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ABSTRACT: We investigate Yang-Mills theory on a spatial torus at finite temper-
ature in the presence of discrete electric and magnetic fluxes using the AdS/CFT
correspondence. We calculate the leading dependence of the partition function on
the fluxes using the dual supergravity theory and comment upon the interpretation
of these fluxes as discrete quantum hair for black holes in AdS spacetime.
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1. Introduction

In this paper we calculate the finite temperature partition function of the Yang-Mills
theory with sixteen supercharges on a torus as a function of discrete electric and
magnetic fluxes. We perform this calculation in the large N limit using the dual
supergravity description in four and five dimensions [1, 2]. In this description, the
thermal state of the gauge theory maps to a black hole [8] and we will show that
the discrete flux in the gauge theory maps to a kind of quantum hair for the black
hole. Thus, our calculation will reduce to determining how the partition function of
a black hole depends on its quantum hair.

The study of discrete fluxes in non-abelian gauge theories was initiated by ’t
Hooft [£] following the analogies between confinement and superconductivity. Mag-
netic lines of force are expelled from the superconducting ground state and can
penetrate the medium only in the form of thin flux tubes. Magnetic flux tubes ex-
ist as Nielsen-Olsen vortices and are locally stable. If a pair of magnetic monopole
and antimonopole is introduced in the medium then the total flux between them is
localized in a flux tube that connects the two charges giving rise to a linear con-
fining potential between the two. Qualitatively, confinement in non-abelian gauge
theories is the electric analog of superconductivity where the electric flux tubes are
locally stable and can then be interpreted as QCD strings. To put this idea on a
more quantitative basis, 't Hooft considered the gauge theory on a torus. This allows
for the introduction of topological discrete fluxes in the pure gauge theory without
quarks which are the analogues of electric and magnetic fluxes in the U(1) theory. By



examining the dependence of the free energy on these fluxes, one can investigate the
stability of the flux tubes to gain insight about the phases of the theory. In this paper
we investigate some of these questions using the correspondence with supergravity
which provides an explicit realization of these ideas.

By now a fair amount is known about the finite temperature SYM theory we
will consider here. For example, the spatial Wilson loop has been calculated in the
theory and shows area law behavior thereby indicating that the theory has locally
stable flux tubes [B, G]. In this paper we will follow the general framework discussed
in [7, 8] for including discrete flux in supergravity. Our calculation will be done
in an approximation where the string tension of these flux tubes is much bigger
than the size of the torus. As we will see, in this approximation, the dominant
configurations contributing to the partition function have a simple interpretation
in the gauge theory: they correspond to the worldsheets of flux tubes wrapping
appropriate two cycles of the torus. We will do the calculation in both the four-
dimensional and the five-dimensional theory. The latter, at energies low compared to
the temperature, should flow to the four-dimensional pure glue gauge theory without
supersymmetry. Unfortunately, as is well known, in the supergravity regime we use
here, there are extra Kaluza-Klein states in the theory which do not decouple [3, H].
Thus, from the point of view of the non-supersymmetric gauge theory, our calculation
is at best an approximation, somewhat analogous to the strong coupling expansion
in lattice gauge theory. In fact, as we will show, the dual supergravity yields an
answer which, in its important quantitative features, agrees with the strong coupling
expansion. These features are in accord with the expectation about confining theories
and are likely to be universal.

It is also useful to consider the discussion in this paper from the perspective of the
supergravity theory. As was mentioned above, a black hole in the bulk is represented
as a thermal state in the boundary gauge theory. The classical no-hair theorems of
black hole physics then turn into a familiar statement in the gauge theory: a thermal
state is only characterized by its mass, angular momentum, and various conserved
global charges. But as is well known [10, 11}, black holes can also possess quantum
hair. One might wonder what their description is in the boundary theory. For the
quantum hair considered in this paper they turn out to be related to the the discrete
electric and magnetic fluxes of the gauge theory.

This paper is organized as follows. The four-dimensional theory with N = 4 su-
persymmetric is discussed in section 2. The AdS/CFT correspondence for the black-
hole geometry is reviewed in section 2.1, discrete fluxes from the gauge theory and su-
pergravity points of view are described in section 2.2 and section 2.3 respectively, and
the calculation of the partition function is discussed in section 2.4. Nonsupersymmet-
ric gauge theories in three and four dimensions are discussed in section 8 and section 4,
respectively starting with a supersymmetric theory in one extra dimension compact-
ified on a circle with thermal boundary conditions that break supersymmetry.



