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Abstract. Exact solutions for the motion of a classical anharmonic oscillator in the
potential V(¢)=Bgp*— | A| ¢4+ C4® are obtained in (1 + 1) dimensions. Instanton-like
solutions in (imaginary time)" which takes the particle from one, maximum of the
potential to the other are obtained in addition to the usual oscillatory solutions. The
energy dependence of the frequencies of oscillation is discussed in detail. This can be

~obtained. Finally, a qualitative explanation is offered for the observed central peak
in ferroelectrics like SrTjO,. : - T .
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1. Introduction

In recent years the study of structural phase transitions in ferroelectric orystals has
attracted lot of attention. It is well known that such a transition is associated with soft
phonon modes whose frequency decreases as the temperature approaches the critical
value (7.) from above (Lines and Glass 1977). - Another puzzling feature associated
with this transition is the development of a- central peak near zero frequency in the
dynamic structure function whose width is negligible, and the strength increases as T,
is approached. 1In order to understand the soft mode behaviour one takes recourse
to two different models namely the order-disordei and the displacive phase transi-
tions (Bruce 1978). Even though some understanding of the soft mode concept is
achieved (Lines and Glass 1977), till recently no proper understanding of the central
peak has emerged (Krumhansl ad Schrieffer 1975).

-One-dimensional model- calculations have proved to' be greatly useful in dealing
with the problem of structural phase transitions, as it provides a non-perturbative
approach for strongly anharmonic systems, in spite of the fact that it does not show
a phase transition at finite temperature. One of the first such studies.was due to
Onedora (1970), who studied the dynamics and thermodynamics of classical anhar-

monic oscillators, moving in the potential
Y@=, a0
This~pot'er;ti,a‘l .dévélop,s a 'dbu‘blc-wéil character fbirt B<O,and _ﬁimﬁlates a second

order phase transition at B=0. Taking into account the coupling between the oscil-
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lators within a mean field approximation, he could calculate the susceptibilities of the
system from the knowledge of the dynamics of a single oscillator. This model could
accoun: for the soft mode behaviour. However, the weakness of this model lies in
its mean field approximation. The next significant development was the work of
Krumhansl and Schrieffer (1975) who considered the corresponding (1+-1)-dimen-
sional classical field theory problem which admits non-perturbative (Kink) solutions
which they identified to be domain walls. Their major contribution is the realisation
of the fact that both phonon and domain wall-like excitations determine the low
temperature behaviour of the system. The model shows a central peak-like pheno-
mena which occurs only below T, in terms of the parameters of the potential, in
contradiction with the experimental observation of the same at 7 > T,. However,
this being a one-dimensional model, strictly speaking the transition occurs only at
T=0, and in that sense the central peak does appear above T. Similar results were
also obtained by Varma (1976), Halperin and Varma (1976) and Aubry (1976). Fur-
ther evidence in support of the existence of the domain walls or clusters came from the
molecular dynamics calculations (Schneider and Stoll 1975, 1976) in one- and two-
dimensions and quantum mechanical calculations (Bishop et af 1976). Recently
Bruce et al (1979) have calculated the distribution function for two-and three-dimen-
sions using renormalisation group techniques which further confirms the existence
of domain walls in systems undergoing structural phase transitions. Thus it is clear
that domain wall solutions do play an important role in structural phase transitions
and that there may exist a relation between these and the observed central peak.

All the theories mentioned above have considered models exhibiting second-order
phase transitions (¢%-field theories). It is well known that for this transition the soft
mode frequency goes to zero at the transition temperature. However, a careful
analysis of the experimental data on SrTiOj (Shapiro et al 1972) indicates that the
phonon frequency remains finite as T T.. Qualitatively similar behaviour has. also
been observed in a number-of other perovskites (see Halperin and Varma 1976 for
references) and a variety of other materials. This suggests that the transitions are, of
first order (Lines and Glass 1977) rather than second. Hence, it may be worthwhile
to consider a model exhibiting first-order phase transition and examine whether it
can explain the observed soft mode and central peak behaviour. This is the task to
which we address ourselves in this paper. '

We consider the one-dimensional model potential

V@) =B+ A$+CH%; C>0, - ¥
which is- essentially the free energy expé.ris‘ioh in t'he,‘ca.‘se of thé structural pliase
transition problems. This model corresponds to a first order phase transition if -

