g

Pramana, Vol. 15, No. 5, November 1980, pp. 301-505. © Printed in- India,

Classical ¢°field theory in (1+1) dimensions 2. Proof of the
existence of domain walls above the transition point

S N BEHERA and AVINASH KHARE*t
Institute of Physics, Bhubaneswar 751 007, India
*Department of Theoretical Physics, The University, Manchester M13 9PL, UK.

{Permanent address: Institute of Physics, A/105 Saheed Nagar, Bhubaneswar
751 007, India

MS received 27 August 1980

Abstract. The existence of a domain wall-like contribution to the free energy above
-the first order phase transition point is demonstrated for a system described by the
#8-field theory in (1--1) dimensions. ‘ : :
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1. Introduction

In an earlier paper (Behera and Khare 1980a; hereafter referred to as I) the dynamics
and thermodynamics of the ¢®-field theory in (14-1) dimensions were extensively
studied. The use of the $¢-fiéld theory as a model for first order structural phasé tran-
sitions (see I and the references therein) was also discussed. Of particular importance
to the problem of structural phase transitions is the existence of domain wall-(kink)
like solutions, which are responsible for the occurrence of the central peak pheno-
mena. It was shown that these domain wall solutions exist below the transition point
(a < 9/8, notations are same as in D), the latter being determined by the parameters
of the #8-potential. However, the exact evaluation of the free energy of the system
in this regime revealed that the tunnelling-like contribution expected for the domain
wall free energy is absent i.e. identifying the domain wall free energy as the exact
free energy minus the phonon part, it was found to be large and proportional to 7
instead of exp (—const/T). In the concluding section of 1, it was conjectured that the
presence of local minima in the ¢$-potential, above the transition point, ie.
9/8 << a < 3/2, will lead to the existence of a tunnelling-like contribution to the free
energy which can explain the experimentally observed central peak in ferroelectrics
at temperatures above 7.. The purpose of the present paper is to prove this
conjecture.

The plan of the rest of the paper is as follows. In § 2 an upper bound to the ground
state energy eigenvalue of the corresponding Schrédinger equation (see I) for the
¢8-potential will be calculated for o 9/8. This will then be used to calculate the frec
energy using equation (62) of I, and the existence of a domain wall-like contribution
will be demonstrated. The concluding § 3 is devoted to the discussions of the results,
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1. Calculation of free energy above the phase transition point

Tt was shown in 1 that the evaluation of the free energy of the system reduces to the
solution of an equivalent eigenvalue problem given by (some of the essential results
of I are repmduced for the sake of completeness)
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“The free energy of the system can be written in terms of the ‘ground.sté.te eigen value
g as ' o
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In 1, equation (1) was solved exactly for the case a(=9BC[2| 4 12)<<9/8 when certain
constraints on the coupling constants 4, B, C are satisfied. We now show that for
a>98 (i.e. above the phase.trapsition point) even though the ground state energy
cannot be caleulated exactly, stringent upper and lower bounds on it can be obtained.
‘Let us first notice that if ’ T '
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Hence the ground state energy
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where' the equality holds if é.rid"’only if the solution ¢ (4) of the equation
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is square integrable. The solution ¥ (¢) which we normalise by
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However, since ¢ (4) obeys
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Hence following Herbst and Simon (1978 1979) we can obtain a lower bound on €
i.e.we have the following stringent upper and lower bounds on it
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In order to determine the constants Ny and N,, the trial function is chosen to be
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so that the boundary conditions are satisfied at ¢ = + (|4]2C}" and o is the
variational parameter. On minimising the energy with the trial function (14) and

after some complicated algebra one gets
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In evaluating equation (15), it has been assumed that C is small. On evaluating the
free energy from equation (4) (using equation (2)) in the limit of T'— O yields;
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3. Conclusion

It is clear from (17) that the free energy has a part corresponding to phonons
and a part corresponding to tunnelling or domain walls. The domain wall
contribution (Fy,,,) bas a structure similar to that obtained by Krumhansl and

Schrieffer (1975) (KS) in the case of the ¢3-field theory. The domain wall contribution
vanishes either as T-»0 or as C—0. This suggests that for a > 9/8, i.e. above
the phase transition point, there exists a domain wall contribution to the free
energy. However, such a contribution does not appear below the phase transition
point (a<9/8) as was demonstrated by an exact calculation in § 4-2 of 1.

In order to compare the oscillatory part of the free energy (Fo.) a8 given by
equation (17) with that of the phonons, one can estimate the later following KS.
In doing so one has to note that ¢ =0 corresponds to the absolute minimum of the
potential, hence for small oscillations around ¢=0. Linearisation of the equation
of motion (equation (11) of I), yields the phonon dispersion to be

= CigtQBm, o
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which is the same as that of the ¢* theory of KS., Thus the phonon free energy be-
comes
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which is the same as that of equation (17) for 7-0. On the other hand if one assumes
small oscillations around one of the local minima ¢ = L (| 4[/2C)2, then
following the procedure of I, the phonon free energy can be written as (7 0)
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which is much larger than the F s given by equation (17). This is physically reason-

able because it costs more energy to make the particles oscillate about the local
minima, which are higher in energy than the absolute minjmum of the potential

at¢ = 0.
Finally it is worth pointing out that, proceeding as in § 2 it is eagy to show that,
for

a -——g[l + (_?._C_)”J‘"‘ < 9/8;
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~ the Hamiltonian of the system can be written as
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where A(d) = —

thereby the result obtained in I is reproduced.
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