2. Discrete fluxes in the AdS/CFT correspondence

2.1 The black hole geometry

In this section we consider the N = 4 supersymmetric SU(N) Yang-Mills theory on
a spatial torus T? at finite temperature 7. The boundary spacetime M in this case
has topology T3 x S. By the AdS/CFT correspondence [1;, 3], this boundary theory
is dual to a bulk supergravity theory on B x S® where B is an Einstein manifold
that has M as the boundary at infinity. The relevant manifold B is well studied and
corresponds to a euclidean Schwarzschild black hole in AdS space [12]. In Poincaré
coordinates, the metric is!

= (? ot > dzg + (= _Gihy * paldel +dag +dag),  (21)
R2 r2

where R = (4wg,a’ N)*/* is the radius of curvature of AdS space, G5 = G1o/(R°m?) is

the five-dimensional Newton’s constant, M is the mass of the black hole, and ¢ = 32.

The black hole horizon is at "
rg = (¢G5 M R*)Y* (2.2)

and the temperature is
T = %% . (2.3)

The coordinates z; (i = 1,2, 3) parametrize a 3-torus. For simplicity we consider
a cubic torus of size L so that x; are identified with z;+ L. Note that the physical size
of the torus at the radial position r in the bulk is #L/R. In the black hole geometry,
r is bounded from below by the radius of black hole horizon ry. Aslong as ryL/R is
large compared to the string scale, we expect that the dual supergravity description
will be well-defined. By contrast, at zero temperature (M = 0 in the above formulae),
the size of the torus becomes vanishingly small as r goes to zero. The supergravity
description then becomes inadequate at small r because the string modes that wind
around the torus become massless near » = 0 and have to be included in the low
energy description.

2.2 Fluxes in the boundary gauge theory

The finite temperature partition function of the Yang-Mills theory on the boundary
is obtained by computing the euclidean path integral on the 4-torus T® x S'. In
the N = 4 supersymmetric theory, the center Zy of SU(N) acts trivially because all
fields transform in the adjoint representation. Therefore, one is really dealing with
an SU(N)/Zy gauge bundle on a 4-torus. Such gauge bundles are labeled by six

1Since we are working in a situation where the spatial boundary is T® as opposed to S3, the
relevant solution is obtained by taking the large mass limit of the metric in ['_3]



topological invariants n,, = —n,, (¢, =0,...,3) which are all integers modulo N.
We would like to calculate the dependence of the partition function on these integers.
Let us briefly review the origin of these integers and their physical interpreta-
tion [4, 13]. In the path integral, one sums over field configurations that are periodic
up to a gauge transformation.? This allows for twisted gauge fields. For example, in
the 1 — x9 plane with xg and x5 fixed, a field ® satisfies the boundary condition

O(L,z5) = Q1 (22)P(0, 22),
(I)(Il, L) = QQ(Il)(I)(Il, 0) . (24)
Here Q2® denotes schematically the appropriate gauge transformation of ® by €
A, — QA0 — 09,007 for the gauge fields, A — QAQ™! for the gauginoes, and
similarly for the scalars. For consistency, the gauge transformations must satisfy the
cocycle condition

(I)(L> L) = Ql(L)(I)(O? L) = QI(L)QZ(O)(I)(O? 0)
— Oo(L)®(L, 0) = Qu(L)2 (0)8(0,0) . (2.5)

Therefore, €4 (L)$22(0) and Q5(L)Q4(0) must be equal up to an element of the center

Z’N7
27T’ZTL12

1 (L)02(0) = exp ( )m(Lml(m. (2.6)

The integer nq5 is defined modulo N and is a topological invariant because it cannot
be changed by a periodic gauge transformation or by smooth deformations of the
field. There are altogether six independent integers n,, corresponding to the six
2-cycles of the 4-torus that completely specify the topological class of the gauge
fields.

