The standard action of G on ~ as the group of non- 
Euclidian motions induces an action of G on S. Let s o be the line element at i in 
the direction of the imaginary axis. It is well-known that g ~ g s  o is a diffeomor- 
phism of G onto S. Let f2 denote the set of all line elements over points in the set 
{zelEl[Rez]<�89 and Iz]>l}.  It is easy to verify that Hs o is a closed subset of 

(01 -10) ~?uo~f2 where co= . It is well-known that (cf. [9], for instance) S=Ff~ 

and that for any non-trivial element 7eF, 7Q c~ ~2 is contained in the boundary of 
fL Further there exist only finitely many elements in F such that 70 c~ f~ is non- 
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empty. Using these properties of (2 it is straightforward to verify that FHs o is 
closed. Hence FH must be a closed subset of G. 

Now consider the action of H on G/F (on the left). In view of the above 
HF/F  is a closed H-orbit,  which is obviously not periodic. Let 2' be a (non-zero) 
H-invariant measure on HF/F  and let 2 be the measure on G/F supported on 
HF/F, whose restriction to the latter equal s2'. Then 2 is clearly an infinite, 
locally finite, ergodic, H-invariant measure on G/F. 

Before concluding the section the author would like to thank the referee, 
whose suggestions motivated the present general form of the results in this section. 
In an earlier manuscript the author had employed a more restrictive definition 
of arithmeticity. 

w 5. Invariant Measures of Horospherical Flows 

We now relate the results of the preceding sections to the work in [3]. Let G be 
a reductive Lie group and F be a lattice in G; i.e. G/F admits a finite G-invariant 
measure. In [3] we obtained a classification of finite invariant measures of 
maximal horospherical flows (see introduction for definitions) on G/F when G 
has no simple factors of N - r a n k > 2 .  In view of Theorem 4.1 when F is 
arithmetic (with respect to some Q-structure) then the assumption about finite- 
ness may be omitted. Thus we have the following. 

(5.1) Theorem. Let G be a reductive N-algebraic group defined over Q and let F 
be an arithmetic lattice in G. Assume that every simple non-compact factor of G is 
of I R - r a n k  1. Let U be a maximal horospherical subgroup of G and let ~ be an 
ergodic U-invariant (locally f inite) measure on G/F. Then there exists a closed 
subgroup L and g~G such that 

i) L g F  is closed and ~ ( G / F - L g F / F ) = O  and 

ii) L contains U, gFg -1 c~L is a lattice in L and ~ is the L-invariant measure 
on LgF/F~-L/gFg-  l mL. 

(5.2) Remark. The proof  in [3] also shows that the subgroup L above has the 
following property:  there exists a (closed) normal subgroup V of G such that 
Vn F is a lattice in V and L = U V. 

w 6. Invariant Measures of Arithmetic Groups 

The usefulness of Theorem 4.1 is more apparent when we consider F-invariant 
masures on G/U where F is an arithmetic lattice in G and U a maximal 
horospherical subgroup. We need the following duality principle due to 
H. Furstenberg. (cf. [3] for details) 

(6.1) Proposition. Let G be a Lie group and let U and F be any closed unimodular 
subgroups of  G. Then there exists a canonical one-one correspondence ~ - ~  of  U- 
invariant measures on G/F and F-invariant measures on G/U such that for any 
q~C~(G) 
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G/F r G/U U 

where d 7 and du denote (fixed) Haar measures on F and U respectively and (9 
denotes the function defined by (o (g) = q~ (g- 1). 

Under the above correspondence ergodic U-invariant measures on G/F 
correspond to ergodic F-invariant measures on G/U. Unfortunately the con- 
dition of finiteness of U-invariant measures on G/F does not correspond to any 
intrinsic property of F-invariant measures on G/U. In [3] we introduced the 
following definition. 

Definition. Let G be a Lie group and let U and F be closed unimodular 
subgroups of G. A F-invariant measure a on G/U is said to be F-finite if the U- 
invariant measure n on G/F corresponding to a under the one-one cor- 
respondence as in Proposition 6.1 is finite. 

