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On the use of dipole moment as a collective coordinate in constrained
variational calculations
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Abstract. The dipole moment function of a diatomic molecule may be viewed as a
continuous collective coordinate which encodes a lot of information about sharing of
electrons between the atoms concerned. By its very nature it takes cognizance of certain
many-body effects and should shape the constrained wavefunction or the one electron
density in much the same way as would explicit inclusion of the same many-body effects. A

case study of the problem with lithium hydride as the model system has been presented
and the long range behaviour of the constrained density analysed. The spectrum of the
constrained Fock operator is compared with that of the unconstrained one.
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1. Introduction

The variational method is a very useful technique in atomic and molecular
calculations of electronic structure and properties. Among the properties of a
system, energy has a special status in that it is always estimated one order of
magnitude better than the other non-commuting observables. Energy, therefore
can not reflect the error in an approximate variational wavefunction as much as the
other properties (observables {A;} not commuting with H). The constrained
variational method (CVM) was developed in this context. Essentially what one
does in CVM is try to minimize energy subject to the minimization of errors in the
expectation values of number of chosen observables (Mukherjee and Karplus 1963;
Rasiel and Whitman 1965; Chong and Rasiel 1966) without increasing the
variational flexibility of the trial wavefunction any further from that already present
in the unconstrained trial function. This, however, entails some sacrifice in energy
(Byers Brown 1966). The particular choice of constraining observables is
conditioned by the purpose at hand. Thus, if one wishes to use the constrained
wavefunction as an alternative starting point in a configuration interaction or
perturbative calculation with a view to accelerating the convergence, a property
which delicately depends on the behaviour of the wavefunction close to the nucleus
is the obvious choice. Alternatively one may use the nuclear cusp condition as a
suitable theoretical constraint on the wavefunction. For some other purposes,
experimental values of electric dipole moment, quadrupole moment etc could be
useful. Of the different observables the dipole moment (gp) of a diatomic species
AB offers some interesting possibilities as a constraining parameter. These
possibilities hinge on the fact that pap Can be treated as a continuous collective
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coordinate (right from the united atom to the separated atom limit) which has

encoded in it very significant information concerning the sharing of electron density

between the atom-pair (A, B) and deformation of the atomic density on molecule

formation. By its very nature u,p (R) takes into account certain many-body effects

and when used as a constraint would possibly shape the constrained wavefunction

or the one-eleétron density in much the same way as explicit inclusion of these

effects would have done. Hence, if the dipole moment function uag(R) of ABina

particular electronic state (say, the ground state) be known, it can be used as a

constraint to obtain what may be called a dipole constrained potential energy

curve. A question of immediate interest concerns the type and the extent of

reorganization of electron density induced by the constraint over the whole range

of R and particularly in the large R regions. More interestingly, one may think of

treating the internuclear separation Rap and 0ap(0ap = map/Rap) as two

independent collective coordinates and try to obtain an energy map in the (R, 6)

plane. Among other things, these maps can throw light on the existence of.
metastable states, nature of bonding or existence of alternative channels of
dissociation, if any (viz A+ B, AT+ B~, A"+ B~ etc). The basic purpase of the

present work is to investigate some of the aforementioned possibilities.

2. The problem

The system of our choice is the lithium hydride molecule. The ground state dipole
moment curve of lithium hydride is known quite accurately (Patridge and Langhoff
1981). The special feature of the u-R profile of lithium hydride lies in an inversion
displayed by it. The absolute value of ug;y first increases, attains a maximum and
decays to zero as R — . This inversion followed by a decay to zero value
cannot be recovered in a single configuration SCF ca'culation, ab initio or
semiempirical. Obviously, this is related to the basic inadequacy of the single
configuration description of the wavefunction. Could a u-constrained calculation at
the Hartree-Fock level generate the correct w-R profile and simultaneously
improve the quality of the wavefunction or the one-electron density in the large-R
regions? We investigate these questions in what follows. The calculations are made
at an all valence semiempirical (CNDO/2) level of approximation and the
constrained variational calculations are carried out by using a method for the direct
determination of constrained pure state electron density in a discrete orthonormal
basis developed by us (Das and Bhattacharyya 1986; Das et al 1985).

3. The method

Let us consider a 2m-electron closed-shell molecule described in terms of a
one-electron density matrix P in an n-dimensional discrete orthonormal basis
{Xi}i=1,»- We demand that in addition to the N-representability constraints on P
(P>=P, P* = P and Trp = m) there is an additional constramt that P must
minimize energy subject to the condition that

2Tr{PD)} = d,, (1)
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where D represents the electric dipole matrix in the y-basis and d, is the actual
(known) dipole moment of the system. The variational determination of P subject
to the_ constraint in (1) can be done in a number of ways. The general strategy for
haadling a problem of this kind, recently developed by us (Das and Bhattachz;ryya

19}186) requires a start, in the present case, with the functional ¢(E, E;, o, A; P),
where

e(E,EL, o, A; P) = (E— EL)*+ oTr(P— PY+A[Tt{PD} —d]. (2

In (2), cr.is a penrillt}.l weight factor of appropriate dimension and magnitude, A is the
Lagrangian multiplier connected with the constraint in (1) and E is an estimated
!ower. bound to the constrained energy. Minimization of ¢ leads to the following
iterative scheme for the determination of P:

Py :3P1'2'—2P?,—a(Ei_E£)Fi-7iDs (3)
where a = 2/0 and y = A/o and

Fi=h+G(P); G(P;) = 2(P;)—K(P).