The integers {n;;} (i,j = 1,2,3) are related to the magnetic flux on the torus.
For example, consider the contractible Wilson loop € (L)Q:(0)Q;(0)Q; (L) that
measures the total magnetic flux passing through the z; — x5 plane. We immediately
see from the cocycle condition eq. (2:6) that there is nq2 units of magnetic flux in the

x3 direction for the twisted gauge fields considered above. In general, one can define
1
2
The physical interpretation of ng; is clearest in the hamiltonian formalism. In the

the integer m; = €1, as the magnetic flux in the 7th direction.

gauge Ay = 0, the theory has a residual invariance under time-independent gauge
transformations. States in the physical Hilbert space must furnish a representa-
tion of this invariance group. For a gauge transformation (x) that is continuously
connected to the identity, one must choose the trivial representation for the corre-
sponding operator consistent with Gauss law:

QX)) =) (2.7)
2The fermions are actually periodic on T3 and antiperiodic on S but we will ignore this dis-
tinction in this subsection.




However, for the SU(N)/Zy theory on T? there are quasiperiodic gauge transforma-
tions that are is not continuously connected to the identity. A quasiperiodic gauge
transformation is periodic modulo an element of the center. For example, consider a
gauge transformation that is quasiperiodic in the x3 direction

Oal(a1,22, L) = Vel 1,20, ) exp (27 ) (25)
and periodic in the z1, x5 directions. Two such gauge transformations that are labeled
by the same integer k3 have the same action on physical states because they differ by
a homotopically trivial gauge transformation that leaves such states invariant as in
eq. (2.7). Such gauge transformations obviously generate a Zy group and moreover
commute with the hamiltonian. One can choose the physical states to be eigenstates
of this gauge transformation

o) = exp (252 ) ), (29)

for some integer e3 modulo N. To see that the integer e3 can be interpreted as the
electric flux in the z3 direction, consider the action of Q[ks] on a Wilson loop

A(C3) = tr Pexp <z/ dm”AM) (2.10)
C3
that runs along a curve Cj in the x3 direction at x; = x5 = 0. It is clear that
~ A 27Til€3

Thus A(Cj3) acting on a state increases the value of e by one unit. Since the Wilson
loop creates a line of electric flux, it is natural to regard ez as the discrete electric
flux.

One can project onto states with a well defined electric flux e3 by using the
projection operator

1 —2mikses \ A
P(es) = N kz exp (Tw> Q[ks]. (2.12)
3
The finite temperature partition sum over states with a specified value of e; is then
given by
. —H 1 —27T’il€363 A —-H
Z(e3) =Tr | P (e3) exp <T>] =~ kZeXp (T) Tr[Q[ks] exp (T)
3

(2.13)
It is easy to see that each term Tr[Q[ks] exp (—H/T)] in the sum can be expressed
as a euclidean functional integral over gauge fields that are twisted in the xy — x3



plane as in eq. (2.4) with ng3 = k3. The partition function Z(e3) is then obtained
as a discrete Fourier transform using eq. (2.13). Thus, the integer k3 is conjugate to
the electric flux es.

More generally, the electric fluxes {e;} are the quantum numbers of the Z3
electric symmetry and are conjugate to the integers {k; = ng;}. In addition, we also
have Z3;, magnetic symmetry. The integers m; that we defined earlier can equivalently
be regarded as the quantum numbers of the this magnetic symmetry in the dual
description.

2.3 Fluxes in the bulk supergravity

We would like to identify the topological Z%, symmetry and the quantum numbers
that correspond to the discrete electric and magnetic fluxes in the dual supergravity
theory. We will follow the general framework described in [8, 7] although the specific
context here is somewhat different.