LB>0, A<0, B T
and 0 <a(=9BCPR|A® <32. - (3b)
The last condition follows from the consideration of the extrema. of equation (2), i.e.
only in this case the potential has three minima, (which are essential for a first-order

phase transition in contrast to the second-order case of equation (1) where there arc
only two minima) at S oL E R
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with ¢3=2 |4 |/3C. At the phase transition point (1=9/8) all the three minima are
degenerate. The potential for different values of @ is plotted in figure 1, The positions
of the maxima in this figure are at T ‘ S ‘ ’

1 Yot '
binax /45 = .[1—(1~-—‘—1) ] (5)
2 3 : o
The value of the potential at these extremum points are (¢ #0) |
1 2\ 8/2 ’ : .
yas i[(a,_l)i (1~?“) J B .. | 63)
V=4 |4|322¢2. (6b)

Further, as can be seen from figure 1 at ¢ =3/2 there is only one minimum at ¢ =0
and a point of inflation at ¢2=|4|/3C. It is worth noting that as a decreases from
9/8 to 0, the order parameter ¢, increases from (|4l/2C) 2 to the maximum value of
(2|4]/3C)*?; with further decrease of @ from 0 to — 0, ¢, decreases and asymptoti-
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Figure 1. The plot of the potential (V(4)/V,) as a function of (¢/40) for different
\galges of the parameter a: (1) 10, (2) 2, (3 1.5, (4) 1.35, (5 1‘125’.(6) 1, (7) 0.5 and
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cally approaches its starting value of (|4|/2C)'/2. For 4 > 0 one always has a second-
order phase transition, the transition taking place at B = 0.

In this paper we shall show that this model system (equation (2)), under different
conditions, can account for both the order-disorder and the displacive transitions.
For the order-disorder transition it is essential to have the solution of the classical
anharmonic. oscillator problém characterised by equafion (2).. This is done in § 2,
where we show that the exact solutions are thé Weirstrass” functlons (Ablamothz
and Stegun 1965). We also obtain the explicit energy "dependence of the classical
frequencies and discuss its relevance to the central peak phenomena in § 3. Further
the low and high temperature behaviour of the’ ‘polarisability is calculated in the
mean field approximation following Onedora (1970) in § 4..

In the concluding § 5, we summarise the results obtained in this paper; and present
a qualitative picture of the central peak. The next paper in this series is devoted
to a detailed discussion of the dynamics and thermodynamics of the corresponding
classical ¢S-field theory (Behera and Khare 197%a).

In carrying out the calculations below, the energy and length are measured in units

of V, = 4]A PP/27C* and 4, = (2 [4l/ 3C)12 respectwely wherever explicit mention
of these is not made.

2. Structural phase transition

The model we have in mind is the one where at every lattice site the particle expe-
riences an on-site potential given by equation (2). For the order-disorder transition
'it is necessary that the on site well-depths are made larger compared to the intersite
coupling. The intersite coupling which will be assumed to be quadratic in ¢(~ydé,)
can therefore be treated in the mean-field approximation. Following Onedora (1970)
it can be shown that the dynamic susceptibility of such a system can be written as

o S@ ,
X = T ey "

where f(w) represents the classical dynamic polarisability of non-interacting anhar-
monic oscillators. The imaginary part of f(w) is given by

(o0}

Im f(w) = _t“_% exp (iwt) { ¢ (0)$(2) Do at, (8)

-~ 00

where the average (>, has to be taken with respect to the non-interacting system.
1t is thus clear that for the evaluation of the dynamical susceptibility the solution of
the single anharmonic oscillator is necessary.

2.1. Solution of the single anharmonic oscillator

Consider a classical particle of mass M movmg in the potentlal given by equation (2).
The equation of motion 1s

M¢+2B¢+4A¢3+60¢5—0 TR ©
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Integrating this equation one obtains the énergy E of the. system as

E=Yd g B gty

which when f"urthef"i'ntegré.ted gives

s
=G| [E — B# — Agt — Cgoiis”

(I

We should consider the cases (a) >0 and (b) £<0 separately since the solutions are
going to be different in the two cases.

