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An enigma. To obtain a microscopic quantum description of supersymmetric black holes

in string theory, one usually starts at weak coupling with a brane configuration of given

mass and charges localized at a single point in the noncompact spacetime. One then

computes an appropriate indexed partition function in the world-volume theory of the

branes. In spacetime, this index corresponds to the helicity supertrace that counts BPS

supermultiplets. At strong coupling, the brane configuration gravitates and the indexed

partition function is expected to count the microstates of these macroscopic gravitating

configurations. Assuming that the gravitating configuration is a single-centered black hole,

these considerations provide a statistical understanding of the entropy of the black hole in

terms of its microstates, in agreement with the Boltzmann relation.1

One problem with this approach is that the macroscopic supergravity solutions corre-

sponding to the microscopic brane configuration need not be centered at a point. Instead,

they may include several multi-centered black holes in addition to the single-centered black

hole of interest. In fact, in four-dimensional N = 2 supergravity, it is known that in cer-

tain situations there are multi-centered configurations which have more entropy than the

single-centered black holes carrying the same total charges. This raises the question as to

why the degeneracy extracted from the microscopic counting function should agree with

the entropy of just the single-centered black hole, as is the case in many examples. This

puzzle has been referred to as the ‘entropy enigma’ [1, 2]. One expects that the enig-

matic multi-centered solutions in N = 2 supergravity mentioned above can be embedded

in N = 4 supergravity, and should dominate the entropy of single-centered black holes. We

thus have an N = 4 version of the entropy enigma, which is what we address in this note.

To formulate the puzzle more precisely in this context, note that in N = 4 super-

symmetric theories, a BPS-state may preserve either one-half or one-quarter of the sixteen

supercharges. A half-BPS state generically belongs to a 16-dimensional short multiplet,

whereas a quarter-BPS state belongs to a 64-dimensional intermediate multiplet. In several

string compactifications with N = 4 supersymmetry, the indexed degeneracies that count

the intermediate multiplets are known exactly [3–16]. In the limit of large charges, when all

charges scale as λ, the logarithm of the degeneracy is found to be in precise agreement with

the entropy of a single black hole, which scales as λ2 [3, 17–20]. The only multi-centered

configurations that seem to contribute to the exact formula are bound states of two centers

such that each center is individually half-BPS, but together they preserve only a quarter of

the supersymmetries. A half-BPS state necessarily corresponds to a small black hole with

a string scale horizon, whose entropy always scales as λ. The entropy of the multi-centered

configuration then also scales as λ, which is small compared to the leading term.

The enigmatic configurations in N = 2 theories, on the other hand, are multi-centered

configurations, where each center is a large black hole. In N = 4 supergravity, this means

that they must correspond to configurations where at least one of the centers is quarter-

BPS. The enigma can then be rephrased as the following question:2 why do the multi-

1It is usually assumed that the index equals the absolute number, following the dictum that whatever

can get paired up will get paired up. This assumption is borne out in several examples but may fail in

general.
2This is actually a stronger question than the original enigma, which was why certain large multi-centered
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centered configurations with at least one quarter-BPS center not contribute to the index

that counts the intermediate multiplets? In our following discussion in the N = 4 context,

we will loosely refer to any multi-centered configuration as ‘enigmatic’ if at least one of the

centers is a large quarter-BPS black hole.

The explanation of this puzzle is rather simple. It relies on the fact that even though

the enigmatic multi-centered configurations are supersymmetric, they belong to long mul-

tiplets, which are 256-dimensional. This happens because there are additional fermionic

zero modes apart from the ones that arise due to supersymmetry breaking. As a result,

these configurations give a vanishing contribution to the indexed degeneracies.

While this explanation is not entirely unexpected, it is not easy to directly ascertain

the existence of additional fermionic collective coordinates. To do so, one must solve the

Dirac equation and the Rarita-Schwinger equation for the dilatini and the gravitini in the

background of the multi-centered configuration under consideration. One must then show

that these additional fermionic collective coordinates are free and have a quadratic effective

action. It is then possible to show that the quantization of these additional zero modes will

make the index vanish. Although in principle it is possible to follow such a path, in practice

it is difficult to execute it for the multi-centered black hole solutions in supergravity.

