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Introduction

In [18] Veech proves that the “horospherical flow” on G/I' where G is a
semisimple analytic group with no non-trivial compact factor and I is a discrete
co-compact subgroup, is uniquely ergodic; that is, there is a unique Borel
probability measure on G/I' which is invariant under the flow.

On the other hand there exists a wide class of discrete subgroups I' in
semisimple groups G such that G/I' admits a G-invariant probability measure,
but is noncompact. The discrete subgroup SL(2,Z) of integral unimodular
matrices in SL(2, R) the group of all unimodular matrices, constitutes the
simplest example of the above phenomenon. It turns out however, that the
horospherical flow on a non-compact homogeneous space cannot be uniquely
ergodic. This is because there exist proper closed subgroups H containing
horospherical subgroups, having closed orbits which admit a finite H-invariant
measure. The objective of the present paper is to assert that for a certain class of
horospherical flows including the example cited above all the ergodic invariant
measures arise in the above manner. We recall that the set of ergodic measures
also determines completely the set of all finite invariant measures.

Actually rather than restricting to the class of semisimple groups with no
non-trivial compact factor we consider any reductive analytic group 7. Apart
from being more general this is also convenient in certain arguments. A
subgroup U in T is said to be horospherical if there exists teT such that

U={ueT|Vut i —e as j>oo}

e being the identity in T. Any horospherical subgroup is analytic; ie. a
connected Lie subgroup (cf. §4, [5]). Further the adjoint action of any element
in the Lie subalgebra of U on the Lie algebra of T is nilpotent. A horospherical
flow in the sense of [18] is the action of a maximal horospherical subgroup.

A discrete subgroup I' of a locally compact group T is said to be a lattice if
T/I' admits a finite T-invariant regular Borel measure.

*  Supported in part by NSF grant MCS72-05055 A04

0020-9910/78/0047/0101/$7.60



102 S.G. Dani

A major part of the study of invariant measures of horospherical flows
consists of obtaining a characterization of the Haar measure of a semisimple
group G without compact factors (cf. Theorem 2.4) in terms of invariance under
the right action of a given lattice I' and the left action of a certain maximal
horospherical subgroup N of G, suitably related to I' (cf. Theorem 2.4). Our
approach in obtaining the above characterization is based on the philosophy
introduced by Fiirstenberg [8], which was also employed in [18].

In Part 1II we extend the study to reductive Lie groups. Sections 8 and 9
deal with general technical details concerning the extension. Finally in Sec-
tion 10 we specialize to reductive Lie groups T such that all the non-compact
simple factors of the adjoint group of T are of R-rank 1 and obtain a complete
classification of (ergodic) invariant measures of the “horospherical flow”. We
prove the following.

Theorem A. Let T be a reductive Lie group such that all noncompact simple
factors of T are of R-rank 1. Let U be a maximal horospherical subgroup and let
I’ be a lattice in T. Let n be a finite U-invariant ergodic measure on T/I". Then
there exists a closed subgroup L and te T such that

1) LtT" is closed and n{T/I—LtI'/T)=0 and

i) L contains U, tI't~' AL is a lattice in L and 7 is the finite L-invariant
measure on LtI'/T~L/tI't~ L.

Notice that assertions i) and ii) completely determine = (up to a scalar which
is determined by the total measure).

We observe that since every compact minimal subset of any action of an
ameanable group is the support of a finite ergodic invariant measure, in
particular Theorem A characterizes all compact minimal subsets of the horo-
spherical flow.

Actually our proof incorporates the case of uniform lattices considered in
[18]. However for that case there now exist simpler proofs (cf. [3] and [6]). We
may note that the proofs in [3] and [6] indeed hold for all reductive groups.

The author wishes to thank W.A. Veech, who apart from providing a preprint of [18] on which
the present paper heavily relies, also helped in terms of useful discussions. Thanks are also due to
H. Fiirstenberg; a brief meeting with him stimulated the work.

§ 1. Measures on Homogeneous Spaces

(1.1) For any locally compact, second countable space X, we denote by #(X)
the set of all positive regular Borel measures on X. Let 8 be a Borel measurable
map, or briefly a transformation of a space X onto a space Y. Let ne #(X). If
either B is continuous and proper or = is finite then we have a measure
Brne #(Y) defined by Bn(E)=n(B ! E) for any Borel subset E of Y. If H is a set
of transformations of X, ne .#(X) is said to be H-invariant if hx=n for all he H.

Let H be a locally compact, second countable group and let #: H x X -+ X be
an action of H on a space X. The action is said to be measurable if the map & is
measurable when H x X is endowed with product Borel structure. Let ne .#(X)
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be H-invariant; i.e. invariant under all @(h, +), he H. Then = is said to be ergodic
with respect to the H-action (or that n is H-ergodic or even that the H-action on
X is ergodic with respect to n) if for any Borel subset E of X, the assertion
n(EARE)=0 for all he H implies that either n(E)=0 or n(X — E)=0. Here and
in the sequel hE denotes the set @(h, *) E, provided that the action in question is
clear from the context. i

(1.2) For me#(X), #%(X,n) denotes the Hilbert space of all measurable
complex valued functions which are square integrable with respect to n. Let H
be a measurable group of transformations of X and let ne .#(X) be H-invariant.
Then h—V,, where V, is the operator on ¥*(X,n) defined by (V,f)(x)
=f(h~'x), is a (strongly continuous) unitary representation of H on (X, n).
Following is a simple and useful criterion for ergodicity: a finite H-invariant
measure 7 is ergodic with respect to the H-action if and only if for fe #%(X, n),
V, f=f for all he H implies that f is a constant function n—a.e.

(1.3) The following proposition asserts that the set of all ergodic H-invariant
measures determines the cone of all finite H-invariant measures. The result may
be considered folklore. A proof for the case of cyclic and one-parameter group
may be found in [17]. The same proof readily generalizes to any locally compact
separable group.

(1.4) Proposition. Let (X,n) be a Lebesgue probability space and let ¢: H
x X —X be a measurable, measure-preserving action of a locally compact, separ-
able group H. Then there exists a measurable partition £ of X and a family
{nc}ces where mc is a probability measure on X with support contained in C such
that if 7t denotes the quotient measure of © on X/E then we have the following

1) For almost all CeX/¢ (with respect to ©T), n. is a H-invariant ergodic
measure.

ii) Let E be a measurable subset of X. Then for almost all Ce X/€, EnC is
measurable, n.(E n C) is a measurable function on X/ and

n(E)= | nc(EnC)d7(C).
X/¢

(1.5) We recall some results from {8] regarding measures on homogeneous
spaces.

(1.6) Proposition. Let H be a closed unimodular subgroup of a Lie group L. Let
dh be a fixed Haar measure on H. Then there is a one-to-one correspondence
between .#(L/H) and the subset of #(L) of measures which are invariant under
the right action of H on L. The correspondence is given by n«>w where

(17) [f®do()= { dn(xH)] f(ch)dh
L L/H H

for all fe C(L), the space of all continuous functions with compact support.

(1.8) Proposition. If H and H' be two closed unimodular subgroups of a Lie
group L, then (1.7) also sets up a correspondence between measures in M (L/H)
which are invariant under the left action of H' and the subset of #(L) consisting
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of measures which are invariant under the right action of H and the left action of
H.

(1.9) Corollary. Let 1 denote the inversion map of L, i.e. xe L-x~1. Then the
map o—106 of M (L) induces a one-to-one correspondence between the set of H'-
invariant measures on L/H and the set of H-invariant measures on L/H'. Under
the correspondence H'-ergodic measures correspond to H-ergodic measures; the L-
invariant (resp. absolutely continuous with respect to the L-invariant ) measure on
L/H corresponds to L-invariant (resp. absolutely continuous with respect to the L-
invariant ) measure on L/H'.

Definition. Let G be a Lie group, I a lattice in G and let N be a horospherical
subgroup of G. A I'-invariant measure # on G/N is said to be I'-finite if the N-
invariant measure w on G/I’ corresponding to n under the above one-one
correspondence is finite.

(1.10) Absolute continuity of invariant measures: Let X be a locally compact,
second countable space and let G and H be locally compact groups of ho-
meomorphisms of X. Assume that the actions of G and H commute with each
other; ie. ghx=hgx for all geG, heH and xeX. Assume also that the cone of
G-invariant measures on X is one dimensional. Let dh be a fixed Haar measure
on H and let peC (H), the cone of positive continuous functions with compact
support. For any ne.#(X) and any Borel subset of X define

(L11) 7,(E)=] n(h—'E)p(h)dh.
H

Then =, e #(X). Then we have the following (cf. Proposition 2.5, [18]).

(1.12) Proposition, Let G, H and X be as above and let p be a G-invariant
measure on X. Let I be a subgroup of G such that the action of I on X is ergodic
with respect to p. If m is a I'-invariant measure on X such that n,<u for all
@& CH(H), then n is a multiple of p.

(Here and in the sequel < stands for absolute continuity with respect to the
latter measure.)

Later in the application of the above proposition we need the following
lemma (cf. Theorem 3 and Proposition 6, [15]).

(1.13) Lemma. Let G be a semisimple Lie group with no non-trivial compact
Jactor. Let N be a maximal horospherical subgroup in G and let I be a lattice in
G. Then the action of I on G/N is ergodic with respect to the G-invariant measure
on G/N.

We will also often need the following,

(1.14) Lemma. Let L be a locally compact second countable group and let I be a
lattice in L. Let H be a (closed ) subgroup of L such that H is normalized by I" and
HT is a closed subgroup. Then HN T is a lattice in H.

Proof. Observe that since L/I' admits a finite L-invariant measure L/HT also
admits a finite L-invariant measure. It follows from the criterion for existence of
invariant measures on homogeneous spaces (cf. Ch.II, §9, [207) that the
restrictions of the modular homomorphism of L to I and HT are the modular
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homomorphisms of the respective subgroups. Hence in particular we get that
HTI/I' admits a HI invariant measure. But in view of the Fubini-Weil formula
(cf. Ch.11, §9, [20]) the HT invariant measure on HI'/I" must be finite. On the
other hand, HI'/T is canonically isomorphic to H/HNI —under the isomor-
phism the H-action on HI'/T" corresponds to the H-action on H/HNTI. Hence
we conclude that H/H T admits a finite H-invariant measure; i.e. HNI is a
lattice in H.

Part II. A Characterisation of Haar Measure

Throughout this part G will denote a connected semisimple Lie group with no
non-trivial compact factor and with trivial center. Then G is isomorphic to its
adjoint group and hence can be considered as the connected component of the
identity in the R-algebraic group of all Lie automorphisms of its Lie algebra.
The class of maximal horospherical subgroups is then exactly the class of
maximal unipotent subgroups of G.

The object of Part I1, as the title indicates, is to prove a characterisation of
the G-invariant measure on G/N, N being a maximal horospherical subgroup,
which will be formulated in §2. The proof follows in several steps through §7.