In this case equation (11) can be reduced to the form

( 1 aC )
o W 2[4]e
~(2eV0/M)1/2 f= f an ——gj:—-gg)m’ | 12 r :f | |
where g :,3?46%(%:‘*""1—/91;4'—6), o : (132) ; S
a8 k)

where €= E[V, w1th a and ¥, given by (3b) and (6b) A useful qua,ntlty thch
characterlses the motion of the particle is -

A=g?—27g2, , o (14a) SEEUN Y

=%3[-—462 -I—,%{, G.(.l.—a) +§,(1m,§§)]. | (1@) k .‘ ‘

Equation (12) is a standard integral which can be expressed in terms of Weirstrass’ !
functions as follows ‘

1/g2(s) = /mwt&wd | s

NAl ¢

It follows from the propertles of the Welrstrass functlons tha.t as > 0,4~ 0. How-
ever if one chooses the boundary condition that at =0, ¢=¢min (Which could be
one of the minima of the potential, figure 1) then the solution takes the form

aC

W O= 5.+

[sa (M 149 (¢;fm ~3 ﬁﬁ e) > 823 g"’]'
| | (16)
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It can be shown that in the limit of C->0 (and.A4 > 0) these solutions reduce to the
Jacobi elliptic functions as obtained by Onedora (1970).

‘These solutions (equations (15) and (16)) take different forms depending on
whether A > 0, A <0 or A=0. From here onwards we shall only consider 4 <0
which is relevant to the case of first-order phase tramsition. It can be seen from (14)
that o o '

@ a>3/2, A <0, B

(i) a=3/2, A<0fore> 0(e # Vinflation)s

(i) 9/8 <a<3/2,A< 0 for 0 < € < Vioe. min and € > Vmax; A > 0 for
Vioe. min < € < Vmax : :

(iv) a=29/8 A> 0for Vmin <€ < Viax and A < 0 for € > Vmax

(v) a<9[8,A>0 for Vpmin < € < Vmax and A <0 for e > Vmax

(vi) A =0ate= V7 forall a.

For A 2 0, the solutions (equation (15)) can be expressed in terms of Jacobi elliptic
functions (see Abramowitz and Stegun 1965). For example in the case of A > 0

Sn(~yt4 zt|k)

#e) = — v b
el oo o)

where ey = — 3(k-+1) [gof3(k2—k-+ 12 (18a)

z = (2 € Vo M)/ ' (18b)

and y is the real root of the cﬁbic equation. - |

ya—ggz y2+%g§y~~% =0. (19)

The parameter 0 < k < 1is éﬁiea.sure of the degree of anharmonicity and is given by
k=3{1 £ Bl o (0

Equation (17) is an oscillatory solution, with frequency
© wjw, = myl/t [¢| A] [6aC] K(k), . 2n

where the Sn function has a period of 4K(k), K(k) being the normal elliptic integral
of the first kind, given by ° . :

o | oiwnsaw, @
0
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and o is the harmonic frequency =~
wo = (B[ M)V, - (23)

Similarly for A < 0, the solution ('eélua.tion (15)) takes the form

Sn(—y1'* zt|k)

¢(t) = e 1 ac 1/22
[yl/“ Cd? (—y* zt| k) + (32 —}-m) .5.’?12 (fyi“ zt| k)]
@9
: . 1‘~—2/c)2 172 ' o
where - €y = | 8a( it ] , . 25
’ [3(l6k2-16k+1) | ' - ®)
and y, is the real root of the cubic equation |
3 A
8 ] "2 —_— 0.
y]_ 4g231+.16 R e (26)
For this case the parameter k is given by
o8y @
k=1 —V31 4 8)7| o @
2 2 4y , ( )

and its allowed values lie in the range 0 < k < 4. The frequency of oscillation is now
given by

wfwy = m(c |A]] 6aC)V2 yHYK(K). | SR B o | (is)

Finally let us consider the case A=0. For a <3/2, A—=0 is possible if either (i)
8 >0, g5 <0or (ii) go >0, g5 > 0. The former holds at e=Vp,x and the latter
at e==Vpin. For case (i) the solution is given by (Abramowitz and Stegun. 1965) -

vy aC o a1
WO= e T @ e s e e (29)
_ aC e : -
=2IAI€+ga. N | (29b)