We will instead give an indirect argument for the fact that enigmatic configurations be-

long to long multiplets, by showing that they are continuously connected to nonsupersym-

metric configurations. Nonsupersymmetric solutions obviously belong to long multiplets.

For them, it is easy to explicitly establish the existence of fermionic zero modes — they

arise as goldstini of broken supertranslations. Continuity then implies that the enigmatic

configurations must also belong to long multiplets. As we will see, this fact is consistent

with the known pattern of wall-crossings for N = 4 dyons and the pole structure of the

dyon partition function.

The basic argument is suggested by another closely related puzzle. Consider for con-

creteness the simplest N = 4 compactification of heterotic string theory on T 6. For this

compactification, the exact partition function counting 64-dimensional supermultiplets of

quarter-BPS dyons is known for all dyons in all duality orbits in all regions of moduli space.

At certain points in the string moduli space, the gauge symmetry is enhanced to a non-

abelian group, for example SU(N). Away from these points, the gauge symmetry is broken

to U(1)N . If the symmetry breaking mass scale is much smaller than the string scale, then

one can decouple gravity and string modes and analyze the BPS states in the field theory

limit. Quarter-BPS dyons in SU(N) super-Yang-Mills theory are well-studied [21–23], and

their exact degeneracies are known [12, 24]. One would expect that the exact dyon partition

function derived in string theory should correctly reproduce the degeneracies of these field

theory dyons. This is indeed the case if the gauge group is SU(3) [11, 25]. However, the

string theory counting fails to agree if the gauge group is SU(N) with N ≥ 4. The puzzle

is then why the string theory partition function does not count the general SU(N) dyons.

The resolution of this puzzle is easier to see in the field theory limit [26]. It follows

from the fact that the quarter-BPS dyons in SU(N) super Yang-Mills theory with N = 4

configurations not dominate the degeneracy. We will actually answer the stronger question here.
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supersymmetry and N ≥ 4 exist as supersymmetric configurations only on a submani-

fold in moduli space. Even slightly away from this submanifold, the dyons are no longer

supersymmetric and hence belong to long multiplets. One can thus argue by continuity

that even on the submanifold where they are supersymmetric, they must belong to long

multiplets. In field theory, it is easy to independently verify this argument by explicitly

demonstrating the existence of the required additional fermionic zero modes.3

In string theory, single centered black hole solutions of the N = 2 theory have been

embedded into the N = 4 theory using a consistent truncation to the former theory [27].

One may expect that a similar uplift can be done for the N = 2 multi-centered solutions.

In principle, there could also exist more general solutions which cannot be truncated to

the N = 2 theory. Our arguments apply to the most general case, and show that super-

symmetric multi-centered solutions can only exist on submanifolds of the N = 4 moduli

space of codimension greater than one.

In the following, we first review the simpler field theory argument and then generalize

it to the supergravity case.

Dyons in field theory. The quarter-BPS dyons in SU(N) N = 4 Yang-Mills have a

particularly simple and geometric representation in terms of string webs ending on N D3-

branes [26, 28–34]. There is an overall U(1) of the center-of-mass motion that does not

play any role. The transverse space to the D3-branes is R
6, and therefore the moduli

space of the Coulomb branch of the N D3 branes is (R6)N . At a generic point in moduli

space where all D3-branes are separated from each other, the gauge group is completely

broken to U(1)N . The quarter-BPS states in question correspond to a planar three-pronged

string junction network stretched between the N D3-branes. Only planar configurations

are supersymmetric [28, 29]. For N = 3 the planarity condition is trivially satisfied at

generic points in moduli space. The three D3-branes on which the string network ends

define three points in the R
6 transverse space, which generically define a plane in this R

6.

It is clear that for N ≥ 4, the positions of the D3-branes will not generically be copla-

nar. If we consider the plane in R
6 defined by the positions of any given three D3-branes,

then in order to obtain a planar configuration we need to tune the four transverse positions

of each of the remaining D3 branes relative to this plane. Thus a dyonic configuration can

be planar — and hence supersymmetric — only on a constrained submanifold of the moduli

space, of codimension 4(N −3). Even slightly away from this submanifold, the state ceases

to be supersymmetric and is thus continuously connected to a nonsupersymmetric state.

Hence it must belong to a long multiplet and cannot contribute to the index that counts

64-dimensional intermediate multiplets.

