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Let G be a semisimple, or more generally a reductive, Lie group and let I be a lattice
in G;ie. G/I' admits a finite G-invariant (Borel) measure. Let U be a horospherical
subgroup of G; i.e. there exists geG such that U ={xeG|g/xg~7/ - easj— oo} where
e is the identity element in G. The action of U on G/I' is called a horospherical flow.
In [3] the author obtained a classification of all finite invariant measures of a
certain class of horospherical flows. In the present paper we show that if I' is an
‘arithmetic’ lattice then every locally finite ergodic invariant measure of the action
of any unipotent subgroup (a horospherical subgroup as above is always unipotent)
is necessarily finite. The first step is the following theorem.

(0.1) Theorem. Let {u,},.gx be a one-parameter group of unipotent matrices in
SL(n,R). Then every locally (finite, ergodic, {u}-invariant measure on
SL(n,R)/SL(n,Z) is finite.

Theorem 0.1 is closely related to the following result in [ 7] generally known as
‘Margulis’s lemma’.

(0.2) Theorem. Let {u,},_g be as in Theorem 0.1. Then for any xeSL(n, R)/SL(n, Z)
the *positive semi-orbit’ {u,x|t =0} does not tend to infinity. That is, there exists a
compact subset K of SL(n, R)/SL(n,Z) such that {t=0\u,xeK} is unbounded.

Certainly, in view of Theorem 0.1 for any xeSL(n, R)/SL(n,Z) the positive
semi-orbit and the negative semi-orbit cannot both tend to infinity. For otherwise
the ‘time’ measure along the orbit would be an ergodic, locally finite measure,
which is invariant under the flow but not finite.

On the other hand our proof of Theorem 0.1 involves finding a compact set K,
for the given x, such that the set {t=0|u,xeK} has positive density (cf. Theorem
2.1). As we shall show in § 3 in view of the individual ergodic theorem the last fact
implies Theorem 0.1 (cf. Theorem 3.2). Our proof of Theorem 2.1 is modelled over
Margulis’s proof of Theorem 0.2. However, besides the stronger formulation, there
is also a technical difference in our approach. We do not introduce any condition
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analogus to A2 in [ 7], which in our view makes that proof somewhat cumbersome
and unnatural.

Later we generalise Theorem 0.1 to actions of unipotent subgroups firstly on
SL{n,R)/SL(n, Z) and then more generally on any arithmetic homogeneous space
of finite invariant measure (cf. Theorem 3.3 and Theorem 4.1). In §§5 and 6 we
briefly recall the main results of [3] and reinterpret them in the light of the results in
earlier sections. As an application we prove the following result (cf. Theorem 6.3).

(0.3) Theorem. Consider the natural action of I'=SL{n,Z) on R" via a basis
{e,.e,,...,e,}. Then any locally finite, ergodic, I'-invariant measure is a scalar
multiple of either the Lebesgue measure on IR" or the counting measure on the discrete

n
orbit of a point xeR" of the form x=t ) q,e; where teR and q;eQ.
i=1

It may be worthwhile to point out that the assumption in Theorem 0.3 about
local finiteness is irredundant. Indeed in view of the results in [4] there exist
uncountably many distinct, o-finite, ergodic, I'-invariant, continuous (non-atomic)
measures which are not locally finite.

In § 7 we apply the study of invariant measures to the study of closed invariant
and minimal sets of horospherical flows. In particular it is shown that for certain
horospherical flows every minimal set arises from a closed double coset (cf.
Theorem 7.2).

At this juncture I wish to express my gratitude to Professor S. Kakutani;
Though he was not directly involved, the paper might not have been written but for
my association with him.

§ 1. Preliminaries on Lattices

Let A be alattice (a discrete co-compact subgroup) in R". For any subgroup 4 of IR”
let Ax denote the IR-vector subspace generated by 4. A subgroup 4 of A is said to be
complete (in A) if Az~ A=4. The set of all complete non-zero subgroups of A is
denoted by #(A). Let S be a subset (possibly empty) of .#(A) which is totally
ordered with respect to inclusion as the partial order. We set

B(S)={4eF(A)]A¢S and S {4} is a totally ordered subset of ¥ (A4)}.

On R" we shall fix an inner product {, ». For any subspace V let yy, denote the
Lebesgue measure on V which assigns unit measure to a parallelepiped whose
vertices include an orthonormal basis and 0. For any non-zero discrete subgroup 4
let d(4) denote the number p . (F) where F is a (any) fundamental domain of 4 in
Ag. As a convention we shall let d({0})=1.

(1.1) Lemma. Let {u,}, g be a one-parameter group of unipotent matrices in
SL(n,R). Let A be any discrete subgroup of R". Then d*(u,4) is a polynomial in t of
degree at most 2n?,

Proof. Let {e,,e,, ..., e,} be a Z-basis of 4. Then
d*(u, 4)=|det (a;(1))
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where (a;,(t)) 1 <i,j<k is the matrix given by a,,(t)=<u,e;, u,e;>. The latter is a
polynomial of degree at most 2n. Hence d*(u, 4) is a polynomial of degree at most
2n?,

(1.2) Lemma. Let A be alattice in R". Let ¢ >0. Then the set of discrete subgroups A
of A for which d(4)<c is finite.

Proof is obvious.

(1.3) Lemma. Let t be a closed interval contained in R* =(0, co) and let >0 and
nelN be given. Then there exists y =7y(z, ) >0 such that the following holds: If Aisa
lattice in R™and S is a totally ordered subset of & (A) such that

(1) d(det for all A€S and

(i1} d(4)>p for all AeB(S)
then ||z|| =y for all ze A—(0).

Proof. This follows easily from the following fact: Let 4 and A4’ be two discrete
subgroups of R” such that A€ (A4") and A'/4 is cyclic. Then for any zed’ — 4,
Izt zd(4')-d(4)~".

We also need the following alternative realisation of d(4). For p>0 let E?
denote the p'" exterior power of R" (where n is assumed to be fixed) and let E

= ) EP be the exterior algebra. Recall that E' may be identified with R". We
=0

ex{)end the norm ||.|| on E! to E as follows. Let {e,, e,, ..., e,}, be an orthonormal
basis of E!'. On EP, p>1 choose the norm so that
{e,, ney Ao ne I1Si <iy... <i,<n}isanorthonormal basis. It is easy to check
that the above norm depends only on the norm on E* and not on the choice of the
orthonormal basis. On E°=R choose any norm. The norms on E?, p=0 extend
uniquely to a (Hilbert) norm on E (which also we shall denote by (.||}, such that
{E"},. o are mutually orthogonal.

(1.4) Lemma. Let 4 be adiscrete subgroup of R"and let {h,, h,, ..., h,} be aZ-basis
of 4. Then d(d)=|h; Ahyn ... AR

Proof. Let{f,, f,. ..., fi} be an orthonormal basis of Ag. Then d(4) is |det A| where
A Ag— Agis given by Af,=h,fori=1,2 ... k. But by standard multilinear algebra
we also have.

