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No entropy enigmas for N/ = 4 dyons
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ABSTRACT: We explain why multi-centered black hole configurations where at least one of
the centers is a large black hole do not contribute to the indexed degeneracies in theories
with A/ = 4 supersymmetry. This is a consequence of the fact that such configurations,
although supersymmetric, belong to long supermultiplets. As a result, there is no entropy

enigma in N = 4 theories, unlike in N/ = 2 theories.
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An enigma. To obtain a microscopic quantum description of supersymmetric black holes
in string theory, one usually starts at weak coupling with a brane configuration of given
mass and charges localized at a single point in the noncompact spacetime. One then
computes an appropriate indexed partition function in the world-volume theory of the
branes. In spacetime, this index corresponds to the helicity supertrace that counts BPS
supermultiplets. At strong coupling, the brane configuration gravitates and the indexed
partition function is expected to count the microstates of these macroscopic gravitating
configurations. Assuming that the gravitating configuration is a single-centered black hole,
these considerations provide a statistical understanding of the entropy of the black hole in
terms of its microstates, in agreement with the Boltzmann relation.!

One problem with this approach is that the macroscopic supergravity solutions corre-
sponding to the microscopic brane configuration need not be centered at a point. Instead,
they may include several multi-centered black holes in addition to the single-centered black
hole of interest. In fact, in four-dimensional N' = 2 supergravity, it is known that in cer-
tain situations there are multi-centered configurations which have more entropy than the
single-centered black holes carrying the same total charges. This raises the question as to
why the degeneracy extracted from the microscopic counting function should agree with
the entropy of just the single-centered black hole, as is the case in many examples. This
puzzle has been referred to as the ‘entropy enigma’ [1, 2]. One expects that the enig-
matic multi-centered solutions in N/ = 2 supergravity mentioned above can be embedded
in N' = 4 supergravity, and should dominate the entropy of single-centered black holes. We
thus have an N' = 4 version of the entropy enigma, which is what we address in this note.

To formulate the puzzle more precisely in this context, note that in AV = 4 super-
symmetric theories, a BPS-state may preserve either one-half or one-quarter of the sixteen
supercharges. A half-BPS state generically belongs to a 16-dimensional short multiplet,
whereas a quarter-BPS state belongs to a 64-dimensional intermediate multiplet. In several
string compactifications with N' = 4 supersymmetry, the indexed degeneracies that count
the intermediate multiplets are known exactly [3—16]. In the limit of large charges, when all
charges scale as A, the logarithm of the degeneracy is found to be in precise agreement with
the entropy of a single black hole, which scales as A? [3, 17-20]. The only multi-centered
configurations that seem to contribute to the exact formula are bound states of two centers
such that each center is individually half-BPS, but together they preserve only a quarter of
the supersymmetries. A half-BPS state necessarily corresponds to a small black hole with
a string scale horizon, whose entropy always scales as A. The entropy of the multi-centered
configuration then also scales as A, which is small compared to the leading term.

The enigmatic configurations in A/ = 2 theories, on the other hand, are multi-centered
configurations, where each center is a large black hole. In N' = 4 supergravity, this means
that they must correspond to configurations where at least one of the centers is quarter-
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BPS. The enigma can then be rephrased as the following question:* why do the multi-

Tt is usually assumed that the index equals the absolute number, following the dictum that whatever
can get paired up will get paired up. This assumption is borne out in several examples but may fail in
general.

2This is actually a stronger question than the original enigma, which was why certain large multi-centered



centered configurations with at least one quarter-BPS center not contribute to the index
that counts the intermediate multiplets? In our following discussion in the A/ = 4 context,
we will loosely refer to any multi-centered configuration as ‘enigmatic’ if at least one of the
centers is a large quarter-BPS black hole.

The explanation of this puzzle is rather simple. It relies on the fact that even though
the enigmatic multi-centered configurations are supersymmetric, they belong to long mul-
tiplets, which are 256-dimensional. This happens because there are additional fermionic
zero modes apart from the ones that arise due to supersymmetry breaking. As a result,
these configurations give a vanishing contribution to the indexed degeneracies.