§ 2. Lattices and Fundamental Domains

Let G be a Lie group as described above and I' be a lattice in G. We need a
certain special fundamental domain for I which we shall describe in the present
section.

Definition. A lattice A in a semisimple Lie group L is said to be irreducible if the
only positive dimensional normal subgroup F for which FA is closed is L itself.

Any lattice I' in a semisimple Lie group without compact factors can be
“decomposed” into irreducible lattices in normal subgroups: More precisely we
have the following

(2.1) Proposition (cf. [4] Appendix). Let G be a semisimple Lie group without
compact factors and with trivial center. Let I be a lattice in G. Then there exist
normal (semisimple) Lie subgroups G,, i€l (a suitable indexing set) such that
i) G=[]G, (direct product).
iel
ii) For each iel, I,=I NG, is an irreducible lattice in G; and
iii) I"'=[]1; is a (normal) subgroup of finite index in I".
iel

The decomposition is unique upto reindexing.

Observe that as a consequence of the above, G/I' is finitely covered by G/I”
and the latter is a direct product of homogeneous spaces G,/I;, iel. We now
classify the components G,/I; as follows. Put

I,={iel|G/I; is compact},
I,={iel—I,|R-rank G,>1}
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and
L=I1-I,~1I,.

For iel,, G, is a semisimple Lie group without compact factor with trivial
center and [; is a non-uniform lattice in G,. Therefore by Margulis’s arithme-
ticity theorem (cf. [13]) I; is an arithmetic subgroup of G,. More precisely, G;
admits a structure of the connected component of the identity in an R-algebraic
group defined over @), such that I; is commensurable with group (G,); of integral
elements in G; (with respect to the Q-structure). We shall henceforth assume to
have fixed the @-structure on each G,, i€, satisfying the above.

Next let iel,. Then G, is of R-rank 1 and I; is a non-uniform lattice in G;.
For these lattices we plan to use the results of Garland and Raghunathan (cf.
[10]). For the present we recall that G, admits a maximal horospherical
subgroup N, such that N, I} is a lattice in N,. Let P. be the normalizer of N, in
G;. Then P, is a minimal IR-parabolic subgroup of G,. For future use we note
that by conjugating N, by a suitable element of I, we can find a maximal
horospherical subgroup N/ which is not contained in P,. If P/ denotes the
normalizer of N/ then P,= P,. Since RR-rank of G, is 1, P,n P/ is a (reductive) Levi
subgroup in both P, and P.

With this information we proceed to introduce some terminology with
respect to I, generalizing the corresponding notions for arithmetic groups. We
must emphasize that this is done only for simplicity in writing the fundamental
domain and that the material is essentially well-known.

Definition. A horospherical subgroup U in G is said to be I'-rational if U T is
lattice in U.
A Lie subgroup U is a maximal I'-rational horospherical subgroup of G if

and only if U=]] U, where for iel,, U,=(e), for iel, U, is a maximal unipotent
iel

R-subgroup of G, defined over Q and for iel,, U, is a maximal horospherical

subgroup such that UnI; is a lattice in U,. Let U be a maximal I'-rational

horospherical subgroup and let P be the normalizer of U in G. Then again we

observe that P=[] P, where for iel, P,=G, for iel,, P is a minimal R-parabolic
iel

subgroup defined over @ and for i€l,, P, is a minimal IRR-parabolic subgroup.

The results which we now state can be easily proved by considering separately

the components corresponding to indices iel and using known results about

respective classes of groups and above observations. Hence we shall often omit

the details.

Definition. Let U, and U, be horospherical subgroups in G and let P, and B, be
normalizers of U; and U, respectively. Then U, and U, are said to be opposite
(to each other) if P, " P, is a (reductive) Levi subgroup in both P, and P,.

Let U and U~ be two I'-rational horospherical subgroups opposite to each
other, and let P and P~ be the respective normalizers. Then there exists a
unique maximal vector subgroup S contained in the center of (the reductive
group) P~ P~ such that {Ads|seS} is simultaneously diagonalizable over R.

Actually S=]]S; where S,=(e) for icl,, S; is the connected component of a
el
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maximal @-split R-torus (algebraic) for iel, and a suitable one parameter
group for iel,.

Now let ® be the Lie algebra of G and & the Lie subalgebra corresponding
to S. Then we get a decomposition of ® as

6=3(%)+ Y &

Aed

where 4= %* (the dual of &) is a root system for the pair (®, ¥), (&) the
centralizer of & in ®, and for each ie4

6G*={te®|[o, &]=A(x) & for all ae &}

the latter being of positive dimension for all ied. On 4 there exists an

ordering such that if 4* is the corresponding set of positive roots then ) &% is
Aedt

the Lie subalgebra corresponding to U and Y ®~* is the Lie subalgebra
Aed™
corresponding to U~. The last assertion may be proved by using Lemma4.5.4,

in [13] for the field @ in the case of arithmetic components (i.e. iel,) and for R
in the case of non-uniform lattices in R-rank 1 groups (i.e. iel,).

Now let (U,U~) be a pair of opposite maximal I'-rational horospherical
subgroups and S and A* be as chosen above. For >0 we define

(2.2) S,={seS|A(logs)stforallied™}

where log: S— & is the inverse of the exponential map of & onto S.
We now state the main proposition of §2.

(2.3) Proposition. Let (U,U~) be a pair of opposite maximal I'-rational horo-
spherical subgroups of G and let S and S,, t >0 be as introduced above, correspond-
ing to (U,U~). Further let H be the connected component of the identity in the
normalizer P~ of U~ and let K be a maximal compact subgroup of G. Then there
exist a compact subset W of H, a finite subset J of G and 6>0 such that the
following properties hold.

a) G=IJWS,K.

b) For all jeJ, j~'I'jn U~ is a lattice in U~.

¢) Let G=]]G, be the decomposition of G as in Proposition 2.1 and let iel

iel

be such that R-rank G;>1 and I;=InG, is a non-uniform lattice in G,;. Then
for all jeJ, j~ I}j is commensurable with I;.

Proof. Let G=[]G; be the decomposition of G as in Proposition2.1, with
iel

respect to I It is obvious that assertions a), b) and c) follow if the corresponding

assertions are proved for the lattice I} in G, for each i€l. In other words in

proving the Proposition we may further assume I'" to be an irreducible lattice in

G. We now consider three cases separately.

Case i. I is a uniform lattice in G.
In this case both U and U~ are the identity subgroup, as there cannot be any
I'-rational horospherical subgroup of positive dimension. In particular P~ =G.
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But certainly there exists a compact subset W of G such that G=IW. Putting J
= {e}, a) is satisfied. b) is satisfied trivially.

Case ii. Assume that I' is non-uniform and R-rank G> 1.

As recalled earlier, in this case I' is an arithmetic subgroup of G; (with
respect to a @ structure considered fixed). U and U~ are maximal unipotent
algebraic R -subgroups defined over @, and S is the connected component of the
identity in a maximal @Q-split (algebraic) R-torus. Applying Borel’s construction
of fundamental domains for arithmetic groups (cf. Theorem 13.1, [17]) it follows
that there exists a compact subset W’ of H (actually of a smaller subgroup) a
finite subset J' of Gg, and 6>0 such that with

S%={seS|A(logs)< 6 whenever —Aied*}

(4" being the set of roots such that the corresponding Lie subalgebra of &
belongs to U) we have G=KS*W'J'T. Thus G=G~'=IJW(S%~'K where J
=(J)~! and W=(W")~1. Observe that

(8%~ 1={s"1|se8$, A(logs) < é whenever —ied*}
={seS|A(logs)<dforall led*}
=S,.

Thus we have proved assertion a) in the case at hand. Since J = Gy, for each jeJ,
j~'I'j is commensurable with I This prove c). To prove b) it is enough observe
that for any yeGg, yU y~! is also a unipotent R-subgroup defined over @ and

hence intersects an arithmetic group in a lattice.

Case iii. T is a non-uniform lattice in G and R-rank of G is 1.

In this case we use the construction of fundamental domains by Garland and
Raghunathan (cf. Theorem 0.6, [10]). Notice that in this case G=KSU~ (no-
tation as in the statement of the theorem) is an Iwasawa decomposition of G.
Then by the theorem of Garland and Raghunathan there exists a compact
subset W' of U, a finite subset J' of G and 6 >0 such that G=KS*W’'J'T where

§%={seS|A(log s)<J whenever —led*}

(4% being the set of roots corresponding to U) and J’ is such that for each jeJ',
I'nj~'U-j is a lattice in j~'U~j. Then G=G~'=TJW(S%~*K where J
=(J)~! and W=(W")~!. As before we see that (S°)~'=S,. Hence G=T'JWS,K.
Also clearly for each jeJ, j~'Ijn U~ is a lattice in U~.

We now formulate'a characterisation of the Haar measure whose proof is the
subject of PartIl. The notation U, U~, §, K introduced earlier as also the
subsets W, J and 6 >0 satisfying Proposition 2.3 shall be considered fixed. Also
recall that P and P~ denote the normalizers of U and U~ respectively and that
H denotes the connected component of the identity in P~.

Now let 4 be a maximal vector subgroup containing S, contained in Pn P~
and such that {Ada|aeA} is diagonalizable over R and let N be a maximal
horospherical subgroup (not necessarily I'-rational) in G normalized by 4 and
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such that Uc N cP. We denote X =G/N and X = U}P N/N. Then X - X, is

a union of lower dimensional manifolds. (This may be proved by using Bruhat
decomposition on each component G, iel.) Hence if u is a G-invariant measure
on X then u(X — X;)=0. We prove:

(2.4) Theorem. Let n be a I'-invariant,-I'-finite, ergodic (cf. §1 for definitions)
measure on X =G/N such that n(X — X )=0. Then =n is G-invariant.

We close this section by recalling certain simple properties of the fundamen-
tal domains constructed in Proposition2.3. Put Q=JWS,K/K <G/K. Let uyg
denote a G-invariant measure on G/K. Then it is well-known that p,(£2) < oo (cf.
Lemma 12.5, [1]). We also need the following

(2.5) Lemma. Let W, be any relatively compact subset of H. Then for any t >0,
\Jh=' W, h is relatively compact.

heS,

Proof. The subgroup H can be expressed as Z - U~ (semidirect product) where Z
is the centralizer of S in G. Considering the components it is enough to prove
the lemma for W, contained U~. Any element of U~ can be expressed as
(expt &,) (expt,&,) ... (expt,&,) where &,,&,,...,E,€% ™, the Lie subalgebra of
U™, are simultaneous eigenvectors of {Ads|seS}. For any heS, teR and i<n
we have h™(expté)h=expv,(h~')t&, where v, is the character on S such that
(Ads)&;=v(s)¢&; for all seS. Since &é,eU~ clearly —logv,ed*. Thus if seS,,
vi(h~Y=exp(—logv,(h) €. If W, is contained in

{(expt, &y)(expt,&y) ... (exp L, E gy t, .. t,el =1, 1]}
then ( Jh~! W, h is contained in

{(expt, &)(expt, &) ... (expt, E)ty, b, .. t,e[—e' t, et}
Hence it is relatively compact.

