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Introduction 

In [18] Veech proves that the "horospherical flow" on G/F where G is a 
semisimple analytic group with no non-trivial compact factor and F is a discrete 
co-compact subgroup, is uniquely ergodic; that is, there is a unique Borel 
probability measure on G/F which is invariant under the flow. 

On the other hand there exists a wide class of discrete subgroups F in 
semisimple groups G such that G/F admits a G-invariant probability measure, 
but is noncompact. The discrete subgroup SL(2,Z) of integral unimodular 
matrices in SL(2, IR) the group of all unimodular matrices, constitutes the 
simplest example of the above phenomenon. It turns out however, that the 
horospherical flow on a non-compact homogeneous space cannot be uniquely 
ergodic. This is because there exist proper closed subgroups H containing 
horospherical subgroups, having closed orbits which admit a finite H-invariant 
measure. The objective of the present paper is to assert that for a certain class of 
horospherical flows including the example cited above all the ergodic invariant 
measures arise in the above manner. We recall that the set of ergodic measures 
also determines completely the set of all finite invariant measures. 

Actually rather than restricting to the class of semisimple groups with no 
non-trivial compact factor we consider any reductive analytic group T. Apart 
from being more general this is also convenient in certain arguments. A 
subgroup U in T is said to be horospherical if there exists teT such that 

U={u~TltJut-J~e a s j ~ }  

e being the identity in T. Any horospherical subgroup is analytic; i.e. a 
connected Lie subgroup (cf. w 4, [5]). Further the adjoint action of any element 
in the Lie subalgebra of U on the Lie algebra of T is nilpotent. A horospherical 
flow in the sense of [18] is the action of a maximal horospherical subgroup. 

A discrete subgroup F of a locally compact group T is said to be a lattice if 
T/F admits a finite T-invariant regular Borel measure. 

* Supported in part by NSF grant MCS72-05055 A04 
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A major part of the study of invariant measures of horospherical flows 
consists of obtaining a characterization of the Haar  measure of a semisimple 
group G without compact factors (cf. Theorem 2.4) in terms of invariance under 
the right action of a given lattice F and the left action of a certain maximal 
horospherical subgroup N of G, suitably related to F (cf. Theorem 2.4). Our 
approach in obtaining the above characterization is based on the philosophy 
introduced by Fiirstenberg [81 which was also employed in [18]. 

In Part III we extend the study to reductive Lie groups. Sections 8 and 9 
deal with general technical details concerning the extension. Finally in Sec- 
tion 10 we specialize to reductive Lie groups T such that all the non-compact 
simple factors of the adjoint group of T are of R-rank 1 and obtain a complete 
classification of (ergodic) invariant measures of the "horospherical flow". We 
prove the following. 

Theorem A. Let T be a reductive Lie group such that all noncompact simple 
factors of  T are of  R-rank 1. Let U be a maximal horospherical subgroup and let 
F be a lattice in T. Let ~z be a finite U-invariant ergodic measure on T/F. Then 
there exists a closed subgroup L and t ~ T such that 

i) L t F  is closed and r t ( T / F - L t F / F ) = O  and 

ii) L contains U, t F t - l  n L  is a lattice in L and it is the finite L-invariant 
measure on L t F / F ~ - L / t F t  - 1 n L .  

Notice that assertions i) and ii) completely determine n (up to a scalar which 
is determined by the total measure). 

We observe that since every compact minimal subset of any action of an 
ameanable group is the support of a finite ergodic invariant measure, in 
particular Theorem A characterizes all compact minimal subsets of the horo- 
spherical flow. 

Actually our proof incorporates the case of uniform lattices considered in 
[18]. However for that case there now exist simpler proofs (cf. [3] and [6]). We 
may note that the proofs in [3] and [6] indeed hold for all reductive groups. 

The author wishes to thank W.A. Veecll, who apart from providing a preprint of [18] on which 
the present paper heavily relies, also helped in terms of useful discussions. Thanks are also due to 
H. Fiirstenberg; a brief meeting with him stimulated the work. 

w 1. Measures on Homogeneous Spaces 

(1.1) For  any locally compact, second countable space X, we denote by J/C(X) 
the set of all positive regular Borel measures on X. Let fl be a Borel measurable 
map, or briefly a transformation of a space X onto a space Y. Let zc E JC(X). If 
either fl is continuous and proper or n is finite then we have a measure 
f lrc~Jg(Y) defined by f l ~ (E )= n( f l - l E )  for any Borel subset E of Y. If H is a set 
of transformations of X, n e ~r is said to be H-invariant if h n = n for all h e H. 

Let H be a locally compact, second countable group and let ~: H x X ~ X  be 
an action of H on a space X. The action is said to be measurable if the map g~ is 
measurable when H x X is endowed with product Borel structure. Let rc ~ ~r 
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be H-invariant; i.e. invariant under all ~(h, '), h e H. Then n is said to be ergodic 
with respect to the H-action (or that ~ is H-ergodic or even that the H-action on 
X is ergodic with respect to ~t) if for any Borel subset E of X, the assertion 
zt(EAhE)=O for all h ~ H  implies that either zt(E)=0 or n ( X - E ) = 0 .  Here and 
in the sequel hE denotes the set q~(h, ")E, provided that the action in question is 
clear from the context. 

(1.2) For zceJC(X), ~2 (X ,n )  denotes the Hilbert space of all measurable 
complex valued functions which are square integrable with respect to ~. Let H 
be a measurable group of transformations of X and let zc ~ Jg(X) be H-invariant. 
Then h~-~V h, where V h is the operator on ~...~2(X,n) defined by (Vhf)(x) 
=f (h -1  x), is a (strongly continuous) unitary representation of H on .LP2(X, n). 
Following is a simple and useful criterion for ergodicity" a finite H-invariant 
measure n is ergodic with respect to the H-action if and only if for f e  ~2(X,  r0, 
Vhf= f for all h ~ H  implies that f is a constant function n - a . e .  

(1.3) The following proposition asserts that the set of all ergodic H-invariant 
measures determines the cone of all finite H-invariant measures. The result may 
be considered folklore. A proof for the case of cyclic and one-parameter group 
may be found in [17]. The same proof readily generalizes to any locally compact 
separable group. 

(1.4) Proposition. Let (X, Tt) be a Lebesgue probability space and let ~: H 
x X ~ X  be a measurable, measure-preserving action of a locally compact, separ- 

able group H. Then there exists a measurable partition ~ of X and a family 
{Ztc}c~ r where ~z c is a probability measure on X with support contained in C such 
that if ~ denotes the quotient measure of ~ on X/~ then we have the following 

i) For almost all C e X / r  (with respect to ~), rc c is a H-invariant ergodic 
measure. 

ii) Let E be a measurable subset of X. Then for almost all C ~ X / i ,  E n C is 
measurable, nc(E n C) is a measurable function on X/~ and 

~(E)= S ~c(Ec~C)d~(C). 
x/~ 

(1.5) We recall some results from [8] regarding measures on homogeneous 
spaces. 

(1.6) Proposition. Let H be a closed unimodular subgroup of a Lie group L. Let 
dh be a f ixed Haar measure on H. Then there is a one-to-one correspondence 
between ~r and the subset of .1r of measures which are invariant under 
the right action of H on L. The correspondence is given by n*--~co where 

(1.7) S f ( x )  dco(x)= S dn(xH) S f ( xh )  dh 
L L/H H 

for all f ~ Co(L), the space of all continuous functions with compact support. 

(1.8) Proposition. I f  H and H' be two closed unimodular subgroups of a Lie 
group L, then (1.7) also sets up a correspondence between measures in .AI(L/H) 
which are invariant under the left action of H' and the subset of ~r consisting 
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of measures which are invariant under the right action of  H and the left action of  
H'. 

(1.9) Corollary. Let ~ denote the inversion map of L, i.e. x~L~-~x -1. Then the 
map a ~ t r  of J t (L)  induces a one-to-one correspondence between the set of H'- 
invariant measures on L /H  and the set of  H-invariant measures on L/H'. Under 
the correspondence H'-ergodic measures correspond to H-ergodic measures; the L- 
invariant (resp. absolutely continuous with respect to the L-invariant) measure on 
L /H corresponds to L-invariant (resp. absolutely continuous with respect to the L- 
invariant) measure on L/H'. 

Definition. Let G be a Lie group, F a lattice in G and let N be a horospherical 
subgroup of G. A F-invariant measure n on GIN is said to be F-finite if the N- 
invariant measure co on G/F corresponding to n under the above one-one 
correspondence is finite. 

(1.10) Absolute continuity of invariant measures: Let X be a locally compact, 
second countable space and let G and H be locally compact groups of ho- 
meomorphisms of X. Assume that the actions of G and H commute with each 
other; i.e. g h x = h g x  for all geG, h~H and x e X .  Assume also that the cone of 
G-invariant measures on X is one dimensional. Let dh be a fixed Haar measure 
on H and let ~oe C + (H), the cone of positive continuous functions with compact 
support. For any rr~I/(X) and any Borel subset of X define 

(1.11) n~(E)= S n(h-lE)~o(h)dh.  
H 

Then n~0 e ~r162 Then we have the following (cf. Proposition 2.5, [18]). 

(1.12) Proposition. Let G, H and X be as above and let # be a G-invariant 
measure on X.  Let F be a subgroup of  G such that the action of  F on X is ergodic 
with respect to It. I f  It is a F-invariant measure on X such that nr for all 
~0 e C + (H), then ~ is a multiple of  It. 

(Here and in the sequel -< stands for absolute continuity with respect to the 
latter measure.) 

Later in the application of the above proposition we need the following 
lemma (cf. Theorem 3 and Proposition 6, [15]). 

(1.13) Lemma. Let G be a semisimple Lie group with no non-trivial compact 
factor. Let  N be a maximal horospherical subgroup in G and let F be a lattice in 
G. Then the action of  F on GIN is ergodic with respect to the G-invariant measure 
on G/N. 

We will also often need the following. 

(1.14) Lemma. Let L be a locally compact second countable group and let F be a 
lattice in L. Let  H be a (closed) subgroup of  L such that H is normalized by F and 
H F is a closed subgroup. Then H c~ F is a lattice in H. 

Proof. Observe that since L / F  admits a finite L-invariant measure L / H F  also 
admits a finite L-invariant measure. It follows from the criterion for existence of 
invariant measures on homogeneous spaces (cf. Ch.. II, w [20]) that the 
restrictions of the modular homomorphism of L to F and H F  are the modular 
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homomorphisms of the respective subgroups. Hence in particular we get that 
HF/F  admits a H F  invariant measure. But in view of the Fubini-Weil formula 
(cf. Ch. II, w [20]) the H F  invariant measure on H F / F  must be finite. On the 
other hand, H F/F is canonically isomorphic to H/H n F - u n d e r  the isomor- 
phism the H-action on HF/F  corresponds to the H-action on H / H n F .  Hence 
we conclude that H / H n F  admits a finite H-invariant measure; i.e. H n F  is a 
lattice in H. 

Part II. A Characterisation of Haar Measure 

Throughout this part G will denote a connected semisimple Lie group with no 
non-trivial compact factor and with trivial center. Then G is isomorphic to its 
adjoint group and hence can be considered as the connected component of the 
identity in the R-algebraic group of all Lie automorphisms of its Lie algebra. 
The class of maximal horospherical subgroups is then exactly the class of 
maximal unipotent subgroups of G. 

The object of Part II, as the title indicates, is to prove a characterisation of 
the G-invariant measure on G/N, N being a maximal horospherical subgroup, 
which will be formulated in w 2. The proof follows in several steps through w 7. 

w 2. Lattices and Fundamental Domains 

Let G be a Lie group as described above and F be a lattice in G. We need a 
certain special fundamental domain for F which we shall describe in the present 
section. 

Definition. A lattice A in a semisimple Lie group L is said to be irreducible if the 
only positive dimensional normal subgroup F for which FA is closed is L itself. 

