e

g

%%ﬁuggz —

Pramana, Vol. 15, No , September 1980, pp. 245-269, © Printed in India.

Classical ¢$°—field theory in (1-+1) dimensions. A model for
structural phase transitions

S N BEHERA and AVINASH KHARE*

Institute of Physics, A/105 Saheed Nagar, Bhubaneswar 751 007 , India

*Present address: Department of Theoretical Physics, University of Manchester,
Manchester, M13, 9PL, England.

MS received 7 April 1980

Abstract. The classical ¢¢ -field theory in (1+1) dimensions, is considered as a model
for the first order structural phase transitions. The equation of motion is solved
exactly; and the presence of domain wall (kink) solutions at and below the transition
point, in addition to the usual phonon-like oscillatory solutions, is demonstrated.
The domain wall solutions are shown to be stable, and their mass and energies are
calculated. Above the transition point there exists exotic unstable kink-like solutions
which takes the particle from one hill top to the other of the potential. The partition
function of the system is calculated exactly using the functional integral method
together with the transfer matrix techniques which necessitates the determination of
the eigenvalues of a Schrodinger-like equation. Thus the exact free energy is evaluated
which in the low temperature limit has a phonon part and a contribution coming
from the domain wall excitations. It was shown that this domain wall free energy
differs from that calculated by the use of the domain wall phenomenology proposed
by Krumhansl and Schrieffer. The exact solutions of the Schrodinger-like equation
are also used to evaluate the displacement-displacement, intensity-intensity correlation
functions and the probability distribution function. These results are compared
with those obtained from the phenomenology as well ‘as the ¢4 —field theory. A quali-
tative picture of the central peak observed in structural phase transitions is proposed.
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1. Introduction

The structural phase transition (SPT) observed in ferroelectric crystals is usually
associated with a soft phonon mode whose frequency decreases as the temperature
is lowered towards its critical value (7.) (Lines and Glass 1977). Besides the soft
phonon mode a central peak near zero frequency is also observed in these transitions.
The central peak is characterised by a negligible width and its strength grows as one
approaches T, from above (Riste et al 1971; Shapiro et al 1972).  Even though,
some understanding of the soft mode has emerged the central peak phenomenon still
remains a puzzle (Bruce 1978). Conventionally, in describing the SPT one takes
recourse to two different types of models namely the order-disorder and the dis-
placive transitions. - Whereas in the former case the on-site energy of the atoms is
much larger than the intersite coupling, in the latter case the reverse is true. However,
lately it has been realized that both these transitions can occur within the same model
(Bruce et al 1979). The major advancement in the understanding of SPT, and in
particular the central peak phenomenon has emerged from one-dimensional model
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calculations, as these provide a nonperturbative approach to strongly anharmonic
systems. It may however be noted that these models do not show a phase transi-
tion at finite temperature. .

The first significant calculation of this type was due to Krumhansl and Schrieffer
(1975) (KS) who considered the ¢* field theory in (1-41) dimensions as a model for
SPT. In particular they identified the kink solutions with domain walls and showed
that the low temperature behaviour of the system is determined by both phonon and
domain wall-like excitations. They also calculated the statistical mechanics of the
system making use of the WKB approximation and found that at low temperatures
the domain wall contribution to the free energy is exponentially small. In this model
the domain wall solutions are identified with the central peak phenomena, however
these exist only below the transition curve of the ¢# potential. Similar results have also
been obtained by Varma (1976). Halperin and Varma (1976) applied the renorma-
lization group technique to this model. Aubry (197 6) performed molecular dynamics
calculation for the ¢4-field theory and showed the connection between the domain
wall solutions and the peaks in the dynamical structure function. = Further evidence
in support of the connection between the domain walls or clusters and the central
peak came from the molecular dynamics calculations of Schneider and Stoll (1975,
1576) in two dimensions; and the quantum mechanical calculation of Bishop et al
(1976).

All these ¢ models exhibit second order phase transition for which it is well-known
that the soft mode frequency goes to zero at transition point. However, experimen-
tal data on SrTiO, (Shapiro et al 1972) and other perovskites (see Halperin and Varma
1976 for references) indicate that the soft mode frequency does not vanish at T,
which is indicative of a first order rather than a second order phase transition. With
this in mind recently we (Khare and Behera 1980 hereafter referred to as I) have
proposed an anharmonic oscillator model which exhibits first order phase transition,
and applied it to SPT within the mean field approximation. In this paper we go be-
yf)nd the mean field approximation by considering the ¢¢-field theory in (14-1) dimen-
sions. A short account of this work js given in Behera and Khare (1979).

In § 2 we discuss the dynamics of the ¢8—field theory. In particular we show that
the. exact solutlc.ms of the field equation are the Weirstrass’ functions; Kink or do-
main wall solgtmns of finite energy are shown to exist below the phase transition
point and then'. energy is calculated. Oscillatory solutions and the corresponding
3§§f§§’3§2§°“? ;:; also obtained. In addition to the kink solutions an exotic
Bill top (maxim:)oof thte energy are shown to exist which take the _particle from one
physical interpretation eflzl;)tellcljtlal to the o?her; as x goes fron? —0o0t0 + 0. The
disorder and diSplaciveoha e nk _apd C}.(Otl(f: solutlops and their relevance to order-

( phase transitions is discussed in § 3. § 4is devoted to the cal-

ng the dispersion relations obtained in § 2, the
T8y at low temperature is evaluated. The differ-

m of non-interacting kinks is also estimated, and
+ In § 5 we calculate the displacement-displace-
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ment, intensity-intensity correlations and the probability distribution functions.
Finally we conclude by summarizing the results of the paper in § 6.