Dyons in string theory. To generalize this argument to the supergravity situation,

it is better to formulate it entirely in terms of the superalgebra. To do so, consider the

low energy effective theory of heterotic string theory compactified on T 6. The low energy

3Since our argument relies on special properties of N = 4, it does not address the original entropy

enigma in N = 2 theories. In N = 2 theories, both large and small black holes are half-BPS and one cannot

distinguish them by the size of the supermultiplet.

– 4 –



J
H
E
P
0
6
(
2
0
1
0
)
0
0
7

action consists of four-dimensional N = 4 supergravity coupled to 22 vector multiplets.

This theory has 134 moduli, which lie in the space

M =
O(22, 6; R)

O(22) × O(6)
× SL(2, R)

SO(2)
(1)

The SL(2,R)
SO(2) coset is parameterized by the axion-dilaton τ = τ1 + iτ2, while the O(22,6;R)

O(22)×O(6)

coset is parameterized by the remaining 132 moduli. We can encode these moduli in a

28 × 28 matrix M , satisfying

MLMT = L , MT = M , M ≡ µT µ , (2)

where L is the O(22, 6)-invariant metric L = diag(−I22, I6). The vielbein µ is identified

with kµ for any group element k ∈ O(22) × O(6), since it defines the same moduli matrix

M. The theory contains 28 gauge fields, with gauge group U(1)28 at generic points in the

moduli space.

A dyonic state is specified by its charge vector

Γ =

(
Q

P

)
(3)

where Q and P are the electric and magnetic charge vectors respectively. Both Q and P

are elements of a self-dual integral lattice Π22,6 and can be represented as 28-dimensional

column vectors in R
22,6 with integer entries, which transform in the fundamental represen-

tation of O(22, 6; Z). Given these moduli-independent charge vectors, we can define their

moduli-dependent, right-moving projections onto the spacelike subspace R
6 by

QR =
1

2
(I28 + L)µT

∞Q , PR =
1

2
(I28 + L)µT

∞P (4)

where the subscript “∞” refers to the value of the moduli measured at infinity.

In the rest frame of the dyon, the N = 4 supersymmetry algebra takes the form

{QA
α , Q†B

β̇
} = Mδ

αβ̇
δAB , {QA

α , QB
β } = ǫαβZAB , {Q†A

α̇ , Q†B

β̇
} = ǫ

α̇β̇
Z

AB
(5)

where A,B = 1, . . . 4 are SU(4) R-symmetry indices4 and α, β are Weyl spinor indices. The

central charge matrix Z encodes information about the charges and the moduli. To write

it explicitly, we first define a central charge vector in C
6

Zm(Γ) =
1√
τ2

(Qm
R − τPm

R ) , m = 1, . . . 6 , (6)

which transforms in the (complex) vector representation of Spin(6). Using the equivalence

Spin(6) = SU(4), we can relate it to the antisymmetric representation of ZAB by

ZAB(Γ) =
1√
τ2

(QR − τPR)mλm
AB , m = 1, . . . 6 (7)

4We use a convention where the A, B indices are raised by complex conjugation.
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where λm
AB are the Clebsch-Gordan matrices. An explicit representation for λm

AB is given

in the appendix. Since Z(Γ) is antisymmetric, it can be brought to a block-diagonal form

by a U(4) rotation

Z̃ = UZUT , U ∈ U(4) , Z̃AB =

(
Z1ε 0

0 Z2ε

)
, ε =

(
0 1

−1 0

)
(8)

where Z1 and Z2 are non-negative real numbers. This rotation acts on the supercharges as

Q̃A = QB(U †)AB . (9)

Since ε is the invariant tensor of SU(2), a U(2)×U(2) transformation acting separately on

each block can only change the phases of Z1 and Z2. We will therefore be more general and

treat Z1 and Z2 as complex numbers. Without loss of generality we can assume |Z1| ≥ |Z2|.
We now split the SU(4) index as A = (a, i), where a, i = 1, 2 and i represents the block

number. Defining the following fermionic oscillators

Ai
α =

1√
2
(Q̃1i

α + ǫαβQ̃† 2i
β ), B̃i

α =
1√
2
(Q̃1i

α − ǫαβQ̃† 2i
β ) , (10)

the supersymmetry algebra takes the form

{Ai†
α̇ ,Aj

β} = (M + Zi) δα̇β δij , {Bi†
α̇ ,Bj

β} = (M − Zi) δα̇β δij (11)

with all other anti-commutators being zero.