Any lattice F in a semisimple Lie group without compact factors can be 
"decomposed" into irreducible lattices in normal subgroups: More precisely we 
have the following 

(2.1) Proposition (cf. [4] Appendix). Let G be a semisimple Lie group without 
compact factors and with trivial center. Let F be a lattice in G. Then there exist 
normal ( semisimple ) Lie subgroups G i, i e I ( a suitable indexing set) such that 

i) G = ]'1 Gi (direct product). 
i e l  

ii) For each i e I, F~ = F n G i is an irreducible lattice in G i and 

iii) F ' =  l-IFi is a (normal) subgroup of finite index in F. 

The decomposition is unique upto reindexing. 

Observe that as a consequence of the above, G/F is finitely covered by G/F' 
and the latter is a direct product of homogeneous spaces GJF~, i e I. We now 
classify the components Gi/Fi as follows. Put 

I o = {i ~ I IGi/F i is compact}, 

11 = {i e l  - IolR-rank G i > 1} 
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and 

12 = 1 - 1 o - 1 1  . 

For i ~ 11, G~ is a semisimple Lie group without compact factor with trivial 
center and F~ is a non-uniform lattice in G i. Therefore by Margulis's arithme- 
ticity theorem (cf. [-13]) F~ is an arithmetic subgroup of G~. More precisely, G i 
admits a structure of the connected component of the identity in an R-algebraic 
group defined over Q, such that F/is commensurable with group (Gi) z of integral 
elements in G i (with respect to the Q-structure). We shall henceforth assume to 
have fixed the Q-structure on each Gi, i 6 I  t satisfying the above. 

Next let i e 12. Then G~ is of N-rank 1 and F~ is a non-uniform lattice in G~. 
For these lattices we plan to use the results of Garland and Raghunathan (cf. 
[10]). For the present we recall that Gi admits a maximal horospherical 
subgroup N~ such that N~ n F~ is a lattice in N~. Let P~ be the normalizer of N~ iia 
G i. Then Pi is a minimal R-parabolic subgroup of G~. For future use we note 
that by conjugating N~ by a suitable element of F~ we can find a maximal 
horospherical subgroup N~' which is not contained in Pi. If P~' denotes the 
normalizer of N i' then Pi 4 = P/'. Since R-rank of G~ is 1, Pi c~ Pi' is a (reductive) Levi 
subgroup in both P~ and P'. 

With this information we proceed to introduce some terminology with 
respect to F, generalizing the corresponding notions for arithmetic groups. We 
must emphasize that this is done only for simplicity in writing the fundamental 
domain and that the material is essentially well-known. 

Definition. A horospherical subgroup U in G is said to be F-rational if U n F is 
lattice in U. 

A Lie subgroup U is a maximal F-rational horospherical subgroup of G if 
and only if u = l -  I U~ where for i e l  o, U/=(e), for i~11, U i is a maximal unipotent 

ie l  

R-subgroup of G i defined over Q and for i~I2, U i is a maximal horospherical 
subgroup such that U~ n F~ is a lattice in U~. Let U be a maximal F-rational 
horospherical subgroup and let P be the normalizer of U in G. Then again we 
observe that P =  l iP /where  for i~I6,  P~ = G i for i~I1, Pi is a minimal R-parabolic 

subgroup defined over Q and for i~12, P~ is a minimal R-parabolic subgroup. 
The results which we now state can be easily proved by considering separately 
the components corresponding to indices i e I  and using known results about 
respective classes of groups and above observations. Hence we shall often omit 
the details. 

Definition. Let U 1 and 'U 2 be horospherical subgroups in G and let P1 and P2 be 
normalizers of U1 and U 2 respectively. Then U 1 and U 2 are said to be opposite 
(to each other) if P1 r~ P2 is a (reductive) Levi subgroup in both P1 and P2. 

Let U and U-  be two F-rational horospherical subgroups opposite to each 
other, and let P and P -  be the respective normalizers. Then there exists a 
unique maximal vector subgroup S contained in the center of (the reductive 
group) P o P -  such that {Ads[ s~S}  is simultaneously diagonalizable over R. 
Actually S = I - I S  ~ where S~=(e) for i~Io,  S~ is the connected component of a 

IEI 
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maximal Q-split R-torus (algebraic) for i~I z and a suitable one parameter 
group for i~I 2. 

Now let (5 be the Lie algebra of G and 6 ~ the Lie subalgebra corresponding 
to S. Then we get a decomposition of (5 as 

(5 =3(se)+ E(5 ~ 

where A c~e* (the dual of S~) is a root system for the pair ((5, 6P), 3(6~) the 
centralizer of S~ in (5, and for each 2aA 

(54= {~e(5[ [~, r = 2(a) ~ for all a e 6  ~ 

the latter being of positive dimension for all ,teA. On A there exists an 
ordering such that if A + is the corresponding set of positive roots then ~ (5`l is 

` l~A + 

the Lie subalgebra corresponding to U and ~ (5-x is the Lie subalgebra 
. l e a  + 

corresponding to U-.  The last assertion may be proved by using Lemma 4.5.4, 
in [13] for the field • in the case of arithmetic components (i.e. i~I~) and for R 
in the case of non-uniform lattices in R-rank 1 groups (i.e. ielz). 

Now let (U, U-)  be a pair of opposite maximal F-rational horospherical 
subgroups and S and A § be as chosen above. For t > 0  we define 

(2.2) S t = {seSl2(log s) < t for all 2cA +} 

where log: S ~ 6  a is the inverse of the exponential map of 5 a onto S. 
We now state the main proposition of w 

(2.3) Proposition. Let (U, U-)  be a pair of opposite maximal F-rational horo- 
spherical subgroups of G and let S and St, t > 0 be as introduced above, correspond- 
ing to (U, U-). Further let H be the connected component of the identity in the 
normalizer P -  of U-  and let K be a maximal compact subgroup of G. Then there 
exist a compact subset W of H, a finite subset J of G and 3 > 0  such that the 
following properties hold. 

a) G = FJ WSa K. 
b) For all jeJ,  j -  1Fjc~ U- is a lattice in U- .  
c) Let G=  I-I Gi be the decomposition of G as in Proposition2.1 and let ieI 

i e l  

be such that R-rank Gi > 1 and F~ = F c~ G~ is a non-uniform lattice in G i. Then 
for all jeJ,  j-F~j is commensurable with F i. 

Proof. Let G =  17I Gi be the decomposition of G as in Proposition2.1, with 
i ~ l  

respect to E It is obvious that assertions a), b) and c) follow if the corresponding 
assertions are proved for the lattice F~ in G~ for each ieI. In other words in 
proving the Proposition we may further assume F to be an irreducible lattice in 
G. We now consider three cases separately. 

Case i. F is a uniform lattice in G. 
In this case both U and U-  are the identity subgroup, as there cannot be any 

F-rational horospherical subgroup of positive dimension. In particular P - =  G. 
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But certainly there exists a compact subset W of G such that G=FW. Putting J 
= {e}, a) is satisfied, b) is satisfied trivially. 

Case ii. Assume that F is non-uniform and R-rank G > 1. 
As recalled earlier, in this case F is an arithmetic subgroup of G s (with 

respect to a • structure considered fixed). U and U -  are maximal unipotent 
algebraic R-subgroups defined over Q, and S is the connected component of the 
identity in a maximal q-split  (algebraic) R-torus. Applying Borers construction 
of fundamental domains for arithmetic groups (cf. Theorem 13.1, [1]) it follows 
that there exists a compact subset W' of H (actually of a smaller subgroup) a 
finite subset J '  of G~ and 6 > 0 such that with 

S ~ = {s ~ S [2(log s) < 6 whenever - 2 ~ A + } 

(A § being the set of roots such that the corresponding Lie subalgebra of ffi 
belongs to U) we have G=KS~W'J 'E Thus G = G - t = F J W ( S O ) - t K  where J 
= ( j , ) - i  and W=(W')  -1. Observe that 

(SO)- 1 = {s- l ls~S, ).(log s) < 5 whenever - 2~A + } 

= {s ~SI2(log s) < 6 for all 2~A + } 

Thus we have proved assertion a) in the case at hand. Since J c G~ for each j~J, 
j-~ Fj  is commensurable with E This prove c). To prove b) it is enough observe 
that for any y~G~, yUy  -~ is also a unipotent R-subgroup defined over Q and 
hence intersects an arithmetic group in a lattice. 

Case iii. F is a non-uniform lattice in G and R-rank of G is 1. 
In this case we use the construction of fundamental domains by Garland and 

Raghunathan (cf. Theorem0.6, [10]). Notice that in this case G = K S U -  (no- 
tation as in the statement of the theorem) is an Iwasawa decomposition of G. 
Then by the theorem of Garland and Raghunathan there exists a compact 
subset W' of U- ,  a finite subset J '  of G and 5 > 0  such that G =KS6W'J'F where 

S ~ = {s~S 12(log s) < 5 whenever - 2~d + } 

(A+ being the set of roots corresponding to U) and J '  is such that for each j~J', 
F c ~ j - I U - j  is a lattice in j - I U - j .  Then G = G - I = F J W ( S ~ ) - I K  where J 
= ( j , ) - i  and W=(W')  -a. As before we see that (S~) -1 =S~. Hence G=FJWS~K. 
Also clearly for each j~J, j -  ~ Fjc'~ U-  is a lattice in U- .  

We now formulate'a characterisation of the Haar measure whose proof is the 
subject of Part lI. The notation U, U- ,  S, K introduced earlier as also the 
subsets W, J and 5 > 0  satisfying Proposition2.3 shall be considered fixed. Also 
recall that P and P -  denote the normalizers of U and U -  respectively and that 
H denotes the connected component of the identity in P - .  

Now let A be a maximal vector subgroup containing S, contained in P c~ P -  
and such that {AdalaeA} is diagonalizable over R and let N be a maximal 
horospherical subgroup (not necessarily F-rational) in G normalized by A and 
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such that U c N c P .  We denote X = G / N  and X 0 =  U j P - N / N .  Then X - X  o is 
jeJ 

a union of lower dimensional manifolds. (This may be proved by using Bruhat 
decomposition on each component G i ieI.) Hence if # is a G-invariant measure 
on X then # ( X - X o ) = 0 .  We prove: 

(2.4) Theorem. Let ~ be a F-invariant,.F-finite, ergodic ( c f  w for definitions) 
measure on X = G/N such that n ( X - X o )  =0. Then n is G-invariant. 

We close this section by recalling certain simple properties of the fundamen- 
tal domains constructed in Proposition2.3. Put f 2 = J W S ~ K / K c G / K .  Let #K 
denote a G-invariant measure on G/K. Then it is well-known that/zK(I2 ) < oo (cf. 
Lemma 12.5, [1]). We also need the following 

(2.5) Lemma. Let W 1 be any relatively compact subset of H. Then for any t>0 ,  
h-  1 Wt h is relatively compact. 

h6St 

Proof The subgroup H can be expressed as Z .  U-  (semidirect product) where Z 
is the centralizer of S in G. Considering the components it is enough to prove 
the lemma for W 1 contained U-.  Any element of U-  can be expressed as 
(exptlr  (expt2r ... (expt,r where r ~2 . . . . .  r the Lie subalgebra of 
U- ,  are simultaneous eigenvectors of {Ads[s~S}.  For any heS, tEF, and i < n  
we have h- l (exp t~i)h =exp v~(h-1)tr i where v i is the character on S such that 
(Ads)r  i for all s~S. Since ~iEU- clearly - logv ieA +. Thus if seS  t, 
vi(h- 1) = exp ( - log vi(h)) < d. If W 1 is contained in 

{(exp t 1 r t~ r ... (exp t, r tl, t2.. .  t,m [ -  t', t']} 

then ~ h-  1 W1 h is contained in 

{(exp t 1 r 1)(exp t2 r (exp t, r 1, t z . . .  t,E [ - e '  t', e' t']}. 

Hence it is relatively compact. 

(2.6) Remark. S = J W S ~ K  is contained in J W o S - K  where S-={s l i t ( logs )<O 
for all ).~A § }, and W o is a compact subset of SH. 