Jhynhyn ooabl=(det A)fi A oA oA fill=]det A].
(1.5) Lemma. Let {u,}, g be a one-parameter group in SL(n, R). Then the function

v(t)=sup {dc(;(‘j;) A any discrete subgroup of IR”}

is continuous.

Proof. By Lemma 1.4 for any telR, v(t) as above is the norm of the linear
transformation Au, of E obtained as the exterior power of u,. Since { A4}, g is @
one parameter group of linear transformations our contention is obvious.
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(1.6) Lemma. Let {4}, , be a family of (discrete ) subgroups of a lattice A, where
A is some indexing set. Let t,,t,€R, t, <t, and p >0 be such that d(u, A,}>p for all
acA and d(u,4,)Sp for some acA. Let

t=inf{te[t,,t,]ld(w,4,)< p for some acA}.
Then there exists o€ A such that d(u;A,)=p.

Proof. By Lemma 1.5 there exists ¢>0 such that v(f)<2 whenever |t|<e. By
definition of Z there exist sequences {¢;} 2, in R and {«;} 2 | in A such thatt;\.7and
d(u, 4, )=p for all jeN. We may assume ¢;<t+¢ for all jeN. Then d(1;4,)
=d(w;_, -u, 4,)=2p. Hence by Lemma 1.2 the set {4, |jeIN} must be finite.
Passing to a subsequence if necessary we may assume that 4, =4 for all jeIN. Now
since t;— 7 and d(u, 4)=p we deduce that d(y; 4)=p.

§ 2. The Recurrence Lemma

The aim of this section is to prove the following.

(2.1) Theorem. Let A be a lattice in R” and let {u,}, g be a one parameter group of
unipotent matrices in SL(n, R). Let k> 1 be given. Then there exists ¢>0 and p>0
such that for any t,>0.

A{te(ty, ktodlllu, zl| Zc forall ze A—(0)} > pt,

where A is the Lebesgue measure on R such that A([a,b])=b—a foralla,beR,a<h.

We need the following lemmas as in [7]. In the sequel let Z, denote the space of
all non-negative polynomials on R of degree at most [

(2.2) Lemma. For any k>1 and 1eN there exist constants ¢,(k, 1) and &,(k, I} such
that if PeZ, P(1)=1and P(t) <1 for all t€[0, 1] then the values of P at all points of
one of the intervals

[k, k21, [k, k*], ... [k*H 1, k22
belong to [e,(k, 1), &,(k, I)].

Proof. The set of polynomials in 4 which are uniformly bounded over a closed
interval is compact. In particular they are uniformly bounded over the interval
[1, k?**2]. Thus we only need to find the lower bound ¢, (k, I). If such a bound did
not exist then for any jelN there exists FeZ] such that B(1)=1, B(t)<1 for all
te[0, 1] and each of the above intervals contains a point ¢ such that P(r)<1/j. Let
PeZ, be a limit point of {P}{. Then P(1)=1 and P has a zero in each of the [ +1
intervals - this is a contradiction.

(2.3) Lemma Forany k>1 and leN there exists a constant &(k, l) such that if Pe %,
P(t)=1 for some te[0, 1] and P(1)<%(k,[) then there exists te[1, k] such that P(t)
=¢(k, I).
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Proof. For otherwise for any jeN there exists FeZ and t;€[0, 1] such that B(t;)=1
and B(t)<1/j for all te[1, k]. Since {F} is uniformly bounded on [1, k] there exists
Pe2, which is a limit point of {P}. However P(t)=0 for all te[1, k] and P(t)=1 for
any limit point ¢ of {¢;}, which is a contradiction.

The following two lemmas may be obtained from the preceding two by linear
substitutions.

(24) Lemma. For any k> 1 and l€N there exist constants ¢ (k, [} and &,(k, I) such
that the following holds: Let c>0and 0<t, <t,. If Pe is such that P(t)<c for all
telt,,t,] and P(t,)=c then the values of P at all points of one of the intervals

[t1 "Tk(tz_tx)a iy +k2(t2—t1)],[t1 +k3(tz—t1)5 ty +k4(t2‘[1)]
L AR, =), KPR, )]

lie in the range [ce (k, 1), ce,(k, 1)].

(2.5) Lemma. For any k> 1 and leN there exists a constant &(k, 1) such that the
following holds: Let ¢>0 and 0=t, <t,. If Pe, is such that P(t)y=c for some
telty, t,], P(ty)<cetk,l) then there exists te[t,,t, +k(t,—t,)] such that P(f)
= ce(k, ).

Now let A be a fixed lattice in R", Also let k>1 be fixed throughout. Given a
closed interval t contained in IR* =(0, o), >0, a0 and {,20 we denote by
(1,8, a,t,) the set of all totally ordered subsets S (possibly empty) of &F(A)
satisfying the following.

A1l. For any 4eB(S) there exists te[0,t,] such that d*(u,,,4)=d and

A2. For any 4€S, d*(u,,,A)et for all te[t,, kt,].

a+t

(2.6) Remark. The empty subset belongs to (1, 6,0,t,) for a suitable é and
arbitrary 7 and ¢,.

(2.7) Proposition. Let A be a lattice in R" and let k> | be fixed as before. Then for
any closed interval t in (0, o) and & > O there exist constants 0 < c,< ¢, and p >0 such
that the following holds: If S is a totally ordered subset of & (A) and a=0 and
ty =0 are such that Se (1, J, a, t,) and if X and Y are the sets defined by

(2.8) X={te[ty, kty]llu,, zllZ¢, for all zeA—-{0)}
and

(29) Y ={te[ty, kty]|there exists a maximal totally ordered
subset L of B(S) such that ¢, <d*(u,,,A)<c, for all AeL}

then
AXuY)>pt,.

Proof. Clearly it is enough to find the constants ¢, ¢, and p such that the contention
holds for all totally ordered subsets S of a given cardinality, say p. We proceed by
induction on n—p. If p=n, then the result is obvious. Now we shall assume the
result for the class of totally ordered subsets of cardinality =p+1. Let t1<=(0, «0)
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and >0 be given as in the statement of the Proposition. Let 7’ be the smallest
closed interval containing t and [d%(k )e (k), 0e(k,)e, (k)] where k, =1 +(ﬂ
—1)k~“"*+2 Here and in the sequel for any k' > 1, &,(k’), &,(k’) and &(k’) denote
&,(K', 2n?), e,(k’, 2n?) and (K, 2n?) respectively. Let &' =(1/2) §&(k,). By induction
hypothesis there exist ¢}, ¢,, 0<¢; <c}, and p’>0 such that the contention of the
Proposition holds if §'es/ (1", ¥, a', ty) for some a'=0 and t;,=0, provided the
cardinality of §" is at least p+ 1. Now put p= (ﬂ —1)p'/k, ¢, =min {c], 5e(k,)e,(k),
7(t,30%(k,))} (v as in Lemma 1.3) and c,=max{c,,d%(k,)¢,(k)}. We shall
complete the proof of the Proposition by showing that with these values for the
constants the contention of the Proposition holds for any Se.<Z(z, 9, a, t,;) (for some
az0 and t,=0) of cardinality p.