(2.6) Remark. S=JWS,;K is contained in JW,S~K where S~ ={s|A(logs)<0
for all AeA*}, and W, is a compact subset of SH.

(2.7) Note. In the sequel the notations as in Proposition 2.3 and later shall be
considered fixed. Also we shall denote by M the group of elements of K which
centralize A. Then MAN is a minimal (real) parabolic subgroup of G.

§3. A Measure on the Fiirstenberg Boundary

The homogeneous space G/M AN which is canonically isomorphic to K/M is the
maximal Fiirstenberg boundary of G. (cf. [7, 14].) We denote this space by B.
We have a canonical projection of f: X =G/N->G/MAN=B. We now fix a

compact subset Q of X such that n(Q)>0. Let r, be the measure on X defined
by ny(E)=n(EnQ) for any Borel subset E of X. Since Q is compact, n, is a
finite measure. Thus we get a (regular, Borel) measure fn, on B defined by
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B nQ(Y)=7zQ(ﬂ'1 Y) for any Borel subset Y of B. Let m denote the K-invariant
probability measure on B. The aim of this section is to prove the following:
(3.1) Proposition. If Bn,<m then n is G-invariant.

Proof. Observe that since the subgroup Z=MA4 normalizes N there exists an
action z+—y, of Z on X =G/N defined by y,(g N)=gz N, which commutes with
the left action of G on X. Therefore in view of Proposition1.12 and Pro-
position 1.13 in order to prove the proposition it is enough to prove that for any
peC/(Z) the measure n, defined by

(3.2) m(E)= ; nW; 'E)o(z)dz

for any Borel subset E of X, is absolutely continuous with respect to a G-
invariant measure say u. So let pe C}(Z) be fixed. Let Q'={y_x|zesupport of ¢,
xeQ} and let ©,, , be the measure on X defined by

C(33) n,g(E)=m,(EnQ).
(3.4) Lemma. If , o< then n,<u.

Proof. Since = is I'-ergodic and n(Q)>0 we have n(X —I'Q)=0. 4 direct
computation now yields n,(X —I'Q’)=0. Therefore for any Borel subset E of X
we have

(3.5) To(E)=n,(EnI'Q)S Y 1, (EnyQ)

yel
=2 7,(07'EnQ)
yel'
= Z n%Q(y— 'E).
yel’

Now if u(E)=0 then for any yel, u(y~'E)=0. Therefore if n, ,<p by (3.5),
u(E)=0 implies n,(E)=0.

Proof of Proposition (3.1). It is easy to verify that there exists a character yx:
Z-R* such that for any Borel set EcG/N=X

#(E)=£dM(xP)£XE(|//zx) x(2)dz

(here and in the sequel y; denotes the characteristic function of E in the
appropriate space). Assume that u(E)=0 and put

Bl={b=xPEB|£XE(¢zx)X(z)dz=0}
Then m(B,)=1. Put E,=Enp~!B, and E,=E—E,. Then

(3.6) m,(E)= )I{ dn(x) ; X, (Y. %) 9(2) dz2=0.
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Put B,=B—B,. Then Ecf~'B, and m(B,)=0. As in Lemma 3.4, we have

(37) n(B~'Bys Y moly~' B~ By)

yel
= Zrng(ﬂ“lv‘le)
= z}_ﬁnQ(V— 'B,).

It is easy to see that since m(B,)=0, for all yel, m(y~*B,)=0. Therefore if
Brg<m by (3.7) we have n(8~' B,)=0. Therefore

nw,Q(E2)§n¢,Q(ﬂ— le)=£d”(x)£Xﬁ- 152('//zx) XQ’(‘l,zx) p(z)dz

=}§{xﬁ—132(X) dn(X)ng'(wzx) p(2)dz
=0,

Combining with (3.6) we conclude that =, ,(E)=0. Since E was an arbitrary
Borel set with u(E)=0 we have thus proved that r, ,<u. Hence by Lemma 3.4,
n,~<u. Again since pe C/(Z) was arbitrary as remarked in the beginning we get
that & is G-invariant.

§ 4. Harmonic Functions on G/K

Recall that we have fixed an Iwasawa decomposition G=KAN. For geG letk(g)eK
and a(g)e 4, be the uniquely determined elements such that g = k(g) - a(g) - nforsome
neN. Also for geG let H(g)=1og a(g)eN. The following useful relation is a simple
consequence of the definition. If g,, g,€G then

(41) H(g,8,)=H(g, k(g,))+H(g,)

Let peU* be the element defined by 2p = Z (dim ®*) A. The Poisson kernel IP on
G/K x K/M is defined by e

(42) PPgK,kM)=exp—2pH(g~'k).

IP(-, +) is clearly well-defined. Using thiskernel to each Borel measureson B=K/M
one associates a non-negative function h, on G/K defined by

43) h,(gK)=[IP(gK,kM)da(kM).
B .

Though we will not need it explicitly it may be recalied that i, defined as aboveisa
harmonic function with respect to the Laplace-Beltrami operator (indeed with
respett to any second order, elliptic G-invariant differential operator vanishing on
constant functions) on G/K. Conversely any non-negative harmonic function h on
G/K admits a representation as in (4.3) for some measure ¢ =g, on B. Further the
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measure g, can be ‘constructed’ from h as follows. Let A™ be the positive Weyl
chamber in A with respect to 4™ ; viz

A* ={acA|AM(loga)>0forall icA*}.
For acA™ let o(h,a) be the measure on B defined by

o(h,a)(E)= [ h(kaK)dm(k M)
E

foranyBorelsubset E of B.Since h(kma K) = h(k a K) theintegral is well-defined. Now
define ‘a— oo’ to mean that A(log a)— o for all Ae4*. Then g, is determined by the
following result of Knapp and Williamson [12].

(4.4) Proposition. With notations as above

g,=lim a(h,a)

a—- o

in the space of all bounded measures which is assumed to be endowed with the weak*-
topology.

(4.5) Corollary (cf. [18]). Let o be a finite Borel measure on B and h,, the harmonic
fun;cltizn definedby(4.3).If thereexistsasequence {a;} in A™,a;— o0 inthe above sense,
such that

hmsupj'h (ka;K)? dk=1*<

j- o
then o<m.

Proof. By Proposition 4.4 and Schwartz inequality for any continuous function y on
B, we get

Ij'n//(kM)da(kM)l—hm [ (kM) h,(kaK) dm(k M)|

j=o© B

< lim sup Ijt//(kM)2 dm|'/? Ijh (kaK)dm|'/?

jo o

=1y (kM)* dm|'?
B

which shows that o<m.
On G/K there exists a G-invariant metric defined by

(4.6) D(glK,gzK)=I§1§(xIpH(grlgzk)I

(cf. [181], §5). Further it is also proved that the distance is given by

D(g,K,g,K)=p(loga)

where aeclA™ is the unique element such that g7 'g,=k,ak, (Cartan decom-
position) where k,, k,eK.
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The disc of radius T in G/K with center K is the set
(47 U={gK|D@gK,K)=1}.

LetpybeaG-invariant measureon G/K. Proofs of the followinglemmas may be found
in [18].

(4.8) Lemma (cf. Lemma 5.10,[18]). For > Othere exists a constant c(t,) such that
for all >0, ue (U, ) S c(ty) ug(U).

(4.9) Lemma (cf. Lemma5.11, [18]). Let h be a locally integrable, non-negative
function on G/K. If there exists a constant ¢ such that for all t>0

[ h(gK)? d g Scpg(U)

U,

then there exists a sequence {a,}? in A%, a,— o0 such that
q Fiat J

lim sup [ h(ka,;K)* dk M < 0.
K

jow

(4.10) Remark.Let f betheharmonicfunctionon G/K corresponding to the meaure
By on B; viz.

f(gK)=£]P(gK, kM)dBmry(kM).

In view of Proposition 3.1, Corollary 4.5 and Lemma 4.9, if there exists a constant ¢
such that for all t>0

gf(gK)z dug<cu(U)

then = is G-invariant.

§5. Estimation of #2-Norms on Discs

Recall that wehave G/K =I'Q. Nowlet yeI,beQand geGbesuchthatg K=yb. We
have for f(gK) as in the last section

f(gK)=£eXP—2pH(g‘1k)dﬁng(kM)

=£exp~2pH(g‘ Lk(x)) drg(x).

(Notice that the functions k and a defined on G are invariant under the right action
of N and hence define functions on X which also we denote by the same letters.) Since
0 is a compact subset of X there exists a constant ¢, such that for all xeQ

(5.0) ¢f'Sexp—2pH(a(x)<c,.
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Since H(g~ 1 k(x))=H(g~ ! x)— H(a(x)) using (5.1) we conclude that
fgK)=c, )IIGXP—ZPH(g"X)an(X)

=c, fxp(x)exp—2pH(b~ 'y~ x)dn(x).
X

Here by H(b~*y~'x) we mean H(by 'y~ ! x) for some b,eG such that b=b, K, the
function being obviously independent of the representative. Now since = is I'-
invariant we get

F@K)=c, [xo(yx) exp—2p H(b~ " x) dm(x).

For the sake of brevity henceforth let the function exp —2pH(*) on G or X be
denoted by F(-) (on G or X respectively). Thus

(2 feK)=c, JS;XQ()’X) F(b~'x)dn(x).

Nowlet 7>0and U, be the disc of radius 7 and center K. Put [={yel'|yQnU,is
nonempty} and for yeI; let D,=Qny~*U,. Then U,= | ) yD,. Hence

yely

gf(gK)zdﬂxé 2 [f@bK)? yp,(b) d g (b)

yel, 2
e Y, [xo, B dug®) § xorx) 2oy ) Fb~'x)
yel, XxX

“F(b~'y)dn(x)dn(y)

inview of(5.2). Using Fubini theorem, which henceforth we apply repeatedly without
mention, the last expression may be written as

(5.3) czgdﬂx(b) § FO ' x)F(b='y) E(x, y,b)dn(x) dn(y)
XxX
where for all x, yeX and beQ

(54) E(x,y,b)= 3 xo(rX) 20(y¥) xp,(b)

yel:

= erg(v x) %y ¥) 20 (7 b).

We first obtain an integral which majorizes E(x, y, b). Let ¥ be a compact,
symmetric neighborhood of the identity e in G with V2> ~I'= {e}. Then there exists
1,>0 such that VU,cU, . Also put Q,=KVQ. With this notation it is
straightforward to verify that there exists a constant ¢, such that for any x, ye X and
beQ

(55) 200 1) rv.B)=C: [ 20,82 20,8 ) 10..., (ED) I
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where dg is a fixed Haar measure on G. Combining (5.4) and (5.5), we deduce that

E(x,p,b)sc, ). [10,(87X) 10,(8YY) 1v... (87D) dg
yell V

=c2 ), { %0,(8%) %0, (8)) 20, (8b) dg.
yel Vy .