(2.7) Note. In the sequel the notations as in Proposition 2.3 and later shall be 
considered fixed. Also we shall denote by M the group of elements of K which 
centralize A. Then M A N  is a minimal (real) parabolic subgroup of G. 

w A Measure on the Fiirstenberg Boundary 

The homogeneous space G / M A N  which is canonically isomorphic to K / M  is the 
maximal Fiirstenberg boundary of G. (cf. [7, 14].) We denote this space by B. 
We have a canonical projection of fl: X = G / N ~ G / M A N = B .  We now fix a 
compact subset Q of X such that n(Q) > 0. Let nQ be the measure on X defined 
by nQ(E)=rc(Ec~Q) for any Borel subset E of X. Since Q is compact, nQ is a 
finite measure. Thus we get a (regular, Borel) measure /~nQ on B defined by 
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/gn0(Y)=nQ(/~ -1 Y) for any Borel subset Y of B. Let m denote the K-invariant 
probability measure on B. The aim of this section is to prove the following: 

(3.1) Proposition. I f  [3rce <m then rc is G-invariant. 

Proof Observe that since the subgroup Z =MA normalizes N there exists an 
action z ~ - ~  of Z on X =G/N defined by ~,(gN)= g z N, which commutes with 
the left action of G on X. Therefore in view of Proposition 1.12 and Pro- 
position 1.13 in order to prove the proposition it is enough to prove that for any 
r C + (Z) the measure n ,  defined by 

(3.2) n,(E)=~n(r  r dz 
z 

for any Borel subset E of X, is absolutely continuous with respect to a G- 
invariant measure say #. So let r C~ + (Z) be fixed. Let Q '=  {~k z x lzssupport of ~0, 
x~Q} and let n,. e be the measure on X defined by 

(3.3) n,.e(E)=n~,(Ec~Q' ). 

(3.4) Lemma. I f  rr,.'Q~<# then n,~<#. 

Proof Since rc is F-ergodic and rr(Q)>0 we have n(X-FQ)=O. A direct 
computation now yields 7r,(X-FQ')=O. Therefore for any Borel subset E of X 
we have 

(3.5) n~,(E)=n~(Ec~FQ')< ~ n,(En~Q') 

= E ~ ( ~ - I E ~ Q  ') 

= ~ , . o ( ~ - I E ) .  

Now if #(E)=O then for any ~ F ,  #(~-lE)=O. Therefore if n,p,Q~# by (3.5), 
#(E)=O implies n~,(E)=O. 

Proof of Proposition (3.1). It is easy to verify that there exists a character ~: 
Z - ~ R  + such that for any Borel set E c G / N = X  

I~(E) = S dm(x P) S ZE(~ x) g(z) d z 
B Z 

(here and in the sequel ZE denotes the characteristic function of E in the 
appropriate space). Assume that #(E)= 0 and put 

1~ = {b = x P~81S X~(r Z(z) az =0} 
Z 

Then m(Bl)= 1. Put E 1 =Eca~-IB1 and E z = E - E  1. Then 

(3.6) n,(E~)= ~ drr(x) ~ ZE, (~x)  ~p(z) d z =0. 
X Z 
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Put B 2 = B - B  1. Then Ecf l - lB2  and re(B2)=0. As in Lemma 3.4, we have 

(3.7) E(f1-1 BE)__< E 7rQ(Y -1 fl-1 B2 ) 
3,~F 

= E EQ(fl- 1"~- 1B2) 
~eF 

= EflE (r-'82). 

It is easy to see that since re(B2)=0, for all ~6F, m(7-~B2)=0. Therefore if 
flEQ~(m by (3.7) we have E(fl-IB2)=0. Therefore 

Etp, Q (E2) <~ E~a,O( f l-  1 B2 ) = S dE(x )  ~ X# - l B2 (~/z X) XQ,(~lz X) (p(Z) d z 
x z 

= S dE(x) S e(q, x) dz 
X Z 

----0. 

Combining with (3.6) we conclude that nr Since E was an arbitrary 
Borel set with #(E)=0  we have thus proved that nr Hence by Lemma 3.4, 
n~,~(/~. Again since ~p~ C~+(Z) was arbitrary as remarked in the beginning we get 
that n is G-invariant. 

w 4. Harmonic Functions on G[K 

Recall that we have fixed an Iwasawa decomposition G = KAN. For g~G let k(g)~K 
and a(g)~A, be the uniquely determined elements such that g = k(g). a(g). n for some 
neN. Also for g ~ G let H(g)= log a(g)~9.I. The following useful relation is a simple 
consequence of the definition. If gl, g2 eG then 

(4.1) H(g l g2)=H(gl k(g2))+ H(g2). 

Let p~92" be the element defined by 2p = ~ (dim tSx) 2. The Poisson kernel IP on 
~.eA+ 

G/K x K/M is defined by 

(4.2) lP(gK, kM)=exp-2pn(g- lk ) .  

IP(., .) is clearly well-defined. Using this kernel to each Borel measuretr on B = K/M 
one associates a non-negative function h, on G/K defined by 

(4.3) h,,(gK)=SIP(gK, kM)da(kM ). 
B 

Though we will not need it explicitly it may be recalled that h, defined as above is a 
harmonic function with respect to the Laplace-Beltrami operator (indeed with 
respee~t to any second order, elliptic G-invariant differential operator vanishing on 
constant functions) on G/K. Conversely any non-negative harmonic function h on 
G/K admits a representation as in (4.3) for some measure a=a h on B. Further the 
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measure cr h can be 'constructed' from h as follows. Let A + be the positive Weyl 
chamber in A with respect to A +; viz. 

A + = {a~A [2(log a) > 0 for all 2~A + }. 

For a~A + let a(h,a) be the measure on B defined by 

a(h, a)(E) = ~ h(kaK) dm(k M) 
E 

for any Borel subset E of B. Since h (k m a K) = h (k a K) the integral is well-defined. Now 
define ' a ~  oo' to mean that 2(log a ) ~  ~ for all 2eA +. Then gh is determined by the 
following result of Knapp and Williamson [12]. 

(4.4) Proposition. With notations as above 

a h = lim a(h, a) 
a~oD 

in the space of all bounded measures which is assumed to be endowed with the weak*- 
topology. 

(4.5) Corollary (cf. [18]). Let tr be a finite Borel measure on B and h, the harmonic 
function defined by (4.3). I f  there exists a sequence {ai} in A +, a j ~ oo in the above sense, 
such that 

!im sup ~ h,(kajK) 2 dk = l 2 < oo 
j ~ o o  K 

then tr < m. 

Proof. By Proposition 4.4 and Schwartz inequality for any continuous function ~ on 
B, we get 

IS d/(k M) dtr(k M)[ = lim I~ ~b(k M) h , (kaK)  dm(k M) l 
B j~oo B 

< lim sup IS ~,(kM) 2 dml 1/2 ISh,(kaK)dm[ 1/2 
j ~ o o  B-  B 

= I IS ~(kM) 2 dm[ 1/2 
B 

which shows that tr~(m. 
On G/K there exists a G-invariant metric defined by 

(4.6) D(glK,  g2K)=max IpH(g-ilg2k)l 
keK 

(cf. [181 w Further it is also proved that the distance is given by 

D(g 1 K, g2 K) = p(log a) 

where aeclA + is the unique element such that g ? l g 2 = k l a k  2 (Cartan decom- 
position) where k 1, k2eK. 
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The disc of radius z in G/K with center K is the set 

(4.7) U~={gKID(gK, K)<z}.  

Let # r  be a G-invariant measure on G/K. Proofs of the following lemmas may be found 
in 1-18]. 

(4.8) Lemma  (cf. Lemma  5.10, [ 18]). For Zo > 0 there exists a constant c(%) such that 
for all z > 0 ,  thc(U~+~o)<C(Zo)lhc(U~). 

(4.9) Lemma  (cf. Lemma5.11,  [18]). Let h be a locally integrable, non-negative 
function on G/K. I f  there exists a constant c such that for all z > 0  

S h(gK) 2 d#x<c#r(U~) 
Us 

then there exists a sequence {a~}~ ~ in A § a ~ o o  such that 

lim sup S h(kasK) 2 dk M < co. 
j~Qo K 

(4.10) Remark.Let fbetheharmonicfunctiononG/Kcorrespondingtothemeaure 
fl ~Q on B; viz. 

f ( g K )  = ~ lP(g K, kM) dflnQ(kM). 
B 

In view of Proposition 3.1, Corollary 4.5 and Lemma 4.9, if there exists a constant c 
such that for all z > 0 

f ( g K )  2 d#r<Cl~(U~) 
Us 

then ~z is G-invariant. 

w Estimation of ~eZ-Norms on Discs 

Recall that we have G/K = Ff2. Now let y e F, b ~ g2 and g e G be such that g K = 7 b. We 
have for f ( g K )  as in the last section 

f ( g K )  = S e x p -  2 p H (g- l k) d flnQ(k M) 
B 

= S e x p -  2 p n ( g -  1 k(x)) drcQ(x). 
X 

(Notice that the functions k and a defined on G are invariant under the right action 
of N and hence define functions on X which also we denote by the same letters.) Since 
Q is a compact  subset of X there exists a constant cl such that for all xEQ 

(5.1) c-f l < e x p - 2 p H ( a ( x ) ) ~ c  1. 
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Since H(g-lk(x))= H ( g - l x ) - H ( a ( x ) )  using (5.1) we conclude that 

f (g K) < c i ~ exp - 2 p n (g- 1 x) d nq (x) 
X 

= c l ~ XQ (x) exp - 2 p n (b- 1 ~- 1 x) d n (x). 
X 

Here by H(b- ~ ~- i x) we mean H(b o i),- ~ x) for some boeG such that b = b o K, the 
function being obviously independent of the representative. Now since n is F- 
invariant we get 

f ( g  K) ~ c 1 ~ ~t2(~ x) exp - 2 p n (b -  i x) d n(x). 
X 

For the sake of brevity henceforth let the function exp - 2 p H ( . )  on G or X be 
denoted by F(-) (on G or X respectively). Thus 

(5.2) f ( gK)<  c 1 ~ Zo(Tx) F(b- ix) dn(x). 
X 

Now let z > 0 and U, be the disc of radius z and center K. Put F~ = {7 ~F [ y O c~ U, is 
nonempty} and for 7eF~ let Dr=f2c~7 -1 U,. Then U,= U 7Dr. Hence 

S f (gK)  2 dttr<= ~ Sf()'bK) 2 Xo.~(b) d#K(b) 
U. ~eF. D 

<c, ~ ~Xo~(b)d#K(b) i 2(Q()'x)xQ(yY)F(b-ix) 
yeF~ O X x X  

�9 F(b- 1 y) dn(x) dzt(y) 

in view of(5.2). Using Fubini theorem, which henceforth we apply repeatedly without 
mention, the last expression may be written as 

(5.3) c,  ~ d/~x(b ) ~ F(b -I  x) F(b -1 y) E(x, y, b) dn(x) dn(y) 
0 X x X  

where for all x, y e X  and b~f2 

(5,4) E(x, y, b)= ~ Zr Ze(TY) Xo~(b) 
ycr~ 

= ~ Xr x) XO(Y Y) Xv~(7 b). 
~,eF 

We first obtain an integral which majorizes E(x, y, b). Let V be a compact, 
symmetric neighborhood of the identity e in G with V 2 c~F= {e}. Then there exists 
% > 0  such that VU,~U,+,o. Also put QI=KVQ. With this notation it is 
straightforward to verify that there exists a constant c 2 such that for any x, y e X  and 
beO 

(5.5) Ze(x) Zq(Y) Xv~(b) <-c2 S Zel(g x) XQ1 (gY) Zv~+,o(gb) dg 
V 
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where dg is a fixed Haar  measure on G. Combining (5.4) and (5.5), we deduce that 

e(x,y,b)<=c2~ ~Zq,(g)'x)zo,(g~Y)Zv,+,o(gTb)dg 
7eF V 

= c2 ~,, I ZQ, (g x) XO, (g Y) Zv,+,o (g b) d g. 
"eeF V y  

Since V is symmetric and V 2 n F = { e}, { V 7} wr is a family of pairwise disjoint subsets 
of G. Hence 

E (x, y, b) =< c2 5 Xo, (g x) ZQ, (g Y) Zv . . . .  (g b) d g. 
6: 

Now for any z '> 0 let G,, = {g ~ G I g K ~ U,, }. We also fix a Borel cross-section O: f2 ~ G 
of the canonical projection of G onto G/K, such that O (f2) is contained in J WS r For 
any b~f2 let b 0 denote O(b). Then for x, y e X  and bet2 

(5.6) E(x, y, b)<=c 2 S ZQ,(g x) X0,(gY) Xv,+,o(gbo K) dg 
G 

=c2 S XQ,(gbolx)xq,(gbffXy)dg �9 
G~+~ 0 

Now consider the Cartan decomposition G = K (cl A +) K where A + is the positive 
Weyl chamber in A. Let g = k  1 ctk be the expression for the generic element in G. 
Correspondingly the Haar  measure dg has an expression v(a) d k 1 d a d k where v(a) is 
a function on cl A +, d ~ is a Haar  measure on A and d kl and d k are normalized Haar  
measures on g .  

