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The phase of the Riemann zeta function
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Abstract. We, offer an alternative interpretation of the Riemann zeta function {(s) as a scattering
amplitude and its nontrivial zeros as the resonances in the scattering amplitude. We also look at
several different facets of the phase of the ¢ function. For example, we show that the smooth part of
the ¢ function along the line of the zeros is related to the quantum density of states of an inverted
oscillator. On the other hand, for Rs > 1/2, we show that the memory of the zeros fades only
gradually through a Lorentzian smoothing of the delta functions. The corresponding trace formula
for Bs > 1 is shown to be of the same form as generated by a one-dimensional harmonic oscillator
in one direction along with an inverted oscillator in the transverse direction. Quite remarkably for
this simple model, the Gutzwiller trace formula can be obtained analytically and is found to agree
with the quantum result.
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1. Introduction

The Riemann zeta function ((s) of the complex variable s = o + it is defined for o > 1
by 1] -

: 1 1
C(S)‘= ;;;=ps£;[msm | (1)

and for o < 1 by analytic continuation. As is well known, ¢(s) has so called trivial
zeros at s = —2n with n=1,2,3.... All other zeros are at complex values of s.
According to Riemann’s celebrated hypothesis made in 1856, the nontrivial zeros of ¢
all lie symmetrically on the line o = 1/2, ie. (3% it,) = 0. Riemann’s hypothesis
is supported by numerical tests up to very large values of #, but mathematicians are
still unable to prove or disprove it rigorously. It is also well known that there are
an infinite number of zeros on the half-line o = 1/2 [2]. These so-called nontrivial
zeros are of great interest to mathematicians from a number-theoretic point of view
and to physicists interested in quantum chaos and periodic orbit theory [3]. In parti-
cular, the so-called nontrivial zeros of ¢(s) exhibit an intrinsically random distribution
of the GUE type. Further, assuming that the famous Riemann hypothesis is correct,
the density of zeros can be shown to obey a sum rule which is analogous to the
famous Gutzwiller formula for the level density. All this is taken to suggest that there
may be a classical chaotic dynamical system without time-reversal invariance and %,
* are the eigenvalues of the quantum Hamiltonian which is obtained by quantizing this
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classical chaotic system [4-6]. However, to date, no such classical system has been
found.

We have offered an alternative interpretation of the ¢ function as a scattering amplitude
and its nontrivial zeros as resonances in the scattering amplitude [7,8]. As a bonus, this
interpretation directly leads us to an approximate rule for the location of the zeros with an
error which is at most 3 per cent. :

We have also looked in detail at several different facets of the phase of the Riemann
function. For example, we show that the smooth part of the ¢ function along the line of
the zeros (i.e. o=1/2) is related to the quantum density of states of an inverted
oscillator. On the other hand, for o > 1/2, we show that the memory of the zeros fades
only gradually through a Lorentzian smoothing of the delta functions. The corresponding
trace formula for o> 1 is shown to be of the same form as generated by a one-
dimensional harmonic oscillator in one direction along with an inverted oscillator in the
transverse direction. Quite remarkably, for this simple model, the Gutzwiller trace
formula can be obtained analytically and is found to agree with the quantum result. As far
as I am aware this is the first instance of a scattering system, for which the Gutzwiller

formula is exact. Before I come to these issues, I briefly review some properties of the ¢
function. '

2. Some Properties of the Riemann Zeta function

The Riemann zeta function as defined in Eq. (1) can also be written as

()= exp (~fE,) | )

n=0

where =, s = £ and E, = ¢In(n + 1), with the constant £ setting the energy scale.
In this form it is clearly the canonical partition function of a quantum system with an
energy spectrum E, as given above. Without any loss of generality, we set & = 1
throughout this article.

Actually, ¢ can also be looked upon as a grand partition function; since any integer n is

a unique product of primes p; (In(n)) = 37, o; In(p;) where o are a set of positive integers
or zero). Hence the zeta function may also be written as

_ 1
== ameoy @

Written in this form, it can clearly be regarded as a bosonic grand partition function with

chemical potential y = 0. In this article however we shall make use of the canonical
partition function interpretation of the ¢.