The Lagrangian parameter v;.; is determined by the condition

3Tr{P;1, D} = dp, 4)
which leads to the result that
Yie1 = 2[Tr{Q;D} —do}/ Tr{D?}, (5)

where,
0= 3Pi2"2pz3—a(Ei"Ei)Fi-
i+1

The (i + 1)th approximation to the lower bound E;" " can be obtained by adopting
the method of Fiacco and McCormik (1968), which in the present case takes the
following form '

Ej*' = EL —BTr{Al A}, (0<B<1), (6)

where,
A; = a(E;— E})F;+ (2P} —3P;+ P)+yD.

The iterations represented by (3) were terminated when Tr {Al A;} <107%in each
calculation.

4. Results and discussion

4.1 Large-R behaviour of the constrained density

The constrained calculations correctly reproduce all the details of the actual pu-R
profile (table 1) including the inversion at the correct value of R. We have already
reported that the force constant improves remarkably (Das et al 1987) due to the
constraint. In the present study, our main interest lies in the large-R behaviour of
the constrained density. Table 2 summarises variations in the net charge density on
lithium and hydrogen atoms over a large range of internuclear separation both in
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Table 1. Comparison of the actual ground state dipole moment
function of LiH with those predicted by the unconstrained and the
w-constrained Hartree-Fock (semiempirical) methods.

4 © ©
R Hartrec-Fock, Constrained HF Actual
(a.u.) {Dcbye) (Debye) (Debye)
1-75 6-86 4-837 4-840
200 6-85 : 4-946 4-950)
2-25 6-75 5-11 5-11
2-50) 6-59 5-31 5-31
2-75 6-39 5-55 5-56
3-00 615 5-81 .58l
3-25 5-8% 6-08 6-08
3-50 5-60) 6-35 6-35
4-00 4.97 6-88 6-88
5-00 354 7-56 7-56
5-56 2-77 7-48 7-48
6-00 1-96 6-93 6-93
8-00 1-48 ' 1-97 1-97
10-00 4-97 0-05 0-05

Table 2. Comparison of constrained and unconstrained charge densitics on Li
and H atoms at various internuclear separations of Li-H.

Unconstrained HF results: Constrained Hartree-Fock results:

net charge density on nct charge density on

Riin

(a.u.) Li atom H atom Li atom H atom
2:00 0-2632 —0-2632 0-3776 ~0-3776
2-75 (-2678 -0-2678 0-3139 —0-3139
3-00 0-2715 =0-2715 0-2896 —0-2896
3-75 (-2873 —-2873 -2235 —0-2235
4-50 0-3078 - 0-3078 0-1742 —0-1742
5-00 0-3226 —0-3226 0-1552 = {1552
5-50 (-3370 —0-3370 (-1506 —0-1306
7-00 ©0-3694 —0-3694 (-2240 —0-2240
8-00 0-3844 —0-3344 0-2750 —0-2750

10-00 ()-3858 - 0-3858 (0-2530 - 0-2530

the unconstrained and the u-constrained descriptions of the molecule. The
constrained calculations are seen to predict a higher degree of polarity of the Li~H
molecule at shorter values of R(R < Ro) compared to the polarity in the
unconstrained description. But as R increases, the constraint effectively forces
more and more electron density to flow from H — Li (compared to the
unconstrained results) signifying that the constrained potential energy curve is a
better one and may perhaps lead to the correct dissociation limit. A perusal of table
2 clearly shows that although the polarity of the Li—H molecule is far less in the
constrained description at all the larger values of R, the polarity does not decrease
monotonically as R— . It decreases monotonically upto a certain value of
R(= R, say). Beyond R = R,, Li — H transfer of electron density (compared to
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that observed for R < R.) seems to increase progressively (table 2) even in the
constrained calculations, although the degree of Li — H electron transfer remains
far less pronounced compared to that found in the unconstrained Hartree-Fock
description. The constrained dipole moment, however, vanishes beyond
R > 10-0 a.u. as demanded. This failure of the constrained PE curve to lead to the
correct dissociation limit (Li+ H) even though the limiting zero dipole moment
value is correctly reached may appear to be intriguing at first sight. But it arises
quite naturally due to the following reason. Within the framework of our basic
approximations (CNDO/2), the ground state dipole moment of LiH can be
resolved into two separate contributions: (a) that due to charge separation in the
molecule (Kcharge); (D) that due to the mixing or hybridization of 2s and 2p. basis
function on the Li atom (this destroys the spherical symmetry of the Li-electron
density) (unys). The zero dipole moment in the large R-limit (R >10a.u.) is
reached in the constrained calculation not by forcing feharge aNd Mnys tO vanish
separately, but by forcing them to cancel each other as the internuclear separation
increases beyond a particular value (R = 10 a.u.). The p-constrained dissociation
limit of Li—H is thus different from both the unconstrained Hartree~Fock and the
actual dissociation limits. In table 3 we have compared the constrained and
unconstrained densities at R = 10.0 a.u. It is clear that the (i) net charge
separation in the constrained case is less than that in the constrained one, (ii)
25 —2p mixing of Li orbitals in the constrained case is larger than its unconstrained
counterpart; (iii) an enhanced electron population in the lithium 2p, orbital is
found in the constrained calculation compared to the unconstrained one.
Apparently therefore, the dissociation limit in the constrained one-configuration
calculation has higher weightage of products like Li (2p) compared to what one
finds in the HF dissociation limit and of course, a lesser degree of weightage of the
ionic products like Li* and H™. The use of the additional constraint, pny, = 0, for
all values of R may possibly bring about the correct homopolar dissociation. This is
being explored at present. Thus although the collective coordinate for a diatomic
molecule does possess very significant information about electron sharing between
the atoms A and B at various internuclear separations, it can not as such recover
the correct dissociation limit when used as the only constraining observable if one
works in the framework of single determinant representable densities. However, it
does modify the dissociation limit. It may be possible therefore to use 6 as a
collective coordinate in the construction of an energy map in the (R, 0) plane and it