Since KQa = Q1 the integral in (5.6) is invariant under the left action of K. Also 
G, + ,o is invariant under the left action. Therefore using the above decomposition ofd g 
we get 

(5.7) E(x,y,b)< ~ v(~)d~t~XQl(~tkbolx)zol(akboly)dk 
A + + .c o K 

where A~++,o={aeA+lotKeU,+,o}. Here we have also used the fact that the 
complement ofA § in clA § has zero measure. Now for aeA +,put Q, = K a -  1 Q r  Then 
the integral over K appearing in (5.7) is nonzero only if x, y~bo Q~. Further, using 
Schwartz lemma we may conclude that 

(5.8) ~Zq,(akbolx)xQ,(akboly)dk 
K 

< ~(O. (b O 1 X) Xq.(bff I y) {~ Zq,(atkb ~ 1 x) dk} 1/2{S ~Qlt (0 t kb ~ 1 y) dk} x/2. 
K K 

Fortunately for us an estimate of the integrals appearingin (5.8) which is sufficient 
for our purposes has indeed been obtained in [18]. 

(5.9) Proposition (Lemma 6.7 in [18]). For any compact subset Q1 of X there exist 
constants ~>0 and c a such that for all a~A + and x e X  

XQ~(akx) dk ~c  a F(x) ~ F(~t) ~. 
K 
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Therefore the right hand side of (5.8) is majorized by 

(5.10) c~ )~Q. (b o I x) )Q. (b o I y) F (b- 1 x)e/ 2 F (b- 1 y)e/ 2 F ( a)% 

Putting together (5.3), (5.6) and (5.10) we now conclude that there exists a constant 
c4 such that 

1 L  i L 
(5.11) ~ f ( g K ) 2 d # K ~ c 4 S d p x ( b )  ~ F(b-ax)  + 2 F ( b - i y )  +2dzc(x)drr(y) 

U~ ~2 X x X 

Xe,(bo 1 x) Zo~(bo a y) F(~)e v(cO d~ 
AS+ ~o 

=c4~d#r(b)  ~ F(a)*v(:t)da 
A++ ~o 

�9 {~ XQ.(bo x x) F ( b - '  x) a +~ drt(x)} 2. 
x 

Now consider the integral 

1 e 
I(b, cr = ~ XQ.(bff i x) F(b o 1 x) +3 d n(x). 

x 

Recall that b o eJ WS t c J S -  W o where W o is a compact subset ofSH (cf. Corollary 2.6). 
In view of (4.1) there exists a constant c 5 such that for all x ' e X  and w e W  o 

F(w -1 x ')<c s F(x') 

Hence if b o = j h w  where j~J ,  h e S -  and w e W  o then 

(5.12) I(b,~)=~ XQ~(w-* h - l j - l x ) F ( w - i  h - l j - l  x)l+-~ dTr(x) 
x 

1 ~ 1 e . 

<cs  +2 jZWoQ. (h - l j -Xx )F(h -* j -ax )  +-s dn(x) 
x 

i L  1 L  
= cs + 2 ~ )~WoQ~,( h - I  x) F(h -1 x) + 2 d ~j(x) 

x 

where ~s is the measure on X defined by 

(5.13) ns(E)=n(jE) 

for any Borel subset E of X. Then rr s is j -~  Fj-invariant and rrs(X-  P - N / N ) =  O. 

(5.14) Proposition. There exists a compact subset E of  H and a constant c6 such that for 
all j eJ ,  h e S -  and any measurable subset Q of X 

I L  1 L  
~ F(h-Xx)  +2 drrj(x)<c6 ~ F ( h - l x )  +2 dg(x). 
Q EQ 

Proof of this proposition is postponed until the next section. Using the Proposition we 
now complete the proof of Theorem2.4. Firstly from (5.12) we have 
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1+~ I+L  
I(b, oO<c5 2 ~ F(h- lx)  2dlt~(x ) 

hWoQ~ 

<-C7 ~ F(h-l  x)l + 2 dbt(x) (wherecT=c6 cs + 2) 
Eh Wo Q~ 

1. e 

=c7 f F(h- lx )  +-2d#(x) 
h(h- 1Eh)WoQ~ 

1 e 
<c7 I F(h- lx)  +u 

hEoWoQ~ 

where E 0 = ~ h-  ~ E h. Since E is a compact subset of H by Lemma 2.5, E o is also a 
heA- 

relatively compact subset of H. How 

1 L 
(5.15) I(b,~)<c7SZEowoo~(h-lx)F(h-lx) +2 dp(x) 

1 
= c  7 ~ ZroWoQ~,(x) F(x) +-2 dla(x ). 

Using the Iwasawa decomposition G = KAN, X may be identified with K x A 
(topologically). It is weU-known that under this identification dp(x) has the 
expression (up to a scalar multiple) exp 2 p H(a) d k d a. Since F (x) = exp - 2 p H(a(x)) 
it follows that 

(5.16) 

(5.17) 
E'=EoWo, Q1 and e such that for all ct~A + 

F(x)~/2 d k d a ~ c s  F(oO -~/2. 
E'Kct - 1Qt 

Combining (5.11), (5.15), (5.16) and Proposition 5.17, we now have 

~ f (gK)  2d/~r<c9 S dl~K(b) S v(~)d~ 

where c9 is a suitable constant. Now recall that #x ( [2 )<~  

SgeoWoQ,(x)F(x)l+w = ~ F(x)~/2dkda 
X Eo Wo Q~, 

= ~ F ( x )  ~/2 dk da. 
Eo WoK~-  t Ql 

Proposition (Lemma 6.21 in [ 18]). There exists a constant c s depending only on 

and that 
#(U~+~o) <C(Zo) #r(U,). Thus finally we may conclude that there exists a constant c 
such that for all z > 0 

S f (g  K) 2 d #r  < c It (U~). 
U~ 

By Remark4.10 this implies that r~ is G-invariant, thus proving Theorem2.4. 
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w 6. A Convolution Technique 

In this section we develop some techniques to compare certain integrals with 
respect to a measure which is invariant under a lattice with the corresponding 
integrals with respect to a G-invariant measure. The ideas have their origin in 
[8] and [18]. 

In the sequel we let F, U, U - ,  P, P - ,  S, S- ,  N, J etc. be the same as before. 
Recall that their choice depended on F. However we now let A denote an 
arbitrary lattice in G. The results in the sequel will be applicable when we set A 
=j-1Fj ,  j~J.  In what follows #' will denote a G-invariant measure on X ' =  G/U. 

(6.1) Lemma. Let ~r be a A-invariant, A-finite (cf w 1 for definition) measure on 
X', Let V be a compact neighborhood of the identity e in G. Then there exists a 
constant d 1 such that for  any non-negative measurable fimction q~ on X '  

~ r Zv(g) dg d~r(x) <= d 1 ~ ~(x) dff(x). 
X ' G  X" 

Zv being the characteristic function of  V and dg being a Haar measure on G. 

Proof For any ~O~Cc(X' ) put 

v(q~) = ~ ~ q~(gx) Xv(g) dg da(x). 
X'G 

Then v defines a (locally finite, Borel) measure on X'. It is easy to see, as in w 1, 
that v is absolutely continuous with respect to #'. To prove the Lemma we only 
need to show that the Radon-Nikodym derivative is bounded (a.e.). 

Let tr' and v' be the measures on G corresponding to cr and v respectively 
under the correspondence introduced in Proposition 1.6. Clearly it is enough to 
prove that there exists a bounded measurable function ( which is invariant 
under the right action of N and is a Radon-Nikodym derivative for v' with 
respect to the Haar measure dg on G. 

It is straightforward to verify from the definitions of ~r' and v' that for any 

(6.2) Sd/(y)dv'(y)=~ S ~k(gY);tv(g)dgdc/(Y) �9 
G G G  

Using right invariance of dg we get 

(6.3) S ~k(y)dv'(y)= S ~ ~b(g)gv(gy- 1)dg dtr'(y) 
G G G  

= ~ ~ d/(g) Zv-lg(y)dg d~r'(Y) 
G G  

= ~ qt(g) tr'(V- 1 g) dg. 
G 

dr' 
In other words o'(V-~g) is a representative in the a.e. class d-~g. Also ~r(V-~g) is 

invariant under the right action of N. We now show that ( (g)=~ ' (V-~g)  is a 
bounded function on G. 
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Let D be a compact, symmetric neighbourhood of e in G such that for any 
y e A - { e }  the sets D and Dy are disjoint. Since V is compact there exist 

k k 

g l ,g2 , ' " , gk  in G such that V c ? g i D .  Hence V-lg=[')Dg7lg'l  Hence it is 

enough to prove that #(Dg) is a bounded function on G. Observe that for any 
7 ~ A -  {e} and gEG the sets Dg and yDg are disjoint. Hence if o" is the measure 
on A\G corresponding to o-' then C(Dg)<C'(AkG). Since a is A-finite 
~"(AkG) < ~ .  Hence a'(Dg) is bounded. 

(6.4) Corollary. Let a be as in Lemma 6.1. and let V be any compact neigh- 
bourhood of e in G. Then there exists a constant d z such that for any measurable 
subset E of X' 

a(E)<=d2#'(VE ). 

Proof Let E be any measurable subset of X'. Then for all g~ V we have 

Z~(x) ~ Zvdg x) 

for all x~X. Thus for every g~V we have 

G(E) = ~ Zg(x) dot(x) <= ~ Zw(gX) do(x). 
X'  X'  

Integrating both sides of the inequality over V we get 

G(E)<d' S ~ ;tvE(gx)d~(x)dg 
V X '  

where d' is the inverse of the Haar  measure of V. By Lemma 6.1 (and Fubini 
theorem) it follows that 

o(E)<d' dl#'(VE ). 

We now specialize to A-invariant measures on X'=G/U for which the 
measure of X ' - P -  U/U is zero. Denote Y = P -  U/U. Y is the unique open orbit 
of P -  on X' and its complement is a union of lower dimensional manifolds. The 
restriction of the G-invariant measure/~' on G/U to Y, being P-- invariant ,  is a 
constant multiple of the quotient of d~h on Y. Here d,h denotes a left Haar  
measure on P - .  By choosing dth appropriately we may assume, as we do, that 
for any measurable function to on Y 

(6.5) ~ to(hU)dth=~to(y)dls ) 
p -  y 

(6.6) Lemma. Let A be any lattice in G such that A n U- is a lattice in U- and 
let ~ be a A-invariant measure on X' such that a ( X ' -  Y)=0. Then there exists a 
neighbourhood t2 of the identity e in P-  and a constant d 3 such that for any non- 
negative measurable function tO on Y 

I ~ tO(hy)xo(h)d, hdez(y)<-da ~ to(y)dff(y). 
yp- y 
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Proof Let H be the connected component of e in P - .  Then H = U - . Z  
(semidirect product) where Z is the connected component of e in the centralizer 
of S in G. Let D c  U-, F c Z  and V c G  be compact neighbourhoods of e in the 
respective subgroups such that DF is contained in V and V- ~ V n A  = {e}. Put f2 
=(DF)-1.  Let v be the measure on Y defined by 

(6.7) I q)(y)dv(y)=I I ~~ �9 
y yp- 

We claim that v-<if~Y, the restiction of/~ to Y. For  if E c  Y is a Borel set such 
that i f (E)=0 ,  then for any y e Y  say y=hoU 

zE(hy)d, h= ~ zE(hhoU)dzh 
p -  p -  

=6(ho) .[ ze(hU)d,h 
p -  

= 6(ho) #'(E) (by (6.5)) 

= 0 .  