Let S be any totally ordered subset of &(A) of cardinality p and let a=0 and

=0besuch that Se./(7, §, a, t ). Let ¢ >0 be such that the function v(t) as defined
1n Lemma 1.5 satisfies v( t)<]f for all t such that |t|<o. Let X and Y be the sets
defined by (2.8) and (2.9) respectively. Finally let k, —f

Sublemma. Let the notation be as above. For any se[t,, kyt,] there exists s'e(s, kg s)
such that either [s5,5Yc X or s Zs+0¢ and

MXUY)nssDzko— )" p(s —s)=k 1 p'(s'—s3).

We first show that validity of the sublemma implies that A{X U Y)>pt,, thus
proving the Proposition. Inductively we construct a finite sequence
851, ..-,5,€[tg,kto] as follows. Choose s,=t,. Now suppose s,,5;,...,5; have
been chosen. If s;¢[ty,kqtq] We choose r=i thus terminating the sequence. If
s;€[tokyty] by Sublemma there exists s;,; such that either a) [s;,s,, ;)< X and
[5;,8Y¢X for s'>s;,,; or b) slH_s +o and A(XuY)n[s,s, D=k,
—1)=' p(s;, ; —s;). Observe that in view of the construction for any i >0 either s,
—s;_ ;20 or 5;,,—Ss;=20. Hence there exists r such that s,¢[t;,kyt,] and the
sequence terminates. Now

AXuY)Z Y AXuY)n[s_ s
i=1
2(kg—1)""p z ;=S 1)
i1
=(ko—1)""1 p(s,— o)
>pty
since s,¢[ty, kotol
Proof of the Sublemma. Let se[t,,kqt,] be given. Put
€ ={4eB(S)|d*(u,,,4) <(1/2) 68 (k,)}.
We consider two cases separately.

Case i) Assume that € is non-empty.

By Lemma 2.5 for every 4% the set H(4)={te[s, k,s]|d* (u,, A)=358(k,)} is
non-empty. For 4e¥ put t(4)=inf{reH(4)} and y=sup {t(4)|4€%}. Since by
Lemma 1.1 € is finite there exists 4 such that t(4)=y.



On Invariant Measures, Minimal Sets and a Lemma of Margulis 245

By Lemma 2.4 there exists an interval s,,s,] contained in [s, k,5] such that

(a) there exists j, 0<j<2n? such that s, =s+k**1(y—s) and s, =s+ k¥ *3(y
—s) and

(b) for all te[s,,s,], d*(u, ., A)e[dE(k,) e, (k), 58k ), (k)].

LetS' =S u{4}.Itiseasy to verify that S'e.o/ (¢, &', a +5, s, —s). Here A 1 follows
from the fact that s, = s+ k(y—s)= yand A2 follows from (b), since s, — s =k(s; —s).
Since S’ has cardinality p+1 by induction hypothesis if

X' ={te[s, —s k(s; —s)Ilu, ..zl >c; for all zeA—(0)}
and

,_Jtels, —s.k(s, —s)]|there exists a maximal totally ordered
subset L' of B(S') such that ¢}, <d*(u A<, for all AeL

a+s-+t

then A( X' O Y")>p'(s; —9).

It is obvious from the definition that the set X'+ s(={t+s|te X'}) is contained
in X " [s,s,]. Also, if L is a maximal totally ordered subset of B(S) then L=L U {4}
is a maxima! totally ordered subset of B(S). Since k(s,—s)=s,—s and
d*(u, . A)e[08(k ) e (k), d8(k,)e,(k)] for all re[s,,s,] it follows that Y'+s is
contained in YN[s,s,]. Hence

MX UYL s, DZAUX +) oY +sh=HX"0Y)2p'(s; —9)
=k 1p'(s, —5).

Recall that s,€[s,kos]. Also since d*(u,, A)<368(k,) and d*(u, ., A)=06%(k,) it
follows that v(y—s)g]/i. Hence (y—s)= . But by definition s,>s,=y. Hence
$,>s+0. Thus the sublemma holds with s'=s,.

Case ii) Assume € is empty.
Consider the set

E={te[s kos1|d*(u,,,4)>16%(k,) for all 4eB(S)}.

Then by assumption s€E. By Lemma 1.3 for every teE, |u,, z|| 27(z, 50%(k,)) for
all ze A—(0). Hence E< X. If E=[s,k,s) then we are through. Otherwise let

s'=inf{te[s, kys]|t¢E}.

By Lemma 1.6 there exists A€ B(S) such that d*(u,, . 4)=358%(k,). Hence s'¢E. In
particular s'>s. Also [s,s')c E < X, which proves the sublemma.

Proof of Theorem 2.1. Recall that there exists § >0 such that the empty set @ belongs
to .7(t, 6,0, t,) for any closed interval < (0, o) and t,=0. Let c,, ¢, and p be the
constants as in Proposition 2.7 corresponding to é as above and an arbitrarily
chosen 7. Let t,=0 be arbitrary. Let X and Y be as defined in (2.8) and (2.9)
respectively, for the special case being considered. Consider any te Y. There exists a
maximal totally ordered subset L of B(®)=%(A) such that ¢, <d*(ud)<c,.
Applying Lemma 1.3 to S =L we conclude that forte Y, |lu,z|| 2y =y([c,, ¢, ], ¢’) for
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all ze A —(0) where ¢’ may be chosen arbitrarily. Hence for any te X U Y, [y, z|| Z ¢
=min {c,y} since A(X U Y)>pt, the theorem is proved.

Theorem 2.1 can be reinterpreted in terms of the action of the one parameter
group {u,},.g on SL(n,R)/SL(n,Z) as follows.

(2.10) Theorem. Let {u},.r be a one-parameter group of unipotent matrices in
SL(n,IR). Let xeSL(n,R)/SL(n,Z). Then there exists a compact subset K of
SL(n,R)/SL(n,Z) and p >0 such that for any t;>0

A{te[0, ¢} u,xeK} > pt,.

Proof. Consider the action of SL(n, R) on IR” with respect to a basis {e,,¢,,...,¢,}.
This induces an action of SL(n,IR) on the set of lattices in IR". Via this action
SL(n,R)/SL(n,Z) can be identified with the set of lattices A in R” such that d(A)
=d(A,) where A, is the lattice with {e,, e,, ..., e,} as a Z-basis. By the well-known
Mabhler criterion (cf. [8], Corollary 10.9) for any ¢ >0 the set of lattices A such that
d(A)=d(A,) and |z|| Zc for all ze A—(0) corresponds, under the above identifi-
cation, to a compact subset K of SL(n, R)/SL(n,Z). Thus by Theorem 2.1 given
xeSL(n, R)/SL(n,Z) there exists a compact set K of SL(n,R)/SL(n,Z) and p' >0
such that for any t,>0, A{te[ty/2,t,]lu,xeK} > p't,/2. Hence putting p=p'/2 we
get A{tel0,t,]lu,xeK}>pt,.

We conclude this section with a similar recurrence property for the action of
(iterates of) a single unipotent matrix ueSL(n, R).