The quantum density of states of the s
E, =In(n+1) is defined as

p(E) = i&(E —E,) = i §(E-In(n+1)) (4)

n=0 n=0

Following Jennings [9], let us derive an expression for the smooth and oscillating parts of
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p(E) for a nondegenerate spectrum. Using the fact that

i §(x—n)=1+ Zi cos(2mmx) | (5)’
m=1

n=0

we obtain

p(E) = ]%Eq [1 + 22 cos(2mmG(E)) 6)

Here G(E) satisfies the inverse relation n = G(E). For the spectrum, E, = In(n + 1), we
have G(E) = (ef — 1) and hence the density of states can be written as

p(E) =ef |1+ ZZ cos(2mmeF)

m=1

(7)

which is exponentially rising! For an exponentially rising density of states like the one
here, the entropy S(E) = E, and the limiting inverse temperature(which is the analogue of
the Hagedorn temperature [10] in high energy physics) is given by . = 8S/0E = 1. This
is not surprising in view of the composite nature of the system and the fact that the
number of elementary constituents (primes) tend to increase with increasing E
(corresponding to large n). A similar situation is encountered in high energy physics
[10] where the hadrons may be considered to be the composite of more elementary
constituents whose number also increases with energy.

Let us now mention some standard results for the Riemann zeta Function. The most
important is the functional equation satisfied by it [1]

¢(s) = 27" L sin(sm/2)T(1 — s)¢(1 — 5) (8)

I would like to point out the analogy [11] between this functional equation and the
Kramers-Wannier duality of the canonical partition function per site for the “infinite”
planar square Ising model [12] as given by

- Z(Ks) = Z(K's) /sinh(2K's) (9)
with | , |
sinh(2Ks) sinh(2K's) = 1 (10)

It is worth emphasizing that the Kramers—Wannier duality is rather special and the
fixed point of the duality equation turns out to be the critical temperature. Also note
that both ¢ and Z are real for real s and their sets of zeros are invariant under both
duality and complex conjugation. I would also like to emphasize the striking
similarity between the result of Fisher [13] on the location of all the zeros of Z on
the circle |sinh(2Ks) |= 1, with the Riemann hypothesis that all nontrivial zeros are
on the fixed line o =1 In last two years, duality has played a very profound role
in supersymmetric gauge field theories as well as string theories [14] and it
would be worthwhile to enquire if some of those ideas could also be useful in the case
of ¢ function.
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Using the fundamental functional relationship between {(s) and {(1 — s) as given by
Eq. (8), it is easy to show that

(- = e T (1)

where I'(z) denotes the gamma function of the argument z. We may further write
CG+ it) = Z(t) exp(-if(1)), (12)

where Z(t) is real, and 6(¢) is the phase angle, with the convention that 6(0) = . Using
Egs. (1) and (2), it follows that '

DG+ it/2)
2i6(t)) = exp(—itlnm) —4——=. 13
exp( 1 ( )) exp( l 7T) F(-}— it/Z) ( )
The phase 0, as defined above, is smooth in the sense that it does not include the jumps by
7 due to the zeros of Z(r). Nevertheless, the number of zeros between 0 and ¢ on the

o = 1/2 line is counted fairly accurately by 6(z), as will become clear from the Argand
diagram. Note that

6(z) t I 1 it 1 it |
—— = — 4= - = 14
- 27r1n7r+2ﬂ_\s[lnf(4+2> 111]."(4 2)} +1, (14)
which satisfies the condition that #(0) = «. The density of zeros is given by
1d9 1 1 .t
AL S4is 15
7 dt 2«[ m”%[w(ﬁ’z)}} | (15)

where the digamma function is defined as ¥(z) = I"(z)/T'(z). From the above, the
asymptotic expression for f(t) may be obtained immediately by making asymptotic
expansion of the I' functions. We denote this by 8(¢), and it is given by

150 (£ () - ) o o

3. Argand diagram and analogy with the scattering amplitude

To bring out some characteristics of the function ¢ (1/2 + it), we plot its Argand diagram
in figure 1(a) in the range ¢ = 9 to t = 50. This shows a sequence of closed loops, one for
every zero of the zeta function. At a zero of ¢(1/2 + if), both its real and imaginary parts
are zero at the same value of ¢, and therefore every loop converges at the origin. The
intercepts on the real axis are the so-called “Gram points” where only imaginary part of
¢(s) is zero due to the phase angle 6(r) = nm. With infrequent exceptions, there is one
Gram point between two consecutive zeros of the ¢ function. The first two exceptions to
this rule occur for the 126th and the 134th zeros at t = 282.455 and 295.584 respectively
[1]. In figures 1(b) and 1(c), Argand diagrams are drawn away from the 1/2-axis, for
0= 0.6 and o = 1 respectively. These clearly show the defocussing at the origin due to
the absence of the zeros in the Zeta function. Moreover, the number of intercepts along
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Figure 1. The Argand diagrams for (o -+ it) for increasing ¢ and fixed o. (a)
¢(1/2 4+ if) in the range t = 9 — 50. The lower limit for ¢ is chosen so as not to miss
the Gram point flanking the lowest zero at t = 14.13. (b) ¢(0.6 + it) fort = 9 — 50 to
show the defocusing at the origin. (¢) ¢(1 + it) for # = 9 — 50. Note the pronounced
shift of the diagram away from the origin in this case.