2. Dynamics of ¢¢-field theory

We consider the following model Hamiltonian for the one-dimensional lattice
1, 1 . |
H= -z-m ¢+ V() +:—2 Ci; (b — )% ¢))
i i, |
where the on-site potential is given by

V) =B¢t + A4t + C45, C>0, | @

and the last term in equation (1) describes the nearest neighbour coupling which is
quadratic in ¢. The continuum limit of equation (1) will represent ¢%-field theory
and is given by

H= [ & tdm @iy + 3 m CL@BI + ¥ @ ©

where [ is the lattice constant and C,, is the velocity of sound. Equation (3) can be
easily converted to the standard field theory Lagrangian which is renormalizable
in (1+41) dimensions. The on-site potential (equation (2)) whose average value
essentially corresponds to the static free energy of the system exhibits a first order
phase transition if

9BC
2[4

B>0,A<0and0<a(5 )<3/2. S )

Under these conditions the potential (free energy) has three minima (which are essen-
tial for a first order phase transition) at ‘ ’

e :
H=0. Ginlhd) = s+ (5T -
with ¢ = [2| 4]/3C]?. The maxima of the potential occur at o
1 2a\}1} | . - -
Th¢ value of the potentia_l at th;: extrema are (¢ # 0) | ‘
(Vmax/ Vo) = lli (a—1)4 (1 ——"%5)312], | a | (7)
min 2 3 :

where Vo= (4| 4[3/27C?). The potential for different values of a is plotted in figure 1
of I. This being a one-dimensional model, in what follows we envisage a phase
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transition in terms of the potential parameter a. It can be seen that at the first order
phase transition point a.=9/8, all the three minima of the potential are degenerate,
While for 32> a~ a. there are two degenerate local minima and an absolute
minimum at ¢=0, for 0 < g < a, there are two degenerate absolute minima and
one local minimum (at ¢ = 0). At a=3/2 there is only one minimum at ¢ =0and
two points of inflation at ¢=—-(| 4 |/3C)!2; while for a >3/2 there is a single well,
At and below a=0, the potential has a double well structure similar to the ¢4-field
theory. It may be worth mentioning that for '

A4>0,C>0, - " 8)

this model exhibits a second order phase transition, the transition occurring
atB=0.

2.1. Solutions of field equations

The equation of motion for the field as obtained from equation 3) is

m%ﬁ*mﬂ%§g+23¢—4A&+6C&=ﬁh ©)
On substituting ,
LG =f(x—01), |  (10a)
S=x—v1)/¢, & =m(C2—»)2 B, (10b)
in equation (9) we have
2
e+ 20, ay

For C=0, 4> 0and B <0 this equation reduces to the well-known Ginzburg-
Landau equation. Tt is instructive to compare (11) with the equation of motion for
the corresponding single anharmonic oscillator (see equation (9) of I). As s—ir
equation (11) goes over to equation (9) of I; in other words the field dynamics is
essentially equivalent to the particle dynamics in an inverted potential or equi-
valently in the Eucledian space. As we shall see this correspondence can be
exploited for obtaining the various solutions of the non-linear field equation (11).
Equation (11) can be integrated to obtain ,

(df1dS)* — g2 +'§Jﬂ—§fﬁ=en, - 12)

where unlike the case of I, ¢ is‘an arbitrary constant and not the energy of the system,
On further integrating (12) we have

f
S:f Fipyp @
e Vot =1Ly ]
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We will consider the cases () € >0, (b) € < 0 separately.

(a) € > 0: In this case (13) can be reduced to the form

1+ aC
2| 4] e\d 737214 e
€
—( 3aC) §= f [dn/(4n*—g2 n—8)* ], (14)
2 2
where ga:i-3£'F (_‘:_2_}_29)’ (153)
Cs (a8, 21 a, 27 | ,
T T\ Tz ate/ 15b)
" IAal(e3+2ez+e) o

The solutions of (14) can be expressed in terms of Weirstrass functions (Abramowitz
and Stegun 1965).

T R CC P

This solution takes different forms for A —<>~ 0, where A is defined by

16|43 . 8
A Egg—27g§=_.V|g_TJ[-4ea+4e(1 ——a)+§-(1 ——§a)]. (17

(Equations (14)-(17) are analogous to the correspondmg equations of I for E < 0).
From (17) it follows that

() a>9/8,A <0,
(i) a=9/8, A=0at e=0,A <0 otherwise,

(i) @ <9/8, A> 0 for e < — (V0 Vo)
=0 for € = — (Vpinl Vo)
A <0fore < — (VyunlVo)

First let us consider the solutions for the case of A =0. Fora = 9/8 (= a.) and
€ = 0, starting from (13) one finds two kink (domgin wall) solutions (Khare 1979)

F® = 4 (|A|4CPA [+ tanh ST, (182)
f® = F (| 4|/4C) [1 — tan h S]H. | (18b)

It follows from (18) that the width of these domain walls is A, = 2¢. The solutions
F@ @ have the property that as S goes from — oo to 4 oo, f™ goes from 0 to
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1 (] 4]/2¢)t and simultaneously J® goes from F /(| 4]/2¢) to 0; which are the
three absolute minima of the potential. Hence in (18) the upper signs correspond
to the kink (domain wall) solutions and the lower signs to antikink solutions. ‘On the
other hand for a < 9/8, and A=0 (e =— Vmin/¥o) there is only one domajs
wall solution, which is given by

=+l

3'Ca(l+_
a2

1/4
sin h (1 + ?E) S
a2

{1‘—}_; (1 _(1 +?f)-1/z) sin h? (1. 4 96)1/4 S }112‘

a? a

(19a)

As S goes from — oo to + oo, we again find that J(S) goes from one absolute
minimum to the other. The width of the domain wall in this case turns out to be

-4 : .
ae=2(142™ | (19b)

It can be easily checked that for ¢ — 9/8, this reduces to 2¢.

In contrast to the case of A =0, for A Z 0 the solutions are oscillatory and can be

expressed in terms of Jacobi-elliptic functions (Abramowitz and Stegun 1965). For
A > 0 the solution is given by

8=+ Sn [y (2| 4]|<¢/3 Ca)l’2 $| k] :
{ym + (e _ Ca )Snz [~y 2| 4] /3 Caj'ie S| k] i "
P 2[4l |

(20)
where e = — 3 (k+1) [g,/ 3(k® —k -+ 1]t (2
k=314 3 —»pH1n, (22)

and y is the real root of the cubic equation
P =3+ gy — all6 =0 o

3 %7 v

The quantity 0 < k < 1 measures the degree of anharmonicity of the oscillations:
It can be checked that in case of extreme anharmonicity, (k=1) the solution (20)
goes over to the kink solution given by (19). Using (10b) together with the fact that

the S» function has a period of 4K(k) (K(k) being the normal elliptic integral of the
first kind), the dispersion relation for these oscillations can be written down as

2 /2
wf—_——vzqz-_:cng_‘” Y*|4|eB

ot 24
3Cak2()m @9
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The frequency e, will only be real if

i jale o1 o

= -
q/[scgcczxz(k)m

Similarly for A << 0, the solution is

Sn [—yiit 2| 4] €/3Ca)ti2 S| k]

{y}fz Cdﬂ[- 14 (2 | 4] ¢/3Ca)' S|K] + (ez ~3TA] e)
2|AI€)1/2 }}1/2 ‘
2 [yl Sk 2
><Sn[yi(aca »,l ‘ | N (6)
where e, =[ g (1 — 2Ky ]‘1/,, | @7)
3 (16k2 — 16 k+ 1) ,
k %[1 ‘%30432/@1)*”], o<k<t @8
and y, satisfies the cubic equation
¥} — 3yt +A/16=0. | (29)

The dispersion relation for this case is the same as that given by (24) except for the
fact that y is replaced by y,.