(2.11) Theorem. Let ueSL(n,IR) be a unipotent matrix. Then for any
xeSL(n,R)/SL(n,Z) there exists a compact subset K of SL(n,IR)/SL(n,Z) and p >0
such that

| m-
— Z Wx)zp

m Jj=

Sor all meN, where yy denotes the characteristic function of K.

Proof. Given any unipotent matrix u there exists a one-parameter group {u,},_g of
unipotent matrices such that u, =u. Indeed since (u—I)"=0 for some meN, ¢

=logu= Z (=1} (u—1I)Y! is defined and consequntly u,=expt¢ defines a one

parameter group having the above properties. Let xeSL(n, IR)/SL(n,Z) be given. By
Theorem 2.10 there exists a compact set K’ and p’ >0 such that

A{tel0,to)lu,xeK'} > pt,.
Put
K={u,y|lyeK and —1=<t=<0}.

Then K is a compact subset of SL(n, R)/SL(n, Z). Clearly for jeN, u/xe K whenever
there exists tefj,j+ 1] such that u,xeK'. Hence the Theorem.
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§ 3. Invariant Measures on Lattice Spaces

Using the results of the preceding section we now prove Theorem 0.1 (and also a
discrete analogue). We need the following theorem.

(3.1) Theorem. (Individual ergodic theorem.) Let (X, p) be a o-finite (finite or
infinite ) measure space and let T (respectively {¢,},.p) be a (jointly) measurable y-
preserving transformation (resp. flow ). Then for any feI}(X, )

1m1

1 s
w 210 (resp [ 0,904

converges a.e. as m-— oo (resp. s— o). The limit function f* is contained in
LN(X, p). Also there exists a measurable T-(resp. {@,},.g) invariant set N with u(N)
=0 such that for all xeX — N, f*(Tx)=f*(x) (resp. f*(¢p,x)=f*(x) for all tcR).
Further if u(X)< oo then jf*du ffdu

For a transformation thlS is usually the first theorem that one learns in ergodic
theory. Somehow it is usually not stated for a flow in most standard books.
However the theorem for a (measurable) flow {@,},.r can be deduced by applying

1

the theorem for the transformation ¢, to the function [ f(¢,x)dt.
0

(3.2) Theorem. Let X =SL(n,R)/SL(n,Z). Let U be a cyclic or a one-parameter
group of unipotent matrices in SL{n, R). Consider the left actionof Uon X. Let n be a
locally finite, U-invariant (Borel) measure on X. Then there exists a sequence
{X,}2 | of measurable U-invariant subsets of X such that n(X,)< oo for all ieN and

T (X—— U Xi) =0. In particular every locally finite ergodic U-invariant measure is
1
finite.

Proof. Let f be a continuous function on X such that f(x)>0forall xe X and jfdn

m—1

1
=1. Let f*(x)=lim — Y f(wx)if U is the cyclic subgroup generated by u and

m— oo M j=0

S¥(x)=1lim - ff(u x)dtif U ={u,}, g By Theorem 3.1, f*(x) is defined = a.e. and is

s—»eo

contained in L1 (X, 7). We show that f*(x)>0 n a.e. Assume that U={u,},.g. Let
xe X besuch that f*(x)is defined (by convergence of the integral). By Theorem 2.10
there exists a compact set K and p>0 such that for any t,>0

A{te[0,ro]lu,xeK} > pt,
Put

f=inf{f(y)|yeK}.
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Since f is continuous and positive 6 >0. Hence

S¥(x)=1lim é}f(utx)dt>9p >0.
4]

§— 0

If U is cyclic we can produce a similar argument using Theorem 2.11.
Recall that by Theorem 3.1 there exists a measurable U-invariant subset N of X
such thatn(N)=0and forallxe X — N, f*(ux)=f*(x)forallue U. Now for ieN put

Xi={xeX—N|f*(x)>%}.

Then each X, is U-invariant. Also since f*el!(X, =), n(X,)< co. Finally since
f*(x)>0 n-ae, n (X—U Xi) =0.
1

Our next aim is to generalise Theorem 3.2 to action of an arbitrary unipotent
subgroup of SL(n, R). We recall that a subgroup U is said to be unipotent if every
element of U is unipotent. A unipotent subgroup is necessarily nilpotent.

(3.3) Theorem. Let U be a unipotent subgroup of SL(n, R). Consider the action (on
the left ) of U on X =SL(n,R)/SL(n,Z). Let 1 be a locally finite, U-invariant ( Borel)
measure on X. Then there exists a sequence {X,}{ of measurable U-invariant subsets

of X suchthat n(X,;)< oo forallie N and n (X -y Xl.) =0. Inparticular everylocally
1
finite ergodic U-invariant measure is finite.

(3.4) Remark. There is no loss of generality in assuming U to be a closed subgroup.
This is because the subgroup of elements which preserve a locally finite measure is
closed.

Proof. Any closed unipotent subgroup U admits a normal series
() =UyclU;c...clU,_,cU,=U

such that for each j=1,2...m, U; is a closed subgroup and U,/U;_, is either
cyclic or isomorphic to R. Further the length m of such a normal series depends
only on U; we shall call it the rank of U.

We shall prove by induction on the rank that if U is a closed unipotent subgroup
and n is a U-invariant measure on X then there exists fel!(X, n), f 20 and f+0,
which is U-invariant. If the rank is 1 then U is either cyclic or a one-parameter
group. In this case the assertion follows from Theorem 3.2. Now assume that the
above assertion holds for all closed unipotent subgroups of rank <mand let U be a
closed unipotent subgroup of rank m. It is obvious from the definition of the rank
that U admits a closed unipotent normal subgroup V of rank m — 1 such that U/V is
isomorphic to either Z or R. Let z be a U-invariant measure on X. By induction
hypothesis there exists fe!(X,n), f 20 and f=%0 such that f is V-invariant.

Since U/V is either cyclic or a one-parameter group there exists a subgroup H of
U,such that U=H - V (semi-direct product). By Theorem 3.2 there exists a sequence
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{X,}7 of measurable H-invariant subsets such that 7(X ;)< oo for allieN and = (X

- Xl.) =0. Clearly X, may be assumed to be pairwise disjoint. Now let f* be the
1

function defined by

£*(0)=lim — ,Z fu'x)

¥— 00

if H={u"|jeZ} and

f*{(x)=lim - jf(u x)
if H={u,},.g. Note that by Theorem 3.1 there exists a H-invariant subset N of X

such that n(N)=0 and for all xe X — N f*(x) is defined and f*(hx)=f(x) for all
heH. Now

ff*dn—z jf*dn—z | fdrn= ffdﬁ

i=1X, i=1X,

Here the middle step follows from Theorem 3.1 since X, is a H-invariant set of finite
measure. Hence f*el! (X, n) and f*#£0. Since H normalises V, f* is V-invariant.
Since U=H -V it now follows that f* is U-invariant. This proves the claim.