Consider, for example, the electric flux e3 which is the quantum number of the Zy
symmetry that is generated by Q[ks]. A defining property of Q[ks] is the commutation
relation eq. (2:1T) with the Wilson loop A(C5). In the AdS/CFT correspondence, a
Wilson loop A(C) that runs along a curve C' in the Yang-Mills theory is identified
with the boundary of a fundamental string worldsheet D that extends in the bulk
geometry [B, 6]. For A(Cj3), the corresponding string worldsheet Dj, extends, at a
fixed euclidean time xg, in the x5 — r plane such that dD3, = (5. The worldsheet
couples to the NS-NS 2-form field BY® through the coupling

exp <z /D } BNS> : (2.14)

In particular, if we have a nonzero expectation value

a= / BNS (2.15)
D3'r

in the bulk then the worldsheet would pick up a phase e®. It follows from the
commutation relations eq. (2.11) that the operator that corresponds to Q[ks] would
shift this expectation value

ks
— 2m— . 2.16
a—a-+ 7rN ( )

We will see that in the supergravity theory, there is a natural candidate for this Zy
shift symmetry. Obviously, the generator of this symmetry would be the momentum
conjugate to a which we can find from the classical action and the corresponding
translation operator can then be identified with ([ks].

The relevant part of the supergravity lagrangean on the euclidean AdS space is

1 N
L= (|aBY*P + |dB"*) + 24— (BNS A dBR — B A dBNS) . (2.17)
g ™

s



The first two terms are the usual kinetic terms restricted to the AdS part. The last
two terms are topological and arise from the Chern-Simons coupling in ten dimensions
of the two B-fields to the 5-form field strength G5. The factor of N arises from the
integration of G5 over the sphere S® and corresponds to the total 5-form flux of N
D3-branes.

Since we are interested in spatially constant modes of the B fields, we can inte-
grate over space for the relevant modes and reduce this problem to particle mechanics.

Let us define
b= / BR (2.18)
Y12

for a nontrivial cycle ¥15 along x; — x5 directions. Then the lagrangean after an
integration by parts reduces to

1N

b 2.1
o ab (2.19)

L= % (,uld2 + u252> +
Here the dot indicates a derivative with respect to the euclidean time. The regularized
effective masses u1, po arise from integrating the r dependence of the metric in the
original lagrangean but their precise form will not be important in what follows.
This is the lagrangean of a particle moving on a plane in the presence of a constant
magnetic field of magnitude N/27 perpendicular to the plane. We also know that
the 2-form B fields are both compact gauge fields because both the D-string and the
F-string charge is quantized. Consequently, their zero modes a and b are compact
coordinates with period 27.

Now, without the coupling to the magnetic field, the lagrangean clearly has a
U(1) shift symmetry a — a+ ¢ for an arbitrary periodic constant ¢. The coupling to
the magnetic field breaks this U(1) to a Zy subgroup. This follows from the the fact
that e~/ £ would be invariant under the shift of & — a 4+ 27/N because b has period
2m. It will suffice for our purposes to consider the limit of large magnetic field and
drop the kinetic terms. The remaining lagrangean is automatically first order and
we can readily identify b as the momentum conjugate to a. They would satisfy the
Heisenberg commutation relation

s 2m

la,b] = N (2.20)
Using this commutator it then follows that in our original problem we have the
operator relation

exp (lkg/ BR> exp (l/ BNS) =
212 D37‘
= exp | ik3 B" |exp (i B exp , (2.21)
Y12 D3, N




which is identical to the relation eq. (2.1T) that we were seeking. It implies the

operator identification
Q[ks] > exp (z’kg / BR). (2.22)
Y12

A state in supergravity with a well defined flux e3 is an eigenstate of this operator

with )
TE3

Bf = : (2.23)
/212 N

By an analogous reasoning one can see that turning on ms units of magnetic flux

in the x3 direction then corresponds to turning on an expectation value

2mm
BNS = 722 2.24
L ™ (2.24)
This also follows from the SL(2,7Z) duality symmetry which in the type IIB theory

BYS and in the Yang-Mills theory on the D3-brane worldvolume

interchanges B and
exchanges electric and magnetic fluxes. Under this duality the Wilson loop A(C)
that creates electric flux tube gets interchanged with the 't Hooft loop B(C') which
creates a magnetic flux tube. In the supergravity theory, B(C') is thus a boundary of
a D-string worldsheet. In general, turning on the fluxes e; and m; in the Yang-Mills
theory corresponds in the supergravity to turning on the expectation values

/ BR — FmCikch / pNs _ 2meirmy (2.25)
o8 N o N

2.4 Finite temperature partition function

Having identified the discrete fluxes in the supergravity description we now turn
to calculating the finite temperature partition function. When the 2-form gauge
potentials are zero, we saw in section 2.1 that the relevant configuration in the
supergravity theory is a black hole. What happens when the gauge potentials are
turned on? A careful quantization of the zero modes as in [7] shows that, when the
gauge potentials are constant and take the quantized values, there is no extra cost
in energy. In turn this means that the metric, the 5-form field strength, and the
dilaton stay unchanged from their values in the black hole background. Thus the
discrete fluxes do not change the classical behavior of the black hole and the related
thermodynamic quantities.