Now let G be a reductive N-algebraic group defined over Q, and let F be an 
arithmetic lattice in G. Let U be a maximal horospherical subgroup of G. 
Assume that U contains a subgroup V which is a maximal horospherical 
subgroup defined over Q. (This assumption amounts to choosing a suitable base 
point on the homogeneous space G/U.) By a Q-rational horospherical subgroup 
opposite to V we mean a subgroup of the form 

V- = { h ~ G l g - ~ h g ~ e  as j ~ o o }  

where geG is such that 

V={heG[g~hg-J~e as j ~ o o }  

e being the identity element. We note that such a subgroup exists but not in 
general unique. By a Q-rational N-parabolic subgroup P -  opposite to V we 
mean the normaliser of a subgroup of the form V- as above. 

Now fix a minimal II~-rational N-parabolic subgroup P -  opposite to V. Let 
K be a maximal compact subgroup of G. Since F is a lattice in G there exists a 
finite subset J of G and a 'Siegel set f2 corresponding to the triple (K, V, P-) '  (i.e. a 
set of the form WS~K as in Proposition 2.3 in [3]) such that G=FJf2. A finite 
subset J of G for which the above is satisfied shall be called a sufficient set of 
cusp elements for Fwith respect to (K, V, P- ) .  

It is well-known that P -  V is an open subset of G and that G - P -  V is a 
finite union of lower dimensional submanifolds. Hence the G-invariant measure 
on G/U assigns zero measure to G / U - g P -  U/U for any gsG. In [3] we proved 
the following converse statement (cf. Theorem 2.4, [3]) for F-finite, F-invariant 
measures a; in view of Theorem 4.1 the assumption of F-finiteness is redundant 
for arithmetic groups. 

(6.2) Theorem. Let the notations G, F, U, V, K and P-  be as above. Let J be a 
sufficient set of cusp elements for F with respect to (K, V, P-). Let a be an ergodic 
F-invariant (locally finite) measure on G/U. I f  a ( G / U - j P -  U/U)=0 Jor all j~J  
then a is G-invariant. 
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We now deduce the following result. 

(6.3) Theorem. Consider the natural action of / ,=SL(n,2g)  on IR" via a basis 
{el, e 2 . . . . .  e,}. Then any ergodic /,-invariant (locally finite) measure ~r on IR" is a 
.scalar multiple of either the Lebesgue measure or the counting mesire on the 

discrete orbit of a point x6lR" of the form x =t ~, qlei where t~lR and qi~ll~ for i 
i = l  

= 1 , 2 , . . . , n .  

Proof We shall actually prove the following slightly stronger assertion: Let er be 
an ergodic F-invariant locally finite measure on IR"-(0)  (i.e. a priori the 
measure of a neighbourhood of 0 may not be finite). Then a satisfies the 
contention of the theorem. 

We proceed by induction on n. If n = 1 the assertion is obvious. Now consider 
the action of F = S L ( n , ~ )  on lit" via a basis {el, e2, ...,en}. Let G denote the 
group SL(n, IR). Let Q be the isotropy subgroup at e 1 of the action of G on IR" 
- (0 )  via the basis {el, e2, . . . ,  en}. Since the action of G on IR"-(0)  is transitive 
IR" -  (0) may be identified with G/Q. Let U be the subgroup of G consisting of all 
upper triangular unipotent matrices. Then U is a maximal horospherical sub- 
group of G and it is contained in Q. The measure a, considered on G/Q via the 
identification, is F-invariant and by Proposition 6.1 corresponds canonically to 
a Q-invariant measure n on G//,. In particular n is a U-invariant and hence 
corresponds to a / , - invar iant  measure on ~7 on G/U. 

Now let P -  denote the subgroup consisting of all lower triangular matrices. 
Then it is easy to verify that P -  is a II~-rational IR parabolic subgroup opposite 
to U. Also note that /, is a lattice in G and that {e} is a sufficient set of cusp 
elements fo r / , ;  (cf. [8], ch. X). Hence by Theorem 6.2 ~ is G-invariant if and only 
if ~ ( G / U - P -  U/U)=O. It is also easy to verify that ~ ( G / U - P -  U/U)=O if and 
only if a ( V - ( 0 ) ) = 0  where V is the subspace of IR" generated by {e 2, e s . . . . .  e,}. 
Thus if a ( V - ( 0 ) ) = 0  then 6 is G-invariant; that is, a is the Lebesgue measure (up 
to a scalar multiple). 