To complete the proof we proceed as follows. Let v be a probability measure

equivalent to 7. Let % be the class of measurable sets E such that E=| | E; where

1

each E, i=1,2... is a measurable U-invariant set and =n(E,)<oc. Put f
=Sup {v(E)|E€%}. A routine argument shows that there exists E,e% such that
v(E,)=p. If f=1 then clearly the theorem stands proved. Suppose < 1. Consider
the measure 7' on SL(n, IR)/SL(n,Z) defined by n'(E)=n(E nE7) where Eg is the
complement of E,. Clearly =’ is a locally finite U-invariant (non-zero) measure.
Hence there exists an integrable U-invariant function f such that {fd=’>0. It is
obvious that the set E, ={xeEq|f(x)>0} belongs to ¥ and v(E,)>0. This
contradicts the definition of f since EqUE €% and v(E,UE)>p.

§ 4. Invariant Measures on Arithmetic Homogeneous Spaces

Theorem 3.3 can be readily generalised to more general arithmetic homogeneous
spaces. Let G be a (connected) Lie group. A subgroup I" of G is said to be arithmetic
if there exists a linear IR-algebraic group L (the group of R-rational elements)
defined over @ and a surjective homomorphism ¢ of L°, the connected component
of the identity in L, onto G satisfying the following two conditions.

i) The kernel of ¢ is compact.

ii) Let L, be the subgroup consisting of all integral elements (with respect to the
given Q-structure) in I° with determinant +1. Then I' is commensurable with
@(Lp i.e. Tng(Ly) is a subgroup of finite index in both I and @(Ly).
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A discrete subgroup I' of a Lie group G is said to be a lattice if the homogeneous
space G/I' admits a finite G-invariant (Borel) measure. An arithmetic group which
is also a lattice is called an arithmetic lattice.

Let G be a Lie group. A subgroup V of G is said to be horospherical if there exists
geG such that

V={ueG|g'ug~/ —»e as j— 0}

where e is the identity element in G. Any subgroup U of a horospherical subgroup V
is said to be horocyclic.

We note that any horospherical subgroup is a nilpotent analytic subgroup.
Further if G is an R-algebraic group then any horospherical subgroup is a
unipotent algebraic subgroup of G. A partial converse is also true; viz. any
unipotent subgroup in a reducivte R-algebraic group is horocyclic. These results
are wellknown (cf. for instance, [5], §1 for a general idea of the proofs). The
generalisation of Theorem 3.3 sought after is the following:

{(4.1) Theorem. Let G be a Lie group and I be an arithmetic lattice in G. Let U be a
horocyclic subgroup of G. Let n be a locally finite U-invariant measure on G/I". Then
there exists a seauence { X}, of measurable U-invariant subsets of G/I" such that

n(X)<wforalli=1,2,...andn (G/F -U X,-) =0, In particular an ergodic, locally
1

finite, U-invariant measure is finite.
In the proof of the theorem we need the following lemma.

(4.2) Lemma. Let ¢: G, — G, be a surjective homomorphism of Lie groups. Let U, be
a horocyclic subgroup of G,. Then there exists a horocyclic subgroup U, of G, such
that (U} =U,.

Proof. Let V, be a horospherical subgroup containing U, . Thus there exists g,€G,
such that

V,={u,eG,|ghu,g;’ —e, as j— o0}
¢, being the identity element in G,. Let g,€G, be such that ¢(g,)=g, and let
Vi={u,eG,|gju, g7/ —»e, as j> oo}

e, being the identity element in G,. Indeed V}, i =1, 2 are analytic subgroups of G,, i
=1,2 respectively and the Lie subalgebra of V; is the maximal Adg; invariant
subspace .7 of the Lie algebra of G,, on which all the eigenvalues of Ad g, are of
absolute value less than 1. Hence we must have @(V,)=V,. Now choose U,
=V, n@~*(U,). Then ¢(U,)=U,.

Proof of the Theorem, Firstly consider the case when G is a R-algebraic group
defined over Q and I is a subgroup of finite index in G,. Since G admits a lattice
there exists no non-trivial character (algebraic homomorphism into GL(1)) of G
defined over @. Hence there exists a homomorphism p of G into SL(n, R), for some
n, defined over @ such that p(I') is contained in SL(n,Z) and the natural map
p: G/I'—=SL(n, R)/SL(n, Z) is proper (cf. [8], Proposition 10.15). Let = be a locally
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finite U-invariant measure on G/I'. Then the measure pr on SL(n,IR)/SL{n,Z),
defined by pr(E)=nr(p~ ' E) for any Borel set E, is locally finite and p(U)-invariant.
Recall that U is a unipotent subgroup of G. Hence p(U) is a unipotent subgroup of
SL(n,R). For the particular case at hand Theorem 4.1 follows immediately from
Theorem 3.3.

We now consider the general case. By hypothesis there exists an IR-algebraic
group L defined over @ and a surjective homomorphism ¢: I°—G, with
compact kernel such that ¢(Lz) and I' are commensurable. Hence there exists a
subgroup 4 of finite index in L such that ¢(4) is a normal subgroup of I" of
finite index. Now let @ be a locally finite U-invariant measure on G/I'. We lift
to a measure on I%/4 as follows. Set K =ker ¢ and let m be the normalised Haar
measure on K. Also let y,,7,,...,7, be a set of representatives of I'/@(4). For
any bounded measurable function ¥ on G/@(4) let y, be the function defined by
Vi(go )=y (gy,9(4)). Observe that since ¢(4) is normal in I', Y, is a well-

P
defined function on G/@(4). Further ) ¥, is constant over fibers of the natural
=1
map of G/@(4) onto G/I". Now let 6e C,(I°/4). Put
[ O(xdydo= | [Z ([ 6(kx 4y dm(k)}, ]
19/4 G/T

(Functions constant over the fibers of a quotient map are viewed as functions on
the quotient space in a natural way.) This defines a locally finite measure ¢ on
I%/A. 1t is straightforward to verify that ¢ is ¢~ *(U)-invariant. By Lemma 4.2
there exists a horocyclic subgroup V of I° such that @(V)=U. Since o is V-
invariant, by the special case of the theorem considered earlier it follows that
there exists a sequence {Y}”, of measurable U-invariant subsets such that

a(Y)<oo for all ieN and ¢ (LO/A - U Yi) =0. For any i,jeNN put
1

Xij={<p(x)r » {jxi(kxg)dm(k)}l%}
=1 K

where y; denotes the characteristic function of Y,. Let ueU be given. Choose
veV such that ¢(v)=u. Then

up(x) ' =@wx)I'

and
jX.(kUXA ydm(k)= | x;(v(v=* kv)x 4y dm(k)
K
= | x;(vkx 4)dm(k)
K

= [ y,(kx 4)dm(k).
X

The last step follows since Y, is V-invariant. Thus we deduce that for each i,j, X
is U-invariant. Further clearly for any ij, n(Y)>n(X,)(1/j). Hence for each
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i,j,m(X;;) <. Lastly since ¢ (LO/A - Yl) =0 by Fubini’s theorem for n-almost
1

p o
every x, 3. {{ y(kx4) dm(k)},;>0 for some i; In other words, © (G/F— U Xij>
=1k Y
=0, which completes the proof.