Since Vissymmetricand V2 A I = {e}, {V 7}, risafamily of pairwise disjoint subsets
of G. Hence

E(x,y,b)<c, (I; 20, (8%) 10,(8Y) 2v.,. (8b) ds.

Nowforanyt>01etG, ={geG|gKeU,}. Wealsofix aBorel cross-section 0: Q-G
of the canonical projection of G onto G/K, such that O(Q) is contained in JWS,. For
any beQ let b, denote O(b). Then for x, ye X and beQ

(5.6) E(x,y,b)=c, | 20,(8%) x0,(8¥) xu,,. (800 K) dg
G

=c; | Xo.(8b5'x)x0,(8b5 " y)dg.
T+1g

Now consider the Cartan decomposition G =K (cl A*) K where A * isthe positive
Weyl chamber in 4. Let g=k, a k be the expression for the generic element in G.
Correspondingly the Haar measure d g has an expression v(a) dk, d o d k where v(a) is
afunctiononclA*,dais a Haar measure on 4 and d k, and d k are normalized Haar
measures on K.

Since KQ; =@, the integral in (5.6) is invariant under the left action of K. Also
G, , . isinvariantunder theleftaction. Thereforeusing theabovedecompositionofd g
we get

(5.7 E(x,pnb= [ viwdafyg (akbg'x)xp (akbg'y)dk

Ads e

where A}, ={aed*|aKel,,,}. Here we have also used the fact that the
complementof 4*incl 4+ haszeromeasure. NowforaeA*,putQ,=Ka~'Q,.Then
the integral over K appearing in (5.7) is nonzero only if x, yeb, @,. Further, using
Schwartz lemma we may conclude that

(5.8) fxg,(akbg'x)yg (akbgty)dk
K

S%0,(05 " %) 10,65 y){{xg,(akba ') dk}”’{lf(qu(akbgl y)dk}t2.

Fortunately for us an estimate of the integrals appearing in (5.8) which is sufficient
for our purposes has indeed been obtained in [18].

(5.9) Proposition (Lemma 6.7 in [18]). For any compact subset Q, of X there exist
constants ¢>0 and ¢ such that for all xe A™ and xeX

[ xg,(akx)dk Zcy F(x) F(a).
K
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Therefore the right hand side of (5.8) is majorized by
(5.10) ¢} xq,(bg ' x) xg, (b5 ' y) F(b~ ' x)2 F(b~1 yy'* F(af.

Putting together (5.3),(5.6) and (5.10) we now conclude that there exists a constant
¢, such that

(511) [ f@KP dugSe, [dug) | Fb=10' 73 Fb=19) " dn(x) dn(y)
U, Q

XxX

[ 10,65 X) 10,(b5 y) F (o) v(o) dot

Ads e

= c4§2dyx(b) | F(v(a)da

Afs ey
A 2. b5 0 F(b~1 %) T dr(x)}2,
X
Now consider the integral
1(b,0)=§ x0.(b5 ' X) F(b5 ' x) " Zdm(x).
X

Recallthatb,eJ WS, < JS~ W, where W, isa compact subset of SH (cf. Corollary 2.6).
In view of (4.1) there exists a constant c such that for all x’'eX and weW,

Fw=1x)<cs F(x)

Hence if by=jhw where jeJ, he S~ and weW, then

(5.12) I, at)=3‘;)((2m(w‘1 h=tlj~lx)F(w~! h‘lj"’x)H%dn(x)
P Y T L)
=c§+§£xwogz(h—l5c) F(h‘lx)H%dnj(x)

where n; is the measure on X defined by
(5.13) n{(E)=n(E)
for any Borel subset E of X. Then =; is j~'I'j-invariant and (X — P~ N/N)=0.

(5.14) Proposition. There existsacompact subset E of H and a constant ¢ suchthat for
all jeJ, heS~ and any measurable subset Q of X

gF(h‘ ! x)1 2 dmy(x) §06E50F(h‘ 1 x)l 3 d u(x).

Proofofthis propositionis postponed until thenext section. Using the Proposition we
now complete the proof of Theorem 2.4. Firstly from (5.12) we have
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Ibo<cs 2 | Fh—'x)' ZTdnyx)
hWOQo:
<c, | F(h~*x)'"2du(x) (wherec,=cgcs 2)
ERWoQs

=c, ] F(k”“x}“gdu(x)

h(h~1EyWoQq

<e, | Fortn " Tdue

hEoWoQx

where E,= | ] h~'Eh. Since E is a compact subset of H by Lemma 2.5, E,, is also a
hed~

relatively compact subset of H. How

(515) I(h.8)Scr [ Lzowoauh™ 9 Fi 1" dp(o)

=1 [ Upawoo O F() "2 dpu(x).

Using the Iwasawa decomposition G=KAN, X may be identified with K x A
(topologically). It is well-known that under this identification du(x) has the
expression{upto ascalar multiple)exp 2 p H(a) d k d a. Since F{x)=exp — 2 p H{(a(x))
it follows that

(5.16) [ tnwoo I F) Tdum)= | Fo*?dkda
X

EoWoQu

= {  Fx*dkda.

EoWoKa™1Q,

(5.17) Proposition(Lemma6.21in[18]). There existsaconstant ¢z depending onlyon
E'=E,W,, Q, and ¢ such that for all acA™

x LQ F(x)*dkdagcy Fla)~*2.

Combining (5.11), (5.15), (5.16) and Proposition 5.17, we now have

ff(gK)deK Cgfdﬂx(b) 5 v(o)da

At+10

where ¢, is a suitable conmstant. Now recall that pu{Q)<oco and that
(U, ;) Sc(ty) pg(U). Thus finally we may conclude that there exists a constant ¢
such that for all >0

I f(gK)? dpg <cp(U).

By Remark 4.10 this implies that = is G-invariant, thus proving Theorem 2.4.
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§ 6. A Convolution Technique

In this section we develop some techniques to compare certain integrals with
respect to a measure which is invariant under a lattice with the corresponding
integrals with respect to a G-invariant measure. The ideas have their origin in
{87 and [18].

Inthe sequel welet I', U, U™, P, P~, §, §~, N, J etc. be the same as before.
Recall that their choice depended on I'. However we now let A denote an
arbitrary lattice in G. The results in the sequel will be applicable when we set A
=j~1r}, jeJ. In what follows y’ will denote a G-invariant measure on X' =G/U.

(6.1) Lemma. Let ¢ be a A-invariant, A-finite (cf. §1 for definition) measure on
X', Let V be a compact neighborhood of the identity e in G. Then there exists a
constant d, such that for any non-negative measurable function ¢ on X'

g, (5; o(gx) 1y (@)dgdo(x)Sd, &f'@(x)du’(x)-

Xy being the characteristic function of V and dg being a Haar measure on G.

Proof. For any ¢eC,(X') put

v(p)= ,{ (f; @(gx) xy(g)dgdo(x).

Then v defines a (locally finite, Borel) measure on X'. It is easy to see, as in § 1,
that v is absolutely continuous with respect to i, To prove the Lemma we only
need to show that the Radon-Nikodym derivative is bounded (a.e.).

Let ¢’ and v be the measures on G corresponding to ¢ and v respectively
under the correspondence introduced in Proposition 1.6. Clearly it is enough to
prove that there exists a bounded measurable function { which is invariant
under the right action of N and is a Radon-Nikodym derivative for v' with
respect to the Haar measure dg on G.

It is straightforward to verify from the definitions of ¢’ and v that for any
YeC,(G)

6.2) 5} y()dv(y)= i £ gy xv(g)dgda’' ().

Using right invariance of dg we get

(6.3) (f} Yy dv ()= £ (f; Y(g) xv(gy~dgdo'(y)
=[{¥@xy-1,(»)dgde’(y)
GG
=(f;l/!(g)0'(V" lg)dg.

s

In other words o(V~'g) is a representative in the a.e. class % Also (V- lg)is

invariant under the right action of N. We now show that {(g)=¢'(V~1g) is a
bounded function on G.
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Let D be a compact, symmetric neighbourhood of ¢ in G such that for any
yeA—{e} the sets D and Dy are disjoint. Since V is compact there exist

k k
€1,82,---»8 in G such that Vc({)giD. Hence V-'gc|)Dg;'g. Hence it is
1

enough to prove that ¢'(Dg) is a bounded function on G. Observe that for any
yeA—{e} and geG the sets Dg and yDg are disjoint. Hence if ¢” is the measure
on A\G corresponding to ¢’ then o¢'(Dg)=d"(A\G). Since o is A-finite
a"(A\G) < oo, Hence o'(Dg) is bounded.

(6.4) Corollary. Let o be as in Lemma 6.1. and let V be any compact neigh-
bourhood of e in G. Then there exists a constant d, such that for any measurable
subset E of X'

o(E)<d, i (VE).
Proof. Let E be any measurable subset of X'. Then for all geV we have

Xe(X) = xve(gx)

for all xeX. Thus for every geV we have
a(E)=[xs(x)do(x)=< | typ(gx)da(x).
X X

Integrating both sides of the inequality over V we get

o(E)<d' | | xye(gx)do(x)dg
VX

where d' is the inverse of the Haar measure of V. By Lemma 6.1 (and Fubini
theorem) it follows that

o(E)<d d, (VE).

We now specialize to A-invariant measures on X'=G/U for which the
measure of X' — P~ U/U is zero. Denote Y=P~ U/U. Y is the unique open orbit
of P~ on X’ and its complement is a union of lower dimensional manifolds. The
restriction of the G-invariant measure u’ on G/U to Y, being P~ -invariant, is a
constant multiple of the quotient of d,h on Y. Here d;h denotes a left Haar
measure on P~. By choosing d,h appropriately we may assume, as we do, that
for any measurable function ¢ on Y

(6.5) Pf_ o(rU)dh= i (N dp'(y)

(6.6) Lemma. Let A be any lattice in G such that AnU~ is a lattice in U~ and
let o be a A-invariant measure on X' such that o(X'—Y)=0. Then there exists a
neighbourhood Q of the identity e in P~ and a constant d, such that for any non-
negative measurable function ¢ on Y

§ § ey xothydhdo(y)<d, ,i e(y)dy (y).

Yp-
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Proof. Let H be the connected component of e in P~. Then H=U"-Z
(semidirect product) where Z is the connected component of e in the centralizer
of Sin G. Let Dc U™, FcZ and ¥ <G be compact neighbourhoods of e in the
respective subgroups such that DF is contained in ¥ and V="'V A={e}. Put Q
=(DF)~'. Let v be the measure on Y defined by

(6.7) g e(Ndv(y)=] | ¢(hy)xo(h)dhdo(x).

YP-
We claim that v<y'/Y, the restiction of u to Y. For if EcY is a Borel set such
that y'(E)=0, then for any yeY say y=h,U
§ xehy)dih= | xg(hhoU)d;h
P- pP-
=6(ho) | xp(hU)d;h
p-

=0o(ho)(E)  (by (6.5)
=0.