(b) € < 0 : In this case equation (13) can be reduced to the form

_1,_aC__
, AT ITAl el
lalleyss_ (" dr )
3aC , 47 gy n—g "
v 3C*[ a 9 ' T
where g, = [ —_ -»:|, : ‘ (3D
[AP L Te|l] -
cs asd 27 a 27 , ‘
' 32
= g e el "
and one.can deﬁne A’ as
., o 16] 4 | _
v =gt = 27gi =l el 4l e

s e
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Again these equations compare with the corresponding equations for E < 0-of I.
The form of the solutions will depend on the value of A’; which for

Da>32 A'<0
()a=32A" <0 for|e|>0but|e] 3 (= Vina! Vo)

(i) 32> a> 98 A" < Ofor (V,; [V > | | > 0,
and | €| > (Vpax! Vo) A’ > 0 for Fain/ V0 < €| < (Vpax! Vo)

() @ <98 A > 0for (V/Ve) > | €| > Oand A’ < Ofor e |> V.
Finally (v) A’ =0at|¢| = (¥ minjmax! Vo

For A’ = 0 (case (v) there are two possibilities namely g, > 0, g > 0 which happens
at €| = (V.x/Vo) and g, > 0, 8; < 0 which is the case for |e| = (V;,/V,) and

hence is only possible for 3/2 > a > 9/8. The solution for the former case can be
written as '

3aC (1 9] [)m
A =3TaT [1+(1—"9'£'§”I)1/2]_2|A,(]E, 9]e|)cf,4s '
‘ sin? l—-—=)

(33)

As is obvious from (33) for small S, f(s) is imaginary, so that the solution in the pre-

sent form is unphysical. However, if s— iS, i.e. v > C,» then the solution is accept-
. able and is given by

114
sinh(1~9|:l) s

' f‘-—‘-il: ZIAlngll 112]1'2 - 9[e[\ 2P
L= ] {20
cain o124, 1 | T
a
where § =iS = .-(_x_:f.t.)__ z? (35)
@ —CPEN T

This solution has the very interesting property that at s — 0, f(0) =0 and as s goes
from — o0 to 4 co, J(5) goes from one hill top (maximum) of the potential to the
other. Hence such a solution exists only for 3/2> a> 0. This again is a kink like
localized solution and is very similar to the solutions as given in equations (29) of I.
The physical interpretation of this solution will be discussed in the next section. As
far as we are aware such localized solutions for the field theory are written down for
the first time; and its interpretation deserves more attention,




¢8 —field theory and structural phase transitions 253

For a=3/2 and A’ =0 (g3=0, g; =0), yet another interesting solution exists, for
v > ¢, which is

s
— 3
[ =+ (9 C)m [1+§s2]1/2, (36)
4]

having the property that at s=0, f(0)=0, while as s goes from — oo to -} oo, f(s) goes
from — (] 4|/3C}2 to +- (] 41/3C) which are the points of inflation of the potential
curve. This again is a kink like, sticking, localized solution. Equations (34) and
(36) are the inverse of the instanton solutions obtained by going back from the
Fucledian to the Minkowski space.

For the other case of A’ == 0 (where g3 < 0) the solution can be written as

I\ 2|ifﬁ ](l_ﬂﬂ)m
1 aC 9 el \12 € a
f2=|2z‘1ll<f|[1—(l—_I ) ]—sinhz(l—%—zl)mS'

(37

As S goes from — oo to -+ 00, £(S) goes from one local minimum of the potential to the
other, but becomes unphysical around S =0. The situation can again be salvaged if
2 > C,, in which case the solution reduces to an oscillatory form given by

sin (1 — 2_]»5_])1/4 s
a2

o 2|4fle] T ___ |
o~z
o : | )114 s}m. (38)

X sinz(l—— €
a

and the dispersion relation is given by

P

e

1
w?=1g* = Clq® + (1 ___9{€|) 22B

a? m
which is optical phonon-like.
For A’ > 0 the physical solution exists for » > C, and is oscillatory, given by

/
ypr=_2%__ .4+ S (40)
214 || Sz(ﬁy;u\/2lz4l,|els.|1—-k)
¢ 3Ca

where ey, k and y, are given by equations (21), (22) and (23) respectively with g3, g5,
A replaced by the corresponding primed quantities. Equation (40) reduces to'(37)
for k=0. In this the dispersion relation becomes L

niy5* 4| || B

“W=rE=Cd e m

(4D
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Finally, for A’ < 0, the solution (with » > C,) becomes

yre_% __, yé’zndz[yy“(Z[AHe'BCa)l/zs[l~—k]
AT T T S B @ AT« [ ST =7

“2)

where again e,, k and Y3 are given by (27), (28) and (29) respectively with g,, g,

A~ 83 &3 A. The dispersion relation for this case is the same as (40) with y,
replaced by y,.