Once quantum fluctuations around the black holes background are included
though a dependence on the fluxes does arise. These quantum fluctuations include
euclidean fundamental string worldsheets that wrap around non-trivial 2-cycles in
the bulk geometry. These can be viewed as F-string instantons and in this instanton
sector the partition function depends on the expectation value of the 2-form gauge
potential BYS. One can also have D-string instantons that are sensitive to B® and
more generally (p, q)-string instantons [14, 15]. The discrete fluxes thus manifest
themselves in the dual supergravity theory as quantum hair [10, 11].



Let us first consider the case where a single component of magnetic flux ms is
turned on. From eq. (2.24), we see that the quantum fluctuations of relevance then
will involve fundamental string euclidean worldsheets that wrap around ;5. We
can organize the partition function as a sum over configurations that wrap n times
around the 2-cycles:

Z = Zsugra, + Z Z(sugra—i—n strings) (226)

The leading term Z,,,, is the contribution of the pure supergravity theory without
any extra strings. It is determined by the black hole solution, eq. (2:1), to be:

Zsugra, = 6(02N2T3L3) s (227)
where c; = %2. To precisely calculate the next term Z(sugrq+1string) We would really
need to know type IIB string theory on the black hole background or at least the
sigma model in the Green-Schwarz formalism. We will estimate here the cost of
including the string instanton using the Nambu-Goto action:

BNS

Zissrasssnng = 10 [ Dxesvert] (2.28)
The dominant contribution that is sensitive to the magnetic flux eq. (2.24) is obtained
by the minimum area surface ¥ that extremizes the Nambu-Goto action. From
eq. (2.1) we see that this surface arises from a string world sheet located at the
horizon in the radial direction which spans the x; — x5 plane at some definite value
of 3.

The area of this minimal surface in units of the fundamental string tension is,

AH N 1 T’%L2
o2’ 21 R2a/

(2.29)

Including the effects of an anti-string (or equivalently a string oppositely wound
in the z; — x5 plane) gives:

Zsugrasistring) = €N T 1) 90 e~ A/ (1) cog (2T3> . (2.30)
The coefficient CF arises in the string path integral from fluctuations around the
minimal area surface. It includes a contribution, LT', due to the zero mode associated
with the location of the surface in the 3 direction, and the contribution due to non-
zero modes as well. We also need to include the fluctuation of the fermionic modes.
In particular, we need to worry if there are fermionic zero modes that might make
the contribution vanish as a consequence of spacetime supersymmetry. We expect
however that the zero modes of the spacetime Green Schwarz fermions will be lifted
because the thermal boundary condition breaks supersymmetry completely.



Using eq. (2.3), eq. (2.29), the minimum area can be re-expressed as:

A/ Cn) _ (=N TR (2.31)

Not surprisingly the coefficient 73/2\/g,NT? is identical to the string tension of the
electric flux tube in the finite temperature N = 4 theory. From the supergravity point
of view, the theory has stable flux tubes because at finite temperature the classical
geometry is given by the black hole geometry, eq. (2.1), in which the value of the
metric parallel to the brane goes to a minimum non-zero value at the horizon [3, 16].
Thus the behavior of large Wilson loops is determined by the geometry at the horizon
which also determines the exponential factor, eq. (2.31), above.