Here and in the sequel J denotes the modular homomorphism of P ; i.e. for any
integrable function 8 on P~ and hyeP~

6.8) | O(hho)dh=25(ho) | O(h)d,h.
P P

To prove the Lemma it is enough to prove that the Radon-Nikodym
derivative dv/dy’ (on Y) is bounded. Observe that the map 7: P~ — Y defined by
h—hy, where y,eY is fixed (arbitrarily) is bijective. Therefore using = we now
identify Y with P~. It is easy to see that under this identification the Radon-
Nikodym derivative may be written as

dv

69 7

(h)=£xn(h)" oy do(x).

Since Q< H is compact and ¢ is a continuous homomorphism, there exists a
constant d, such that whenever hy~'eQ, 5(y)<d, é(h). Therefore

d
ZY(h)sd, 50§ xg(hy~dal(y)
du Y

=d 5(h)a (2" 1h).

(6.10)

Recall that @~ '=DF and consider the function o(Q~'h)=qc(DFh). Let
P1sP2»---» D be a set of representatives for P~/H. Then any element h of P~ can
be uniquely represented as h=u"p;z where u"eU~, zeZ and 1Sj<k.

Since AN U is a lattice in U~ there exists a relatively compact Borel subset
C of U~ such that i) for yeU~ n A, y+e the sets C and yC are disjoint and ii)

U= U yC, that is C is a fundamental domain for U" nA in U~. Recall
yeU " nA

also that any lattice in a nilpotent Lie group is uniform. Hence a relatively
compact fundamental domain exists. Now let heP~ and h=u"p;z be the
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representation as above. For each {eF and yeU~ n 4 denote
CHnO={y'Diu{"'}nC
and for each yeU™ N 4 let

C,=C»nyp;z
{eF

It is easy to see that for each yeU™ n4, C, is a Borel subset of P~. Clearly
{rC,},cu-na is a family of pairwise disjoint sets whose union is DFu™ p;z.
Therefore using A-invariance of ¢ we now get

(6.11) o(Q@ 'h)=c(DFu~p,z)= Y o(yC,)

yeU~n4A

= ) o(C)

yeU™"nA

We next claim that C,, yeU~n A are pairwise disjoint. For otherwise let y+y’
be such that ho=ug p,z,e Cyn Cy where ugeU~, z,eZ and 121k, In other
words there exist {,{'eF, uyeC(y,{) and u; e C(y',{’) such that

(6.12) hy=ug p;zo=uy ijz=u; C’pjz.

We may write {p;=nj p;z, and {'p;=n; p;z, where n7,n; €U~ and z,,z,€Z.
Substituting in (6.12) and using uniqueness of the representation we get uy ny
=u; ny and z, =z,. But then {'{~ ' =({'p)({'p)~ ' =n7 (n7)~ ' =u; (u7)~". Since
H=U"-Z is a semidirect product it follows that {={' and u; =u3;. However
this means that y~'Dny ~'D is non-empty as it contains uy ({u~{~*)~'. But
since DV and {yV,yeA} is a family of pairwise disjoint sets we arrive at a
contradiction. Therefore C,, yeU™ n A are pairwise disjoint. Also each C, is
contained in CFp;z. Therefore by (6.11)

6(Q'h)<5(CF,2)

k
where F0=L1)F p;- Recalling the identifications and using Corollary 6.4 we

conclude that

(6.13) o(Q~'hU)=0(CF,zU)
<d, ) (VCFyzU).

Recall that since Z normalizes U there is an action z—y, of Z on X'=G/U
given by ¥,(gU)=gzU. Since this action commutes with the G-action on left
there exists a character y: Z—R™* such that for any Borel subset E of X',
¢ (Y, (E) = x(z) W' (E). We claim that x(z)=35(z)~'. To see this let Q be a compact
subset of H with non-empty interior and let E=QU/U. Then E is a compact
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subset Y with non-empty interior. Then in view of (6.5) we have
YW (E)=p (), (E)=p (QzU/U)= | yo(hz~")d;h
H

=d(z" ‘)gxg(h)d,h=5(2‘ ) i (E).

Since 0< u'(E)< oo we must have x(z)=34(z"!). Using (6.10) and (6.13) we now
conclude that

dv

6.14) P

(h)=dyd,0(h) W (VCFyzU/U)
=dé(h)d(z~ 1)

where d=d,d, ;' (VCF,U/U). Since VCF, is a relatively compact subset, d is
finite. It is easy to see that the restriction of the modular homomorphism § to
U~ is identically 1. Hence d(h)=0(u~p;z)=05(p;)d(z). Therefore by (6.14)
dvidy <d lsupk 0(p;). This proves Lemma 6.6.

sjs

(6.15) Corollary. Let ¢ be a A-invariant measure on X =G/N such that ¢(X
—P~ N/N)=0. Then there exists a neighbourhood Q of e in H and a constant
d >0 such that for any non-negative measurable function ¢ on X

1§ 0t 1alh) dih S § 90 dn ().

Proof. Let Q be the neighbourhood of e in H as in Lemma 6.6. In view of the
one-one correspondence of measures on X and X’ with those on G introduced in
Proposition 1.6 the corollary is an obvious consequence of Lemma 6.6.

§ 7. Proof of Proposition (5.14)

Recall that the function F on X involved in the integrals in Proposition 5.14 is
defined by the (right) N-invariant function on G, (also denoted by F) defined by

F(g)=exp—2pH(g)

where p and H(g) are as introduced in the beginning of §4. We now need the
following alternative formulation of F.

Let ® be the Lie algebra of G and let G be its complexification. Let € be a
Cartan subalgebra of ®, containing the Lie subalgebra U of A. Let 4f be a
system of positive roots for the pair (®¢, €) such that the set of restrictions of
elements of 4¢ to U contains all roots of W on .4, the Lie subalgebra of N. Let
Ae%*, the dual of € be such that 24 is the sum of all roots in 4¢. Then there
exists a unique finite dimensional irreducible representation df of G, with
highest weight A, say on a vector space . Let 6 be the corresponding
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representation of G on &. Then & is endowed with a norm | - || such that for all
geG

(7.1) 116(g)voll =exppH(g)

where v, is an element in the weight space corresponding to the highest weight.

Now let as before H be the connected component of ¢ in P~ and let  be the
Lie subalgebra corresponding to H. Using (7.1) in this section we first prove the
following result.

(7.2) Lemma. Let ¢ be any measure on X =G/N. Let ne$ be a simultaneous
eigenvector of {Ad alae A} such that adn is a nilpotent transformation of ®. Let q
and t,>0 be given. Let E, ={exptn||t|<t,}. Then there exists a constant ds such
that for any Borel subset Q of X and £€S~ (cf. § 2 for notation)

[F(&'x)0do(x)=ds | F(¢'x)day(x)
2 E,Q

where o, is the measure on X such that for all peC (X)

)f(qo(x)da,,(x)ﬂ .{ @(exptn-x) xg, (exptn)dtda(x).

Proof. Since n is a nilpotent element of ®, t=d60(n) is a nilpotent linear
transformation of .#. Consequently there exists peZ™* such that

p
(7.3) O(exptn)= Z

-1
at't
i=0

where a;, 0<i<p are the first p coefficients in the exponential series. For ve ¥
and t'eIR, put

d
P(v, t’)=gz 6(exptn)-Olexpt'n) vl .o

d
=7 10@exptm)of .-

We claim that for any (fixed) ve% either P(v,t')=0 for all t'eR or the
number of solutions of #(v,t')=0 is bounded by 2p. We first observe that for
v+0, #(v,t')=0 if and only if

d
E ||9(CXP tﬂ)U||2L=:' =0.

Now let {v;}] be coordinates of v with respect to an orthonormal basis of £.

Then in view of (7.1) the left hand side is a polynomial in ¢' whose degree is at

most 2p. Hence if 2(v,t) is not identically zero it can have at most 2p solutions.
Now for any t, >0 define

Zo(t,) ={veZ|P(v,t')=0 for some t'e[ —t,,t,1},
Lrit)={veZl|Pv,0)>0} - L,(t,)
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and
L (t)={veZ|P(v,0)<0} —Z,(t,).
Then obviously for any t, >0 the above three sets constitute a partition of &.

(7.5) Sub-Lemma. In above notation if either ve £ ™*(t,) and te[—t,,0] or
ve L (to) and te[0,t,] then

6(exp tn)v] < [lvll.

Proof. We consider the former case; the latter can be dealt with similarly. Since
ve ¥ *(t,) either the desired inequality holds for all t <0 or there exists t'>0 such
that

(7.6) |B(exptn)vfi<|lv]| for te(—1t,0)
and
6(exp t'n)vil=1lv]l.

By Rolle’s theorem there exists t”e(—t',0) such that
' d
P(v,t )=Ell9(eXptﬂ)v!l l=-=0.

Since v¢.Z,(t,) we must have ~t’">t,. Hence t'> —t">t, in view of (7.6) the
claim is proved.

(7.7) Corollary. Let £eS—. Then if either vel(&) L (t,) and te[0,t,] or
ved(&) L *(t,) and te[ —t,,0] then

16" exptn) vl <6~ vl

Proof. Let 4 be the character on A such that (Ada)n=A(a)n for all ae A. Since
neg it follows that for any feS—, 0<A(E~ 1)1, Thus if te[ —t,,0] then
E-Hexptn)E=exptA((~')n=expt'y for some t'e[—t,,0]. Hence by Sub-
Lemma 7.5, in either of the cases we get

16~ exptn)oll =6~ (exptn) §) 0~ ) vl
S16¢E Nl

(7.8) Sub-Lemma. Let t,>0 be given. Then there exists a function { defined on
&(2ty) and a constant. d >0 such that i) for v+0, {(v)>0

ii) for all veZ y(ty) and te[ —ty, to], {(B(exptn) v}={(v) and
iii) vel(&) L ,(ty) where £E€S™ and te[ —tq, tg],

dg L0 )=S0 expty)vll Sdg (B¢ ).

Proof. On % ,(2t,) consider the partition D whose elements are connected
components of {8(exptn)viteR}NL,(2¢,), veL((2t,). Let ~ denote the cor-
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responding equivalence relation. Now for ve #,(2t,) define
(79 {@=inf{{v'|{v'eZ (21, and v ~v}.

We first observe that since » is nilpotent either |f(expty)v] -0 as t— o0 or
v is a fixed point of 8{exp t), telR. Henge for any v+0, {{)>0.