Note that unlike the solutions given by (17) and.(24) this solution is not oscillatory.
It has the property that as ¢ - 0, 4(z) - 0, while as t - 4 00, ¢(d=0) = == dmax as
given by (5). Thus as ¢ goes from —co to oo the solution (equation (29)) takes
the particle from one hill top of the potential to the.other i.e. it is an instanton
solution in imaginary time (for a review see Jackiw 1977). One could also write
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down solutions with the boundary condition that ;nitially the particle is not .at
¢=0, but at one of the other minima (¢min), which using (16) can be written as,

ey =2 — L o4 S U P
CTATE R, Lo A R
_ e aC 3_ N _‘—_—a—c_— B 12y 2
| Hmiﬂ 21A|e)_ ?2("6“3?“ " 2[Ale g?”) | g"’]. Z
Y A |
x[# ( mm”‘ztmle)] , | (30)

where @ is defined by (29b). As ¢ — = o equation (30) takes the particle from ¢min
to the hill top. It may be interesting to note here that in the corresponding field
theory case such solutions (kink) take the particle from one potential minimum to
the other as x goes from — oo to -+ (Behera and Khare 1979%a).

For the case (i) the solution is given by -~ o

¢—2(r)=2]aC g S @1

Ale sin? (V'3 (go/12)V% 2t)

In contrast to the case (i) these are oscillatory solutions oscillating around’ ¢=0:
There exist similar solutions around the local minima too,

‘At a=3/2, A=0 corresponds to gs==g,=0 (¢ =1/4) and gives rise to. the interesting
solution g o :

W) = BClAP) + CMVyd. . . (2
This solution has the property that at ¢ = 0, ¢ (0) = 0 while as 7~ + oo, qls -
4 (|41 3C)V* which is the point of inflation of the potential. Hence (32) represents
a sticking solution. '

() E<O

In this ‘case equation (11) can be reduced to the form

.__‘(.,s.—a +W%cl—l?l) |
ekt [ g .
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and the‘parameter A" bécomes

'16lA}3[
A P e

4 4]e[(1—a) 4—‘3’-—'2(1 ~§ )] (35)

As || <1, always A">0. The solutions of (33) are again Weirstrass’ functions and
for the initial condition that at 1 = 0, ¢ = $min- these are given by

1 aC
e R e 21 el V. M2
$2() 2 [A] ] P Q| VoMYt
:@ | (( min® 2“”"'_"“"] A l l < l) > g29 g3 )- . (36)

Following the procedure of the £ >0 and A = 0 case the solutions (equation (36))
can be expressed in terms of Jacobi elliptic functions, and it can be shown that the
frequency is given by :

@

(o] ) == mpst (| | | A | J6aC) 2 K(k), (37)

where y, is the real root of the cubic equation

3 7 9 ’ !
yg—iggyé—k Tégzzy-‘%*i%':o’ - (38)
and k=31 £ [B(g; — ya)/yal*] (39)

with 0 < k& < 1.

In the special case of a==0 (i.e., B=0) the frequency expressions (equations (28)
and (37)) are invalid. It can be shown that for this case

(@la) =74 (<] | A]/6CHa /K (0, <0, (402)
my V2| e| | A]/3CH2K (k), € <0, | (40b)

3. Discussion of results

The energy dependence of the parameter &, which measures the degree of anhar-
monicity, (k=0 being the harmonic limit) is numerically calculated using (20),
(27) and (39). The results are shown in figure 2 for the particular cases of a=1-35,
- 1125 and 1 which correspond to points above, atand below the phase transition
respectively. It can be seen that k has two allowed values for A > 0, which are
complementary -to-each other such thadt kgt-ks=1.- However, for A< 0 it has
only one value which lies between 0 and L. As e - 0, k 3 (1—4/3/2) irrespective
of the value of . Below the.phase: transition 0 <a <9/8, k has two branches
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Figure 2. The degree of anharmonicity as measured by & plotted as a function of
energy «; for different values of a.
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Figure 3. The frequency (w/w,) versus energy (¢)
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— g =1.35
-==0a=150

1.0

(UJ/UJO)

° 0.1 e 02 03

Figure 5. The {requency versus energy for @ = 1.35 and 1.5
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Figure 6. The frequency versus energy showing the high energy behaviour for a = 1 .
1.125, 1.35,1.5,2 and §

for Vmin <€ < Vmax and only one branch above Vpax. On the other hand
above the phase transition (9/8 <<a < 3/2) k has only one branch for 0 < € < ¥ local
minand e > Vmpax but two branches for Viocal min < € < Vmax. Hence there will
be corresponding number of branches for the frequencies as well (as a function
of €). Figures 3 to 6 show the energy-dependence of the frequencies as calculated
from (21), (28) and (37). The general features of the energy-dependence of
the frequencies at Pmin» Vlocal min and Vmax, where A=0 can be inferred from the
above equations (i) for 0 <a <<9/8, it is clear from (19) that at € = Vinjn A=0 and
y=(3/4)g, and hence from (20) it follows that k=0 and 1. Since the period
K(k=1) =00 and K(k=0)=m/2, using (13a) it follows that the corresponding