While this explanation is not entirely unexpected, it is not easy to directly ascertain
the existence of additional fermionic collective coordinates. To do so, one must solve the
Dirac equation and the Rarita-Schwinger equation for the dilatini and the gravitini in the
background of the multi-centered configuration under consideration. One must then show
that these additional fermionic collective coordinates are free and have a quadratic effective
action. It is then possible to show that the quantization of these additional zero modes will
make the index vanish. Although in principle it is possible to follow such a path, in practice
it is difficult to execute it for the multi-centered black hole solutions in supergravity.

We will instead give an indirect argument for the fact that enigmatic configurations be-
long to long multiplets, by showing that they are continuously connected to nonsupersym-
metric configurations. Nonsupersymmetric solutions obviously belong to long multiplets.
For them, it is easy to explicitly establish the existence of fermionic zero modes — they
arise as goldstini of broken supertranslations. Continuity then implies that the enigmatic
configurations must also belong to long multiplets. As we will see, this fact is consistent
with the known pattern of wall-crossings for N' = 4 dyons and the pole structure of the
dyon partition function.

The basic argument is suggested by another closely related puzzle. Consider for con-
creteness the simplest N/ = 4 compactification of heterotic string theory on 7°. For this
compactification, the exact partition function counting 64-dimensional supermultiplets of
quarter-BPS dyons is known for all dyons in all duality orbits in all regions of moduli space.
At certain points in the string moduli space, the gauge symmetry is enhanced to a non-
abelian group, for example SU(V). Away from these points, the gauge symmetry is broken
to U(1)N. If the symmetry breaking mass scale is much smaller than the string scale, then
one can decouple gravity and string modes and analyze the BPS states in the field theory
limit. Quarter-BPS dyons in SU(N) super-Yang-Mills theory are well-studied [21-23], and
their exact degeneracies are known [12, 24]. One would expect that the exact dyon partition
function derived in string theory should correctly reproduce the degeneracies of these field
theory dyons. This is indeed the case if the gauge group is SU(3) [11, 25]. However, the
string theory counting fails to agree if the gauge group is SU(N) with N > 4. The puzzle
is then why the string theory partition function does not count the general SU(N) dyons.

The resolution of this puzzle is easier to see in the field theory limit [26]. It follows
from the fact that the quarter-BPS dyons in SU(N) super Yang-Mills theory with N' = 4

configurations not dominate the degeneracy. We will actually answer the stronger question here.



supersymmetry and N > 4 exist as supersymmetric configurations only on a submani-
fold in moduli space. Even slightly away from this submanifold, the dyons are no longer
supersymmetric and hence belong to long multiplets. One can thus argue by continuity
that even on the submanifold where they are supersymmetric, they must belong to long
multiplets. In field theory, it is easy to independently verify this argument by explicitly
demonstrating the existence of the required additional fermionic zero modes.?

In string theory, single centered black hole solutions of the A/ = 2 theory have been
embedded into the N' = 4 theory using a consistent truncation to the former theory [27].
One may expect that a similar uplift can be done for the N/ = 2 multi-centered solutions.
In principle, there could also exist more general solutions which cannot be truncated to
the N/ = 2 theory. Our arguments apply to the most general case, and show that super-
symmetric multi-centered solutions can only exist on submanifolds of the N' = 4 moduli
space of codimension greater than one.

In the following, we first review the simpler field theory argument and then generalize

it to the supergravity case.

Dyons in field theory. The quarter-BPS dyons in SU(N) N = 4 Yang-Mills have a
particularly simple and geometric representation in terms of string webs ending on N D3-
branes [26, 28-34]. There is an overall U(1) of the center-of-mass motion that does not
play any role. The transverse space to the D3-branes is R®, and therefore the moduli
space of the Coulomb branch of the N D3 branes is (R%)". At a generic point in moduli
space where all D3-branes are separated from each other, the gauge group is completely
broken to U(1)". The quarter-BPS states in question correspond to a planar three-pronged
string junction network stretched between the N D3-branes. Only planar configurations
are supersymmetric [28, 29]. For N = 3 the planarity condition is trivially satisfied at
generic points in moduli space. The three D3-branes on which the string network ends
define three points in the RS transverse space, which generically define a plane in this RS.