If M > |Z1| > |Z2|, no supersymmetries are preserved. The sixteen broken super-

symmetries result in eight complex fermionic zero modes whose quantization furnishes a

28-dimensional long multiplet. If M = |Z1| > |Z2|, the state is quarter-BPS, and four out

of the sixteen supersymmetries are preserved. The broken supersymmetries result in six

complex fermionic zero modes whose quantization furnishes a 26-dimensional intermediate

multiplet. If M = |Z1| = |Z2|, the state is half-BPS, and eight out of the sixteen super-

symmetries are preserved. The broken supersymmetries result in four complex fermionic

zero modes whose quantization furnishes a 24-dimensional short multiplet.

The supersymmetries preserved by a given state is thus specified by the central charge

matrix. Furthermore, given a quarter BPS state, its charges pick out a particular N =

2 subalgebra of the N = 4 algebra — in the above basis, this subalgebra is generated

by (A1,B1) and their complex conjugates. A quarter-BPS configuration of the N = 4

algebra is a half-BPS configuration of this N = 2 subalgebra, and it is annihilated by the

supersymmetry generated by5 B1.

It will be useful later to state all this in a more covariant form. In the above basis, the

preserved supercharge, after allowing for a U(1) rotation in the N = 2 subalgebra, can be

written as:6

Q̃A =
(
eiθ,−γ0e

−iθ, 0, 0
)

, (12)

5The supersymmetry transformation on the fields with variation parameter ǫα induced by a supercharge

Qα is ǫαQα + ǫ†αQ†
α.

6Here we have suppressed spacetime spinor indices; each element of Q is a spacetime spinor.
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and it obeys the projection equation:

γ0Q̃A = Q̃A

(
εT 0

0 0

)
. (13)

To write this projection condition in a covariant form, we transform back to the origi-

nal basis:

γ0QA = QB ẐT
AB

|Ẑ|
, (14)

where

ẐAB = U †

(
Z1ε 0

0 0

)
U∗ (15)

and

|Ẑ| = (Tr[Ẑ(Ẑ)†])
1

2 = Z1. (16)

It is useful to think of the central charge as a vector Zm instead of as an antisymmetric

matrix ZAB. Given an orthonormal basis {eA} for the 4 of SU(4), the basis for the 6 is

given by the tensors {eA ∧ eB}, A,B = 1, . . . , 4. This is related to the orthonormal basis

{fm}, m = 1, . . . 6 for the vector representation of Spin(6) by

fm = (eA ∧ eB)λm
AB . (17)

Now, an SU(4) rotation which rotates the supercharges, Q′ = QU , acts on the Clebsch-

Gordan matrices as

UλmUT = Rm
n(U)λm (18)

where Rm
n is an SO(6) rotation matrix. In particular, the diagonalization (8) simply

rotates the central charge vector ~Z to the (12) plane, where it takes the form

~̃Z = (Z1 + Z2)f1 + i(Z1 − Z2)f2 . (19)

Since Zm is a (complex) linear combination of the charge vectors QR and PR given by (6),

this transformation simply rotates the plane spanned by the charge vectors QR and PR

into the plane spanned by the basis vectors f1 and f2.

To recap, the N = 2 subalgebra relevant for discussing the BPS-properties of a given

state is completely determined by the plane spanned by the charge vectors7 QR and PR.

Given the preserved supercharge of the solution, one finds the matrix U which rotates it

into the canonical form (12). In R
6, the same transformation rotates the plane spanned by

(f1, f2) into the plane spanned by (QR, PR) in R
6. The matrix U is not unique, but given

two matrices U1, U2 which rotate the supercharges satisfying the condition (14) into the

canonical form (12), the matrix Φ = U1(U2)
−1 is unitary and satisfies

Q̃AΦ = Q̃A (20)

7Note that for a half-BPS state QR and PR are proportional, and the plane degenerates to a line.
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where Q̃A is the canonical form (12). This condition implies that Φ is block-diagonal, with

a U(2) matrix in each block, and the action on Z reduces to two independent U(1) actions

rotating the phases of Z1 and Z2. The plane determined in R
6 is thus unambiguous.