Here and in the sequel 6 denotes the modular homomorphism of P -  ; i.e. for any 
integrable function 0 on P -  and ho~P- 

(6.8) S O(hho)dth=f(ho) I O(h)d,h. 
p -  p -  

To prove the Lemma it is enough to prove that the Radon-Nikodym 
derivative dv/dla' (on Y) is bounded. Observe that the map z: P -  ~ Y defined by 
h ~ hy o where yo e Y is fixed (arbitrarily) is bijective. Therefore using z we now 
identify Y with P - .  It is easy to see that under this identification the Radon- 
Nikodym derivative may be written as 

dv h r (6.9) ~ , ( ) = I z a ( h y - X ) 6 ( y ) d a ( x ) .  

Since f2 c H is compact and 6 is a. continuous homomorphism, there exists a 
c o n s t a n t  d 4 such that whenever h y-  ~ e Q, 6(y)< d46(h ). Therefore 

dv 
(6.10) -d~(h) <=d4 6(h) ! za(hy- ')da(y) 

=d46(h) a(l 2- i h). 

Recall that Y2-1=DF and consider the function a(O-lh)=a(DFh). Let 
Pl, Pz ..... Pk be a set of representatives for P-/H. Then any element h of P -  can 
be uniquely represented as h =u-pjz  where u-~ U-, z~Z and 1 <j<=k. 

Since A c~ U is a lattice in U-  there exists a relatively compact Borel subset 
C of U-  such that i) for ~ U -  c~A, 7~ee the sets C and yC are disjoint and ii) 
U - =  0 Y C, that is C is a fundamental domain for U-c~ A in U- .  Recall 

y~U- ~A 
also that any lattice in a nilpotent Lie group is uniform. Hence a relatively 
compact fundamental domain exists. Now let h~P- and h=u-pjz  be the 
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representation as above. For each ~ F  and V~ U-c~A denote 

C(7,~)={),-iD~u- ~ - l } n C  

and for each y e U-  c~ A let 

Cr = U C(T, ~) ~pjz. 

It is easy to see that for each veU-c~A,  Cr is a Borel subset of P - .  Clearly 
{vCr}~v-~a is a family of pairwise disjoint sets whose union is DFu-pjz. 
Therefore using A-invariance of a we now get 

(6.11) a(f2-1h)=a(DFu-pfi)= ~ a(TCr) 
~eU- nA 

= Z 
~EU- c~A 

We next claim that C~, 7 e U - n A  are pairwise disjoint. For otherwise let T:t:V' 
be such that ho=uop~zo~CTnC ?' where uo~U- , zo~Z and l<l<k.  In other 
words there exist ~, (' eF, u-; ~C(7, ~) and u2 ~C(T', ~') such that 

(6.12) ho=u o ptZo=U~ ~p~z=u 2 ~'pjz. 

We may write (pi=n? pjz I and ('pi=n2 pjz 2 where n-i,n2 eU- and Z1,z2~Z. 
Substituting in (6.12) and using uniqueness of the representation we get u~-n i- 
= u 2 n~ and z 1 =z  2. But then ( ' ( -  1 =((,pj)(~,pj)- 1 = n  2 (hi-)- 1 = u  2 (ui-)- 1. Since 
H = U - . Z  is a semidirect product it follows that ~=( '  and u i -=u~.  However 
this means that 7-1Dc~7 '-  1D is non-empty as it contains u i - ( (u- ( -1) -1 .  But 
since D c V  and {TV, v~A} is a family of pairwise disjoint sets we arrive at a 
contradiction. Therefore Cr, ~ U - c ~ A  are pairwise disjoint. Also each Cr is 
contained in CFp~z. Therefore by (6.11) 

a(o- 1 h) <-_,r( CFoz) 

k 
where F0= y Fpj. Recalling the identifications and using Corollary 6.4 we 

conclude that 

(6.13) a(f2- l hU)=a(CFozU) 

<d2P'(VCFozU). 

Recall that since Z normalizes U there is an action z ~ ,  of Z on X'=G/U 
given by ~G(gU)=gzU. Since this action commutes with the G-action on left 
there exists a character X: Z ~ I R +  such that for any Borel subset E of X', 
#(~G(E))=Z(z)p'(E). We claim that Z(z)=6(z)-1. To see this let Q be a compact 
subset of H with non-empty interior and let E=QU/U. Then E is a compact 
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subset Y with non-empty interior. Then in view of (6.5) we have 

Z(z) p'(E)=p'(~(E)) =#'(Qz U/U)= ~ zo(hz- ')dth 
H 

= 6 (z-  1) S ZO (h) d I h = 6 (z-  1) #, (E). 
H 

Since 0 < # ' ( E ) < ~  we must have Z ( z ) = f ( z - i ) .  Using (6.10) and (6.13) we now 
conclude that 

d ~  
(6.14) -d--ff (h) < d4d26(h) ff ( V C Foz U /U) 

= d6 (h) 6(z-  ') 

where d = d 4 d 2 # ' ( V C F o U / U  ). Since V C F  o is a relatively compact subset, d is 
finite. It is easy to see that the restriction of the modular homomorphism 6 to 
U- is identically 1. Hence 6(h)=6(u-pjz)=6(pj)~(z) .  Therefore by (6.14) 
dv /d# '<d  sup 6(pj). This proves Lemma 6.6. 

1 <=j<=k 

(6.15) Corollary. Let a be a A-invariant measure on X = G / N  such that a (X  
- P - N / N ) = O .  Then there exists a neighbourhood f2 of e in H and a constant 
d' 3 > 0 such that for any non-negative measurable function r on X 

~ r = d 3 ~ tO(x)dp(x). 
X H  X 

Proof. Let 12 be the neighbourhood of e in H as in Lemma 6.6. In view of the 
one-one correspondence of measures on X and X' with those on G introduced in 
Proposition 1.6 the corollary is an obvious consequence of Lemma 6.6. 

w 7. Proof of Proposition (5.14) 

Recall that the function F on X iflvolved in the integrals in Proposition 5.14 is 
defined by the (right) N-invariant function on G, (also denoted by F) defined by 

F (g) = exp - 2 p H (g) 

where p and H(g) are as introduced in the beginning of w We now need the 
following alternative formulation of F. 

Let ffi be the Lie algebra of G and let (tic be its complexification. Let qq be a 
Cartan subalgebra of 6i e containing the Lie subalgebra 9/ of A. Let A~ be a 
system of positive roots for the pair (~ic,(g) such that the set of restrictions of 
elements of A~ to 91 contains all roots of 91 on ~,, the Lie subalgebra of N. Let 
AeCg *, the dual of cg be such that 2A is the sum of all roots in A~. Then there 
exists a unique finite dimensional irreducible representation dO of ffi e with 
highest weight A, say on a vector space L~ ~ Let 0 be the corresponding 
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representation of G on Ae. Then LP is endowed with a norm 11" II such that for all 
geG 

(7.1) llO(g)Voll=exppn(g) 

where v 0 is an element in the weight space corresponding to the highest weight. 
Now let as before H be the connected component of e in P -  and let ~ be the 

Lie subalgebra corresponding to H. Using (7.1) in this section we first prove the 
following result. 

(7.2) L e m m a .  Let a be any measure on X = G / N .  Let ~le~ be a simultaneous 
eigenvector of  {Ad a laeA} such that ad r/is a nilpotent transformation of  ffJ. Let q 
and t o > 0 be given. Let E n = {exp t~llltJ < to}. Then there exists a constant d 5 such 
that for any Borel subset Q of  X and r  (cf w  notation) 

S F(~-  1 x)a da(x) < d 5 ~ F(r  x)qda, (x) 
Q EnQ 

where a n is the measure on X such that for all q~eCc(X ) 

q~ (x) d a n (x) = ~ ~ q~ (exp t t/. x) )~, (exp t t/) d t da  (x). 
X X R  

Proof. Since t/ is a nilpotent element of (5, z=dO(r/) is a nilpotent linear 
transformation of ~q~. Consequently there exists p e Z  + such that 

p - 1  

(7.3) 0(exptr/)= y~, aitiz i 
i=O 

where ai, O<i<p  are the first p coefficients in the exponential series. For veAe 
and t'elR, put 

, d 
~ ( v ,  t ) = ~ -  II 0(exp t r/). 0(exp t' r/) v II I,o o 

d 
= ~ -  II0(exp tr/) vii I,=,,. 

We claim that for any (fixed) ve~e either ~ (v , t ' )=0  for all t 'eP,  or the 
number of solutions of ~ ( v , t ' ) = 0  is bounded by 2p. We first observe that for 
v . 0 ,  ~(v, t ' )=0  if and only if 

d 
a t  l[ 0(exp t~/) v II = I,=,, = 0.  

Now let {vj}] be coordinates of v with respect to an orthonormal basis of La. 
Then in view of (7.1) the left hand side is a polynomial in t' whose degree is at 
most 2p. Hence if ~(v,  t') is not identically zero it can have at most 2p solutions. 

Now for any tl > 0  define 

.~o(tO = {ve.~l~'(v, t ' )=O for some t' e [ - t l , q ] } ,  

~ + ( t 0 =  {veLal ~(v, 0)>0} - Leo(t1) 
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and 

~ -  (tl) = {v~ ~ l ~(v, 0) < 0} - ~ o ( t  0. 

Then obviously for any t 1 > 0  the above three sets constitute a partition of A ~ 

(7.5) Sub-Lemma. In above notation if either ve~+( to)  and t e [ - t o , 0  ] or 
v~ .~ -  (to) and t~[0, to] then 

II 0(exp t~/) v II _-< II v II. 

Proof. We consider the former case; the latter can be dealt with similarly. Since 
v s.~q ~ +(to) either the desired inequality holds for all t < 0 or there exists t '>0 such 
that 

(7.6) [lO(expttl)vl[<llvll for t ~ ( - t ' , o )  

and 

[[0(exp t't/) vii = [loll. 

By Rolle's theorem there exists t "~ ( - t ' ,  0) such that 

t, d ~(v, t )=~-I[0(exp tt/) vll I,=,,, = 0. 

Since vr we must have - t " > t  o. Hence t ' > - t " > t  o in view of (7.6) the 
claim is proved. 

(7.7) Corollary. Let ~ S - .  Then if either veO(r  and t~[0,to] or 
v~O(r ~q~ + (to) and te [ - to, 0] then 

II 0(~- 1 exp tO) vii < 110(r 1) vii. 

Proof. Let 2, be the character on A such that (Ad a)t /= 2(a)~/for all aeA. Since 
t /~b it follows that for any r  0 < 2 ( ~ - 1 ) < 1 .  Thus if t e [ - t o , 0  ] then 
r162162  for some t ' ~ [ - t o , 0  ]. Hence by Sub- 
Lemma 7.5, in either of the cases we get 

[I 0(r 1 exp t t/) v II = II 0(4- l(exp t n) ~) 0(~- 1) v II 

_-__ II0(r 

(7.8) Sub-Lemma. Let t o > 0  be given. Then there exists a function ( defined on 
~o(2to)  and a constant, d 6 > 0  such that i) for v 4=0, ((v) > 0  

ii) for all V ~ o ( t o )  and t e [ - t o ,  to], ~(0(exp t t l)v)=((v) and 

iii) v~O(O~o(to)  where r  and t e l - t o ,  to], 

d ;  1 ~(0(r 1) v) _-< II 0(r 1 exp t~/) v I] < d6 r162 1) v). 

Proof. On ACo(2to) consider the partition D whose elements are connected 
components of {0(exp tr/) vlteP-,} c~,s162 VE~o(2to). Let ,,~ denote the cot- 
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responding equivalence relation. Now for veL#o(2to) define 

(7.9) ((v)=inf{llv'lllt,'e~o(2to) and v'~v}. 

We first observe that since t/ is nilpotent either IlO(exptrl)vtl ~ oo as t - ,  +oo or 
v is a fixed point of 0(exptt/), telR. Hence for any v . 0 ,  ((v)>0. 