Next suppose that ~r(V-(0))>0. Let Y#" denote the class of all proper 
subspaces W of IR" such that W is generated (as IR-subspace) by certain elements 

of the form ~ qiei, where q;~ll~, and a (W)>0.  Then ~K is non-empty since 
i ~ l  

Ve-//F. Let We~/7 be an element of minimum possible dimension. Let /, ' 
={?~F[?(W)=W}  and F"={7~ / , I? /W=Id} .  Then /,'//," is isomorphic to 
SL(m,;g) where m is the dimension of W. Also the action o f / , '  on W corre- 
sponds to the natural action via a basis { f l , f 2  . . . . .  fro} where each fj, j 

= 1 , 2  . . . .  ,m is of the form ~ qlei where q~ll~. 
i = 1  

Consider the measure a '  on W - ( 0 )  obtained by restriction of a (i.e. a'(E) 
= a(E) for any Borel subset E of W-(0)) .  Then a'  is/ , ' - invariant.  We claim that 
a '  is ergodic under the /"-action. Let E be a measurable U invariant set such 
that a ' (E)>0.  Let ~ / , - / ;  be arbitrary. Then 7Ec~WcTWc~W=t=W. Since 
We~//~ is of minimum possible dimension ~ Wc~ WCz~/r. This is possible only if 
a(TWc~ W)=0.  Now consider E ' = I ) , / E .  Since a is ergodic under t he / ' - ac t i on  
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and a(E')>a(E)>O we must have a ( I R ' - ( 0 ) - E ' ) = 0 .  In particular a'(W-(O) 
- E ' ) = 0 .  Hence a'(W-(O)-E)=a(W-(O)-E')+a(Wc~(E'-E))=O. Hence a'  is 
ergodic with respect to the F'-action. By induction hypothesis (upto a scalar 
multiple) a '  is either the (restriction of the) Lebesgue measure on W or the 

counting measure on the discrete orbit of a point x=t ~ q(if~=t ~, qiei where 
j = l  i = 1  

qi, q ~ ~  and t ~ IR. In the latter case clearly a is the counting measure (upto a 
scalar) on the (discrete) F-orbit  of x. We complete the proof by showing that the 
former is impossible. 

Suppose that a '  is the (restriction of the) Lebesgue measure on W. We fix a 
norm If-]I on IR'. For any subspace L of IR" let 2 L denote the Lebesgue measure 
on L such that a parallelepiped whose vertices include an orthonormal basis and 0 
is assigned unit measure. By normalising a if necessary we may assume a ' =  2 w. 
Now let 

A = {x~lR"[ 1 __< Hxl[ _-<2} 

It is easy to verify that there exists 7eF  such that 7JCF ' for a n y j e Z - ( 0 ) .  As seen 
before since We~/r r is of minimum possible dimension, a(Wc~vJW)=0 for all 
je2~ - (0). Hence 

a(A)> 2 a(?JWc~A) = a'(Wc~7-JA) 

= ~ ).w(Wc~7 -jA) 
- o o  

= ~ 2,Jw(7JWnA)'J(7 -j) 
I O O  

where J(7 -j)  is the Jacobian of the linear transformation 7-~/7JW: 7 J W ~  W, 
equipped with norms obtained by restriction of II. It. Now let {hi, h 2 ..... hm} be 

m m 

an or thonormal  basis of W and h=hlAhzA ... AhmeAWcAIR". Then by 

Lemma 1.4 J ( 7 - ] ) =  I1(/~ ~;-J)hll. Also note that by choice of A for any subspaces 

W', W" of dimension m, 2w,(W' c~A)=2w,,(W" c~A)= C say. Hence 

- ~  - o o  

Since a is locally finite a(A) < ~ .  Hence (/~ 7) j h -* 0 both as j -+ + ~ and as j 

- o o .  But since ~, is a non-singular linear transformation of /~ lR" and h 4:0 

this is impossible. 