the real-axis in the Argand diagrams now show a large increase compared to the o = 1/2
case, whereas the intercepts on the imaginary axis are few or nonexistant. This is a
reflection of the change in the behaviour of the phase 6(t) away from the o = 1/2 line. In
figure 2(a), the phase angle 6(¢), as determined by eq. (14), is plotted as a function of # on
the 1/2-axis. This phase angle is a smooth function of ¢ because the jumps by 7 at every
zero (due to the change in the sign of the (-function) is not registered by it. These
discontinuities are shown separately in figure 2(b). The smooth phase keeps increasing
monotonically with 2, since the curve in the complex plane passes through the origin at
every zero . _ : v ‘
Finally, in figures 3(a) and 3(b), the Argand diagrams of the Zeta function are drawn
for a much larger range of ¢, from 1 to 500, on and off the 1/2-axis. Note that the scale for
o= 1 is expanded compared to that for o = 1/2. Borrowing from the terminology of the
motion of a particle in phase space, it is as if there is an “attractor”’ at the- origin for
o =1/2 (figure 3(a)), which is absent from the more disorderly tracks of figure 3(b),
which is drawn along the ¢ = 1 line. The latter figure also shows that the real part of the
function is always positive for o = 1 for this entire range of t. . :
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Figure 2. (a) The smooth phase angle of ¢(1/2+
as a function of £ = 0 — 50, (b) The discontinuiti
o =0.5 at the position of the zeros
superposition of (b) on (a).

it), as defined by Eq. 14, is plotted
es of 7 in the phase angle (¢) at
are shown. The total phase is given by the

The loop structure of the ¢ function at o = 1 /2, with some near-circular shapes, is
reminiscent of the Argand plots for the scattering amplitudes of different partial waves in
the analysis of resonances, for example in pion-nucleon scattering [15]. Consider the
partial wave amplitude fi(k)

inelasticity parameter (k)

3

fi(k) = (n,exp(2i6y) - 1) /2ik. (17)
Here I refers to the angular momentum, and k the wave number. Note that 3'f;(k) is never
negative, since the inelasticity parameter 71 is always less than one. One generally plots
an Argand diagram with 2kSy fi(k) along the y—axis and 2k % fi(k) along the x-axis for
various values of k. For the case of no inelasticity (n, = 1) and a single resonance, the
with unit radius, with the center on the imaginary axis
gure 1(a) at o =1/2, we see that the real and the
in the latter, but otherwise there is a strong similarity,
with many of the loops having inelasticity. This analogy is flawed, however, since
R((1/2 + it) does become negative in small islands of z. Nevertheless, if these islands are
ignored, then the phase shift 6, may be identified with the phase angle 6 + /2, with each
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Figure 3. The Argand diagrams of the Riemann zeta function for the wider range of
t—values, from ¢t = 9 — 500. (a) {(1/2 + it), and (b) {(1 + zt)

closed loop in figure 1(a) being regarded as in isolated resonance. In this approximation,
the Gram points occur as before for sin = 0, while the zeros of {(1/2 + it) are given by
the condition

cosf=0, 0=(m+1/2)r, m=12,.... (18)

This condition for the location of the zeros was also obtained by Berry [S] from the first
term in his approximate formula. Eq. (18) has roots that yield the zeros on the 1 [2-axis
with an error of at most 3 per cent.