It is clear that for N > 4, the positions of the D3-branes will not generically be copla-
nar. If we consider the plane in R® defined by the positions of any given three D3-branes,
then in order to obtain a planar configuration we need to tune the four transverse positions
of each of the remaining D3 branes relative to this plane. Thus a dyonic configuration can
be planar — and hence supersymmetric — only on a constrained submanifold of the moduli
space, of codimension 4(NN — 3). Even slightly away from this submanifold, the state ceases
to be supersymmetric and is thus continuously connected to a nonsupersymmetric state.
Hence it must belong to a long multiplet and cannot contribute to the index that counts
64-dimensional intermediate multiplets.

Dyons in string theory. To generalize this argument to the supergravity situation,
it is better to formulate it entirely in terms of the superalgebra. To do so, consider the
low energy effective theory of heterotic string theory compactified on 7. The low energy

3Since our argument relies on special properties of A/ = 4, it does not address the original entropy
enigma in N = 2 theories. In A/ = 2 theories, both large and small black holes are half-BPS and one cannot
distinguish them by the size of the supermultiplet.



action consists of four-dimensional N' = 4 supergravity coupled to 22 vector multiplets.
This theory has 134 moduli, which lie in the space

0(22,6;R)  SL(2,R)

= 1
M= @2 x0(6) * 30(2) (1)
The Sg(()Z(,zﬂi) coset is parameterized by the axion-dilaton 7 = 71 + i1, while the 0?2(3)2 ’XG;OR&)

coset is parameterized by the remaining 132 moduli. We can encode these moduli in a
28 x 28 matrix M, satisfying

MIMT =L, M'=M, M=p"u, (2)

where L is the O(22,6)-invariant metric L = diag(—I22,Is). The vielbein p is identified
with kp for any group element k € O(22) x O(6), since it defines the same moduli matrix
M. The theory contains 28 gauge fields, with gauge group U(1)®® at generic points in the
moduli space.

A dyonic state is specified by its charge vector

Q
-

where (Q and P are the electric and magnetic charge vectors respectively. Both @ and P
are elements of a self-dual integral lattice II??6 and can be represented as 28-dimensional
column vectors in R??6 with integer entries, which transform in the fundamental represen-
tation of O(22,6;Z). Given these moduli-independent charge vectors, we can define their
moduli-dependent, right-moving projections onto the spacelike subspace RS by

1 1
Qr= (s +L)psQ,  Pr=,(Is+L)uiP 4)

where the subscript “c0” refers to the value of the moduli measured at infinity.

In the rest frame of the dyon, the N' = 4 supersymmetry algebra takes the form
A AB
{Q2.Qy=Ms 56", {Q1,QFY=casZ’ . {QI.QY =¢37 (5)

where A, B = 1,...4 are SU(4) R-symmetry indices* and «, 8 are Weyl spinor indices. The
central charge matrix Z encodes information about the charges and the moduli. To write
it explicitly, we first define a central charge vector in C%

7" = QB —7P), m=1,...6, (6)

1
VT2
which transforms in the (complex) vector representation of Spin(6). Using the equivalence
Spin(6) = SU(4), we can relate it to the antisymmetric representation of Z4p by

1
VT2

4We use a convention where the A, B indices are raised by complex conjugation.

ZapT)= | (Qr—7Pr)"Nip, m=1,...6 (7)



where X5 are the Clebsch-Gordan matrices. An explicit representation for \'j5 is given
in the appendix. Since Z(I") is antisymmetric, it can be brought to a block-diagonal form
by a U(4) rotation

~ ~ Zie 0 01
Z=UzUT UeU®4 Zag = = 8
’ @, Zus <ozza>’€ (—10) ®)

where Z; and Zs are non-negative real numbers. This rotation acts on the supercharges as
QY =Q (UM (9)

Since € is the invariant tensor of SU(2), a U(2) x U(2) transformation acting separately on
each block can only change the phases of Z; and Zs. We will therefore be more general and
treat Z; and Zs as complex numbers. Without loss of generality we can assume |Z;| > |Z3].