3. Physical interpretation of the solutions

Here we shall discuss the properties of the various localized and oscillatory solutions
obtained in the last section. The localized solutions are expected to be of finite energy.
We shall also show that these solutions are stable against smooth, local but otherwise

arbitrary perturbations of the dynamics because .of topological charge conservation.
The topological current can be defined as

Jus =<, 8, 765 0;((£) = 0,1) @

where €,, 18 an antisymmetric tensor of rank two (—ep=—e€p=1, ¢ = ¢gy = 0).
Since by construction u j# =0, the corresponding topological charge

0= [ i) dx = [ft+ w0, 1) — fie a0, o], (44)

is conserved, and will be nonzero for the localized solutions,
3.1 Domain wall (kink) solutions

3.1a Domain wail energy: We shall first calculate the domain wall energies associated

with the solutions given by equations (18) and (19). which is given by (Bishop 1978)
Cof 2mB \12 * \
Ep=_"9_<"7 2= 2 45a
D=5 (l—vz/cg) f ds (dfldsy;* =mp, C3 - ( )k
-0
Cof 2m i D
=0 m ‘ ‘ 1/2 45b
l(l—v’-lcg) [ #w(n+eny (45b)
o © | | o
* 1
where mp = 5 f ds (dfds)? . (45¢)

is- the domain wall mass. In deriving these equations use has been made of the fact
that the energy is measured fro

m the bottom (minima) of the well to which the par-
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ticle is carried by the domain wall solutions as - + co. Using solutions (18a) and
(18b) for the transition point (a = 9/8) equation (45a) yields

Co 1 ‘ I 22 |2 = E ( ___”_2_)-1/2 46a
Ep =2 (m2) e X 1— G =Ep |1 ai) (46a)
1 1
d « —_m — (B/CH= (46b)
an mp =g m lf( /C)
On the other hand for a < 9/8, the solution (19) yields
_Co (o |2]4]2 _v”)‘”’
Ep= T(m/2) 2 o 1 ’c_g X
¢ F (3, 5/2,11/4, ) T (11/4) @7

e e
(3"

where Y= — , (48a)
LR
and the (iomain wall mass turns vout to be
oy Te F (3,5/2, 11/4' y) T (11/4) .
(B/ 2! =n “Oo\ifk 128 '
(1 + ) [1 “(1 + ) ] T2 T (1/4)
e .
(48b)

and F is the hypergeometric function (Abramowitz and Stegun 1965).

3.1b Topological charge: The topological charges for these domain wall solutions
as obtained from equation (44), (18) and (19) are given by :

0 = & (|4|[2C)" = 4 ¢, for a, =98, @
and 0 ==%2(]4 /3C)1/2[1 (1 —2_3‘5)”2]”2 — + 24, fora<If.
(49b)

The -t signs correspond to the kink and antikink solutions respectively. It is worth
noting that at phase transition point (equation (49a)) Q is nothing but the order
parameter for SPT, whereas for @ < 9/8 it is twice the order parameter. It is
needless to say that for @ > 9/8, the order parameter vanishes which is also reflected
in the. absence of a kink solution. From (44b) we notice that as a decreases from its
critical value the order parameter increases reaching the maximum value of
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(2[4]/3C)2at a=0, and on decreasing a furtherits value decreases and asymptotically
approaches the starting value of (|4| 2C)Y2, ‘ :

3.1c Stability analysis: Let us now discuss the stability of the domain wall solutions
(Aubry 1976). If a small perturbation is given to the system, then the static (v=0)
domain wall solutions get modified as

Jx, 1) = fo (¥) + f1 (%) exp (—iw?),

which when substituted in the equation of motion (equation (9) and linearized
yields the following eigenvalue equation for f;; h

T PR s
[maZ+ievem, law=whiem. (50

The stability of the solution £ (x) is guaranteed if w is real. As is well-known £ (x)
= (8 /4/0x) is an eigenfunction of (50) with w?=0. If one can show that SO (%)
is nodeless, (that is, it is the ground state of the system) then the stability of fj (x)
is established. For our solutions (18a, b) and (19) f© (x) are given by

SO @) oc [1F tanh (x/£)] [1 & tan h (x/€)]*/2 for @ = 9/8 (51a)
cos h(l + 9_6)”4 /&)
a? 0

{1 - 1[1 —(1 + 9_5)“1/2] sin h? (1 —f—-g—E)M x/fo,} "
3 a? at

for a < 9/8.

with ¢;=¢ (v=0), which are clearly nodeless; thereby establishing the stability of the
domain wall solutions, It may be interesting to solve the Schrédinger-like equation
(50) and see whether in addition to these translational modes (Goldstone modes)
at w=0, other bound states exist. For the case g =9/8 (solution (18)) it is possible to
do so (Khare 1979) and it turns out that there are no other bound states in the system.

However, for a < 9/8 (solution (19)) the effective potential. is rather complicated,
and we have not been able to solye equation (50).

FO) o (51b)

3.2 Exotic kink solutions

Hcm we shall calculzf.te the field energy and topological charge for the kink-like solu-
tions given by equations (34) and (36) which take the particle from one hill top to the
other as S 80es from — 0 to 4 co. The field energy can be calculated from (45) with
the modification that § i replaced by s and the factor (1 —*[CHL2 by (2*/CE—1)112;

besides the energy is to be measured with respect to the maxima of the potential.
The field energy thus obtained is given by

- _C m 12| 4|2 (52 -1
ED—T’_O«/’E Clalzl (”_2__ 1) X
2 c?
% || FB, 52, 11/4,

va (1 “g'i“:“l)m [1 +(1 *%)M]a T (sl;zgl i{?l./‘t)‘ -(52)
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2(1 _ﬂﬂ)”"’ =
a2

where ¥ =—| W (53)
)
az

Similarly the field energy for the sticking solution (equation (36)) can be shown to be

, — 2 /2 -1/2
g, =% \/mmlAl (2__ 1) ’, (54)
TN 5 eR\C

Thus solutions (34) and (36) are clearly finite but high energy solutions. The cor-
responding conserved topological charges for these two cases are given by

o =x2(a]popn[i—(1-20"]" =24 (55)

From (55) it is clear that the topological charge which only exists for3/2 2z a> 0,
has a maximum value of 2 (| 4 [/ 3C) at a=3/2 and smoothly goes to zero as a—0.
Smce 4 .. is an unstable position for the particle Q' cannot be identified with an

order parameter. If one attempts a stability analysis for these exotic kink-like solu-
tions, it is clear that they will be unstable. At this stage it is worth pointing out
that the physical meaning of these solutions is somewhat obscure. We propose here
the following tentative picture of the relevance of these solutions to the observed
central peak in SPT. Even though these finite energy solutions are unstable, the
existence of a conserved topological charge guarantees the meta stability of them;
as a result the particle will spend a finite amount of time at the hill tops. As one
approaches a=9/8 from above the height of the hill top decreases so that the proba-
bility of finding the particle there increases resulting in the appearance of fluctuating
dipole moments which will show up as a central peak. For a < 9/8 this effect will
be masked by the presence of the domain walls which act as a precursor to the Bragg
peak below the phase transition (Bruce 1978).