4. The inverted harmonic oscillator

On the o = 1/2 line, our analogy with the scattering amplitude suggests that the phase
angle (1) is related to a scattering phase shift. We now demonstrate that the scattering of
a nonrelativistic particle by an inverted harmonic oscillator with a hard wall at the origin
generates a phase shift that is closely related to 6(z). Indeed, we show that the quantum
density of states for this problem is essentially the same as Eq. (14) for the density of the
zeros. Consider the Schrédinger equation for x > 0, '

and impose the boundary condition that the wave function & vanishes at the origin.
Putting x> =y, ® = y’iqb, it becomes

& (l+1), Kk
pf e s =0 (20)
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In the above equation,

1 mw E
= —— == —— I e 21
! 4 k TR Fw - _ @
This is effectively a three dimensional Schrédinger equation for a repulsive Coulomb

potential in the variable y. To obtain the phase shift, we write the asymptotic solution of
~ the above equation as '

90) ~ sy~ 1n2) T+ ), @

where n; is the phase shift with respect to the distorted Coulomb wave, given by
arg I'({+ 1 + it/2). For our one-dimensional problem, only I = —1 /4 is relevant. For
this case, omitting the subscript J, the phase shift 7 is

n:argf(%+l—t->. (23)
V2
A+ TE=iv)= T . 24
. G+mTGE-w) coshry +isinh 7y (24)
the number of quantum states (), between 0 and ¢, is then given by
() _C 1 1 ¢t 1 ¢t o 95
) ="=2-+5-S|mr zTi3)~Wl(z-iz)| (25)

In the above equation, C is a smooth function given by

C= g —tan~' (cosechmt). (26)

Note from above that the expression for n(t) is not quite identical to §(z) as defined in
Eq. (14). However, their derivatives, the quantum density of states, only differ by a
constant and an exponentially small term. It should also be pointed out that even if we
had started with a full inverted harmonic oscillator (rather than the half-oscillator), the
same conclusion would be reached, even though some nonuniqueness may arise in the
choice of the boundary condition. The inverted harmonic oscillator problem has been

studied by a number of authors in the past in relation to time-delay [16] and string theory
[17]. No connection, however, was made to the phase of {(1/2 + if).

- 5. The phase of the Zeta function for o >3

We define the phase of ((s) along the imaginary axis ¢ for a fixed o to be 6, (), given by
(o +it) = |¢(s)] exp’(-—iﬁ,,(t_)).

| (27)
When o=1/2, we shall simply drop the subscript, and denote the phase by 6.
Since |{(s)| is always positive,

included in the phase 6. This is different from the definition of the phase given in
Eq. (12), where 6 denoted the smooth part only. From the above definition @, it
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follows that

a, __d

= —-a;(%lnC(s)). (28)

It is the derivative of the phase 6 with respect to ¢ that contains the information about the
density of the zeros on the line s = 1/2 + iz. We wish to examine the same derivative for
o > 1/2. To this end, it is convenient to define [1] the entire function & (s) which has the
same zeros on the complex plane as ¢ (s),

/2 1
) =Faaa D=1 £(s).

(29)
Because £(s) is an entire function, it may be expressed as 1]
‘ s
= - 30
) =€0T1(1-5) 0)

where s, are the zeros of £(s) on the complex plane. Some straight-forward algebra then
yields

a & (e-1/2) |
a—;% In &(s) “;(o— 1/2)2+(t—t,1)2' (31)

In the above, we have assumed the Riemann hypothesis, that the only zeros of £(s) are
at 5 = 5, = 1/2 -+ it,. Noting the representation of the Dirac delta function

oy (N
5(t tn)""}}i%(,,r) (—5) peL

we immediately see that the derivative of the phase changes from delta function spikes to
Lorentzian as we move away from the o = 1/2 line, with a width v = (0 — 1/2). Let us
denote the density of the zeros of §(1/2 + it) for ¢ > 0 by

pt) =Y 6(t—ta). (32)
n .
Then the Lorentz smoothed density is expressed as
o 1
pet) ==) —F5 - 33
)= (33)

The complete expression for the phase derivative df; /dt can now be obtained by using
the asymptotic Stirling’s formula for the large arguments of the T function. The final
expression, after some algebra, is given by

L8 (qng(s)) = 1 o = ~lanlt) ~ o] = =80e(0) @

where

o 2, 1/i
ol = ot VI o )

Pramana - J. Phys., Vol. 48, No. 2, February 1997 (Part II)
Special issue on “Nonlinearity & Chaos in the Physical Sciences” 545



Avinash Khare
1.5
0K o=1.1

50
Ims

-1.5

1000 1010 1020 1030 1040 1050
Ims

Figure 4. The derivative of the phase 6, of the Lorentz-smoothed Riemann zeta
function, as in Eq. (34), is obtained from the trace formula, Eq. (38). It is plotted as a
function of £ for o = 1.1 in the range 0 < ¢ < 50 (upper panel) and 1000 < ¢ < 1050
(lower panel). The dashed line is calculated by using the first ten primes and

truncating the sum over the repetitions k at Kmax = 10. The solid line includes the first

