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We show that a Calogero-Sutherland type model with anharmonic interactions of

fourth and sixth orders leads to the matrix model corresponding to the branched polymers.

We also show that by suitably modifying this model one can also obtain N-particle problems

which are connected to matrix models corresponding to the pure gravity phase as well as

corresponding to the transition point between the soap bubble and the branched polymer

phase.
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In recent years, Calogero - Sutherland (CS) type N-body problems in one dimension

have received considerable attention in the literature [1,2,3]. In particular, remarkable

connections have been found between such models and seemingly totally different models

[4]. Further, these models are shown to correspond to ideal gas in one dimension with

fractional exclusion statistics. The purpose of this note is to point out one more such con-

nection. In particular, we show that the N-body problem with equal mass in 1-dimension

characterized by (h̄ = 2m = 1, g > −1/2, B > 0)

H = −
N

∑

i=1

∂2

∂x2

i

+
N

∑

i<j

g

(xi − xj)2
+B

∑

i

x2

i +A(
∑

i

x2

i )
2 + C(

∑

i

x2

i )
3 (1)

is related to the matrix model corresponding to the problem of branched polymers. We

also show that by suitably modifying this model one can also obtain N-body problems

which are connected to matrix models corresponding to pure gravity phase as well to the

transition point between the pure gravity and the branched polymer phase.

Consider a many-body system with the hamiltonian given in eq.(1). The correspond-

ing Schrödinger equation is given by

Hψ = Eψ (2)

Following Sutherland[3] we will write the wave function as a product of two wave functions,

one of which carries the Jastraw factor i.e. the antisymmetric part of the wave function

and the remaining part which carries the exponential damping terms

ψ = φ(xi)ϕ(xi) (3)

where

φ =
∏

i<j

| xi − xj |λ (4)

and

ϕ = exp (−α
N

∑

i=1

x2

i − β(

N
∑

i=1

x2

i )
2). (5)

On substituting this wave function in eq.(2) we find the relation between the power of the

Jastraw factor and the strength of the inverse square potential

λ2 − λ = g/2. (6)
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Solving this for λ we get

λ =
1

2
[1 + (1 + 2g)

1

2 ]. (7)

Further, we find that the coefficients in the wavefunction and the coupling constants ap-

pearing in the hamiltonian are related by

A = 16αβ, B = 4[α2 − β(N + 2 + λN(N − 1))], C = 16β2. (8)

In case these relations are satisfied then the wave function as given by eq. (3) is the ground

state eigenfunction and the corresponding eigenvalue is given by

E0 =
A

2(C)
1

2

(N + λN(N − 1)) (9)

The ground state eigenfunction of this many body system can be interpreted in terms

of a matrix model[3]. In particular, square of the modulus of this eigenfunction can be

interpreted as the weight function of the corresponding matrix integral. For our case it

reduces to the following matrix integral

ZN =

∫

dM exp (−1

2
TrM2 − b′

N
(TrM2)2) (10)

involving hermitian matrices provided λ = 1. Of course, λ = 1 means, in the original

model there in no inverse square interaction. This in turn makes the many body problem

even simpler.

This matrix integral has been studied in detail [5]. The leading order solution is given

by taking large N limit where the eigenvalues scale as

xi =
√
Nx(i/

√
N) =

√
Nx(z) (11)

with the continuous variable z = i/
√
N taking values between 0 and 1. In the large N limit

we can solve the integral in the saddle point approximation. The density of eigenvalues

u(x) is defined as

u(x) =
dz

dx
, (12)

and its second moment is

c =

∫ µ

−µ

dxu(x)x2. (13)
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Using these definitions the saddle point equation can be written as

1

2
x+ 2b′cx = P

∫ µ

−µ

dy
u(y)

x− y
. (14)

Where P stands for principal value. The eigenvalue range (−µ, µ) is determined by nor-

malization of the eigenvalue density. The solution to the saddle point equation satisfying

the proper asymptotics[6] is

u(x) =
1

π
(
1

2
+ 2b′c)

√

µ2 − x2. (15)

From the normalization as well as the self-consistency conditions (13) it then follows that

b′µ4 = 4 − µ2. (16)

The free energy of the model in the large N limit now takes the form

E(b′) = lim
N→∞

lnZN

=

∫

dx
1

2
u(x)x2 + b′c2 −

∫

dxdyu(x)u(y) ln | x− y |
(17)

from where we obtain

E0(b
′) −E0(0) =

1

16
(µ2 − 4) − 1

2
logµ2/4 (18)

.

It is well known that the matrix models have interpretation in terms of summing over

random surfaces. The interpretation in our case is that the quartic coupling β corresponds

to the touching random surfaces. This phase, where there are several random surfaces

touching each other is interpreted geometrically as the branched polymer phase. It is

well known that in the branched polymer phase of the random surfaces the susceptibility

exponent is positive and is given by

γs = 1/2. (19)

We will not reproduce all the details here but it suffices to say that the analysis of [5]

can be carried through in a straightforward manner. Following their analysis [5] it is easy

to see that in our case the susceptibility exponent is indeed 1/2 at b′ = −1/16 thereby
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establishing the connection of our N-body problem with the matrix model for the branched

polymer phase.

If we modify the many body potential by adding the term

Vnew = A′

N
∑

i=1

x4

i +B′

N
∑

i=1

x6

i + C′

N
∑

i=1

x4

i

N
∑

i=1

x2

i +D′

∑

i<j

(xi − xj)
2, (20)

and suitably adjust the couplings A′, B′, C′ and D′ we can get the susceptibility exponent

γs = 1/3 as well as γs = −1/2. These cases correspond to the crossover from soap bubble

phase to the branched polymer phase and the pure gravity phase respectively. For the

crossover phase, the ground state eigenfunction is again as given by eq. (3) where φ is as

given by eq. (4) while ϕ is given by

ϕ = exp(−α
N

∑

i=1

x2

i − β(

N
∑

i=1

x2

i )
2 − γ

N
∑

i=1

x4

i ) (21)

where α, β and γ are related to the coefficients in the many body potential as follows

B = 4[α2 − 3γ − 6λγ(N − 1) − β(2 +N + λN(N − 1))]

A = 16αβ, C = 16β2, A′ = 16αγ

B′ = 16γ2, C′ = 32βγ, D′ = 4λγ.

(22)

In this case the ground state energy is as given by eq. (9).

In the pure gravity case, the ground state eigenfunction is again given by eq. (3) with

φ being given as before by eq. (4) while ϕ is now of the form

ϕ = exp(−α
N

∑

i=1

x2

i − γ
N

∑

i=1

x4

i ) (23)

where the relation between α, γ and the many body potential is

A = C = C′ = 0, B = 4α2 − 12γ(1 − 2λ(N − 1),

A′ = 16αγ, B′ = 16γ, D′ = 4λγ.
(24)

The ground state energy is now given by

E0 =
A′

2(C)
1

2

(N +N(N − 1)λ) (25)

We thus see that the N-body quantum mechanical problem on a line with the hamil-

tonian (1) corresponds to the problem of branched polymers. By adding suitable extra

potential (20), we find that the new many body system corresponds to the pure gravity

phase as well as the crossover of the soap bubble phase to the branched polymer phase. It

would be interesting to see if this relation could be further explored to get better under-

standing of the branched polymer phase.
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