P—2
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10— o r——

(w/wg) S

0 | |
1.0 1125 5
a

Figure 7. The frequency versus a for € =005, e =01 and € = 10

frequencies will be 0 and 149 | Venin| [63)V* respectively. A similar analysis for
e=VWocal min="0 indicates that the two frequencies are 0 and 1 respectively. On the
other hand at e=Vmax,» depending on whether this point is approached from below
or above, the frequencies are 0 and (1-9 Vimax/a®)"/ 4 for the former and. (1-9 Vinax/a?)V*
for the latter. Thus the continuity of the frequencies in one of the branches is main-
tained. This behaviour of frequency curves is depicted for the sample case of a=1in
figure 3. (ii) At the phase transition point (i.e. a=9/8), the variation of the frequencies
with, e is given in figure 4. The behaviour is the same as discussed in case (i) except for
the fact that in this case all the three minima in the potential (see figure 1) are degene-
rate, as a result there are no local minima. (iii) Above the phase transition point (i.c.
9/8 < a < 3/2), there is a single branch of frequency for 0 < e < Fiocal min its value at
¢=0 (the absolute minimum) being 1, and at €==Viocal min D€ing (1-9 Moc. min/a®)V4.
On the other hand for Vioc. min < € < Vmax, there are two frequency branches ancl
the frequencies are again given by 0 and (1 —9¢/a?)V/* at e=V]oc, min a8 Well as Viygy-
Thus again the continuity of the frequencies is maintained. Figure 5 shows these
curves for a=135 and 1-5. It is worth noting that for a=1'5, there is a single branch
of frequency for the entire range of ¢, and it shows a dip at the point of inflation of”
the potential curve (figure 1). This feature persists even for a>3/2 as can be seen
from figure 6. The dip in frequency is clearly marked for the curve corresponding;
to a=2, but becomes more shallow for a=5. As ¢ further increases the frequency
increases monotonically and asymptotically approaches = 1-5 €/3/al/%

It is interesting to follow the variation of the frequency for a given energy as i
function of the potential parameter a, which in the present model is equivalent to
following the frequency through the phase transition. From figure 7 we see that
for e < 0-25 (see figure 5) there are two frequency branches. For the higher frequency
branch the mode corresponding to say e=0-1 softens as one approaches a, (=1'123
the critical value) from above with a non-vanishing value at a,, which further decreases
as one goes below @, This is the expected soft mode behaviour for a first-order
phase transition. On the other hand for the low frequency branch the mode corres-
ponding to e =0-1 hardens with decreasing . It is interesting to note that a similar
behaviour has been anticipated earlier (see Bruce 1978). For e > 0-25 (say e=1)
the mode frequency always increases as a approaches a, from above and continuey
to do so even below a,. S

Yet another interesting feature which emerges from figures 3, 4 and 5 is that for
a < 3/2 even at finite energies there are zero frequency vibrations. As one approache g
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a, from above the energies corresponding to the zero frequency modes decrease.
This is to be contrasted with the second order phase transition (Onedora 1970) where
the zero frequency modes exist only at ¢ = 0. Its relation to the central peak is
further discussed in the concluding section. :
4. Calculation of static susceptibility
Making use of the results of the previous section the static and dynamic susceptibili-
ties of the system can be evaluated by using equations (7) and (8). In this paper,
however, we will restrict ourselves to the low and high temperature dependence of
the static susceptibility only. It can be obtained (Onedora 1970) from equation 7
by putting w=0, i.c.

x(0) = (fO)/[1 — »AO)]), (41)
where JO0) = {¢*>/kpT. (42)

For our problem {¢2>, is given by
. :
o =2 [ db 42 exp [V ($)], 43)
— 00 -
where the classical partition function Z is

Z=[dpexp [—BVH)], (44)

with V(¢) given by equation (2). Unfortunately these integrals cannot be evaluated
exactly; but one can nevertheless obtain the high and low temperature behaviour of

x(0). .
In the limit of large temperatures (44) and (43) can be approximated by

w .
Z=(Cp)s f dy exp (—)°) [l — BC-8 218 y2 - [ 4| C-23 pUB pop ],

(45)
© |
and  ($g 2 2 (CH [ dyy? exp (— p9) [1— BC-Us gan e
+ 4| CHBRYS pt 4 L], | (46)

Equations (45) and (46) when evaluated gives

0) & T4/ (CkZ)-1% [T(R)T(H)] X o

_GIOTO ~T®)| 4 comjovogsn s ]
[ - T 24lem gt s
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1t is interesting to note that in contrast with the case of second-order phase transition,
where '

f(O) __._T._;_.I...._.),. T—-l/i?.