3.3 Oscillatory solutions

The solutions (20), (26), (38), (40) and (42) being oscillatory are extended phonon-like
solutions for the one-dimensional anharmonic linear chain. These are expected
t<? have finite energy density. For the solutions (20) and (26) v <C, and the disper-
sion relations as given by (24) is acoustic but for the fact that it starts with a finite
value of g. Unlike the Debye dispersion for the harmonic phonons, these anharmonic
af:oustic phonons do not have a linear dispersion. On the other hand for the solutions
given by (38), (40) and (42) for which case o> C,, the dispersion for this monoatomic
anharn‘aonic continuum chain is optic phonon-like, for the ¢*-field theory a detailed
analysis of the dispersion relations has been done by Aubry (1976), most of which will
go through for this case as well. These dispersion relations will be used to calculate
the phonon part of the free energy of the system in the next section. '

P—3
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4. Classical statistical mechanics of the system

In this section we shall carry out an exact evaluation of the classical partition func-
tion of the system. In the limit of weak interionic coupling the system can be appro-
ximated by an assembly of N independent anharmonic oscillators (order disorder
transition) and its thermodynamics can be calculated using the mean field approach,
Such a calculation is attempted in I. However, this mean field approach suffers
from the disadvantage that the dynamic information which depends on the interion
displacements, (such as phonons) is lost. Hence we shall consider here the strong

coupling limit (i.e. displacive transition) in calculating the classical partition func-
tion .

Z=[[8p(x)84 @ exp [(—BH b, p))] = Z, 2, (56)

where B=(kgT)™, H(p, ¢)is givenrby equation (3),

Z=[sr@en( L [2pw) = Qmkyry2 7

a;nd ORRY () exp { —8 ‘11’5 [:é- mC? (%)2 i V(x)]}. (58)

Equation (58) can be evaluated using the functional integral method together with the

transfer matrix technique, as given by Scalapino et al (1972); which boils down to the
solution of an eigenvalue equation and Z, becomes

Zy= z exp (— BNe,) = exp (— BNe,). (59)

'I"he second s!ep in (59) obviously follows in the thermodynamic limit. The quanti-
ties €, appearing in (59) are the eigenvalues of the Schrodinger like equation

Lo (202\ 1 g B
where  m* = m@Cy |1, (61)

is the temperature-dependent effective mass. Hence from (57) and (59) the free energy
per unit length becomes

FIL = (o)1) — 2-%8111 Q2mmp), @

where the ground state eigenvalue e,
of the potential ¥(4). For the P
exact solutions of the eigenvalue

is measured with respect to the absolute minima
field theory considered by KS, the non-existence of
equation (60) forced them to take recourse to the
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WXB approximation for the calculation of the ground state eigenvalue. Fortunately
in the present case (equation (2)) it is possible to find exact solutions to (60), which
enables us to calculate the statistical mechanics of the system exactly. The knowledge
of the eigenvalues €, and eigen functions ¥, can also be used to calculate the dis-
placement-displacement (C;(x)) and intensity-intensity (Cy(x)) correlation functions
(Scalapino et al 1972) which are given by

G = BISO) = Z <[] ¥o) |7 exp (_.El’f ey — eo)) (632)

md G = ORI = |CHala]8 2 #0)] texp 5 (e

(63b)
where 8 |4(x)|* = |4(x) |2 — {[¢]®>.

4.1. Solution of the Schridinger equation for the ¢® potential

Singh et al (1978) have developed a general method for the solution of the Schradinger
equation for the ¢8 potential (equation (2)) in terms of an infinite continued fraction
expansion for the Green’s function. In particular they showed that few of the exact
solutions for this problem can be obtained provided the coefficients of the potential
satisfy the condition

(2‘4-6—2' - B) == (C/2m*)112 (4n + 3 + 2q), n=— 0, 1’ 2, (64)

with ¢=0(1) for even (0odd) solutions. The right side of (64) being +-ve, the condition
implies that 4% > 4BC, which in turn is satisfied only if a a < 9/8, that is below the
phase transition point for 4 < 0. For this case the energy eigenvalues are given by

.4 | :
En-ﬂm (4n + 1 + 29), (65)

which are +-ve for 4> 0 and —ve for 4 <0 as expected. The corresponding
eigenfunctions are given by

¥ ($) = exp (u(3)) ¥ (4), (66)

where  u(d) = — 1 @m*C)12 4% + l-{;:-l (2m* | CYL/2 42, (672)

@i G @)= b (675)
v=0 : .

is a polynomial in ¢. For the sake of completeness we list below the eigenvalues
and eigenfunctions for the first few values of n, for the cases 4 <O0.
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() For n = 0 and g = 0, the condition (equation (64)) becomes

a =§ [1 4 (9c/2m*BEju 1 r—_g (@)1, (682)
The corresponding eigenvalue and eigenfunction are

E} = — (B[2m*)L12 (a0)Li2 (68b)

and Yo= by exp [— } Q@m* C)1/2 ¢* + (m*B[2)L12 (ad)1/2 $2] (68c)

by being the normalization constant. Note that ¥, has no nodes, hence E} is the
ground state eigenvalue.

(i) Forn=0, and g =1, equations (64) to (67) reduce to

a =§ [1+4 (25C/2m* ByLe-1 = g (ad)1 (692)
Ey = — 3 (B[2m¥)L2 (ab)ire (69b)
and W1 = by ¢ exp (— } 2m* C)L2 ¢t |- (m* Bj2)L2 (a2 $7] (69¢)

Since ¥, has a node at¢ =0 it corresponds to the first excited state but for a different
potential as determined by (69a). Thus (68) and (69) are the ground and first

excited states for two different potentials. For the case 4> 0 these two solutions
have been written down by Flessas (1979).