We now split the SU(4) index as A = (a, i), where a,7 = 1,2 and i represents the block
number. Defining the following fermionic oscillators

) 1 ~,. 1o ~. 1 ~.. o
Au= ) Qu+eas@i™) Bo= Q= easQ}™) (10)

the supersymmetry algebra takes the form
(A ALY = (M + Z0) 64507 . {BI,BL} = (M — 2) 845 6" (11)

with all other anti-commutators being zero.

If M > |Zi| > |Zs|, no supersymmetries are preserved. The sixteen broken super-
symmetries result in eight complex fermionic zero modes whose quantization furnishes a
28-dimensional long multiplet. If M = |Z;| > |Z5|, the state is quarter-BPS, and four out
of the sixteen supersymmetries are preserved. The broken supersymmetries result in six
complex fermionic zero modes whose quantization furnishes a 26-dimensional intermediate
multiplet. If M = |Z1| = |Z»|, the state is half-BPS, and eight out of the sixteen super-
symmetries are preserved. The broken supersymmetries result in four complex fermionic
zero modes whose quantization furnishes a 24-dimensional short multiplet.

The supersymmetries preserved by a given state is thus specified by the central charge
matrix. Furthermore, given a quarter BPS state, its charges pick out a particular N' =
2 subalgebra of the AN/ = 4 algebra — in the above basis, this subalgebra is generated
by (A',B') and their complex conjugates. A quarter-BPS configuration of the N/ = 4
algebra is a half-BPS configuration of this N' = 2 subalgebra, and it is annihilated by the
supersymmetry generated by® Bl.

It will be useful later to state all this in a more covariant form. In the above basis, the
preserved supercharge, after allowing for a U(1) rotation in the ' = 2 subalgebra, can be

written as:6

Qa = <€i07—70€_i070,0) ; (12)

®The supersymmetry transformation on the fields with variation parameter e, induced by a supercharge

Qa is € Qa + €'*Ql.
SHere we have suppressed spacetime spinor indices; each element of Q is a spacetime spinor.



and it obeys the projection equation:
T
~ ~ e’ 0
QA = Q" ( 0 0) - (13)

To write this projection condition in a covariant form, we transform back to the origi-

nal basis:
Zhp
WOQA = QB AL (14)
1Z]
where
~ Z1€ 0
Zap=UT U* 15
AB < 0 0> (15)
and
2| = (Tr(Z(2)1))2 = 2. (16)

It is useful to think of the central charge as a vector Z™ instead of as an antisymmetric
matrix Z4p. Given an orthonormal basis {e4} for the 4 of SU(4), the basis for the 6 is
given by the tensors {e4 Aep}, A, B =1,...,4. This is related to the orthonormal basis
{f™}, m=1,...6 for the vector representation of Spin(6) by

fM=(eanep)\Nig. (17)

Now, an SU(4) rotation which rotates the supercharges, @' = QU, acts on the Clebsch-
Gordan matrices as

U Ut = R™,(U)\™ (18)

where R™,, is an SO(6) rotation matrix. In particular, the diagonalization (8) simply
rotates the central charge vector Z to the (12) plane, where it takes the form

-

Z = (Z1 + Z2)f1 + Z(Zl — Zg)fg . (19)

Since Z™ is a (complex) linear combination of the charge vectors Qg and Pg given by (6),
this transformation simply rotates the plane spanned by the charge vectors Qr and Pgr
into the plane spanned by the basis vectors f1 and fs.

To recap, the N' = 2 subalgebra relevant for discussing the BPS-properties of a given
state is completely determined by the plane spanned by the charge vectors” Qg and Pg.
Given the preserved supercharge of the solution, one finds the matrix U which rotates it
into the canonical form (12). In RS, the same transformation rotates the plane spanned by
(f1, f2) into the plane spanned by (Qg, Pg) in R®. The matrix U is not unique, but given
two matrices Uy, U, which rotate the supercharges satisfying the condition (14) into the
canonical form (12), the matrix ® = Uy (Us)~! is unitary and satisfies

Qe = Q" (20)

"Note that for a half-BPS state Qr and Pr are proportional, and the plane degenerates to a line.



where @ A is the canonical form (12). This condition implies that ® is block-diagonal, with
a U(2) matrix in each block, and the action on Z reduces to two independent U(1) actions
rotating the phases of Z; and Z,. The plane determined in R® is thus unambiguous.