Now if ve,(t,) and te[—1,,t,] then O(exptn)vef,(2t,) and
Bexpty)v~v. Therefore { satisfies i) Next let ve#,(t,) and consider the
function #(v,t). First suppose 2(r,t)=0 for all teR. Then |B(exptn)v] is the
constant function {[p]l. On the other hand if 2(v, 1) is not identically zero then, as
observed earlier, the set of solutions of P(v,1)=0 has at most 2p elements.
Consequently the “length” of the equivalence class D{v) of v, defined by

Hwy=Sup {it, —*i!ﬂé}{exp tym)v, B{expt,n) 3533(253}}

and O{expt, n)v~Glexpt,mv
satisfies [{v) S 8pt,. Therefore if we put
dg=sup {||0(exptn)v'|/|v'||v'e £, |t £8pto}
then for any »,,v,6D(v) we have
dg* ol = vy )l £ds oy -

Also by compactness of D(v), {{v)=||v']| for some v'eD{p). Thus we have proved
iil} in Lemma 7.8 for the case when ==, For arbitrary £eS~, iii) can be proved
by applying the above to 8((~')v and observing as in Corollary 7.7 that
{& Hexptn) &llt St} is contained in {(exp tm)|it] St}

We now complete the proof of Lemma 7.2. Let Q@ be a Borel subset of X
=G/N. Let v,e & be as in (7.1). Now for £&S~ define

Qo() ={gNeQ|0(g) v,e8(2) Z(to)}

0" (0)={gNeQ|0(2)v,ed(&) L *(t,)},

0~ (0)={gNeQ|0(g) v,e8(&) L~ (t,)}-
Then for each £ the above three sets form a partition of §. We intend to prove
the inequality in Lemma 7.2 by proving it separately on each of these sets.

Firstly consider Q% (). Since F{&™ ' x)=8(¢ " g)v,] =2 in view of Corollary
7.7 for xeQ* (&) and te[ —1,,0] we get

FE 1 x)S {10 exptn) g vol ™2

= F(E 1(exptn)x).

Let E; ={exptn|te[ —t,,0]}. Then for given ¢>0 and te[ —t,,0], we have
X+ X F(E™ 1 xS xp. oUexp tm) x) F(E™* (exp t) x).

for all xeX. Therefore
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(710) | F(¢~1x)qda(x)=ti § dtfxg: @™ F(E 1x)ydo(x)
Q2+ 0E; X

1
é}— f dtfxsﬂ— ol(exptn)x) F(E™" (exptn) x)? do(x)
0 B-
<— § F(& 'x)ydo,(x)
Tty E,0
where g, and E, are as in the statement of the lemma. Similarly we can prove
(7.11) [ FE! )"da(x)<— [ Ft x)do (x).
2~ ©® Lo k,0
Now consider | F(&™'x)?da(x). For xeQ(&), in view of iii) in Sub-Lemma 7.8
Qo(&)
and (7.1), for te[ —t,,1,] we have
dg2{" & ' )SF(E exptmx)Sdz (¢ ' x).
Hence in particular for any te[ —tg,t,], x€Q ()
F(E'xyISdZ1 (&' x)1Sd F (& (exp ty) x)?
where &’ =d%9. Hence for any te[ —t,,t,] and xeX
Xooe(X) F(E™ xpsd XE,,Q((eXp tn)x) F (&~ ' (exp tn) x)2.
Integrating both sides with respect to x and te[ —t,,t,] we conclude that
(712) | F ! x)"da(x)f—— | F(E 'x)ydo,(x).
Qo) 2t Ly EnQ

Combining (7.10), (7.11) and (7.12) we conclude that there exists a constant d;
(independent of &) such that

[FE 'xfdo()sds | F(£='x)0,(x).
2 E,Q

(7.13) Lemma. Let G=KAN be the Iwasawa decomposition as fixed in §2. Let
M be the subgroup of K consisting of elements which centralize A. Let X be a
compact neighbourhood of e in MA. Let o be any measure on X =G/N and let
q>0 be given. Then there exists a constant d, such that for any Borel subset

Qo X
[F(E'xydo(x)sd, | FE xYidoy(x)
) 10

where o is the measure on X defined by putting for e C (X)
fo(x)dos(x)=| | @(zx)xs(2)dzda(x)
X X MA

dz being a fixed Haar measure on M A,
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Proof. In the notation used earlier in the section define
dg=Sup{||6(z)vl/|lv]||ve £ —(0),zeZ}.

Since X is compact dg is finite. Then using (7.1) for any zeZ, ¢S~ and x
=gNeX we have

FE'x)=0¢ " g)vol~?
Sdg10(zE " g) vl 2
=diF(z¢ ' x)
=diF(é~1zx).

For the last step recall that S < A. Now as before for the Borel set Q and zeX we
can write

XX F(E XY 2d3 y5o(zx) F(E™ zx)2...  for all xeX.
Let dg be the inverse of the Haar measure of X in MA. Then
({F(ﬁ‘ 1xYdo(x) zdgidz); XX F(E™ xYdo(x)
Sdyd3¢ :‘f( ixm(zx) F(E 'zx)Ydzdo(x)

=d, [ F(¢™"x)"doy(x)
2Q
where d, =dyd3%.

(7.14) Proposition. Let A be a lattice in G such that AnU~ is a lattice in U~
Let o be a A-invariant measure on X =G/N such that ¢(X —Y)=0 where Y
=P~ N/N. Let q>0 be given. Then there exists a compact neighbourhood E of e
in H= P~ and a constant d such that for any €S~ and any Borel subset Q of X

[F(E'xYido()Sd | FE xF dux).
Q EQ

Proof. Let 2 be a compact neighbourhood of e in H, (the connected component
of P~) for which Corollary 6.15 is satisfied. In the Lie subalgebra § of H there
exists elements #,,4,, ..., 1,, which are nilpotent elements of ® and such that the
map #: R xMA—-H defined by (t,f;,....t,2)=(expt,n,) -(expt,n,)...
(expt,n,)-z is regular at (0,0,...,0,¢). Hence there exists a neighbourhood X
of e in MA and t, such that if R={(t,,t,,....t,,2){|t;|St, for 1ZiZr and
zeZ} and E,;=E, ={exptn;it]<t,} then #/R is a diffeomorphism onto
E=E,E,-...-E,X and the latter is a neighbourhood of e in H. By choosing
smaller X and t, we may also assume that Ec£.

Applying Lemma 7.13 and then Lemma 7.2 repeatedly we conclude the
following: For any ¢>0 there exists a constant d’ such that for any £eS— and
any Borel subset Q of X

(7.15) (};F(é'IX)“dU(x)éd’ E%F(é”’x)"d((---(Gx)u,)n,-.)nn
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Since #/R is a diffeomorphism onto E there exists a differentiable function y on
E such that for any peC (H)

fdz {dt, § .. {dt,{o((expt;n)expt,n,)...(expt,n,) 2} ={ o) Y(h) d;h.
z Ey Epy E E

Thus if ¢ is a non-negative function on X

,}; e(x)d((...(o5),) -y, {x}=:£ ;{; @(hx) g (M dhdo(x)
<d’ i I'Er o(hx) xoh)dhdo(x)

where d"zil:gtll(h)< co. By Lemma 6.6 we further have
)f{ }f{ p(hx) rohdihdo(x)<ds £ @ (x)dpu(x).
In particular for @(x)=F(&~" x) y5o(x) we get
(7.16) ;F € % xpe(®)d((... (03, ).}, Sd" dy )j; F(E %) tpo(x)da.
Combining (7.15) and (7.16) we conclude that for any ée§™
JF@ xpdo(sd | FE*xpduty

where d=d'd"d,. This proves Proposition.

Proof of Proposition (5.14). Recall that for each jeJ, j-*I'in U~ is a lattice in
U~-. Further the measure x; defined by (5.13) is j~ ! I'j~invariant and (X —Y)
=0. Thus for each jeJ there exists a compact neighbourhood E; of e in H, and a
constant d;>0 such that for any £eS~ and any Borel subset-Q of X

éF(fw 1x)1 +'§“d1'cj(x) sd; E_{Q F(& lx)l +% du(x).

Since J is finite, putting E={ J E; and ¢s=maxd; we get the Proposition.
jed jsd

Part I11. Classification of Invariant Measures

We now consider the general case. In the sequel T denotes a (connected)
reductive Lie group. This means that the adjoint representation is completely
reducible. The adjoint group T* admits a direct product decomposition T*
=C-G wher C and G are normal (and hence semisimple) subgroups of T*, C is
compact’and G is a product of noncompact simple Lie groups. We denote by
p: T—G the canonical projection homomorphism of T onto G. There exists in
T a uynique maximum normal semisimple analytic (connected) subgroup G,
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without compact factors. The restriction of p to G, is a covering of G. Any
horospherical subgroup U of T (see Introduction for definition) is contained in
G,.

Let U be a maximal horospherical subgroup of 7, and let I be a lattice in T. In
§ 8 we first show that any ergodic U-invariant measure on T/I' is concentrated
on a translate of a closed orbit of a reductive subgroup L of T containing G,
such that the L-invariant measure on the orbit is U-ergodic. This reduces the
task of proving Theorem A only in the special case when the action of U on T/I"
is ergodic with respect to the Haar measure. Then using Proposition 1.12 and
the duality principle (Corollary 1.9) in §9 we reduce the problem to the special
case of semisimple groups with trivial center and without compact factors. In
§ 10 we show that if the measure (or more precisely the dual of it) fails to satisfy
the condition of Theorem 2.4 then it is concentrated on a closed orbit of a
proper subgroup. We are then able to produce an inductive argument to
complete the proof of Theorem A.

§ 8. Ergodicity of Haar Measure

(8.1) Lemma. Let H be any Lie group (not necessarily reducitve) and A be a
lattice in H. Let V be a normal analytic subgroup of H. Then there exists an
analytic subgroup L of H such that

(i) L is normalized by A, LA is a closed subgroup and L A is a lattice in L.

i) L contains V and the action of ¥ on L/Ln A is ergodic with respect to the
L-invariant measure on L/LNA.

Proof. We construct inductively, a decreasing sequence {L,}J of analytic sub-
groups of H such that for each i, L; contains ¥, L, is normalized by 4 and L, A4 is
closed, Put Ly=H and suppose Ly, L,,...,L,_; are constructed satisfying the
above conditions. Let L, be the connected component of the identity in cl(VA,)
where A;=L,_, nA. Then L, contains V and is normalized by A. We show that
LA is closed. Let x,y, be a net in L A converging to yeH. Since L,=L,_, and
L,_, A is closed (by induction hypothesis) y has the form xy where xeL,_, and
yeA. Hence x,(y,y " ')—>xeL,_,. But L,_, A being closed, is a discrete union of
left cosets of certain elements of A. Therefore y,y~ ! must eventually belong to
L,_,. Choosing a subnet we may assume that for all &, y,y " 'eAnL,_ =4,
But clearly LA, is closed. Hence x,(y,y”') converges in L,A,. Thus x,7,
converges in L A. Hence L A is closed.

Now put L= ﬂ L,. Since {L;}§ is a decreasing sequence of analytic sub-

groups there ex1sts _]>0 such that L=L,. It follows that L is normalized by 4
and that LA is closed. By Lemma 1.14 Lr\A is a lattice in L.