(iii) For n=1, on the other hand there will be either two even solutions (i.e. ground
state and second excited state) for g =0 or two odd solutions (i.e. first and third
excited states) for g=1. For the even solutions (¢=0) equations (64) reduce to

a= g. [ 1+ (@9C/2m* B2y = g (9L, (70)

It can be seen from (67b), that for this case the eigenfunction involves an arbitrary
constant, which can be determined by directly substituting (67b) into the differential

equation for ¢, (4) (Singh ez al (1978)). 'The energy eigenvalues are also determined
from the same procedure (rather than from (65)) and are given by

B3 () = — @lame [3 (agyie 5 2 (g0y) (712)

where  g0—[1 +§(49C/2m* Boy, (71b)

The corresponding eigenfunctions are

Ty =l (L +dl ¢ exp [~} @mrCytin g 4 (memioyn (ap)ti= g2

(72a)
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where dS = (2m*B)12 [(adr2 F (B2, (72b)
Since f] > af, df <0, hence ¥, has two nodes and ¥, has no nodes. Thus .the
eigenvalues ES (—) and EJ (+) correspond to the ground and second excited
states respectively. It can be further checked that the eigenfur_lctions ¥, and ¥, are
orthogonal to each other.

(iv) Finally for n=1, and g=1, the condition on the potential becomes

a = (9/8) [I + BIC/2m* Byt = (9/8) (&)™, (73)

and the corresponding eigenvalues and eigenfunctions can be written down as

E:(£) = — (B2m*}1/2 [5(ap)t!® = 2(B))1*] (74a)

and v 5y = by (1 ++ did?) exp [— } @m*CYL2 ¢t 4 (m*B[2)L2 () 2 $7]
’ | (74b)
where B = [1-+ 5/3 B1C/2m*Byus, (740)
and d% = (1/3) @m* B2 [(a12 - (BDLI7]. (744d)

Again 1> a}, hence d1 <0, and ¥; has two nodes where as ¥, has only one node.
Thus E} (—) and E1 (+) correspond to the first and third excited states of the system.

The procedure can be generalized to n=2, 3, etc. and in each case only a certain
number of eigenstates of the system are exactly determined, e.g., for n=2, either
three lowest even states (g=0) or three odd states (g=1) will be determined exactly.
The remaining infinite number of the eigenstates can only be calculated if one can
solve for the infinite Hill determinant out of which the 3x 3 determinant has been
factorized out to give the three eigenstates mentioned above.

4.2 Free energy

The ground state eigenvalue EJ (equation (68b)) of the Schrodinger-like equation
together with (62) gives the exact free energy of the system. The ground state energy
as obtained by (68b), however, has to be slightly modified on two counts: (i) the
energy has to be measured with respect to the minima of the potential, which neces-
sitates the substraction of the factor given by (7) from EQ; and (ii) the Schrodinger-
like equation (60) has a constant factor on the left side which has to be further sub-

stracted from all the eigenvalues. Thus the modified ground state eigenvalue
becomes

€ = — (B[2m*)1{? (9/8a)'/2 4 (1/20.)1’2 (Bla)®*2 [1— a 4 (1— 2a/3)%2]
— 1/28 In (2n12/BmC?), (75)

where a is given by (68a). It is worth noting that both @ and €, have acquired tem-
perature depende;nce through the effective mass m* which is proportional to T—2
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(equation (61)). Thus at T=0, e =0 and @ =9/8, which in turn gives the first

order transition point. The free energy per unit length as obtained from (62) and
(5 is

FIL = —-,; (B2m*)112 (9/8a) /2 4 (11 (2C)!12) (Blayi2
2a\312 1. BC
Xtl—~a+|l -2 — In 29, 76
et (=5 09
It is interesting to note that the exact free energy thus obtained has no exponential

tunnelling-like term obtained by KS. At low temperatures (T'—0), (68a) can be
approximated by

a = 9/[8 [1 —(9C/2m* B/,
to lowest order in . Note that neglecting the T-dependent term on the right side

will violate the condition (equation (64)) on the potential. This demands that the free
energy be evaluated upto terms of order 7?2, thus reducing (76) to

F = NkgT (/Cy) (2B/M)2 [1 + 3/8 (2C/mBHI2 (/Cy) kpT]
+ O (ThT) | am

On the other hand at high temperatures (7> o) the free energy equation (76) goes
as

1/3\8/4
32 (Q__C_) T, (78)

—_— 1/2
F = N P K I3

4.3 Phonon free energy

We shall now calculate the phonon contribution to the free energy assuming that the
particles execute small amplitude vibrations about one of the absolute minima of the
potential satisfying the condition (68a). For this purpose we expand

f=h+n 1< (79)

(Where f; is given by (5)) which when substituted in (11) and terms to lowest order in
7 are kept yields

7" — Dy=0 (80)
where D :i_l_‘i f62 — 4 =.6_[1 + (1 __2_{1)1/2] 4 . (81)
B a 3

In writ-ing down (81).use is made of the fact that Jo corresponds to the minima of the
potential. Substituting for a from (68a) and taking the low temperature limit the
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constant D turns out to be [4 + 12(9C/2m*B*)'/?]. The dispersion for oscillatory
solutions of (80) can be written down

Wi Clgt + §’§ [1 + 30C/2m*B2)e (82)

It is interesting to note that the phonon frequencies acquire a temperature-dependent
shift. Following the procedure outlined by KS (Appendix) the low temperature
phonon free energy for the dispersion (82) can be evaluated to give

Fyy, = NkgT(l/Co) 2B[m) 2 [1 + 2 C/mBH2 (I|Cy) kgT]. (83)
4.4 The domain wall energy

On comparing the phonon free energy (equation (83)) with the total free energy of
the system as given by (77) it is clear that the former is larger. Hence the difference
between the two can be attributed to the domain wall excitations of the system,
which is given by ~

15 1
Fp=F— Fyjp = — 2 N(kgT)* (]G — (CIBY (84)

In contrast to the result of KS the domain wall free energy rather than showing an
exponential temperature dependence goes as T2. Thus the domain wall contribution
as it turns out from this exact calculation is much larger than that obtained by KS
for the ¢*-field theory. Equation (84) can be further used to estimate the splitting
of the ground state energy level of the $¢ potential satisfying the condition (68a);
which is

Fp| 15 1

AE0=2_____=

N g B (83)

This result also differs considerably from that of the usual WKB tunnelling
approximation which usually has an exponential form.