(4.3) Remark. The part of the assertion in Theorem 4.1 pertaining to ergodic
invariant measures is also true for an arbitrary arithmetic subgroup which is not
a lattice. This can be deduced as follows. Given an arithmetic subgroup I" of a
Lie group G there exists a closed normal subgroup H of G such that i) HAT is
of finite index in I', ii) HN I is an arithmetic lattice in H and iil) H contains
every horospherical subgroup of G. Indeed if G is a R-algebraic group defined
over Q and I'=G, then the intersection of the kernels of all characters of G
which are defined over @ has the above-mentioned properties. In general, the
image under ¢, the homomorphism as in the definition of arithmeticity, of the
corresponding group has the requisite properties. Now let U be a horocyclic
subgroup of G and let n be a locally finite, ergodic, U-invariant measure on G/I.
The sets xHI'/T', xeG form a measurable partition of G/I' and each xHI/T
=HxI/I' is U-invariant. Hence by ergodicity of = there exists x,eG such that =
is concentrated on Hx,I'/T"; i.e. the complement has zero n-measure. But the
restriction of the U-action on Hx,I'/I" is equivalent, in a natural way, to the
action of U on H/(x,I x5 ') H. Also (xqI'xg )nH=x,(I'nH)xg"' is an arith-
metic lattice in H. Viewing 7 as a U-invariant measure on H/x,(I'nH)x;* and
applying Theorem 4.1 we conclude that = is finite.

Presumably, the assertion in Theorem 4.1 for a non-ergodic U-invariant
measure 7 is also true for any arithmetic subgroup and may be proved using a
form of direct integral decomposition of 7 into ergodic measures (cf. [10]).
However the author does not wish to go into the details.

(4.4) Remark. It may be pointed out that the analogue of Theorem 4.1 is
generally not true for subgroups which are not horocyclic. We offer the
following example. Let G=SL(2, R)/{ +1}, I'=SL(2,Z)/{ +1} and

m=1(; o)

We first show that ['H is closed. Let # = {zeC|Im z >0} be the upper half plane
and let S denote the space of all line elements (a point together with a unit
tangent direction) over . The standard action of G on 4 as the group of non-
Euclidian motions induces an action of G on S. Let s, be the line element at i in
the direction of the imaginary axis. It is well-known that g—gs, is a diffeomor-
phism of G onto S. Let Q denote the set of all line elements over points in the set
{zeC||Rez|<{ and |z]=1}. 1t is easy to verify that Hs, is a closed subset of

aelR, a>0}.

0 —1 . .
Quw where w= (1 0). It is well-known that (cf. [9], for instance) S=IQ

and that for any non-trivial element yel', Y2 ~ Q is contained in the boundary of
Q. Further there exist only finitely many elements in I" such that yQ2Q is non-
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empty. Using these properties of Q it is straightforward to verify that I'Hs, is
closed. Hence I'H must be a closed subset of G,

Now consider the action of H on G/I' (on the left). In view of the above
HTI'T is a closed H-orbit, which is obviously not periodic. Let A’ be a (non-zero)
H-invariant measure on HI'/T" and let / be the measure on G/I’ supported on
HI'/T', whose restriction to the latter equal sA. Then A is clearly an infinite,
locally finite, ergodic, H-invariant measure on G/I".

Before concluding the section the author would like to thank the referee,
whose suggestions motivated the present general form of the results in this section.
In an earlier manuscript the author had employed a more restrictive definition
of arithmeticity.

§ 5. Invariant Measures of Horospherical Flows

We now relate the results of the preceding sections to the work in [3]. Let G be
a reductive Lie group and I' be a lattice in G; i.e. G/I' admits a finite G-invariant
measure. In [3] we obtained a classification of finite invariant measures of
maximal horospherical flows (see introduction for definitions) on G/I' when G
has no simple factors of R —rank>2. In view of Theorem 4.1 when I is
arithmetic (with respect to some @Q-structure) then the assumption about finite-
ness may be omitted. Thus we have the following.

(5.1) Theorem. Let G be a reductive R-algebraic group defined over Q and let I’
be an arithmetic lattice in G. Assume that every simple non-compact factor of G is
of R —rank 1. Let U be a maximal horospherical subgroup of G and let « be an
ergodic U-invariant (locally finite) measure on G/I'. Then there exists a closed
subgroup L and geG such that

i) LgT is closed and n(G/T —Lg I'/T")=0 and

ii) L contains U, gI'g~ ' nL is a lattice in L and = is the L-invariant measure
on LgI')T~L/gl'e ' L.

(5.2) Remark. The proof in [3] aiso shows that the subgroup L above has the
following property: there exists a (closed) normal subgroup V of G such that
VAT is a lattice in V and L=UV.

§ 6. Invariant Measures of Arithmetic Groups

The usefuiness of Theorem 4.1 is more apparent when we consider I'-invariant
masures on G/U where I' is an arithmetic lattice in G and U a maximal
horospherical subgroup. We need the following duality principle due to
H. Furstenberg. (cf. [3] for details)

(6.1) Proposition. Let G be a Lie group and let U and I' be any closed unimodular
subgroups of G. Then there exists a canonical one-one correspondence neg of U-

invariant measures on G/I' and I'-invariant measures on G/U such that for any
?eC.(G)
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| dn(xI) [ p(xy)dy= [ do(xU) | ¢(xu)du
r G/U U

G/T

where dy and du denote (fixed) Haar measures on I' and U respectively and ¢
denotes the function defined by ¢(g)=¢(g~ ).

Under the above correspondence ergodic U-invariant measures on G/I
correspond to ergodic I'-invariant measures on G/U. Unfortunately the con-
dition of finiteness of U-invariant measures on G/I" does not correspond to any
intrinsic property of I-invariant measures on G/U. In [3] we introduced the
following definition.

Definition. Let G be a Lie group and let U and I' be closed unimodular
subgroups of G. A I'-invariant measure ¢ on G/U is said to be I'-finite if the U-
invariant measure n on G/I' corresponding to ¢ under the one-one cor-
respondence as in Proposition 6.1 is finite.

Now let G be a reductive IR-algebraic group defined over @, and let I be an
arithmetic lattice in G. Let U be a maximal horospherical subgroup of G.
Assume that U contains a subgroup V which is a maximal horospherical
subgroup defined over @. (This assumption amounts to choosing a suitable base
point on the homogeneous space G/U.) By a Q-rational horospherical subgroup
opposite to V we mean a subgroup of the form

V- ={heG|g ihg'—>e as jo o)}
where geG is such that
V={heG|g'hg ' —e as j— w0}

e being the identity element. We note that such a subgroup exists but not in
general unique. By a @Q-rational IR-parabolic subgroup P~ opposite to V we
mean the normaliser of a subgroup of the form V'~ as above.

Now fix a minimal Q-rational R-parabolic subgroup P~ opposite to V. Let
K be a maximal compact subgroup of G. Since I' is a lattice in G there exists a
finite subset J of G and a ‘Siegel set Q corresponding to the triple (K, V, P~) (i.e. a
set of the form WS;K as in Proposition 2.3 in [3]) such that G=TJQ. A finite
subset J of G for which the above is satisfied shall be called a sufficient set of
cusp elements for I'with respect to (K, V, P™).