(Onedora 1970) in the present case the dependence is T2/,

In the low temperature (T < 1) limit, equations (44) and (43) can be approxi-
mated by

Zo (B2 [ dyexp(—)?) [L+ | 4| B2yt — CB2F=2 5. ], (49)

—00
ve}
and (#29e = Z71 (BB [ dy y* exp (—p®) [1+ [ 4] B2~y
—CB2 235 +....]. (49)

On evaluating these integrals f(0) becomes
FO) =B [1+3[4|B2kp T+ .., (50)

Thus in the low temperature limit the leading term in f(0) is temperature-inde-
pendent, which is also the case for the second order transition (Onedora 1970).

One can also calculate the transition temperatures (T,) and its v dependence from
(41) following Onedora (1970).

5, Conclusions

We summarise below, the main results of the present paper, and using these a quali-
tative explanation of the central peak phenomenon is proposed. Exact solutions
have been obtained for the motion of am anharmonic oscillator in the ¢® potential.
Tn addition to the usual oscillatory solutions, we also obtain instanton-like solutions
which take the particle from one maximum to the other as time t goes from —co to
- 00. In the limit of # - ix these solutions go over to the domain wall (kink) solution
of the corresponding classical field theory (Behera and Khare 1979 b). The energy-
dependence of the frequencies of oscillations corresponding to various solutions is
studied in detail. It is shown that for a given energy there is a single frequency for
a > 3/2 but there can be two frequencies branches for 0 < a < 3/2in certain energy
ranges. It was further shown that for ¢ < 0-25, there exists a mode whose frequency
softens with decreasing potential parameter a, attains a nonvanishing value at a,, and
decreases further below ¢, showing typically a first-order phase transition. However,
simultaneously, there exists another low frequency mode which hardens. Finally,
the low and high temperature behaviour of the static susceptibility of the system is
calculated, within the mean field approximation. We would like to emphasise one
featurc of the [requency-energy curves (figures 3, 4 and 5). It can be seen that for
9/8 << a < 3/2, there appears zerd frequency vibrations at e == Vo (5#0) and also at
€ = Vige min (# 0). OB the other hand for 0 < a < 9/8, the zero frequency vibration
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occursat e ==V . (#0)and at e== Vinin (of course there are also zero frequency modes
at zero energy for 0 <Ca < 3/2 but these are notrelevant for the discussion to follow).
Since ==V .. is an unstable point for the particle the zero frequency modes asso-

ciated with these will not carry any physical significance. On the other hand the
zero frequency mode at ¢ = Vimin Which appears below the phase transition (a<a,)

will be masked by the appearance of the Bragg peak and hence will be difficult to
observe. Thus the only observable zero frequency mode will be for 9/8 < a < 3/2
corresponding to the metastable position of the particle at the local minima. We
believe that this will correspond to the observed central peak. As a>a, from above
the value of (=¥} . .. ) decreases; while the barrier which the particle sitting at the

local minima sees increases. Thus as a -+ a, from above, the number of particles at
the local minima will increase, which in turn will increase the strength of the central
peak; and ultimately at a =a,, the central peak will have a large strength. This pro-
vides a qualitative cxplanation of the central peak phenomena observed in ferro-
electrics. This picture is further corraborated by a study of the corresponding classical
field theory (Behera and Khare 1979b). It is interesting to mote that a similar
picture has also been proposed by Bruce (1978) from altogether different con-
siderations.

The present calculation being a mean-field one will reflect all the limitations of the
approach, when the statistical mechanics of the system is carried through in detail.
In particular, it will not provide a satisfactory description of the critical phenomena
associated with structural phase transitions. Hence we calculate the statistical mecha-
nics of the system, not in the present model, but for the ¢S-field theory which is done
in the following paper (Behera and Khare 1979a).
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