4.5 Domain wall phenomenology

We shall now calculate the free energy of a system of non-interacting domain walls

distributed along the length (L) of a line; following phenomenology developed by
KS. This domain wall free energy is given by

d’m*%,

Fp = — kgTn, [1 + % ln( )] exp (— EpplkgD), (86)

where d is a normalization constant, n, = L/A,; A, being the domain wall width
and Epp is the domain wall potential energy given by

Epp =} m¥(2c2 — o). , 87
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The domain wall mass for the solution (19) is given by (48b) and the corresponding

domain wall width is given by (19b). Assuming that » > ¢y, equation (86) together
with (48b) and (19b) can be written as

32y 1/4
Fp = — Nky T (I2¢,) {1 +5§§[1 —a+(l —.235.‘) }

X [1 + ;-In (2” kT )] exp (— iy Clky T) (89)

d? m§

where ¢, = ¢ (v=0). In order to compare this with the domain wall free energy
obtained from the exact calculations of (84), it is necessary to evaluate (88) satisfying .
the condition (68a) on the potential. Thus in the low temperature limit we get

Fp o — Nky T (I]2¢,) [1 + g (CJ2 m* Bz)llzJ

o [1 i % In (271' ky T) :I exp ( — m¥ C2lky T) (89)

d? m¥,

- L _m s o grrocy F G512 14 DT A1) o0
T T R, GO e Bie0) ey O
and = — (2m* B2[9C)tl, | (90b)

The result of (89) is the same as that obtained from a WKB tunnelling approximation
as has been shown by Polyakoy (1977). 'The domain wall free energy (equation (89))
as well as the level splitting thus obtained decreases exponentially with decreasing
temperature and is much smaller compared with the exact result of (84). This differ-
ence will be further reflected in the calculation of the correlation functions and correla-
tion length as will be shown in § 5. Yet another difference between the exact and
phenomenological calculations is the dependence of the free energy (level splitting)
on the coefficient C of the non-linear ¢° term in the potential. Whereas in (87) and
(50) the domain wall potential energy has an inverse dependence on C, showing,
its non-perturbative nature ; (84) and (85) show that the exact Fp and A E, are pro-
portional to 4/C.

It is further possible to calculate the domain wall free energy at the transition point
(@ = 9/8) from (86) together with (46) for the solutions (18); which is given by

Fp=— Nkg T (I2¢) [14+12In Qrky Td*my)] X
exp [ — 1/4 (mcd|I¢,) (B| C12[kpT].

For this case, exact evaluation of the domain wall free energy is not possible since the
exact ground state eigenvalue of the Schrédinger-like equation (60) is not known.
It is however important to note that unlike the ¢-field theory, in the case of the -
field theory not only that there exists a domain wall contribution to the free energy
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below the transition point, but also at the transition point. The relevance of this in
connection with the existence of the central peak above the phase transition point
will be further discussed in the concluding section.

5. Calculation of correlation functions

We now proceed to calculate the equal time two-point, displacement-displacement
and intensity-intensity correlation functions given by (63a) and (63b). At low tem-
peratures, the sums over all states » in (63) will be dominated by the two lowest states
for which the matrix elements will have non-vanishing values. Thus (63) reduce to

| Ci(x) =Wy | b | ¥op [ exp [— B (X/]) (e — €], ~ (92a)
and  Cy() = |{ ¥y |82 ¥ d/2exp [— B (X/I) (e — <o) (92b)

where ¥, ¥, and ¥, are the ground, first and second excited states respectively.
A knowledge of these states will permit us to calculate equation (92) exactly.

5.1 Displacement-displacement correlation

For the potential satisfying the condition (68a) the ground state is given by (68c).
This is the only state known exactly for this case. However, the difference in the
energy AE, between the first excited state and the ground state is estimated from the
domain wall energy and is given by (85). This allows one to obtain an estimate of
the displacement-displacement correlation length, even though the exact evaluation
of the matrix element is not possible. Equation (92a) together with (85) reduces to

Cl(x) = I <T1 l 96 l \P0> |2 €Xp ("" x/’\c)’ (93)
4 & mycy L
where A, = 7 ..19 (B3C) ﬁ 94)

is the correlation length. It follows from (94) that ), diverges only at 7= 0, rather
slowly as (T-1).

C; (x) can further be computed from the domain wall phenomenology following
KS. For a<9/8, let us assume that at x=0, the particle has the displacement
¢ = -k ¢;,, except for small phonon-like oscillations. But within a finite distance
from x=0, say at x, the particle will encounter n,,(x) domain walls each of which will
flip the displacement from +bpin 10 F b,  This will provide the correlation bet-
ween ¢(0) and ¢(x), which can be evaluated by assuming a Poisson distribution for
n,(x) (see KS) to give

Ci(¥) =L exp (——2 -i‘-) exp (— BEpp) = ¢, exp (—x/A)  (99)

d

where A, = %‘ exp (—BEpp), (96)
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and ¢ .. Asand Ejp are given by equation (5), (19b) and (87) respectively. On
substituting these in (96), and taking the low temperature limit A, becomes

A = €& [L — § (9C|2m*B2)12] exp (Bmy, C2) ©7)

where m¥) is the domain wall mass given by (90). It follows from (97) that as T-0, Ac

diverges exponentially. This rapid divergence of the correlation length is again in

contrast with the algebraic temperature dependence of (94) obtained from the exact
calculation,

5.2 Intensity-intensity correlation

As can be seen from (92b) the eigenfunctions and eigenvalues of both the ground
and second excited states are necessary for the evaluation of C,(x). These are known

for the potential satisfying the condition (70) and are given'by (71) and (72). Hence
Cy(x) becomes ‘

Co() = [(¥a[8[$[2 | Wep |2 exp (—ﬂ; [E3(+) — EY ()]
oc exp (— x[A- (1)), (98)

where the intensity correlation length at low temperatures is given by
A~ (D = ) 1 9 ] 3\1/2 (99)
¢ (D) =211 (/&) (C|BYr kyT |,

Thus A¢ (1) does not vanish at T=0 but attains a constant value of &f2. At T=0

the condition (70) on the potential reduces to a=9/8 which is the transition point,
Hence, the intensity fluctuations are strongly correlated at the transition point. This
may be the evidence in support of the stabilization of the central peak to the Bragg

peak at and below the transition. Further, with increasing temperature the corre-
lation length decreases and goes to zero at

T~ g (D (i

where the intensity-intensity correlation vanishes. We are tempted to say that at this
temperature the central peak first appears.