Now if veC~'o(to) and t e [ - t o ,  to] then O(exptrl)ve.~o(2to) and 
O(exptrl)v,,~v. Therefore ( satisfies ii). Next let ve.~o(to) and consider the 
function #(v,t). First suppose ~(v , t )=0  for all telR. Then tlO(expt~l)vH is the 
constant function t[vt[. On the other hand if ~(v, t) is not identically zero then, as 
observed earlier, the set of solutions of ~(v , t )=0  has at most 2p elements. 
Consequently the "length" of the equivalence class D(v) of v, defined by 

t(v) = Sup {It z - t,)[ 0(exp t 17) v, O(expt z ~t) w=LPo(2 to) 
~ and O(exptl~l)v .O(expt2tl)v ) 

satisfies l(v) < 8 p t o. Therefore if we put 

d 6 = sup { [] 0(exp tn) v' N/]l v' [I ] v '~ .~,  It[ S 8pto} 

then for any v l, t,2~D(v) we have 

d~- I [iVl [I ----< llv2 [I =<d6 [Ivl I[. 

Also by compactness of D(v), ((v)= llv')l for some v'~B(v). Thus we have proved 
iii) in Lemma 7.8 for the case when ~=e. For arbitrary ~eS-,  iii) can be proved 
by applying the above to 0(~-~)v and observing as in Corollary 7.7 that 
{r i (exp tt/) r < to} is contained in {(exp t~/) [ ltl =< to}. 

We now complete the proof of Lemma 7.2. Let Q be a Borel subset of X 
=G/N. Let voeA ~ be as in (7.1). Now for CeS- define 

Qo(~) = {gNeOlO(g) voeO(~) ~o(to)}, 

Q § ( 0  = {gNe(210(~) voe0(O ~e+ (to)}, 

Q- (r = {gNeQ 10(g) voeO(~) L#- (to)}. 

Then for each r the above three sets form a partition of Q, We intend to prove 
the inequality in Lemma 7.2 by proving it separately on each of these sets. 

Firstly consider Q + ({). Since F (~- 1 x) = tl 0(~- i g) Vo li - 2 in view of Corollary 
7.7 for xeQ+(~) and t e [ - t o , 0  ] we get 

F(~- i x) < 1[0(~- i (exp tt/) g) Vot I- z 

= F(~- ~ (exp ttl) x). 

Let E 2 ={expt t l l t~[- to ,  O]}. Then for given q>0  and t e [ - t o , 0 ] ,  we have 

Zo+ ~r F(~- 1 x)q <)Cnr Q((exp tt/) x) F(r 1 (exp tt/) x)L 

for all xeX.  Therefore 
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(7.10) 

S . G .  D a n i  

1 
S F (4-1 x)q d a (x) = r ~ d t ~ ZQ § (x) F (4-1 x)q d a (x) 

Q+(O ~o E~ X 

1 
< - -  ~ at ~ zEr Q((exp tt/) x) F(~- I  (exp ttl) x) q da(x) 
- -  t o  E~ x 

< 1  I F(~- 'x)qda.(x)  
- t o  ~.o 

where a~ and E~ are as in the statement of the lemma. Similarly we can prove 

(7.11) S F (~ - lx ) ' da (x )  - < !  I F(~-Ix)~da.(x)  �9 
Q - (~) - -  t 0 E n Q 

Now consider ~ F(~- 1 x)q da(x). For xeQo(~ ), in view of iii) in Sub-Lemma 7.8 
Qo(O 

and (7.1), for t eE- to ,  to] we have 

d6 2~- 2(~ - l x )<F(~-  l(exp ttl)x)<d2~ - 2(4- ix). 

Hence in particular 'for any t e [ - t o ,  to] , xeQo(O 

F (~- 1 x)q < d 2 q ~- 2 (4-1 x)q < d'F (4-1 (exp t tl) x) q 

where d'=d46 q. Hence for any t e [ - t o ,  to] and x e X  

)~Qo(O (x) F (4-1 x)q < d' XE. Q ((exp t t/) x) F (~- 1 (exp t tl) x) q. 

Integrating both sides with respect to x and te [ - t o ,  to] we conclude that 

d' ~ F(~_lx)qda.(x)" (7.12) qog)~ F(~- ' x ) ' da (x )<~or~ ,q  

Combining (7.10), (7.11) and (7.12) we conclude that there exists a constant d 5 
(independent of 4) such that 

$ F(~- l x)q da(x) <ds ~ F(~- l X)q a,1(x). 
Q E.Q 

(7.13) Lemma. Let G = K A N  be the Iwasawa decomposition as fixed in w Let 
M be the subgroup of K consisting of elements which centralize A. Let Z be a 
compact neighbourhood of e in MA. Let a be any measure on X = G/N and let 
q > 0  be given. Then there exists a c o n s t a n t  d 7 such that for any Borel subset 
Q o f X  

F(~ -1 x) q da(x) <=d 7 ~ F(~ -1 x) q daz(x) 
Q ZQ 

where a~ is the measure on X defined by putting for tpe C~(X) 

I I f  (zx) z (z) dz da(x) 
X X M A  

dz being a fixed Haar measure on MA. 
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Proof. In the notation used earlier in the section define 

da = Sup { I10(z) v ll/ltvll I vE L" - (0) ,  z~ :} .  

Since Z is compact d s is finite. Then using (7.1) for any zeZ ,  ~ S -  and x 
= g N ~ X  we have 

F(~- ix)= II 0 ( ~ -  ~ g) v oll - 2  

<d~ II0(zC x g) roll- 2 

=d~ F(z~- ~ x) 

=d~F(~- l zx ) .  

For the last step recall that S c A. Now as before for the Borel set Q and z ~  we 
can write 

ZQ(X)F(~ -~ x)q<=d~qxxQ(zx)F(r for all x~X.  

Let d 9 be the inverse of the Haar measure of Z in MA. Then 

S F(r x)q dcy(x) ~-- d 9 S dz ~ XQ(X) F ( r  g)qd~(x) 
Q �9 x 

d9 d2q ~ ~ Zxo(zx) F(~-  : zx)  ~ dz da(x)  
X$ 

=d 7 ~ F(~-  ax)qdtr~(x) 
xQ 

where d 7 =dgd28 q. 

(7.14) Proposition. Let A be a lattice in G such that Ac~U-  is a lattice in U- .  
Let a be a A-invariant measure on X = G / N  such that a ( X - Y ) = O  where Y 
= P -  N/N.  Let q >0 be given. Then there exists a compact neighbourhood E of e 
in H c P -  and a constant d such that for any ~ES- and any Borel subset Q of  X 

F(~-' x)~ d~(x) <__d ~ F(~- 1 x)~ a~(x). 
Q EQ 

Proof. Let f2 be a compact neighbourhood of e in H, (the connected component 
of P - )  for which Corollary 6.15 is satisfied. In the Lie subalgebra b of H there 
exists elements r/l, r/e,..,, r/,, which are nilpotent elements of ~i and such that the 
map ~r IU x M A  ~ H defined by ( t l , t  2 . . . . .  t,,z)l---*(exptlr/1).(expt2r/2)... 
(exp t,r/,).z is regular at (0,0, .... 0,e). Hence there exists a neighbourhood Z 
of e in M A  and to such that if R = { ( t t , t  2 . . . . .  t , , z ) t l t i l~t  o for l<-i<=r and 
zeZ}  and Ei=E,,={exptr/ i l[t i l<to} then ~r is a diffeomorphism onto 
E = E ~ E  2. . . . .E ,Z  and the latter is a neighbourhood of e in H. By choosing 
smaller ,~ and t o we may also assume that E ~ f l .  

Applying Lemma 7.13 and then Lemma 7.2 repeatedly we conclude the 
following: For any q > 0  there exists a constant d' such that for any ~ S -  and 
any Borel subset Q of X 

(7.15) ~ F( r  ~ F(~-'x)qd((...(a~),,),,_,)~,. 
f2 EQ 



128 S.G. Dani 

Since ,g/R is a diffeomorphism onto E there exists a differentiable function ~O on 
E such that for any q~eCc(H ) 

Sdz ~ dt, ~ ... ~ dtl{ep((exptltll)(exp t2rl2 ) ... (exp t,~l,)z} =~ ~o(h)~k(h)dlh. 
s Er Er - 1 E1 E 

Thus if q~ is a non-negative function on X 

q~(x) d((... (az),.)...),, (x)= ~ S q~ (hx) xE(h) O(h) dzh da(x) 
X X H  

< d" f ~ q~(hx) x~(h) d,h da(x) 
X H  

where d"=sup~,(h)< oo. By Lemma 6.6 we further have 
h~E 

f I ep(hx) x~(h) d,h da(x) <= d 3 f q)(x) d#(x). 
X H  X 

In particular for ~o(x)=F(r ) we get 

(7.16) ~ F(r l x)q)~eq(x)d((... (a~),)).. 3,, < d" d3 ~ F(~- l x)q Xee(x)dlt. 
X X 

Combining (7.15) and (7.16) we conclude that for any ~ S -  

I F(r 1 x)qda(x)<=d I F(r lx)~d#(x) 
O. f42 

where d=d'd"d 3. This proves Proposition. 

Proof of Proposition (5.14). Recall that for each jeJ,  j-tFjc~ U- is a lattice in 
U-.  Further the measure rcj defined by (5.13) is j-~ Fj-invariant and n j ( X - Y )  
=0. Thus for each j eJ  there exists a compact neighbourhood E~ of e in H, and a 
constant d j>0  such that for any ~eS- and any Borel subsetQ of X 

1 e 1 e_ 

e(~- lx)  +-idzcj(xl<=dj I F(~ -Ix)  +2a#(x). 
Q ~sO 

Since J is finite, putting E =UaEj and c 6 =max d i we get the Proposition. 
�9 j ~ J  

Part IH. Classification of Invariant Measures 

We now consider the general case. In the sequel T denotes a (connected) 
reductive Lie group. This means that the adjoint representation is completely 
reducible. The adjoint group T* admits a direct product decomposition T* 
= C. G wher C and G are normal (and hence semisimple) subgroups of T*, C is 
compact" and G is a product of noncompact simple Lie groups. We denote by 
p: T ~  G the canonical projection homomorphism of T onto G. There exists in 
T a unique maximum normal semisimple analytic (connected) subgroup G o 
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without compact factors. The restriction of p to G O is a covering of G. Any 
horospherical subgroup U of T (see Introduction for definition) is contained in 
G O . 

Let U be a maximal horospherical subgroup of T, and let F be a lattice in T. In 
w 8 we first show that any ergodic U-invariant measure on T/F is concentrated 
on a translate of a closed orbit of a r'eductive subgroup L of T containing Go 
such that the L-invariant measure on the orbit is U-ergodic. This reduces the 
task of proving Theorem A only in the special case when the action of U on T/F 
is ergodic with respect to the Haar measure. Then using Proposition 1.12 and 
the duality principle (Corollary 1.9) in w 9 we reduce the problem to the special 
case of semisimple groups with trivial center and without compact factors. In 
w 10 we show that if the measure (or more precisely the dual of it) fails to satisfy 
the condition of Theorem 2.4 then it is concentrated on a closed orbit of a 
proper subgroup. We are then able to produce an inductive argument to 
complete the proof of Theorem A. 

w 8. Ergodicity of Haar Measure 

(8.1) Lemma. Let H be any Lie group (not necessarily reducitve) and A be a 
lattice in H. Let V be a normal analytic subgroup of H. Then there exists an 
analytic subgroup L of H such that 

(i) L is normalized by A, LA is a closed subgroup and Lc~ A is a lattice in L. 

ii) L contains V and the action of V on L / L n  A is ergodic with respect to the 
L-invariant measure on L/Lc~ A. 

Proof. We construct inductively, a decreasing sequence {Li} ~ of analytic sub- 
groups of H such that for each i, L i contains 1I, L~ is normalized by A and L i A is 
closed. Put L o = H  and suppose L o, L 1 . . . . .  L,_ 1 are constructed satisfying the 
above conditions. Let L s be the connected component of the identity in cl(VA~) 
where A s = L s_ 1 c~ A. Then L s contains V and is normalized by A. We show that 
L~A is closed. Let x~y~ be a net in LsA converging to yell .  Since L~cL~_I and 
L~_ 1A is closed (by induction hypothesis) y has the form xy where xeL~_ 1 and 
yeA. Hence x~,(y~,7-~)~xeL~_ 1. But L,_ 1A being closed, is a discrete union of 
left cosets of certain elements of A. Therefore 7 ~ - 1  must eventually belong to 
L~_ 1. Choosing a subnet we may assume that for all a, y~y-~eAc~L,_~=A~. 
But dearly L~A~ is dosed. Hence x~(y~y -1) converges in L,A,. Thus x~,~ 
converges in L,A. Hence LsA is closed. 

oo 

Now put L =  (-] Lt. Since {L~}~ is a decreasing sequence of analytic sub- 
i =  = 0  

groups there exists j >  0 such that L =Lj .  It follows that L is normalized by A 
and that LA is dosed. By Lemma 1.14 Lc~A is a lattice in L. 