It is well-known that P~V is an open subset of G and that G—P~V is a
finite union of lower dimensional submanifolds. Hence the G-invariant measure
on G/U assigns zero measure to G/U —gP~ U/U for any geG. In [3] we proved
the following converse statement (cf. Theorem 2.4, [3]) for I'-finite, I'-invariant
measures o; in view of Theorem 4.1 the assumption of I'-finiteness is redundant
for arithmetic groups.

(6.2) Theorem. Let the notations G, I', U, V, K and P~ be as above. Let J be a
sufficient set of cusp elements for I' with respect to (K, V, P™). Let ¢ be an ergodic
I-invariant (locally finite ) measure on G/U. If o(G/U —jP~U/U)=0 for all jeJ
then ¢ is G-invariant.
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We now deduce the following result.

(6.3) Theorem. Consider the natural action of I =SL(n,Z) on R" via a basis
{e,,e,,...,e,}. Then any ergodic I'-invariant (locally finite) measure 6 on R" is a
scalar multiple of either the Lebesgue measure or the counting mesire on the

n
discrete orbit of a point xeR" of the form x=t ) g,e, where teR and q;eQ for i
i=1
=1,2,...,n

Proof. We shall actually prove the following slightly stronger assertion: Let ¢ be
an ergodic [-invariant locally finite measure on R"*—(0) (i.e. a priori the
measure of a neighbourhood of 0 may not be finite). Then o satisfies the
contention of the theorem.

We proceed by induction on n. If n=1 the assertion is obvious. Now consider
the action of I'=SL(n,Z) on IR" via a basis {e,, e,,...,¢e,}. Let G denote the
group SL(n, R). Let Q be the isotropy subgroup at e, of the action of G on R”
—(0) via the basis {e,,e,, ..., e,}. Since the action of G on IR"—(0) is transitive
R"—(0) may be identified with G/Q. Let U be the subgroup of G consisting of all
upper triangular unipotent matrices. Then U is a maximal horospherical sub-
group of G and it is contained in Q. The measure o, considered on G/Q via the
identification, is I'-invariant and by Proposition 6.1 corresponds canonically to
a Q-invariant measure © on G/I'. In particular n is a U-invariant and hence
corresponds to a ['-invariant measure on 6 on G/U.

Now let P~ denote the subgroup consisting of all lower triangular matrices.
Then it is easy to verify that P~ is a @-rational R parabolic subgroup opposite
to U. Also note that I' is a lattice in G and that {e} is a sufficient set of cusp
elements for I'; (cf. [8], ch. X). Hence by Theorem 6.2 § is G-invariant if and only
if 5(G/U—P~U/U)=0. It is also easy to verify that 6(G/U—P~ U/U)=0 if and
only if ¢(V—(0))=0 where V' is the subspace of R” generated by {e,,e;, ..., €,}.
Thus if 6(V —(0)) =0 then ¢ is G-invariant; that is, ¢ is the Lebesgue measure (up
to a scalar multiple).

Next suppose that o(V—(0))>0. Let #  denote the class of all proper
subspaces W of R" such that W is generated (as IR-subspace) by certain elements

of the form Y q,e;, where ¢,€Q, and o(W)>0. Then #" is non-empty since
i=1

Vew. Let We#" be an element of minimum possible dimension. Let I
={yel|ly(W)Y=W} and I'"={yel|y/W=Id}. Then I/’ is isomorphic to
SL(m,Z) where m is the dimension of W. Also the action of I on W corre-
sponds to the natural action via a basis {f}, f5,...,f,} where each f;, j

=1,2,...,mis of the form ) g,e; where q,€Q.
i=1

Consider the measure ¢’ on W—(0) obtained by restriction of ¢ (ie. o'(E)
=¢(E) for any Borel subset E of W —(0)). Then ¢’ is I"-invariant. We claim that
o' is ergodic under the IM-action. Let E be a measurable I” invariant set such
that ¢'(E)>0. Let yeI'—I" be arbitrary. Then yEnWcyWnW+W. Since
We# is of minimum possible dimension yWn W¢#". This is possible only if
o(y W W)=0. Now consider E'=| ) yE. Since ¢ is ergodic under the I'-action

yel
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and ¢(E')20(E)>0 we must have ¢(R"—(0)—E')=0. In particular ¢'(W —(0)
—E')=0. Hence ¢'(W—(0)—E)=0(W —(0)—~ E")+ 6(W n(E'—E))=0. Hence ¢’ is
ergodic with respect to the I"-action. By induction hypothesis (upto a scalar
multiple) ¢’ is either the (restriction of the) Lebesgue measure on W or the

m n

counting measure on the discrete orbit of a point x=¢ ) q;f;=t Y g;e; where
ji=1 i=1

4;-9;€Q and teR. In the latter case clearly ¢ is the counting measure (upto a

scalar) on the (discrete) I'-orbit of x. We complete the proof by showing that the
former is impossible.

Suppose that ¢’ is the (restriction of the) Lebesgue measure on W. We fix a
norm .| on R™ For any subspace L of R" let 4, denote the Lebesgue measure
on L such that a parallelepiped whose vertices include an orthonormal basis and 0
is assigned unit measure. By normalising ¢ if necessary we may assume ¢'=4,,.
Now let

A={xeR"|1<|x| <2}

It is easy to verify that there exists yel such that y/¢ I for any jeZ —(0). As seen
before since We# is of minimum possible dimension, o{W Ny W)=0 for all
jeZ —(0). Hence

a(A)2Y a(YWnd)=Y o(Wny 'A)

o0

=Y Ag(Wny I A)

=3 law(WaA)-Ju)
where J(y~Y) is the Jacobian of the linear transformation y~//y/W: ny—> w,
equipped with norms obtained by restriction of ||.|. Now let {hl, h,,...,h,} be
an orthonormal basis of W and h=h,Ah, A ... AK e/\ Wc/\IR" Then by

Lemma 1.4 J(y~H)=|[(A y~/) h||. Also note that by choice of A for any subspaces
W', W" of dimension m, A, (W' nA)=Ay .(W"nA)=C say. Hence

o(4)z i CIA )kl =C 2 1A 2 .

Since o is locally finite g(4) < co. Hence (A 7)) h—0 both as j— + oo and as j—

m m
— 0. But since A y is a non-singular linear transformation of A IR" and h+0
this is impossible.

6.4 Remark. The hypothesis in Theorem 6.3 that ¢ be locally finite is irredun-
dant. In view of the results in [4] there exist uncountably many distinct ergodic,
I-invariant, ¢-finite, non-atomic measures on IR" which are not locally finite.
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§7. Closed Invariant Sets and Minimal Sets

One of the authors schief motivation (or justification!) in classifying invariant
measures of unipotent subgroups has been that such a study would reflect on the
structure of invariant subsets under the action. For instance, since any compact
minimal subset of the action of a nilpotent group is the support of an ergodic
invariant measure for the action, classification of the latter as in Theorem 5.1
automatically determines all compact minimal subsets for the particular action.
The results of preceding sections throw more light in that direction.