Clearly L contains V. Further since L=L;=L;,, we conclude that V(L)
is dense in L. The ergodicity of the action of V on L/L~ 4 is now a consequence
of the following Lemma (due to Mostow) which we separate out because of its
usefulness.
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(8.2) Lemma (Mostow). Let H be a locally compact second countable group and
let A be a closed subgroup such that H/A admits a finite H-invariant measure, say
0. Let V be a normal subgroup H such that VA is dense in H. Then the action of
V on H/A is ergodic with respect to o.

Proof. Let fe #2(H/ A, 0) such that f(gxA)=f(xA) a.e. ¢ for all geV. Let f be the
function on H defined by f(x)=f(xA). For any geV and yeA we have

83) flxgn=F(xgx~'xy)=f((xgx~ ' x A)=f(x A)=(x)

ae.on V xH.

But observe that f'is a locally integrable function on H. Also the action of H (on
right) on the space of locally integrable functions on H is continuous when the
latter space is endowed with the topology induced by local seminorms. Since VA
is dense (8.3) now implies that f is a constant function. Hence so is f. Therefore
the action of V on H/Hn A is ergodic with respect to a.

We now return to the earlier notation —as introduced in the introduction to
-Part III.

(8.3) Proposition. There exists a reductive analytic subgroup L of T containing G,
such that

i) L is normalized by I', LT is closed and LT is a lattice in L.

il The action of U on L/LNT is ergodic with respect to the L-invariant
measure.

iii) If m is any U-invariant ergodic measure on T/I" then there exists te T such
that n(T/T —tLI'/I"}=0.

Proof. By Lemma 8.1 there exists an alaytic subgroup L containing G, for which
i) is satisfied, and the action of G, on L/LNT is ergodic. We also observe that
any analytic subgroup containing G, is reductive.

The assertion ii) is a consequence of Calvin Moore’s ergodicity theorem.
Observe that if p; is a canonical projection of G, onto any simple factor of the
adjoint group then cl(p,(U)) is noncompact. The ergodicity theorem asserts that
any subgroup satisfying the above has the following property (cf. Theorem 1,
[15] and also [4]). Let t be a unitary representation of G, on a separable
Hilbert space 4. If ye # is such that t(u)y =y for all ueU then t(g)yy =y for
all geG,. Applying the result to the unitary representation corresponding to the
action of G, on L/LT, we get that if fe £(L/LT) such that f(ux)=f(x) a.e.
for all ue U then f(gx)=f(x) a.e. for all geG,. Since the action of G, is ergodic
such an f must be a constant function; i.e. the action of U on L/LT is ergodic.

We now prove iii). Since LI" is a closed subgroup of T the partition of T/I'
into {xLI'/l"|xeT} is countably separated; ie. there exists a countable family
{E;} of Borel subsets such that each E; is a union of certain elements of the
partition and given any two distinct elements of the partition there exists j such
that E; contains one of them but not the other. Since L contains G, which is a
normal subgroup containing U any element of the above partition is U-
invariant. Therefore if n is a U-invariant ergodic measure on T/I" there exists
te T such that n(T/r —tLI'/T")=0.
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(8.4) Remark. In view of Proposition 8.3, Theorem A needs to be proved only
under the additional hypothesis that the action of U on T/I is ergodic with
respect to the T-invariant measure. For suppose this is done. Let = be a U-
invariant ergodic measure on T/I". Let L be an analytic subgroup and teT be as
obtained in Proposition 8.3. Let =’ be the measure on L/LnT'~LI'/T" defined by
n'(E)=n(tE) for any Borel subset E of LI'/T. Then n’' is a t~!Ut-invariant
measure on L/LN I Thus we get a subgroup H of L and xeL such that H{LAT)
is closed and =’ is the xHx !'-invariant measure supported on
XxH(LAT)/LAT~xHI/I. It follows that = is the txHx~ 't~ ! invariant measure
supported on txHI'/I.

§ 9. Reduction to Semisimple Groups

In this section we reduce proving Theorem A to the special case when T is a
semisimple group without compact factors. Recall that G is the product of all
noncompact simple normal subgroups of the adjoint group of Tand p: T-G is
the canonical projection of T onto G. Let p: T/I' - G/p(I') be the map defined by
peN)=p(t)p(I) for all teT.

(9.1) Lemma. p(I') is a lattice in G and p is proper.

Proof. Let L denote the connected component of the identity in ker p. Also let R
be the radical of T. Then R is also the radical of L and L/R is compact. Now by
a theorem of L. Auslander (cf. Theorem 8.24, [16]) the connected component 4
of the identity in clRI' is solvable. Since L/R is compact AL is a closed
subgroup. Further AL is normalized by I and ALT is a closed subgroup. Since
I’ is a lattice in T it follows easily that the subgroup AI'L/L has the Selberg
property (A subgroup H of T is said to have Selberg property if for any
neighborhood Q of the identity in T and any geT there exists yeI’ and neZ*
such that g"eQyQ~!). Therefore by Borel’s density theorem (cf. Theorem 5.5,
[16], see also [9]) A'L/L is a Zariski dense subgroup of T/L. In particular it
follows that the connected component AL/L is normal in T/L. But since A is
solvable and T/L is semisimple this means that AL=L or that A4 is contained in
L.Consequently LI'/L is a discrete subgroup. Further by Lemma 1.14 it follows
that LI'/L is a lattice in T/L. Next notice that ker p/L is a central subgroup of
T/L. Therefore again because of Borel’s density theorem (ker p) I'/L is discrete
(cf. Corollary 5.17, [16]). Thus p(I') is discrete and indeed a lattice.

To prove that p is proper we proceed as follow: Since A is a closed subgroup
(notation as above) normalized by I" and AT is closed it follows that AT is a
lattice in A4. Since A is solvable it follows from a result of Mostow (cf. Corollary
3.5 and Theorem 2.1, [16]) that A/AnT is compact. Since L/A is compact it
follows that L/LNI is compact. Now the same argument as above shows that
(ker p)n T is a lattice in ker p. Since each orbit of L on ker p/(ker p)n I is open it
follows that there are only finitely many orbits. Also each orbit, being topologi-
cally isomorphic to L/LnI is compact. Hence ker p/(ker p)nI' is compact.
Hence j is proper. )
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(9.2) Lemma. Let Q be an analytic group. Let U’ be a normal analytic subgroup
of Q such that Q/U’ is reductive. Let U be an analytic subgroup containing U’ such
that U/U’ is a maximal horospherical subgroup of Q/U'. Let V be the smallest
normal analytic subgroup of Q containing U. Then the restriction of any ergodic
measure-preserving action of V to U is ergodic.

Proof. Since U’ is a normal subgroup contained in U it is enough to show that
any ergodic action of V/U’ restricts to an ergodic action of U/U’. But V/U' is
clearly the maximum normal semisimple subgroup without compact factors in
Q/U’. Also U/U’ is a maximal horospherical subgroup in V/U’. The desired
result now follows from C.C. Moore’s ergodicity in the same way as argued in
Proposition 8.3, ii).

(9.3) Proposition. Let n be a U-invariant ergodic measure on T/I'. Suppose that
there exists an analytic subgroup H of G and g,€G such that

a) H contains N=p(U). There exists an analytic subgroup N’ of N which is
normal in H and H/N' is reductive.

b) Hngop(Ngot is a lattice in H, Hgop(I') is closed and supppn
=Hg, p(I)/p(I).

¢) pr is H-invariant.

Then there exists an analytic subgroup L of p~'(H) and t,eT such that

i) Loty T'ty! is a lattice in L, Lty is closed and supp n=Lt,I'/I" and

ii) L contains U and = is L-invariant.

Proof. Let t,ep~'(gy). Put Q=p~'(H) and A=Qnt,T't;!. Since
gop(I g5 'nH is a lattice in H and p is proper it follows that A is a lattice in Q.
Also A is the isotropy subgroup for the action of Q at the point ¢, I'. Since pr is
supported on Hg, p(I')/p(I") it follows that the support of = is contained in
Qt, I'/T ~Q/A. Therefore = may be visualized as a U-invariant, ergodic measure
on Q/A.

Recall that the restriction of p to G, is a covering of G. Hence there exists a
unique analytic subgroup U’ of U such that the restriction of p to U’ is an
isomorphism of U’ onto N'. Further it is clear from Lie algebra considerations
that U’ is normal in Q and that Q/U’ is reductive. Also U/U’ is a maximal
horospherical subgroup in Q/U".

Now let ¥ be the smallest normal analytic subgroup of Q containing U. By
Lemma 8.1 there exists an analytic subgroup L of Q such that L is normalized
by A, LA is a closed subgroup, LnA is a lattice in L, L' contains V and the
action of Von I//Ln A is ergodic. By Lemma 9.2 it follows that the action of U
on L/EnA is ergodic. Also since {tL4|teQ} is a countably separated partition
as in the proof of Proposition 8.3 we conclude that there exists t,€Q such that
the U-invariant ergodic measure is supported on ¢, L 4/A. Under the canonical
isomorphism of Q/A with Qt, I'/I" the supporting set corresponds to t, L't, I'/T.
Now put L=¢,L t;" and ty=t,t,. Then = is supported on Lt,I'/T ~L/A where
d=LntyI'ty! is a lattice in L. Observe that U is contained in L and the action
of U on L/4 is ergodic. This is because ergodicity of the action of a subgroup on
a homogeneous space depends only on the conjugacy class of the subgroup.
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We also observe that the restriction of p to L maps L onto H. For, since g is
proper from considerations of supports of # and pn we can deduce that p(Lt,I")
=Hg,p(l'). In other words p(L) acts transitively on the H-orbit
Hgop(D)/p(IN)~H/HNgyp(I') g5 *. However since p(I) is a discrete subgroup of
G and p(L) is analytic this is possible only if p(L)=H.

Let p': L/A— H/p(4) be the map induced by the restriction of p to L. Clearly
p’ is a proper map. Now we may visualize # as a U-invariant ergodic measure
on L/A, such that p’n is a H-invariant measure and we need to prove that x is L-
invariant. Since p’ is proper we can decompose 7 along the fibers of p': There
exists a family {n,},.pu),4) Where m, is a probability measure on 2 ~(p) such
that for any @eC.(L/4)

fox)dnx)= [ dp'n(p) | o(x)dn,(x).
Lia Hlp(4) o ~1p)

Now let R=(ker p)n L. Let dr be a Haar measure on R. For any §e C}(R) let =,
be the measure defined by

[ o(x)dny(x)= | [o(rx)0(r)drdn(x)

LA LiA R

for all @eC, (L/4). Since the actions of the subgroups R and U commute it
follows that each =, is U-invariant. We claim that for all 8eC(R), n, is
absolutely continuous with respect to the L-invariant measure on L/A. Note that
R acts transitively on each p’'~*(p). Since p'= is the H-invariant measure, in view
of Fubini-Weil formula for invariant measures on homogeneous spaces it is
enough to assert that for each pe H/p(4) and 6e C/(R) the measure (), defined
by

[ o dm)y= [ [o@rx)0()drdn,(x)

o ~Hp) o'~ (p) R

where @eC, (o'~ !(p)) is absolutely continuous with respect to the R-invariant
measure on p'~ !(p). But this obviously follows in the same way as in the proof
of Lemma 6.6.