The contributions to the partition function from the single string instanton in
the case of a general electric and magnetic flux can now be written down by including
the contributions of F and D strings wrapping the corresponding two-cycle:

2mm;
Z(Sugm_i_lsmng) [mj’ ei] = 6(C2N2T3L3) 20F67ﬂ3/21/gsNT2L2 ZCOS < ¥ J> +

J

27'('61'
+ 20 pe ™V N/gsT2L? Zcos( N )] . (2.32)

%

There are subleading contributions to eq. (2.32) which arise from string-worldsheets
that either wrap multiply or wrap more than one two-cycle simultaneously. How-
ever, these contributions are exponentially suppressed compared to those included
in eq. (2.32) as long as

IN
VNg,T°L* > 1, . T°L*>1. (2.33)

For small g, the first condition is more restrictive. Physically, eq. (2.33) means that
the torus has a size much bigger than the electric and magnetic string tensions. When
this is true the contributions to the partition function from multi-string sectors are
also suppressed. In addition, there are subleading contributions from (p,q) string
worldsheets which we discuss shortly in eq. (2:34). Eq. (2:32) thus gives the leading
dependence of the partition function on the discrete fluxes. It is the main result of
this section.

Some comments are now in order. First, it is worth noting that the minimum
area surface which gave the dominant contribution to eq. (2:32) above has a simple
interpretation in the gauge theory as well. It corresponds to an electric or magnetic
flux tube, which is small at first but grows with time to span the full 2-cycle. Second,
we have neglected terms which are down in the o and g, expansions here. Thus our
result pertains to the gauge theory at large N and strong 't Hooft coupling. Third,
the result above does not apply to the zero temperature case. In this limit the
condition, eq. (2.33), is no longer met and the contributions from multiply-wound
and multi-string states cannot be neglected.

10



Finally, to understand the SL(2,7Z) transformation properties of eq. (£.32) one
needs to include the effects of general (p, q) strings as well. Doing so gives a partition
function:

2
Z|mg, e;](T Z ZCpq 7) exp (—AT, (1)) cos Nﬂ(—p~m+q~e). (2.34)

(2] p.q

Here, 7 = x + ie”? is the axion-dilaton field and C, ,(7) is the determinant of
small fluctuations which can in general depend on 7. The string tension 7}, ,(7)
of the (p,q) string and the area of the two-cycle A = 27%2a/v/NT?L? are both
measured in the Einstein metric. Both (e;,m;) and (p;,g;) transform as vectors
under the SL(2,7Z) transformation, and 7 transforms as usual by fractional linear
transformation. Keeping this in mind we see that the last two terms of eq. (2.34)
are invariant. Determining the full transformation properties of Z[m;, e;] requires
additional information about C), , though which is beyond the scope of this paper.

3. Non-supersymmetric gauge theory in three dimensions

At energies smaller than the temperature, the four dimensional theory reduces to
a non-supersymmetric theory in three dimensions. The fermions and scalars of the
N = 4 theory acquire temperature dependent masses leaving the pure glue degrees
of freedom at low energies. The results of the previous section can be reinterpreted
to tell us about the behavior of this theory. Before proceeding though it is important
to emphasize that the resulting theory is quite different from the usual definition of
three-dimensional QCD. From the three-dimensional point of view the temperature
acts like a cutoff. We mentioned in the previous section that the confining scale
in the theory is of order (g,N)"T. Thus, in the limit of strong 't Hooft coupling
considered here, the theory is already strongly coupled at the cutoff scale. Despite
these differences it is interesting to ask how the three-dimensional theory behaves
as a function of the discrete fluxes. The resulting answers are analogous to those
obtained in the strong coupling expansion of lattice gauge theory which, despite
differences with the continuum theory, are often illuminating.

We denote the two spatial directions of the three-dimensional theory as z1, x5 and
the time direction as x3. There is one integer mg which characterizes the magnetic
flux in the z; — x5 plane. There are two electric fluxes in the z;,xy directions
respectively, characterized by the integers, e;, es. We are interested in the partition
function of this theory when both the spatial directions and the time direction are
taken to be circles of length L, and periodic boundary conditions are imposed in all
three directions. As was discussed in section 2 the dependence on the electric flux e;
is related by a Fourier transform to the partition function obtained by introducing
twisted boundary conditions in the z; — z3 and x5 — x3 directions.

11



In the supergravity theory the background geometry describing the theory is of
course still described by the black hole, eq. (2.1)). However, in the three-dimensional
setting the coordinate axis have a somewhat different interpretation. zy can be re-
garded as the extra spatial direction along which supersymmetry breaking boundary
conditions are imposed, while x3 is the euclidean continuation of the time direction.