Now consider a two-centered solution of the N' = 2 theory where both centers are
large. Let the charges of the centers be (Q', P!) and (Q?, P?). If this configuration is
embedded supersymmetrically in the N' = 4 theory by truncating the latter theory, it is
clear that the two centers have to pick the same A/ = 2 algebra inside N' = 4. By the above
argument, the planes defined by (QL, P}) and (Q%, P2) must coincide. This happens only
on a submanifold of moduli space, as in the field theory analysis.

As mentioned above, there could exist solutions in the A" = 4 theory that cannot be
truncated to N' = 2 theory. To extend the above argument to these more general multi-
centered configurations, we will make an approximation that one of the black holes has
small charges and can be considered to be a probe in the background of the other big
black hole.®

A dyonic probe in the background of a dyonic black hole. The spirit of the
argument is again that the two centers generically break different sets of supersymmetries.
However, since there is no longer any special globally defined N' = 2 subalgebra, we have
to rephrase our arguments using local supersymmetry, i.e. Killing spinors, which we shall
denote by €4 (z).

Consider then a single centered, quarter-BPS dyonic black hole solution with (su-
per)charges as described above. We define a local version ZYg(x) of the central charge
matrix (7) using the charges of the black hole and the local values of the moduli fields.
One can block-diagonalize this matrix as in (8) using a local matrix Uy(x). In this way, we
obtain Zb(z) = Up(2) Z%(x)UF () and the two complex numbers (2%, Z8) with |Z?| > | Z5|.
It turns out [35] that the Killing spinor of the background satisfies a projection condition
at each point in spacetime:

Zhp(x) 5 A *
toea(w) = 200 vel(x),  €h = (ea)”, (21)
|2 (x))|
where Zap and |Z°| are defined as in (15), (16) respectively, but using the matrix Up(x)
instead of U.

A probe placed at some point zq in this background will generically break the existing
supersymmetries. We define the local quantities ZP(z), Up(z), ZP(x), ZP(z) as above, but
using the charges of the probe everywhere. A k-symmetry analysis on the probe worldvol-
ume [35] shows that it will preserve the background supersymmetries only if the following

8In order to rule out the unlikely possibility that supersymmetry is broken in the probe approximation
but is regained after backreaction of the second center, one must analyze the full N’ = 4 Killing spinor
equations in the multi-center system. We shall not do this in the present paper. We shall comment on this
issue later.



condition is met? X
P
voea(m) = 2aB@0) b, (22)
| ZP (z0)|

We thus have the two projection conditions (21),(22) on the Killing spinor e(zg) at
the location of the probe. These are local analogs of the projection equation!'® (14) and
involve the two matrices Uy,(xo) and Up(xo). As argued above, this implies that the plane
in R% spanned by the charges ( ’é, Pg) of the probe must be the same as the plane spanned
by the charges (Q%, PI%) of the background. We can now determine the BPS properties of
a multi-centered configuration geometrically, directly in the charge space instead of in the
space of supercharges.

Recall that for N' = 2 multicentered bound states, there is one supersymmetry re-
quirement (the alignment of the phases of the central charges of the two centres), and one
tunable parameter (the radial distance), which is a first step in showing that multicentered
solutions in N = 2 exist generically in the vector multiplet moduli space [36]. In the N' =4
theory, there are three possibilities for two-centered solutions:

1. Both centers are half-BPS. In this case, the plane defined by each center degenerates
into a line. Since two lines are then trivially coplanar, it is always possible to identify
an N = 2 subalgebra without adjusting any parameters. What remains is to align
the preserved N' = 1 supersymmetry (the one remaining phase) and there is one
tunable parameter g, the distance between the centers, which one can use to do so.
This is analogous to the case of SU(3) dyons in field theory.

2. One center is half-BPS and the other is quarter-BPS. In this case, one needs to align
the line corresponding to the half-BPS center with the plane corresponding to the
quarter-BPS center. This will only happen in a constrained locus in the moduli space,
obtained by setting to zero the four components of the line that are perpendicular to
the plane. This is analogous to the case of SU(4) dyons in field theory.