(7.1) Proposition. Let G be a Lie group and let I' be an arithmetic lattice in G.
Let U be a horospherical subgroup of G. Let C be a non-empty closed U-invariant
subset of G/I'. Then there exists a U-invariant probability measure n on G/I" such
that the support of © is contained in C; 1e. n(G/I'— C)=0.

Remark. If C is compact this result follows from general results in the line of
Krylov-Bogoliubov theorem which follow from fixed point theorems. Such
general results, however, are not true for actions on non-compact spaces.

Proof of the Proposition. For simplicity we only consider the case when G
=SI{n,R) and I'=SL(n,Z). The general result can be deduced using the same
techniques as in §4. Clearly we may assume U to be a closed subgroup. As in
the proof of Theorem 3.3 we proceed by induction on the rank of U. If the rank
is 0 then U is the identity subgroup and the contention is obvious. Now assume
that the result holds for all closed unipotent subgroups of rank <m—1 and let
U be a closed unipotent subgroup of rank m. As noted in the proof of Theorem
3.3 U contains a closed normal subgroup V of rank m — 1 such that U/V is either
cyclic or a one parameter group. Also there exists a subgroup H of U such that
U=H-V (semi-direct product). By induction hypothesis there exists a V-in-
variant probability measure 7 on G/I" such that support of n is contained in C.

Now let {K }° , be a sequence of compact sets such that for each geN, K,

is contained in the interior of K, , and | ) K,=G/I'. Let ueH be chosen so that
=1

q
u=e and so that u generates H if H is cyclic. For any gelN put

1r

~1
Cq=§xeC - x(Wx) 2
rico

l for all re]N}
q

where y, denotes the characteristic function of K,. Clearly C,, geN are Borel

subsets of C and in view of Theorem 2.11 C= | ) C,. In particular we conclude
qg=1
that there exists geN such that n(C,;)>0.
We now define a measure n' as follows. Let {¢,;}2, be an everywhere dense

sequence in C (G/I) (in the ‘supremum norm’ topology). Put

1 r—1 .
S(i, r)=; -Zo | @, x) dn(x).
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For a fixed ielN the set {S(i, r)[reIN} is bounded. Hence by the standard
procedure of passing to subsequences we get a sequence {r,};> ; such that for any
ieN, S(i,r) converges as [ —co. Since {¢,;}> ; is everywhere dense it follows that
for any @eC.(G/I') the sequence

- z | oW x)dr(x)
f j=o
converges to a limit as I - co. Thus we can define a measure 7’ on G/I" by setting

the above limit to be | @dn’. Let yeC(G/I') be such that y(y)20 for all yeG/I’
and ¥(x)=1 for all xeK,. Then

ri—1

fl//dn—hm— Z f ¥ x) dn(x)

—’OOIJ—

-—hmjA z (' x) dn(x)

[ 110

This shows that #' is indeed a non-zero measure. Also clearly n'(G/I)=1. By
normalising ' we get a probability measure which also we denote by #'. It is
obvious that support of #n' is contained in C. Since u normalises V and = is V-
invariant it follows that ' is V-invariant. Also it is easy to verify that ' is u-
invariant. Since U=H -V this completes the proof if H is cyclic. If H={u,},.g
and u=u, then we define a measure =" as follows. For any ¢ C (G/T") put

| @) dn"(x) j[yq)(ux)dt]dn()

Then it is easy to see that n” defines a {u,}, g-invariant probability measure
whose support is contained in C. Also since H normalises V, n” is V-invariant.
Finally since U=H - ¥, n” is U-invariant.

(7.2) Corollary. Let G, I' and U be as in Theorem 5.1. Let C be a minimal (closed
non-empty ) U-invariant subset of G/I'. Then there exists a closed subgroup L of G
containing U and geG such that C=LgTI'/T'. The subgroup L also satisfies the
condition in Remark 5.2.

Proof. By Proposition 7.1 there exists a U-invariant probability measure 7 on
G/I" such that the support of z is contained in C. By ergodic decomposition of n
(cf. [10]) we obtain an ergodic U-invariant measure 7, on G/I" whose support is
contained in C. Hence by Theorem 5.1 there exists a closed subgroup L
containing U and geG such that Lgl is closed and the support of x, equals
Lgl'/T. Hence LgI'/T is contained in C. Since C is minimal and LgI'/T is
closed and U-invariant we conclude that C=LgI/I.

Observe that there is a canonical one-one correspondence C«— D between
closed U-variant subsets of G/I' and closed I'-invariant subsets of G/U given by

D={gU|g 'TreC}.

Hence the Corollary also determines minimal I'-invariant closed subsets of G/U.



On Invariant Measures, Minimal Sets and a Lemma of Margulis 259

We can derive a similar corollary from Theorem 6.2. Let G, I', U and P~ be
as in Theorem 6.2. Recall that G/U— P~ U/U is a finite union of lower dimen-
sional manifolds. We prove:

(7.3) Corollary. Let G, I', U and P~ be as in Theorem 6.2. Let J be a sufficient
set of cusp elements for I'. Let Y be a non-empty proper closed I'-invariant subset
of G/U. Then there exists jeJ such that Y n(G/U —jP~ U/U) is non-empty.

Proof. Let C be the closed U-invariant subset of G/I' corresponding to the I'-
invariant set Y, under the one-one correspondence noted above. By Pro-
position 7.1 there exists a U-invariant probability measure © on G/I" whose
support is contained in C. In view of ergodic decomposition the measure may be
assumed to be ergodic. Let ¢ be the ergodic [-invariant measure on G/U
corresponding to = under the one-one correspondence as in Proposition 6.1.
Then support of ¢ is contained in Y. Now if ¢(G/U—jP~ U/U)=0 for all jeJ
then by Theorem 6.2 ¢ must be G-invariant. Since Y is proper there exists jeJ
such that ¢(G/U—jP~ U/U)>0; In particular Y~(G/U—jP~ U/U) is non-
empty.

Let G be a Lie group and I' be a (not necessarily arithmetic) uniform lattice
in G; i.e. G/I' is compact. Then it is well-known that every orbit of a horospheri-
cal subgroup U on G/I' (and equivalently every I'-orbit on G/U} is dense. There
are several proofs for this in literature, including one of the present author’s (cf.
[2] Proposition 4.6). The proof in [6] is perhaps the most elegent. On the other
hand in the notation as in Corollary 7.3, for an arithmetic lattice G/U — P~ U/U
is non-empty if and only if I' is non-uniform. Thus Corollary 7.3 may be viewed
as a generalisation of the above result for uniform lattices to a not necessarily
uniform arithmetic lattice. We also note here for the benefit of the uninitiated
that in a certain sense majority of the lattices are arithmetic.

Arguments along the lines of Corollary 7.3 using Theorem 6.3 yield that
under the natural action of I'=SL(n, Z) on IR" via a basis {e,, e,, ..., e,} every

closed I'-invariant subset of R" contains a point of the form t ) g;e; where teR
i=1

and ¢,€@. In this case, however, this result is weaker than the following result in

[1] (af. Theorem 5.2 in [1]): The I'-orbit of xeIR" is not dense in R” if an only if

x is of the form ¢ ) g,e; where teRR and ¢,€Q.
i=1
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