6.4 Remark. The hypothesis in Theorem 6.3 that a be locally finite is irredun- 
dant. In view of the results in [4] there exist uncountably many distinct ergodic, 
F-invariant, a-finite, non-atomic measures on IR" which are not locally finite. 
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w 7. Closed lnvariant Sets and Minimal Sets 

One of the authors schief motivation (or justification!) in classifying invariant 
measures of unipotent subgroups has been that such a study would reflect on the 
structure of invariant subsets under the action. For instance, since any compact 
minimal subset of the action of a nilpotent group is the support of an ergodic 
invariant measure for the action, classification of the latter as in Theorem 5.1 
automatically determines all compact minimal subsets for the particular action. 
The results of preceding sections throw more light in that direction. 

(7.1) Proposition. Let G be a Lie group and let F be an arithmetic lattice in G. 
Let U be a horospherical subgroup of G. Let C be a non-empty closed U-invariant 
subset of G/F. Then there exists a U-invariant probability measure ~ on G/F such 
that the support of ~ is contained in C; i.e. x ( G / F - C ) = 0 .  

Remark. If C is compact this result follows from general results in the line of 
Krylov-Bogoliubov theorem which follow from fixed point theorems. Such 
general results, however, are not true for actions on non-compact  spaces. 

Proof of the Proposition. For simplicity we only consider the case when G 
=SL(n, IR) and F=SL(n,7/). The general result can be deduced using the same 
techniques as in w Clearly we may assume U to be a closed subgroup. As in 
the proof of Theorem 3.3 we proceed by induction on the rank of U. If the rank 
is 0 then U is the identity subgroup and the contention is obvious. Now assume 
that the result holds for all closed unipotent subgroups of rank < m - 1  and let 
U be a closed unipotent subgroup of rank m. As noted in the proof  of Theorem 
3.3 U contains a closed normal subgroup V of rank m -  1 such that U/V is either 
cyclic or a one parameter group. Also there exists a subgroup H of U such that 
U = H .  V (semi-direct product). By induction hypothesis there exists a V-in- 
variant probability measure ~z on G/F such that support of x is contained in C. 

Now let {Kq}q~= 1 be a sequence of compact sets such that for each qeN,  Kq 

is contained in the interior of Kq+ 1 and ~) Kq = G/F. Let u~H be chosen so that 
q = l  

u4=e and so that u generates H if H is cyclic. For any q e N  put 

c . 1 j=o Zq(UJX)> q for all r~]N 

where ;<q denotes the characteristic function of Kq. Clearly Cq, q~]N are Borel 
oo 

subsets of C and in view of Theorem 2.11 C =  U co. In particular we conclude 
q = l  

that there exists ~/EN such that n(C0)> 0. 
We now define a measure ~' as follows. Let {~0/}i~ t be an everywhere dense 

sequence in Cc(G/F ) (in the ' supremum norm'  topology). Put 

r - - 1  

S(i,r)= 1- ~ ~ q)i(uJx)d~(x). 
r j = 0  
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For a fixed i e N  the set {S(i,r)]reN} is bounded. Hence by the standard 
procedure of passing to subsequences we get a sequence {r~}i~ 1 such that for any 
ieN, S(i, r,) converges as I-* oe. Since {~ol}/~= 1 is everywhere dense it follows that 
for any q~eCc(G/F ) the sequence 

i r , -  1 
- F~ S q)(uJx)d~(x) 
rl j = O  

converges to a limit as 1--* c~. Thus we can define a measure rt' on G/F by setting 
the above limit to be ~ (0dT(. Let ~keCc(G/F) be such that ff(y)>O for all y~G/F 
and ~ (x )=  1 for all xeKq. Then 

rl-- 1 

~ dz(=  lim -1 ~ ~ ~(uJx) dn(x) 
l ~  r I j = O  

= l i m  ~ 1 r , -  1 
- ~ O(u~x)d~(x) 

l ~  rl j = O  

1 
>= r~(C0)>0. 

q 

This shows that ~' is indeed a non-zero measure. Also clearly r((G/F)< 1. By 
normalising r( we get a probability measure which also we denote by ~'. It is 
obvious that support of ~' is contained in C. Since u normalises V and ~z is V- 
invariant it follows that ~' is V-invariant. Also it is easy to verify that ~' is u- 
invariant. Since U=H.  V this completes the proof if H is cyclic. If H={ut}ts~, 
and u=u 1 then we define a measure ~" as follows. For  any q~C~(G/F) put 

~ q~(x)dn"(x)=~ [i tP(utx)dtl dn(x). 