100 prime numbers, and kg, = 100. The exact position of the Riemann zeros on the
o =1/2 axis are shown by open circles.

and p, is given by Eq. (33). In the above equation, we have neglected terms of order 2
in p,(t). For o = 1/2, Eq. (34) reduces to '

-—711—_—t§=5p(t) =§n:5(t—t,,)—% i (5). (36)

This sharply discontinuous function, accor

ding to Eqgs. (33) and (34), gets Lorentz-
- smoothed by a width (o — 1/2)

as the derivative of the phase is computed along the
imaginary axis at o > 1 /2. Nevertheless, the position of the Riemann zeros are still

remembered, with the memory gradually fading with increasing o, as shown in figure 4.

We next consider the Euler product form for ¢(s) with a view to construct a dynamical
model for large o. This is given by [1]

(o+in=T] (1 -pi,.t)”l, | @7

p
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where the product is over all the primes p. For o > 1, the above expression is convergent.
Following [4], one may then obtain the convergent trace formula

8po(t) = —%EI; > ((1;‘){’2 cos(ktIn p). (38)

For 0> 1, only the p=2 term dominates in the above trace-formula, and the
contribution of the higher harmonics (k > 1) may be neglected. Then Eq. (38) may be
written as [5]

1 cos(2mt/ wi)

5y o — — NI WH)
Pe = sinh(mw,fwr)

(39)
where
we = 20. (40)

We shall now present a dynamical toy model which will generate a semiclassical trace
formula, which for its lowest harmonic k = 1 is the same as Eq. (39). Moreover, in this
situation, since only one term survives in the Euler product formula (37), the Argand
diagram for {(s) is a circle. The analogy with the Argand diagram for the scattering
amplitude is now vivid, with one elastic resonance only.

6. The density of states for a Toy-model
6.1 The Gutzwiller trace formula

In this section, we first derive semiclassically the trace formula for a particle executing
unstable simple harmonic motion in one direction, perched on the edge of an inverted
harmonic oscillator in a transverse direction.We also perform the quantum-mechanical
calculation to test the semiclassical formula. Consider a particle described by the
Hamiltonian (m = 1)

H=}(p} +wix® +p — w3y?). (41)

In the present problem the situation is rather simple, since there is only one primitive
orbit along x. The trace formula is of the form

6,061:;——;; mcos{k(§%—1~ al-g>].  (42)

Here Ty = 27/w; is the period of the isolated orbit along x, and S;(E) = 27E/w; is the
corresponding action. M¥ is the 2 x 2-monodromy matrix, and o the Maslov index. The
monodromy calculation is straight-forward, and confirms that the orbit is unstable
(hyperbolic).

To establish the notation for this, and the subsequent Maslov index calculation we
follow Creagh et al [18]. We start with a periodic orbit with coordinates given by

Pramana - J. Phys., Vol. 48, No. 2, February 1997 (Part II)
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q = (x,5), and momenta p = (p,, Py). The stability of the orbit is determined by'the
propagation of small perturbations 6q(t), 6p(t) away from the periodic solution. The time
evolution of these perturbations using the linearized equations of motion may be written
in terms of a 4 x 4 matrix (called the matrizant) X (¢):

ba(r) _ 69(0) (43)
(sptp) =20 (im0
with the initial condition X(0) = 1. The value of

x-axis T) is the full monodromy matrix M;:

M; = X(Ty).

the matrizant after one period (along the

(44)

Two of the eigenvalues of M; are uni

uncoupled blocks of a 2 x 2 monodromy matrix M; and a 2 X 2 unit matrix. It is th.is
reduced matrix M¥ that is given above in Eq. (42), the superscript k denoting the matrix

for k-cycles. The monodromy matrix after one complete period is given by (we drop the
superscript k = 1) '

ty, and the 4 x 4 matrix M may be written in

(1) = ( cosh (27w, fwi) 1/w2sinh(27rw2/w1)) (45)

wasinh(2mwy /i) cosh(2muw,/ wi)

The eigenvalues are obtained from det lﬁl—)\ll =0 and are found to be
exp(+2mw, /w;). Therefore :

det(; — 1)| = 2 sinh (I:_z) v (46)
1

We next calculate the Maslov index o occuring in Eg. (42). For an unstable

(hyperbolic) orbit, the Maslov index for the k! harmonic is simply kc;. For our case, o1
can be calculated analytically an

d one can show that the Maslov index is simply 2k.
The semiclassical trace formula given by Eq. (42) now reduces to