Table 3. Comparison of the unconstrained (i.e. Hartree-Fock) and the p-con-
strained electron densities for Li-H in the ground state at a large internuclear
separation (R = 10-0 a.u.).

Degree of 2s—2p.

Atom/basis function Electron density (x;) mixing on Li-atom
(A) (x:) HF results CHF results HF results CHF results
Li/ 2s : 0-5194 0-6126 0-2220 0-2870
2p..2p.(m) 00 0-0
2p.(o) 0-0956 0-1344

H/ s 1-3850 1-2530
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may reveal new information on the existence of metastable states of the diatomic
system used.

4.2 Constrained versus unconstrained orbitals

The set of orbitals {¢?} that diagonalise the unconstrained minimum energy
idempotent one-electron density matrix (Py) are the Hartree-Fock orbitals (HFO).
The orbital set that diagonalises the constrained idempotent one-electron density
matrix (P,) represent a set of natural orbitals {¢i} which may be called the
constrained Hartree-Fock orbitals (CHFO). {¢?} diagonalises the unconstrained
Fock operator FO(FO¢9 = ¢?¢% FO = p + var (¢7). Similarly, {45} satisfy the
following eigenvalue equation ’ :

FC i = ¢ &,
where
FC = h+vge {¢5}.

One may use the set {¢f, &£} as an alternative starting point in perturbative or CI
calculations of energy or other properties, may be, with better convergence
properties. To have some idea about the disposition of the spectrum of the
constrained and the unconstrained Fock operators we have compared in table 4 the
HFO and CHFO for lithium hydride at R = 7.0 a.u. A perusal of table 4 clearly
reveals that the 300 MO is more localised on the hydrogen atom in the
unconstrained calculation than predicted by the dipole constrained approximation.
The two unoccupied ¢ orbitals (40, S5c) are also affected by the constraint, albeit
indirectly. The corresponding orbital energies indicate that the constraint stabilises
30 and 40 orbitals (relative to the unconstrained omnes) but destabilises all other

Table 4. A comparison of the eigenspectrum of the unconstrained and the constrained
Fock operator for lithium hydride molecule at R = 7-00 a.u. The calculations were done
at a semiempirical level (CNDO/2) using dipole moment as the constraint.

MO/AQO basis Unconstrained Unconstrained Constrained AQ Constrained
—_— AO amplitudes  orbital energy amplitudes orbital energy
@) (x) (Cpi) in ¢ & (Go) in ¢ &
Joo Li 25 0-4522 0-4949 ~0-2878

2p. 0-3320 —0-2603 - 0-3783
2p, 2p, 0-6,0-0 0-0, 0-0
H 1s 0-8275 0-7823
40 Li 2 0-8917 ‘
2p. —0-1488 -0-0328 © 0-8101 ~0-0332
T 2p,, 2p, 0-0,0-0 0-1248
: 0-0371,0-0371 0-0,0-0
H 1 ~0-4275 -0-5728
Li  2p,,2p, 1-0,1-0 0-0371, 0-0371 1-0,1-0 0-0506, 0-0506
Soo Li 25 -0-1920 -0-3143
2p. 0-9312 0-9172
2p,., 2p, 0-0,0-6 0-0, 0-0

H 15 ~0-3641 0-0466 —0-2447 0-0513
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unoccupied orbitals. The constraint therefore shifts the entire spectrum of F¢
relative to F°. Clearly, the rate of convergence of a perturbative series or CI
expansion will be different when {¢f, £/} are used as basis functions. However, a
priori theoretical analysis of the effects of a particular constraint on the rate of
convergence of the corresponding perturbative or CI series is a formidable task and
is being studied at present. We hope to return to this aspect in the near future.
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