5.3 The probability distribution Sfunction

Recently Bruce ef al (1979) have used the renormalization group approach to show
that there is an intrinsic order-disorder nature associated with the cluster (domain
wall) phenomenon in displacive phase transitions. This manifests itself in the
appearance of two sharp peaks in the probability distribution function (PDF)
calculated for the fixed point potential at the critical regime. The present model,




¢b~field theory and structural phase transitions 267

which utilizes the strong displacive nature, through the use of the functional integral
and transfer matrix techniques, determines the partition function in terms of the
ground state eigenvalue of the Schrédinger-like equation (60). Hence the PDF will
be given by the ground state wave function and can be written as

+ .
P@) =9, ®I*/ [ ¥, a8, (100)

where ¥, (¢) is given by (68c). Equation (100) in the limit of T— 0 will give the
value of the PDF in the critical regime since T'= 0 corresponds to the transition point
a = 9(8. It can be easily checked from equation (100) and (68c) that P(¢) has three
points of extrema at

$=0
B
and - p=k [ 5+(

9 \l/2a7i/4
2m*C} ]

= & ¢

Out of these the point ¢ = 0 is a minimum and the other two points¢ = - ¢ are
maxima. For low temperatures the value of P(4) at -+ &) is

P(+ ¢y) o< exp (m*B?/2C)2

and that at ¢ =0is P(0) cc 1. Since m* oc T-2, the PDF is strongly peaked at + b
at low temperatures. This is in conformity with the result of Bruce et al; the only
difference being that in their calculation P(¢) has a small peak at =0 too. Thus
one can conclude that the present model too-has an order-disorder component arising
from the domain walls (clusters) of precursor order, which gives rise to a critically
narrowing central peak.

6. Conclusion

In concluding we shall summarize the main results of the present paper. We have
considered the ¢5-field theory in (1+4-1) dimensions, as a model for first order struc-
tural phase transitions. The dynamics and thermodynamics of the model are studied
exactly. It was shown that there exists exact solutions to the equation of motion
which are expressible in terms of the Weirstrass functions. The equation of motion
is reduced to a form similar to that of the single particle (Khare and Behera 1979)
except for the fact that it now turns out to be in Eucledian space. In anology with
the single particle equation it was shown that there exists oscillatory, travelling wave
(phonon-like) solutions as well as domain wall (kink) solutions. Since the equation
of motion in the Eucledian space is equivalent to that in the Minkowski space for an
inverted potential, it is easy to see that the domain wall solutions exist only at and
below the transition point. On the other hand above the transition point there can
exist exotic kink-like solutions with » > ¢, which takes the particle from one
hill top to the other of the potential. We have analysed in detail the characteristics
of these domain wall and exotic kink solutions. While below the transition point
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there is one domain wall solution which takes the particle from one absolute minima
to the other, at the transition point there are two such solutions transferring the par-
ticle from first minima to the second and then from the second minima to the third,
All these solutions are shown to carry a conserved topological charge. The stability
analysis shows that the domain wall solutions are stable whereas the exotic kink solu-
tions are not. The domain wall mass and energy for each of these solutions are cal-
culated.

For the oscillatory solutions the dispersion relations are calculated; which for
some solutions shows acoustic phonon-like behaviour, whereas for some others
behaves optic phonon-like. These phonons acquire a shift in frequency because
of anharmonicity.

On comparing our results with that of ¢4 -field theory (considered by KS) we note
that, in the latter case the domain wall solutions exist only below the transition point
(in terms of the potential parameters). Since the domain wall solutions are relevant
for the existence of a central peak in SPT, the existence of such a solution at the
transition point in the present model, together with the fact that there exist local
minima in the ¢8-potential above the transition point makes it easier to understand
the existence of the central peak above the transition point. We believe that even the
exotic kink solutions play a role in the appearance of the central peak.

Next we proceeded to caloulate the thermodynamics of the system. The calcula-
tion of the classical partition function was reduced to the evaluation of the eigen-
values of a Schrédinger-like equation, using the standard transfer matrix technique.
Fortunately for us there exist exact solutions to the Schrédinger equation for the ¢f-
potential, provided the parameters of the potential are such that it corresponds to a
point below the transition. This allows us to calculate the free energy of the system
exactly. The low temperature limit of the free energy thus calculated does not have
the usual exponential part, which was attributed to the domain walls when a WKB
tunnelling approximation is used. This we believe is an important result which
shows the difference between the exact and approximate calculations. Hence, unlike
the result of KS for the ¢4 -field theory, in the present calculation the domain wall
energy evaluated from the exdct calculation and the domain wall phenomenology
does not agree. The functional integral approach is further used to calculate the
displacement-displacement, and intensity-intensity correlation functions. It was
shown that the correlation length calculated from the displacement-displacement
correlation diverges at T=0, rather slowly, i.e. as T-1; in contrast with the exponen-
tial divergence predicted by the approximate domain wall phenomenology. Similarly,
the intensity-intensity correlation does have a correlation length which is finite at
T=0. The probability distribution function was shown to have the two-peaked
structure, indicating the presence of an order-disorder component arising from the
domain wall (cluster) modes; within the displacive transition in conformity with the
picture of Bruce ez al (1979). '

Finally, we would like to offer the following qualitative picture of the central
peak. The ¢%-potential above the transition point still has two local minima.
Whenever the ground state energy lies above these local minima (which will happen at
temperatures above the transition temperature), this state will be tunnel-split, which
will contribute to the free energy. Thus there will be a pseudo-domain wall energy,
even though above the transition point there are no domain wall solutions. This will
result in the formation of the central peak. As one approaches the transition point,
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the tunnelling probability will increase (because of the lowering of the local minima)
resulting in an increase in the number of these pseudo-domain walls, and hence
strengthening the central peak. The existence of domain wall solutions at and be-
low the transition point, stabilises these clusters, which are precursors to the forma-
tion of the Bragg peak. Because of the emergence of the Bragg peak, it maybe diffi-
cult to observe the central peak below the transition point. It is worth noting that
such tunnell splitting above the transition point can never occur in the ¢* model
since this model has no local minima. Thus the ¢ -model, while strengthening the
picture of KS that the domain wall (cluster) excitations responsible for the central
peak, provides a mechanism for its appearance above the transition point. Recently
the critical behaviour of this ¢#%-model has been studied by Boyanovsky and Masperi
(1980) using the block-spin renormalization group approach.
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