3. Both centers are quarter-BPS. The two planes corresponding to the two centers will
coincide on a locus in the moduli space even more constrained than in the previous
case and will require tuning eight parameters. This is analogous to the N > 4 cases
for SU(N) dyons in field theory.!!

We therefore conclude that the multi-centered configurations of the second and the third
type, which contain at least one quarter-BPS center, exist as supersymmetric configurations
only on submanifolds of codimension larger than one. This implies that they are smoothly
connected to nonsupersymmetric long multiplets.

In [35] the authors were dealing with A/ = 8 supergravity backgrounds, but here we assume that their
expressions particularize straightforwardly to the N = 4 case.

10Strictly speaking, since e*Q 4 is a scalar, there is a transposition involved in these equation with respect
to (14).

'We need to tune only eight parameters and not 4(IN — 3) because we are considering the situation when
each center is already independently quarter-BPS.



While we have derived the constraints arising from supersymmetry alignment only in
the probe approximaton, it is unlikely that including backreaction would restore super-
symmetry away from the constrained locus. In order to argue this rigorously, one must
analyze the N/ = 4 supersymmetry equations. One may also be able to devise a much sim-
pler argument based on requiring that there exist!? a point in spacetime where the Killing
spinor simultaneously obeys two projection equations similar to (21), (22). Our analysis
of supersymmetry alignment will then go through as above, with the only change that xg
is no longer identified as the location of the probe.

Discussion. Our analysis is independent of but consistent with the analysis of walls of
marginal stability [14, 37, 38] and the analysis of rare decay modes [39, 40]. The states of
the first type do contribute to the dyon partition function. These two-centered solutions
decay on a wall of marginal stability of codimension one, where the distance between the
two centers goes to infinity. The dyon partition function has poles in precise correspondence
with these walls of marginal stability. On the other hand, the states of the second and third
type contribute zero to the dyon partition function everywhere in the moduli space. This
is consistent with the fact that the dyon partition function has no additional singularities
other than the poles described above and there are no additional jumps in the degeneracies.
If the dyon partition function did count these states, it would have to display an unusual
singularity structure, since these states decay on surfaces of codimension two or higher.

Our arguments could also be made in N' = 4 theories in five dimensions to rule out the
contribution of enigmatic configurations to the indexed degeneracy. This is consistent with
the fact that the entropy of the single-centered three-charge black holes in type IIB string
theory on K3 x S! agrees to sub-leading order with the microscopic indexed degeneracy in
the same regime of charges that are relevant for black hole [41].

Finally, our analysis raises the following question: if the usual index does not count
the two-centered configurations with at least one quarter-BPS center, can one devise some
other method to count them on the submanifold where they do exist as supersymmet-
ric configurations? One possible method is to use an argument employed in [12]. The
degeneracy of the bound state can be computed by first going very close to the line of
marginal decay, where the two centers are very far away. In this regime, it is simply the
product of the degeneracies of each center, times a multiplicity factor coming from the
field angular momentum. The degeneracy of each quarter-BPS center is in turn computed
using the usual dyon partition function for quarter-BPS states. By continuity of the index,
the degeneracy of the dyonic state does not change if we move far away from the line of
marginal decay.
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A. Clebsch-Gordan matrices

The Clebsch-Gordan matrices A’} are given by the components (CT"™) 4p where '™ are the
Dirac matrices of Spin(6) in the Weyl basis satisfying the Clifford algebra {I'", T} = 26™",
and C' is the charge conjugation matrix. The Gamma matrices are given explicitly in terms
of Pauli matrices by

F120'1X0'1X1, F4:0'2X1XO'1, (Al)
F220'1X0'2X1, F5:O'2><1><0'2, (A2)
F3:O'1X0'3X1, F6:0'2X1XO'3. (A3)

The charge conjugation matrix is defined by CT™C~! = —'"*

m )‘ZLB 0
C = 01 X 092 X 09, CI = m (A4)
0 Aip
where the un-dotted indices transform in the spinor representation of Spin(6) or the 4 of
SU(4) whereas the the dotted indices transform in the conjugate spinor representation of

Spin(6) or the 4 of SU(4). The matrices A’y thus defined have the required antisymmetry
and transform properties as in (18).
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