Now recall the one-to-one correspondence between the U-invariant mea-
sures on L/A and A-invariant measures on L/U established in Corollary 1.9.
(Notice that since L contains a lattice it is necessarily unimodular.) Let @w and
gy, 0 C}(R) denote the 4 invariant measures on L/U corresponding to n and
7y, 0 C}(R) respectively. It is straightforward to check that for any 8eC} (R)
and any Borel subset E of L/U

wy(E)= If( oYy ' E)6(r)dr

where r—1, is the action of R on L/U on right defined by y,(xU)=xrU (it is
well-defined since R normalizes U). Since the L-invariant measure on L/A4 is
ergodic for the action of U it follows that the L-invariant measure on L/U is
ergodic for the action of 4. Since for each 8e C} (R), =, is absolutely continuous
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with respect to the L-invariant measure, each w, is absolutely continuous with
respect to the L-invariant measure on L/U. Therefore it now follows from
Proposition 1.12 that @ is a L-invariant measure on L/U. Hence n is a L-
invariant measure on L/A.

§10. Applications

Using the characterization of Haar measure obtained in earlier sections we now
determine all ergodic invariant measures of the ‘horospherical flow” on G/I'
where G is a semisimple analytic group such that R-rank of each factor of G is 1.
A generalization of the result —without the condition on rank of the factors
—involves study of orbits of the horospherical flow and will be considered later.

(10.1) Theorem. Let G be a semisimple analytic group with trivial center and such
that R-rank of each factor of G is 1. (In particular G has no compact factors.) Let
T be a lattice in G. Let U be a maximal horospherical subgroup of G. Let n be an
ergodic U-invariant finite measure on G/I. Then there exists an analytic subgroup
L of G and g,€G such that
i) Lgy T is closed, Lng,I'gg" is a lattice in L and supp n=Lg,I'/T, and

ify L contains U and w is L-invariant. Also

iii) There exists an analytic subgroup U’ of U which is normal in L and such
that L/U' is reductive.

(10.2) Remark. If there exists a maximal horospherical subgroup of G for which
the result holds then it holds for ail maximal horospherical subgroups.

Proof of Remark. Recall that all maximal horospherical subgroups are con-
jugate. Assume the theorem to be true for U and let U'=gUg~! where geG. Let
7' be a U'-invariant ergodic measure on G/I'. Let n be the measure defined by
n(E)=n'(gE) for any Borel set E. Then = is a N-invariant ergodic measure on
G/I'. If L is an analytic subgroup and g,eG be such that i)-iii) are satisfied for N
and n then L=gLg™ ' and g,=gg, clearly have the desired properties with
respect to N” and 7',

(10.3) Lemma. Let G be as in Theorem 10.1 and let A be any lattice in G. Let G
=]1G; be the decomposition such that A;= AnG, is an irreducible lattice in G, (cf.

iel
Proposition 2.1). Let iel be such that G,/A, is non-compact. Then G, is a simple Lie
group and in particular R-rank of G, is 1.

13
Proof. Let G,=[] H, be the decomposition of G, into simple factors and if
je=1
possible let 1>>1. Let U+(e) be any A;-rational horospherical subgroup of G;.
1

Also U can be expressed as || U where U, 1 <j<1 is a horospherical subgroup
J=1
H;. Since R-rank of each H; is 1, U, is either the identity subgroup (e) or a
maximal horospherical subgroup in H;. If there exists j such that U;=(e) then we
get a normal subgroup F of G, containing U and such that (¢ F =G,. However
+ o+
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since A, is an irreducible lattice in G; no proper subgroup contains a non-trivial
element of A, (cf. Lemma 1.5 [13]). Thus we conclude that any non-trivial A;-
rational horospherical subgroup U is a maximal horospherical subgroup of G,;.
However recall that by arithmeticity theorem (cf. [13]) of Margulis, G,
admits a @Q-structure such that 4, is an arithmetic lattice. For that @-structure
the conclusion of last paragraph implies that @-rank G, is same as the R-rank of
G;. Since Q-rank (being equal to the maximum length of an increasing chain of
non-trivial A-rational non-trivial horospherical subgroups) is clearly 1 so is the
R-rank. Since each H; is non-compact R-rank of each H, is positive. This gives

J
a contradiction unless [=1.

(104) Remark. Let G and I be as in the statement of Theorem 10.1. Let G be
decomposed as G=G,, - G, where G, is the maximum normal Lie subgroup of G
such that Gy~ I is a uniform lattice in G (product of all G,, i€l (in the notation
of §2) and G, is such that G, I is a (non-uniform) lattice in G,. Let U, U™, P,
P~, S, A, N etc. be as in §2. Then in view of Lemma 10.3 we have the following:

i) U=G NN, and U is a maximal horospherical subgroup in G,

ii) P=Gy-(PNG,); P~ =G4 (P~ NnG,). PnG, and P~ NG, are minimal R-
parabolic subgroups of G, and we have Langlands decompositions (cf. [19],
pp- 75) as

PG, =M -(AnG))-U
and
P nG,=M-(AnG,)- U~
where M is the centralizer of AnG, in a maximal compact subgroup G,.
iif) P~U=Gy- (P nG)U=(Gy-M-(AnG,))-U")U
=U"(Gy- M(AnG,)- U)=U"P.

iv) Using the Bruhat decomposition of G, with respect to AnG, we have a
Bruhat decomposition of G as

(104) G=G,-G,=Gy|) Un(PnG,) (disjoint union)
weW
=) UwP

weW
where W is the Weyl group of G, with respect to ANG,.
v) There exists a unique wyeW such that wj! Uw,=U". Also since R-
rank of each factor of G is 1 it follows that for w +m,, (w~' Uw) P is contained
in a proper parabolic subgroup say Q{w) of G. Thus by (10.4) we have

(105 G= | w(@ 'Uw)P
weW
=w,U"PuU ) wQ(w).

w*wg

We may also note that each Q(w), w+w, is of the form L-P’ where L is a
normal (semisimple) Lie subgroup of G and P’ is a minimal parabolic subgroup
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in a semisimple normal Lie subgroup L of G such that G=L-L. Indeed P’
=PnL.

Proof of Theorem (10.1). We proceed by induction on the dimension of G
(satisfying the hypothesis of the theorem).

In view of Remark 10.2 it is also enough to prove the theorem for the
maximal horospherical subgroup N as chosen in §2. Let = be a finite, N-
invariant ergodic measure on G/I' and o be the I'-invariant measure on G/N
corresponding to 7 (cf. Corollary 1.3). Let X=G/N and X = U jP~ U/N with

notations as in §2. If 6(X — X §)=0 then by Theorem 2.4, ¢ is G-mvarlant Hence
so is 7. Then clearly G itself has the desired properties.

Now consider the complementary possibility viz. there exists jeJ such that
o(X —jP~ U/N)>0. In view of (10.5) it follows that there exists w=+w, such that
o(jwy * wQ(w)/N)>0. Since ¢ is ergodic we conclude that

6(X —Tjw; ! ©Q(w)/N)=0.
Put p=jws'w and I"=p~! I'p. Then we have
(10.6) o(X —pI'Q(w)/N)=0.

Recall from Remark 104, v) that Q(w)=L-(PnL) where L and L are normal
subgroup of G such that G=L- I (direct product). Let PNL=M A'N' be a
Langlands decomposition of PnL in L where A'=AnL and N=NnL. Put Q'
=LM'N’. We claim that a) I"~Q{w) is contained and is a lattice in @' and b)
'@’ is closed.

Firstly consider I" n N, It is clear from the definition of I that w centralizes
L. Hence I'nN' =(jos'0) ' I'jw;* w)nN' =w,j ' Tjow; 'nN'. By choice of
J for each jeJ, j~'I'jaU- is a lattice in U~ (cf. Proposition 2.3). Hence
woj 'Tjwg'nU is a lattice in U. Since by Lemma 10.3 for any lattice A,
(AnL)-(AnL)is a subgroup of finite index in 4 and N’ is the L-component of
U, the above implies that w,j~'Tjwg AN’ is a lattice in N’. Since M’ is
compact we may further conclude that I'nM’ N’ is a lattice in M'N'.

By Lemma 10.3 in particular LI" is closed. Since I'nM’'N' is a {necessarily
uniform) lattice in M'N’, straightforward verification now shows that I"Q’
=I"LM'N’ is closed. Further clearly I'nQ’ is lattice in Q. To complete the
claim we only need to show that I"'nQ{w)=I"nQ’". Suppose this is not true.
Then again in view of Lemma 10.3 there exists a simple normal subgroup V of Il
such that VnI" is a lattice in ¥, and VAQ(o)nT"2VnQ' nI". Repeating the
earlier argument we see that VnQ'nI" is a lattice VnQ'. Since R-rank of each
simple factor of G is 1, ¥nQ' is of codimension one in VAQ(w). Hence if
VAQ(o)nI"2Vn@'AI" it follows that VAQ(w)nI" is a lattice in VN Q(w).
However this is a contradiction since ¥ ~Q(w) is clearly not unimodular. Hence
I'nQo)=I"nQ"

We now return to the measure o. Observe that FpQ{w)=pI" Q' A’. Since 4’
normalizes N we have

FpQ(o)/N={T'p"Q'/N} A'.
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Since pI" Q' is closed it follows that {pI"Q'aN/N|aeA’} is a countably sepa-
rated partition of pI"" Q(w)/N, each element of which is invariant under the I'-
action (on left). Since ¢ is a I'-invariant ergodic measure it now follows that
there exists acA’ such that

(X —pI"Q aN/N)=0

ie. o{X —~I'q Q' /N)=0 where g=pa. Under the one-to-one correspondence of I'-
invariant measures on G/N and N-invariant measures on G/I" the last assertion
corresponds to the following: n(G/I"—Q'qI'/T)=0.

Recall that g~ 'T’'q=a"'I"a intersects Q' as well as N’ in lattices in re-
spective subgroups. Therefore A={g~''qnQ’} N'/N’ is a lattice Q'/N’' =T (say).
Let n' be the measure on T/A defined by n'(E)=n(f"'E) where 7:
Qq 'I/r~Q/g 'IrqnQ - T/A is induced by the projection homomorphism
n:Q = Q'/N'. Since N'nI" is a lattice in N, # is a proper map. Hence n is a
regular measure on T/A, Clearly »' is invariant under the action of U’ =n(N)
and is ergodic. It is easy to verify that U’ is a maximal horospherical subgroup
in T. Therefore by induction hypothesis and Proposition 9.3 there exists an
analytic subgroup H of T and t,eT such that assertions i)-iii) are satisfied (for
appropriate subgroups). Put L=n"'(H) and g,=tq~ " where ten~'(t,). Then it is
evident that assertions i)-iii) of Theorem 10.1 are satisfied.

Combining Theorem 10.1 and Proposition 9.3 we conclude Theorem A.
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