Now consider a two-centered solution of the N = 2 theory where both centers are

large. Let the charges of the centers be (Q1, P 1) and (Q2, P 2). If this configuration is

embedded supersymmetrically in the N = 4 theory by truncating the latter theory, it is

clear that the two centers have to pick the same N = 2 algebra inside N = 4. By the above

argument, the planes defined by (Q1
R, P 1

R) and (Q2
R, P 2

R) must coincide. This happens only

on a submanifold of moduli space, as in the field theory analysis.

As mentioned above, there could exist solutions in the N = 4 theory that cannot be

truncated to N = 2 theory. To extend the above argument to these more general multi-

centered configurations, we will make an approximation that one of the black holes has

small charges and can be considered to be a probe in the background of the other big

black hole.8

A dyonic probe in the background of a dyonic black hole. The spirit of the

argument is again that the two centers generically break different sets of supersymmetries.

However, since there is no longer any special globally defined N = 2 subalgebra, we have

to rephrase our arguments using local supersymmetry, i.e. Killing spinors, which we shall

denote by ǫA(x).

Consider then a single centered, quarter-BPS dyonic black hole solution with (su-

per)charges as described above. We define a local version Zb
AB(x) of the central charge

matrix (7) using the charges of the black hole and the local values of the moduli fields.

One can block-diagonalize this matrix as in (8) using a local matrix Ub(x). In this way, we

obtain Z̃b(x) ≡ Ub(x)Zb(x)UT
b (x) and the two complex numbers (Zb

1, Z
b
2) with |Zb

1| > |Zb
2|.

It turns out [35] that the Killing spinor of the background satisfies a projection condition

at each point in spacetime:

γ0ǫA(x) =
Ẑb

AB(x)

|Ẑb(x)|
ǫB(x) , ǫA = (ǫA)⋆ , (21)

where ẐAB and |Ẑb| are defined as in (15), (16) respectively, but using the matrix Ub(x)

instead of U .

A probe placed at some point x0 in this background will generically break the existing

supersymmetries. We define the local quantities Zp(x), Up(x), Z̃p(x), Ẑp(x) as above, but

using the charges of the probe everywhere. A κ-symmetry analysis on the probe worldvol-

ume [35] shows that it will preserve the background supersymmetries only if the following

8In order to rule out the unlikely possibility that supersymmetry is broken in the probe approximation

but is regained after backreaction of the second center, one must analyze the full N = 4 Killing spinor

equations in the multi-center system. We shall not do this in the present paper. We shall comment on this

issue later.
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condition is met9

γ0ǫA(x0) =
Ẑp

AB(x0)

|Ẑp(x0)|
ǫB(x0) . (22)

We thus have the two projection conditions (21),(22) on the Killing spinor ǫA(x0) at

the location of the probe. These are local analogs of the projection equation10 (14) and

involve the two matrices Up(x0) and Ub(x0). As argued above, this implies that the plane

in R
6 spanned by the charges (Qp

R, P p
R) of the probe must be the same as the plane spanned

by the charges (Qb
R, P b

R) of the background. We can now determine the BPS properties of

a multi-centered configuration geometrically, directly in the charge space instead of in the

space of supercharges.

Recall that for N = 2 multicentered bound states, there is one supersymmetry re-

quirement (the alignment of the phases of the central charges of the two centres), and one

tunable parameter (the radial distance), which is a first step in showing that multicentered

solutions in N = 2 exist generically in the vector multiplet moduli space [36]. In the N = 4

theory, there are three possibilities for two-centered solutions:

1. Both centers are half-BPS. In this case, the plane defined by each center degenerates

into a line. Since two lines are then trivially coplanar, it is always possible to identify

an N = 2 subalgebra without adjusting any parameters. What remains is to align

the preserved N = 1 supersymmetry (the one remaining phase) and there is one

tunable parameter x0, the distance between the centers, which one can use to do so.

This is analogous to the case of SU(3) dyons in field theory.

2. One center is half-BPS and the other is quarter-BPS. In this case, one needs to align

the line corresponding to the half-BPS center with the plane corresponding to the

quarter-BPS center. This will only happen in a constrained locus in the moduli space,

obtained by setting to zero the four components of the line that are perpendicular to

the plane. This is analogous to the case of SU(4) dyons in field theory.