Then it is easy to see that r(' defines a {ut},~a-invariant probabili ty measure 
whose support is contained in C. Also since H normalises V, ~" is V-invariant. 
Finally since U = H. V, n" is U-invariant. 

(7.2) Corollary. Let G, F and U be as in Theorem 5.1. Let C be a minimal (closed 
non-empty) U-invariant subset of G/F. Then there exists a closed subgroup L of G 
containing U and geG such that C=Lg F/F. The subgroup L also satisfies the 
condition in Remark 5.2. 

Proof. By Proposition 7.1 there exists a U-invariant probability measure ~ on 
G/F such that the support of n is contained in C. By ergodic decomposition of 
(cf. [10]) we obtain an ergodic U-invariant measure ~ on G/F whose support is 
contained in C. Hence by Theorem 5.1 there exists a closed subgroup L 
containing U and geG such that LgF is closed and the support  of ~1 equals 
LgF/F. Hence LgF/F is contained in C. Since C is minimal and LgF/F is 
closed and U-invariant we conclude that C =LgF/F. 

Observe that there is a canonical one-one correspondence C~--,D between 
closed U-variant subsets of G/F and closed F-invariant subsets of G/U given by 

D={gUlg-~FeC}.  

Hence the Corollary also determines minimal F-invariant closed subsets of G/U. 
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We can derive a similar corollary from Theorem 6.2. Let G, F, U and P -  be 
as in Theorem 6.2. Recall that  G / U - P -  U/U is a finite union of lower dimen- 
sional manifolds. We prove: 

(7.3) Corollary. Let G, F, U and P- be as in Theorem 6.2. Let J be a sufficient 
set of cusp elements for F. Let Y be a non-empty proper closed F-invariant subset 
of G/U. 7hen there exists j eJ  such that Yc~(G/U- jP-  U/U) is non-empty. 

Proof Let C be the closed U-invariant  subset of  G/F corresponding to the F- 
invariant set Y, under the one-one correspondence noted above. By Pro- 
posit ion7.1 there exists a U-invariant  probabil i ty measure n on G/F whose 
support  is contained in C. In view of ergodic decomposi t ion  the measure may be 
assumed to be ergodic. Let a be the ergodic F-invariant  measure on G/U 
corresponding to n under the one-one correspondence as in Proposit ion6.1.  
Then support  of ~r is contained in Y. N o w  if a ( G / U - j P -  U/U)=O for all j e J  
then by Theorem 6.2 cr must be G-invariant. Since Y is proper  there exists j~J 
such that a ( G / U - j P - U / U ) > O ;  In particular Y ~ ( G / U - j P - U / U )  is non-  
empty. 

Let G be a Lie group and F be a (not necessarily arithmetic) uniform lattice 
in G; i.e. G/F is compact.  Then it is well-known that  every orbit  of a horospheri-  
cal subgroup U on G/F (and equivalently every F-orbi t  on G/U) is dense. There 
are several proofs for this in literature, including one of  the present author ' s  (cf. 
[2] Proposi t ion 4.6). The proof  in [6] is perhaps the most  elegent. On the other  
hand  in the notat ion as in Corol lary  7.3, for an ari thmetic lattice G / U - P -  U/U 
is non-empty  if and only if F is non-uniform. Thus  Corol lary 7.3 may be viewed 
as a generalisation of the above result for uniform lattices to a not necessarily 
uniform arithmetic lattice. We also note  here for the benefit of  the uninitiated 
that  in a certain sense majori ty of the lattices are arithmetic. 

Arguments  along the lines of  Corol lary7.3 using Theorem 6.3 yield that  
under the natural  action of F = SL(n, 2g) on IR" via a basis {e 1, e2, ..., e,} every 

closed F-invariant  subset of IR" contains a point of  the form t ~" qiei where teIR 
i = 1  

and q~e~. In this case, however, this result is weaker than the following result in 
[1]  (af. Theorem 5.2 in [1]): The E-orbit  of  xelR" is not dense in IR" if an only if 

x is of the form t ~ q~e~ where te lR and q~Ol~. 
i = 1  
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