P cos(2mkE /Fiu )
6PCI(E) = Eg(_l)km (47)

For wy/w; > 1, the higher harmonics are severely damped, and the above equation is

of the same form as given by Eq. (39). Note from Eq. (38), however, that there is

an overall negative sign in the trace formula for the zeros of the Riemann Zeta
function, indicating that the Maslov index

harmonic, is 7. Qur dynamical formula 47

Our next task is to perform a quantum-mechanical calculation of 6p(E) to check the
validity of the semiclassical result,
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Figure 5. The quantum density of states (wavy curve), given by Eq. _(51)’ and the
Strutinsky-smoothed density, Eq. (52) (dashed line), are plotted as a function of energy

E. Only the representative case w; = wy = 10 is shown. The smoothing width - is

chosen to be 20. The level density is negative because a large positive constant term,
2/mIn L, where L >> E, has been omitted.

function P,[(E — E') /7):

B(E) = %ﬁ - p(E — E'exp (E ;E/)ZP,, (E ;E/> dE'. (52)

where the smoothing width - is larger than the spacing w; of the oscillator shells. The

curvature function P, for Gaussian smoothing is given by the associated Laguerre
polynomial of order 2n: -

Py(x) = L2 (x).

(53)

The curvature function P,(x) ensures the internal consistency of the smoothing
procedure if p is a polynomial of order (2n+1). In our calculation, a curvature

function with 2n = 2 is sufficient to yield an accurate p(E). The smoothing width v was
taken to be 20 and the oscillator spacing w;, was kept fixed at 10 (for %= 1). The

oscillating part of the density of states 6p(E) is obtained by taking p(E) — 5(E). This is
compared with the semiclassical form (47) as a function of E for various values of the

ratio wp/wy. The results of the calculation are displayed in figures 5 and 6. The
agreement between the quantum and semiclassical densities is excellent, and the
difference is almost negligible.
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Figure 6. Comparison of the quantum and semiclassical oscillating density of states
8p(E), shown by the continuous and the dashed curves, for different ratios of wy Jwi
given in each panel. The quantum result is obtained by subtracting the Strutinsky-
smoothed density, Eq. (52), from p(E), given by Eq. (51), with v = 20 and Aw; = 10.
The semiclassical density 8p,; is obtained from Eq. (47) with kyq, = 100.

An instructive way to analyze the semiclassical formula (47) is to construct a
dynamical (or Selberg) zeta function (s(s) from it, and quantize its energies by setting (s
to zero. Let us define

(s(E) = |¢s(E)| exp(—ifs). (54)
Hence we may write, following Bogomolny [21]

ldgs ~ 1d _

- WdE(JlnCS(E)) = 6pa(E), , (55)

where 8pq(E) is given by Eq. (47). Note that the sign of §p in the above equation is
opposite to that of the analogous Eq. (34) for the Riemann zeta function. In the latter, as
was discussed in the earlier section, there is an overall minus sign in the trace formula
(12) for p ,which may be regarded as arising from a Maslov index of 7 common to every
periodic orbit [19]. This extra negative sign is disregarded in (55), since such a common
Maslov index does not arise in the dynamical case.

From Egs. (47) and (55), we deduce that

1 & (=Y sin(27kE /Fw
k=1

®_ (—)* exp(2mikE [Hw, ) '
sinh(k7mw, /wy S 2; (56)

)1
Yy 2 k  sinh(kmw,/wi) |

k=1
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Making use of the identity

N o S . 57
m—;e@ [(1+1/2)x], | (57)

and summing the series over k, we obtain

Os(E) = -S 3 ln(l + exp Ewl; <E+ i(l +%>hw2)J). (58)
1=0

From Eq. (54), 05 is the same as - 1n (s, 80 we obtain for the Selberg zeta function the
expression ‘

= 27 , , 50
gs(E) ::];[[(1 +6XP<E(E+I(I+ 1/2)hw2>). ( )

The quantized energies are obtained by setting this equal to zero, giving
E= (n+1/2)hw — i(l + 1/2)hw,, (60)

where , n take on positive integral values including zero. Note that in our case,.the
quantized energies E are complex. It is gratifying to see that the semiclassical Gut;wﬂler
trace formula is so successful in describing the oscillating density of states in the
continuum. To our knowledge, such an application has not been made before. It is all .the
more interesting because this toy-model allows us to construct a convergent dynamical

zeta function. Furthermore, the model itself has some relevance, for asymptotically large
o, to the Riemann zeta function.
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