3. Both centers are quarter-BPS. The two planes corresponding to the two centers will

coincide on a locus in the moduli space even more constrained than in the previous

case and will require tuning eight parameters. This is analogous to the N > 4 cases

for SU(N) dyons in field theory.11

We therefore conclude that the multi-centered configurations of the second and the third

type, which contain at least one quarter-BPS center, exist as supersymmetric configurations

only on submanifolds of codimension larger than one. This implies that they are smoothly

connected to nonsupersymmetric long multiplets.

9In [35] the authors were dealing with N = 8 supergravity backgrounds, but here we assume that their

expressions particularize straightforwardly to the N = 4 case.
10Strictly speaking, since ǫAQA is a scalar, there is a transposition involved in these equation with respect

to (14).
11We need to tune only eight parameters and not 4(N −3) because we are considering the situation when

each center is already independently quarter-BPS.

– 9 –



J
H
E
P
0
6
(
2
0
1
0
)
0
0
7

While we have derived the constraints arising from supersymmetry alignment only in

the probe approximaton, it is unlikely that including backreaction would restore super-

symmetry away from the constrained locus. In order to argue this rigorously, one must

analyze the N = 4 supersymmetry equations. One may also be able to devise a much sim-

pler argument based on requiring that there exist12 a point in spacetime where the Killing

spinor simultaneously obeys two projection equations similar to (21), (22). Our analysis

of supersymmetry alignment will then go through as above, with the only change that x0

is no longer identified as the location of the probe.

Discussion. Our analysis is independent of but consistent with the analysis of walls of

marginal stability [14, 37, 38] and the analysis of rare decay modes [39, 40]. The states of

the first type do contribute to the dyon partition function. These two-centered solutions

decay on a wall of marginal stability of codimension one, where the distance between the

two centers goes to infinity. The dyon partition function has poles in precise correspondence

with these walls of marginal stability. On the other hand, the states of the second and third

type contribute zero to the dyon partition function everywhere in the moduli space. This

is consistent with the fact that the dyon partition function has no additional singularities

other than the poles described above and there are no additional jumps in the degeneracies.

If the dyon partition function did count these states, it would have to display an unusual

singularity structure, since these states decay on surfaces of codimension two or higher.

Our arguments could also be made in N = 4 theories in five dimensions to rule out the

contribution of enigmatic configurations to the indexed degeneracy. This is consistent with

the fact that the entropy of the single-centered three-charge black holes in type IIB string

theory on K3×S1 agrees to sub-leading order with the microscopic indexed degeneracy in

the same regime of charges that are relevant for black hole [41].

Finally, our analysis raises the following question: if the usual index does not count

the two-centered configurations with at least one quarter-BPS center, can one devise some

other method to count them on the submanifold where they do exist as supersymmet-

ric configurations? One possible method is to use an argument employed in [12]. The

degeneracy of the bound state can be computed by first going very close to the line of

marginal decay, where the two centers are very far away. In this regime, it is simply the

product of the degeneracies of each center, times a multiplicity factor coming from the

field angular momentum. The degeneracy of each quarter-BPS center is in turn computed

using the usual dyon partition function for quarter-BPS states. By continuity of the index,

the degeneracy of the dyonic state does not change if we move far away from the line of

marginal decay.
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A. Clebsch-Gordan matrices

The Clebsch-Gordan matrices λm
AB are given by the components (CΓm)AB where Γm are the

Dirac matrices of Spin(6) in the Weyl basis satisfying the Clifford algebra {Γm,Γn} = 2δmn,

and C is the charge conjugation matrix. The Gamma matrices are given explicitly in terms

of Pauli matrices by

Γ1 = σ1 × σ1 × 1, Γ4 = σ2 × 1 × σ1 , (A.1)

Γ2 = σ1 × σ2 × 1, Γ5 = σ2 × 1 × σ2 , (A.2)

Γ3 = σ1 × σ3 × 1, Γ6 = σ2 × 1 × σ3 . (A.3)

The charge conjugation matrix is defined by CΓmC−1 = −Γm∗

C = σ1 × σ2 × σ2, CΓm =

(
λm

AB 0

0 λ
m

ȦḂ

)
(A.4)

where the un-dotted indices transform in the spinor representation of Spin(6) or the 4 of

SU(4) whereas the the dotted indices transform in the conjugate spinor representation of

Spin(6) or the 4 of SU(4). The matrices λm
AB thus defined have the required antisymmetry

and transform properties as in (18).
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