The leading dependence of the partition function on the fluxes is therefore ob-
tained by keeping the first term in eq. (2:32) above:

23713 _3/2 212
Z|ms,nq,ng| = e(2N"T L) 90 =™ PVgs NTZLE o

x [cos (27;\;”3) + cos (%) + cos <27]r\?2>] . (31)

Turning on the twists in the 1 — z9, 1 — x3 and x3 — x3 planes, corresponds in the

supergravity theory to turning on expectations values for the BV field along the
appropriate two-cycle, eq. (2.24).

Note that in eq. (3.1) there is no dependence on B because turning on an
expectation value for B field corresponds in the gauge theory to twisted boundary
conditions in a plane involving x(, the extra compactified direction, which has no
intrinsic significance from the point of view of the three-dimensional theory.

4. Non-supersymmetric gauge theory in four dimensions

We turn next to discussing a non-supersymmetric four-dimensional theory. In anal-
ogy with our discussion of the previous section we will start with a five-dimensional
theory realized by considering the world volume theory of D4 branes and break
supersymmetry by compactifying one of the brane directions on a circle with super-
symmetry breaking boundary conditions [3, 9]. We compute the partition function
of this theory as a function of the various electric and magnetic fluxes.

The supergravity solution is given by the near-horizon geometry of a configura-
tion of N near-extremal D4 branes [17]. The metric is

3/2 3 R3/2 dr2
9 T ’T'H 2 T
e (50) (- 2o () 2

3/2
+ (daf + das + dai + dz3) + Vr R3OS, (4.1)
and the dilaton is .
T\ i
=Y\ 5 ) 4.2
exp (¢) = g ( R) (4.2)

with R® = mg,N(a’)*>?. From the point of view of the four-dimensional theory,
is the extra spatial direction along which supersymmetry breaking boundary condi-
tions are imposed, x1, xs, r3 are the three spatial directions and x4 is the euclidean
continuation of the time direction of the four-dimensional theory.

12



We are interested in the partition function of the gauge theory when the the three
spatial and euclidean time directions are each compactified on a circle of length L.
There are six independent two cycles in this case and correspondingly six integers,
modulo N, which characterize the twisted boundary conditions that can be intro-
duced. Three of these directly correspond to the magnetic flux, while the remaining
three, which correspond to twisted boundary conditions involving z4, can be related
to the electric flux by a Fourier transform.

By reasoning similar to that in section 2 we find that turning on twisted boundary
conditions along any of these six two-cycles corresponds to turning on an expectation
value for [ BY 9 with the integral being evaluated along the two-cycle:

27’(’7’&]] / NS
= B~ (4.3)
N X1y
where I, J go from 1,...,4. The Supergravity lagrangean contains a coupling of the
form:
6L = / BNS N dC? A\ dC?, (4.4)

where C® denotes the 3 form RR field under which the D4 brane is magnetically
charged. This coupling is analogous to the Chern-Simons term in eq. (2.I7%) and
ensures that the [ BY 9 can take only N distinct values.

The leading dependence of the partition function on the discrete fluxes can now
be determined. It is

Z[ngj) = %81 (4.5)

= A272 271"an
1 C A“L
+Ce Zcos( N )

1J

The overall exponential factor arises from the free energy of the black hole geom-
etry; an explicit calculation yields that Spy ~ N?(gsNvo/T)T*L*. The second
term arises from the one fundamental string instanton sector, the corresponding ex-
ponential factor comes from the minimal area of the world sheet which sweeps out
the appropriate two-cycle. By considering large Wilson loops one can easily show
that the theory confines. Reasoning entirely analogous to that in section 2.3 shows
that the constant, A%, is the string tension of the electric flux tube in the theory.
Numerically,