Clearly L contains V. Further since L=L~=Lj+ 1 we conclude that V(Lc~A) 
is dense in L. The ergodicity of the action of V on L/Lc~A is now a consequence 
of the following Lemma (due to Mostow) which we separate out because of its 
usefulness. 
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(8.2) Lemma (Mostow). Let H be a locally compact second countable group and 
let A be a closed subgroup such that H/A admits a finite H-invariant measure, say 
tT. Let V be a normal subgroup H such that Vii is dense in H. Then the action of 
V on H/A is ergodic with respect to a. 

Proof. Let fe ,~2(H/A,  a) such that f (gxA)=f (xA)  a.e. tr for all ge E L e t f b e  the 
function on H defined by f (x)=f(xA).  For any geV and yeA we have 

(8.3) f ( x g y ) = f ( ( x g x - l x ~ ) = f ( ( x g x -  l xA )= f ( xA)= f ( x )  

a.e. on V• 

But observe that f is a locally integrable function on H. Also the action of H (on 
right) on the space of locally integrable functions on H is continuous when the 
latter space is endowed with the topology induced by local seminorms. Since VA 
is dense (8.3) now implies that f is a constant function. Hence so is f. Therefore 
the action of V on H/H n A is ergodic with respect to a. 

We now return to the earlier n o t a t i o n - a s  introduced in the introduction to 
�9 Part III. 

(8.3) Proposition. There exists a reductive analytic subgroup L of T containing G O 
such that 

i) L is normalized by F, LF is closed and L n F  is a lattice in L. 

ii) The action of U on L/Lc~F is ergodic with respect to the L-invariant 
measure. 

iii) I f  zc is any U-invariant ergodic measure on T/F then there exists te T such 
that 7r(T/F- tLF/F) = O. 

Proof. By Lemma 8.1 there exists an alaytic subgroup L containing G O for which 
i) is satisfied, and the action of G o on L / L n F  is ergodic. We also observe that 
any analytic subgroup containing G o is reductive. 

The assertion ii) is a consequence of Calvin Moore's ergodicity theorem. 
Observe that if p~ is a canonical projection of G o onto any simple factor of the 
adjoint group then cl (pi(U)) is noncompact. The ergodicity theorem asserts that 
any subgroup satisfying the above has the following property (cf. Theorem 1, 
[15] and also [4]). Let z be a unitary representation of G O on a separable 
Hilbert space ,,~. If ~ . ~  is such that z(u)~k=~b for all u~U then z(g)~=~b for 
all g~G o. Applying the result to the unitary representation corresponding to the 
action of G o on L/LnF,  we get that iffe.cE2(L/LnF) such that f (ux)=f(x)  a.e. 
for all u~U then f (gx)=f (x )  a.e. for all geG o. Since the action of G O is ergodic 
such an f must be a constant function; i.e. the action of U on L/L n F is ergodic. 

We now prove iii). Siflce LF is a closed subgroup of T the partition of T/F 
into {xLF/F[xeT} is countably separated; i.e. there exists a countable family 
{E~} of Borel subsets such that each Ej is a union of certain elements of the 
partition and given any two distinct elements of the partition there exists j such 
that E~ contains one of them but not the other. Since L contains G o which is a 
normal subgroup containing U any element of the above partition is U- 
invariant. Therefore if zt is a U-invariant crgodic measure on T/F there exists 
te T such that ~(T /F -  tLr/r) =0. 
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(8.4) Remark. In view of Proposition 8.3, Theorem A needs to be proved only 
under the additional hypothesis that the action of U on T/F is ergodic with 
respect to the T-invariant measure. For suppose this is done. Let n be a U- 
invariant ergodic measure on T/F. Let L be an analytic subgroup and te T be as 
obtained in Proposition 8.3. Let re' be the measure on L/LnF ~-LF/F defined by 
~'(E)=n(tE) for any Borel subset E of LF/F. Then r( is a t-lUt-invariant 
measure on L/LnE Thus we get a subgroup H of L and x~L such that H(LnF) 
is closed and n' is the xHx-l-invariant measure supported on 
xH(LnF)/LnF~-xHF/F.  It follows that ~ is the t xHx-  1 t- ~ invariant measure 
supported on txHF/F. 

w 9. Reduction to Semisimple Groups 

In this section we reduce proving Theorem A to the special case when T is a 
semisimple group without compact factors. Recall that G is the product of all 
noncompact simple normal subgroups of the adjoint group of T and p: T--*G is 
the canonical projection of T onto G. Let ~: T/F ~ G/p (F) be the map defined by 
~(tF)=p(t)p(F) for all t~T. 

(9.1) Lemma. p(F) is a lattice in G and ~ is proper. 

Proof. Let L denote the connected component of the identity in ker p. Also let R 
be the radical of T. Then R is also the radical of L and L/R is compact. Now by 
a theorem of L. Auslander (cf. Theorem 8.24, 1-16]) the connected component A 
of the identity in c lRF is solvable. Since L/R is compact AL is a closed 
subgroup. Further AL is normalized by F and ALF is a closed subgroup. Since 
F is a lattice in T it follows easily that the subgroup AFL/L has the Selberg 
property (A subgroup H of T is said to have Selberg property if for any 
neighborhood f2 of the identity in T and any g e T  there exists ~ F  and n~Z + 
such that gn~f2~O-1). Therefore by Borel's density theorem (cf. Theorem 5.5, 
1163, see also 1-93) AFL/L is a Zariski dense subgroup of T/L. In particular it 
follows that the connected component AL/L is normal in T/L. But since A is 
solvable and T/L is semisimple this means that AL = L or that A is contained in 
L. Consequently LF/L is a discrete subgroup. Further by Lemma 1.14 it follows 
that LF/L is a lattice in T/L. Next notice that ker p/L is a central subgroup of 
T/L. Therefore again because of Borel's density theorem (ker p)F/L is discrete 
(cf. Corollary 5.17, [163). Thus p(F) is discrete and indeed a lattice. 

To prove that t3 is proper we proceed as follow: Since A is a closed subgroup 
(notation as above) normalized by F and AF is closed it follows that A n F  is a 
lattice in A. Since A is solvable it follows from a result of Mostow (cf. Corollary 
3.5 and Theorem 2.1, [163) that A/AnF is compact. Since L/A is compact it 
follows that L/LnF is compact. Now the same argument as above shows that 
(ker p)nF is a lattice in ker p. Since each orbit of L on ker p/(ker p)nF is open it 
follows that there are only finitely many orbits. Also each orbit, being topologi- 
cally isomorphic to L/LnF is compact. Hence kerp/(kerp)nF is compact. 
Hence ~ is proper. 
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(9.2) Lemma. Let Q be an analytic group. Let U' be a normal analytic subgroup 
of Q such that Q/U' is reductive. Let U be an analytic subgroup containing U' such 
that U/U' is a maximal horospherical subgroup of Q/U'. Let V be the smallest 
normal analytic subgroup of Q containing U. Then the restriction of any ergodic 
measure-preserving action of V to U is ergodic. 

Proof. Since U' is a normal subgroup contained in U it is enough to show that 
any ergodic action of FlU' restricts to an ergodic action of U/U'. But FlU' is 
clearly the maximum normal semisimple subgroup without compact factors in 
Q/U'. Also U/U' is a maximal horospherical subgroup in V/U'. The desired 
result now follows from C.C. Moore's ergodicity in the same way as argued in 
Proposition 8.3, ii). 

(9.3) Proposition. Let ~ be a U-invariant ergodic measure on T/F. Suppose that 
there exists an analytic subgroup H of G and goeG such that 

a) H contains N=p(U).  There exists an analytic subgroup N' of N which is 
normal in H and H/N' is reductive. 

b) Hngop(F)go  1 is a lattice in H, Hgop(F ) is closed and supp~n 
= Hgo p ( r ) / p ( r ) .  

c) ~Tz is H-invariant. 

Then there exists an analytic subgroup L of p-1 (H) and to E T such that 

i) L n t  o Ft o 1 is a lattice in L, LtoF is closed and supp n =Lt  o F/F and 
ii) L contains U and n is L-invariant. 

Proof. Let t ie  p-  l(go). Put Q = p - I ( H )  and A = Q n t  1Ft? l. Since 
go p(F) g~ 1 n H  is a lattice in H and/3 is proper it follows that A is a lattice in Q. 
Also A is the isotropy subgroup for the action of Q at the point t 1 F. Since t3n is 
supported on Hg o p(F)/p(F) it follows that the support of n is contained in 
Q t o F/F ~-Q/A. Therefore n may be visualized as a U-invariant, ergodic measure 
on Q/A. 

Recall that the restriction of p to G O is a covering of G. Hence there exists a 
unique analytic subgroup U' of U such that the restriction of p to U' is an 
isomorphism of U' onto N'. Further it is clear from Lie algebra considerations 
that U' is normal in Q and that Q/U' is reductive. Also U/U' is a maximal 
horospherical subgroup in Q/U'. 

Now let V be the smallest normal analytic subgroup of Q containing U. By 
Lemma 8.1 there exists an analytic subgroup E of Q such that E is normalized 
by A, EA is a dosed subgroup, E n A  is a lattice in E, E contains V and the 
action of V on E / E n A  is ergodic. By Lemma 9.2 it follows that the action of U 
on E / E n A  is ergodic. Also since {tEAl t~Q} is a countably separated partition 
as in the proof of Proposition 8.3 we conclude that there exists t26 Q such that 
the U-invariant ergodic measure is supported o n  t 2 EA/A. Under the canonical 
isomorphism of Q/A with Q t 1 F/F the supporting set corresponds to t 2 E t 1 F / / ~ .  

Now put L = t 2 E t~- 1 and t o = t 2 t 1 . Then n is supported on Lt o F/F ~- LId where 
d = L n t o F t  ~ 1 is a lattice in L. Observe that U is contained in L and the action 
of U on L/A is ergodic. This is because ergodicity of the action of a subgroup on 
a homogeneous space depends only on the conjugacy class of the subgroup. 
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We also observe that the restriction of p to L maps L onto H. For, since fi is 
proper from considerations of supports of n and/3n we can deduce that p(Lt o F) 
= H g  op(F). In other words p(L) acts transitively on the H-orbit  
H go P (F)/p (F) ~- H/H n go P (F) go 1. However since p (F) is a discrete subgroup of 
G and p(L) is analytic this is possible only if p(L)=H. 

Let p': L/A --* H/p(A) be the map induced by the restriction of p to L. Clearly 
p' is a proper map. Now we may visualize n as a U-invariant ergodic measure 
on L/A, such that p 'n is a H-invariant measure and we need to prove that n is L- 
invariant. Since p' is proper we can decompose n along the fibers of p': There 
exists a family {np}p~n/p~n~ where np is a probability measure on p , - l (p)  such 
that for any q~ Cc(L/A) 

ap'n(p) S ,p(x) 
L/a H/p(d)  p, - i (p) 

Now let R=(kerp)~L. Let dr be a Haar  measure on R. For  any O~C~+(R) let n 0 
be the measure defined by 

I ,p(x) dno(x )= ~ I ,p(rx) O(r) dr dn(x) 
L/a L/A R 

for all q)eCc(L/A ). Since the actions of the subgroups R and U commute it 
follows that each n 0 is U-invariant. We claim that for all OeC~(R), n o is 
absolutely continuous with respect to the L-invariant measure on L/A. Note that 
R acts transitively on each p ' -1  (p). Since p 'n is the H-invariant measure, in view 
of Fubini-Weil formula for invariant measures on homogeneous spaces it is 
enough to assert that for each p~H/p(A) and 0E C~+(R) the measure (np) 0 defined 
by 

q)(x) d(Ttp) o= ~ ~ r O(r) dr drip(x) 
p, -t (p) p , - l ( p )  R 

where ~psCc(p'-l(p)) is absolutely continuous with respect to the R-invariant 
measure on p ' -1  (p). But this obviously follows in the same way as in the proof 
of Lemma 6.6. 