2
A2 = % 3 (gSN\/JT) T2, (4.6)

Finally, C is the contribution of the determinant for fluctuations about the minimal
area surface in the string path integral, it includes a factor proportional to L*T?
which arises from zero modes which correspond to moving the two-cycle in the two
directions transverse to it. The equation eq. (4.5), is the analogue of eq. (8:1) in the
three-dimensional case. The dependence on the electric fluxes can be obtained by
doing a Fourier transform in the ny, variables.
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A few comments are now in order. First, as in the finite temperature four-
dimensional theory, the answer we obtain here has a simple interpretation in the
gauge theory. The leading dependence on the discrete fluxes arises from electric flux
tubes whose world volume sweeps out the relevant two-cycle of the torus. Second,
eq. (4.5) is the leading contribution for a big torus, i.e. when AL > 1. Subleading
terms arise from multiply wrapped and multi string configurations. Third, we have
neglected both o corrections and g, corrections here. It is important to emphasize
that neglecting the o' corrections in particular requires us to work in a region of
coupling constant space where the four-dimensional theory is much different from
ordinary QCD. Extra Kaluza-Klein states in the theory have a mass of order the
temperature 7. The 't Hooft coupling of the four- dimensional theory at the cutoff
scale, T, is A2 = g;Nva/T. Keeping the curvature small in string units requires,
A2 > 1. Thus the four-dimensional theory is already strongly coupled at the cutoff
scale.® Finally, from the point of view of the five-dimensional theory there can be
additional twists along planes involving the temperature direction. The dependence
on such twists arises due to D-2 branes whose world volume is a three cycle dual to the
two-cycle along which the twisted boundary conditions are turned on. These twists
do not have any intrinsic significance from the point of view of the four-dimensional
theory.

The 4-torus has a geometric SL(4,7Z) duality symmetry and it is easy to verify
that the answer obtained here, eq. (4.5), has that symmetry too once the discrete
fluxes n;; are appropriately transformed. The significance of this duality symmetry
was first realized by 't Hooft who formulated the conditions for invariance under it
in terms of various duality relations. Of particular interest are 90° rotations in the
euclidean theory, involving the time and one space directions, which exchange some
of the electric and magnetic fluxes. The corresponding 't Hooft duality relations
place strong constraints on the partition function which in turn constrain the phase
structure of the gauge theory. It is worth sketching out how these general consider-
ations apply in the present context. Let Z[€,m] denote the partition function as a
function of the electric and magnetic fluxes (this is a discrete Fourier transform of
eq. (45)) and let us consider it in the the infinite volume limit, L — oco. One can
show that the duality relations allow for a solution which in this limit has the behav-
ior: Z[0,m]/Z[0,0] — 1, while Z[e,m]/Z[0,0] — 0. This implies that the free energy
of a purely magnetic flux tube goes to zero in this limit whereas that of an electric
flux tube diverges. Therefore, only electric flux tubes are stable and the theory is
confining. In the large N limit under discussion here, we know beforehand from a
direct computation of the Wilson loop that the theory confines. Even so, it is reveal-
ing to explicitly compute the limiting behavior of Z[0,m]/Z|0,0] and Z|é,m]/Z]0, 0].
One finds that it is of the form mentioned above, consistent with confinement.

3 Alternatively, we see from eq. (:34-_&) that when A2 > 1, the string tension is bigger than the
cutoff scale T'.
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We end with a brief discussion of another approximation to QCD, the strong
coupling expansion in lattice gauge theory. The partition function as a function
of the discrete fluxes can be easily computed in this approximation and goes as

A2 . . . .
ATA 2“%), where A is the string tension. This is in agreement

Zlngy) ~ e cos(
with eq. (4.5). Let us briefly review how this result is obtained. The fundamental
degrees of freedom in lattice gauge theory are link variables. The action in terms
of these is defined by taking the product of all the links around a plaquette. The
leading contribution to the partition function which depends on the twisted boundary
conditions then arises from tiling a two cycle of the torus minimally. This gives
rise to the exponential dependence on the area. Once the two cycle is tiled the
integrals over the interior link variables can be done simply using the fact that?
fclUU;-'(UT)éc = o 5;. Finally, the integrals over the edge link variables can be
done after taking into account the twisted boundary conditions. Summing over both
orientations for tiling gives the cosine dependence. In fact, intuitively, one would
expect any confining theory to give rise to a dependence on the twisted boundary
conditions of the form, eq. (4.5). Such a dependence can only arise from a non-
local operator, the Wilson loop. This operator costs exponentially in the area in
the confining theory and gives rise to the cosine term simply because it measure the
flux by Stokes theorem. It is reassuring that our calculation above agrees with this

expectation and with the strong coupling expansion.
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