Now recall the one-to-one correspondence between the U-invariant mea- 
sures on LId and d-invariant measures on L/U established in Corollary 1.9. 
(Notice that since L contains a lattice it is necessarily unimodular.) Let co and 
coo, 0~ C~+(R) denote the A invariant measures on L/U corresponding to n and 
ns, O~C+(R) respectively. It is straightforward to check that for any O~C+(R) 
and any Borel subset E of L/U 

cos(E) = ~ q~(@71 E) O(r) dr 
R 

where r ~ @ ,  is the action of R on L/U on right defined by ~k,(xU)--xrU (it is 
well-defined since R normalizes U). Since the L-invariant measure on L/A is 
ergodic for the action of U it follows that the L-invariant measure on L/U is 
ergodic for the action of A. Since for each 0e C + (R), rc s is absolutely continuous 
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with respect to the L-invariant measure, each too is absolutely continuous with 
respect to the L-invariant measure on L/U. Therefore it now follows from 
Proposition 1.12 that to is a L-invariant measure on L/U, Hence n is a L- 
invariant measure on L/A. 

w 10. Applications 

Using the characterization of Haar  measure obtained in earlier sections we now 
determine all ergodic invariant measures of the 'horospherical flow' on G/F 
where G is a semisimple analytic group such that N-rank of each factor of G is 1. 
A generalization of the resu l t -wi thout  the condition on rank of the factors 
- involves study of orbits of the horospherical flow and will be considered later. 

(10.1) Theorem. Let G be a semisimpte analytic group with trivial center and such 
that N-rank of each factor of G is 1. (In particular G has no compact factors.) Let 
F be a lattice in G. Let U be a maximal horospherical subgroup of G. Let ~z be an 
ergodic U-invariant finite measure on G/E Then there exists an analytic subgroup 
L of G and goeG such that 

i) Lgo F is closed, Lc~g0Fg~ 1 is a lattice in L and supp zc=Lgo F/F , and 
ii) L contains U and zc is L-invariant. Also 

iii) There exists an analytic subgroup U' of U which is normal in L and such 
that L/U' is reductive. 

(10.2) Remark. If there exists a maximal horospherical subgroup of G for which 
the result holds then it holds for all maximal horospherical subgroups. 

Proof of  Remark. Recall that all maximal horospherical subgroups are con- 
jugate. Assume the theorem to be true for U and let U ' =  g U g-  ~ where g~ G. Let 
n' be a U'-invariant ergodic measure on G/F. Let n be the measure defined by 
rt(E)=n'(gE) for any Borel set E. Then rc is a N-invariant ergodic measure on 
G/F. If L is an analytic subgroup and g0~G be such that i)-iii) are satisfied for N 
and n then E = g L g  -~ and gb=ggo clearly have the desired properties with 
respect to N' and z~'. 

(10.3) Lemma. Let G be as in Theorem 10.1 and let A be any lattice in G. Let G 
=l-I Gf be the decomposition such that A i =Ac~G i is an irreducible lattice in G l (cfi 

Proposition 2.1). Let ieI  be such that G/Ai is non-compact. Then G i is a simple Lie 
group and in particular N-rank of G t is 1. 

l 

Proofi Let Gi = 1-I Hj be the decomposition of G i into simple factors and if 
j ~ l  

possible let l >  1. Let U ~ (e) be any Acrational horospherical subgroup of G~. 
1 

Also U can be expressed as I~ Uj where Uj, 1 __<j__< l is a horospherical subgroup 

Hj. Since N-rank of each H~ is 1, Uj is either the identity subgroup (e) or a 
maximal horospherical subgroup in Hi. If there exists j such that Uj = (e) then we 
get a normal subgroup F of Gi containing U and such that (e) c F c G~. However 

+ + 
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since A i is an irreducible lattice in Gi no proper subgroup contains a non-trivial 
element of A~ (cf. Lemma 1.5 [13]). Thus we conclude that any non-trivial A r 
rational horospherical subgroup U is a maximal horospherical subgroup of Gi. 

However recall that by arithmeticity theorem (cf. [13]) of Margulis, G i 
admits a ~-structure such that A~ is an arithmetic lattice. For that Q-structure 
the conclusion of last paragraph implies that Q-rank Gi is same as the R-rank of 
G~. Since t~-rank (being equal to the maximum length of an increasing chain of 
non-trivial A~-rational non-trivial horospherical subgroups) is clearly 1 so is the 
R-rank. Since each Hj is non-compact R-rank of each Hj is positive. This gives 
a contradiction unless l = 1. 

(10.4) Remark. Let G and F be as in the statement of Theorem 10.1. Let G be 
decomposed as G = G O �9 G~ where G O is the maximum normal Lie subgroup of G 
such that Goc~F is a uniform lattice in G (product of all G~, ieI o (in the notation 
ofw and G~ is such that G l n F  is a (non-uniform) lattice in G1. Let U, U- ,  P, 
P - ,  S, A, N etc. be as in w Then in view of Lemma 10.3 we have the following: 

i) U = G l n N ,  and U is a maximal horospherical subgroup in G 1 
ii) P = G O �9 (Pc~ G1); P -  = G O �9 (P- c~G1). P n G  1 and P -  ~ G  1 are minimal R-  

parabolic subgroups of G~ and we have Langlands decompositions (cf. [19], 
pp. 75) as 

Pc~G 1 =M" (AnG1). U 

and 

P-  nG 1 = M .  (AnG1).  U- 

where M is the centralizer of AnG~ in a maximal compact subgroup G 1. 
iii) P-  U=G o . (P-nG1)  U=(G o . M . ( A n G 1 ) .  U-)  U 

= U- (G O �9 M(AnG~) .  U)= U- P. 

iv) Using the Bruhat decomposition of G 1 with respect to AnG~ we have a 
Bruhat decomposition of G as 

(10.4) G=Go" G1 =Go U U~~ (disjoint union) 
r 

= U uo~P 
a~eW 

where W is the Weyl group of G 1 with respect to A n G  1. 
v) There exists a unique (ooeW such that too 1 Uo~o=U-. Also since R- 

rank of each factor of G is 1 it follows that for (o ~ COo, (co- 1 U(o) P is contained 
in a proper parabolic subgroup say Q(co) of G. Thus by (10.4) we have 

(lO.5) 6 = U o -1 v )P 
oJ~W 

= c ~  U wQ(~o). 
ca # tOO 

We may also note that each Q((o), co#:(o 0 is of the form L .P '  where L is a 
normal (semisimple) Lie subgroup of G and P' is a minimal parabolic subgroup 



136 S.G. Dani 

in a semisimple normal Lie subgroup E of G such that G = L .  E. Indeed P' 
=PnE.  

Proof of Theorem (10.1). We proceed by induction on the dimension of G 
(satisfying the hypothesis of the theorem). 

In view of Remark 10.2 it is also enough to prove the theorem for the 
maximal horospherical subgroup N as chosen in w Let n be a finite, N- 
invariant ergodic measure on G/F and a be the F-invariant measure on G/N 
corresponding to ~ (cf. Corollary 1.3). Let X = G/N and X o = U j P -  U/N with 

)eJ 
notations as in w If a ( X - X 0 ) = 0  then by Theorem 2.4, a is G-invariant. Hence 
so is n. Then clearly G itself has the desired properties. 

Now consider the complementary possibility viz. there exists j~J such that 
a ( X - j P -  U/N)>O. In view of (10.5) it follows that there exists co#coo such that 
a(jco~ 1 coQ(co)/N)>O. Since a is ergodic we conclude that 

a(X - Fjcoo 1 coQ(o~)/N) = O. 

Put p =Jcoo 1 co and F' = p -  1Fp. Then we have 

(10.6) a(X-pr 'Q(co) /N)=O. 

Recall from Remark 10.4, v) that Q(co)=L-(PnE)  where L and E are normal 
subgroup of G such that G = L . E  (direct product). Let P n E = M ' A ' N '  be a 
Langlands decomposition of P n E  in E where A ' = A n E  and N ' = N n E .  Put Q' 
= L M ' N ' .  We claim that a) F'nQ(cg) is contained and is a lattice in Q' and b) 
F' Q' is closed. 

Firstly consider F'  n N'. It is clear from the definition of E that co centralizes 
E. Hence F'nN'  =(jco~ 1 co)- 1F(Jcoo 1 co)nN' =coo J -  1Fjco6 inN' .  By choice of 
J for each jEJ, j-1 Fjc~ U- is a lattice in U- (cf. Proposition 2.3). Hence 
COoj -~ Fjco 6 ~nU is a lattice in U. Since by Lemma 10.3 for any lattice A, 
(AnL).  (AnE)  is a subgroup of finite index in A and N' is the E-component of 
U, the above implies that tOoj-~FjcoolnN ' is a lattice in N'. Since M' is 
compact we may further conclude that F'nM'N'  is a lattice in M'N'. 

By Lemma 10.3 in particular L/~' is closed. Since F'nM'N'  is a (necessarily 
uniform) lattice in M'N', straightforward verification now shows that F'Q' 
=F'LM'N'  is dosed. Further clearly F'nQ' is lattice in Q'. To complete the 
claim we only need to show that F'nQ(co)=F'nQ'. Suppose this is not true. 
Then again in view of Lemma 10.3 there exists a simple normal subgroup V of E 
such that VnF' is a lattice in V, and Vc~Q(co)c~F'~VnQ'nF'. Repeating the 
earlier argument we see, that VnQ'nF'  is a lattice VnQ'. Since R-rank of each 
simple factor of G is 1, VnQ' is of codimension one in VnQ(co). Hence if 
VnQ(co)nF'~VnQ'nF'  it follows that Vc~Q(co)nF' is a lattice in VnQ(co). 
However this is a contradiction since Vc~Q(co) is clearly not unimodular. Hence 
r '  r~Q(~o) = r '  nQ'. 

We now return to the measure a. Observe that FpQ(co)=pF'Q'A'. Since A' 
normalizes N we have 

Fp Q(co)/N = {rp r'Q'/N} A'. 
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Since pF'Q' is closed it follows that  {pF'Q'aN/NIaeA'} is a countab ly  sepa- 
rated part i t ion of  pF'Q(~o)/N, each element of  which is invariant  under  the F-  
act ion (on left). Since a is a F- invar iant  ergodic measure it now follows that  
there exists aeA' such that  

a(X - pF' Q' aN~N) = 0 

i.e. t r (X-Fq  Q'/N)=O where q =pa. Under  the one- to-one  correspondence  o f  F-  
invariant  measures on G/N and N-invar iant  measures on G/F the last assertion 
corresponds to the following: ~r (G/F - Q' qF/F) = O. 

Recall  that  q- lFq=a-~F 'a  intersects Q' as well as N '  in lattices in re- 
spective subgroups.  Therefore A = {q-1 FqnQ'} N'/N' is a lattice Q'/N'= T (say). 
Let  n' be the measure  on T/A defined by Ir ' (E)=rt(F/-1E) where rT: 
Q ' q - I F / F " Q / q - I F q n Q ' ~ T / A  is induced by the project ion h o m o m o r p h i s m  
~I:Q'~Q'/N'. Since N 'nF '  is a lattice in N' ,  t/ is a proper  map.  Hence  ~r is a 
regular measure on  T/A. Clearly tr' is invariant  under  the act ion o f  U '=~/ (N)  
and is ergodic. I t  is easy to verify tha t  U' is a maximal  horospher ical  subgroup  
in T. Therefore by induct ion hypothesis  and  Propos i t ion  9.3 there exists an 
analytic subgroup  H of  T and t o ~ T such that  assertions i)-iii) are satisfied (for 
appropr ia te  subgroups). Put  L = r/-x (H) and go = tq-1 where t~r/-  1 (to). Then  it is 
evident that  assertions i)-iii) of  Theorem 10.1 are satisfied. 

Combin ing  Theorem 10.1 and Proposi t ion  9.3 we conclude Theorem A. 
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