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1. Introduction

In this paper we calculate the finite temperature partition function of the Yang-Mills

theory with sixteen supercharges on a torus as a function of discrete electric and

magnetic fluxes. We perform this calculation in the large N limit using the dual

supergravity description in four and five dimensions [1, 2]. In this description, the

thermal state of the gauge theory maps to a black hole [3] and we will show that

the discrete flux in the gauge theory maps to a kind of quantum hair for the black

hole. Thus, our calculation will reduce to determining how the partition function of

a black hole depends on its quantum hair.

The study of discrete fluxes in non-abelian gauge theories was initiated by ’t

Hooft [4] following the analogies between confinement and superconductivity. Mag-

netic lines of force are expelled from the superconducting ground state and can

penetrate the medium only in the form of thin flux tubes. Magnetic flux tubes ex-

ist as Nielsen-Olsen vortices and are locally stable. If a pair of magnetic monopole

and antimonopole is introduced in the medium then the total flux between them is

localized in a flux tube that connects the two charges giving rise to a linear con-

fining potential between the two. Qualitatively, confinement in non-abelian gauge

theories is the electric analog of superconductivity where the electric flux tubes are

locally stable and can then be interpreted as QCD strings. To put this idea on a

more quantitative basis, ’t Hooft considered the gauge theory on a torus. This allows

for the introduction of topological discrete fluxes in the pure gauge theory without

quarks which are the analogues of electric and magnetic fluxes in the U(1) theory. By
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examining the dependence of the free energy on these fluxes, one can investigate the

stability of the flux tubes to gain insight about the phases of the theory. In this paper

we investigate some of these questions using the correspondence with supergravity

which provides an explicit realization of these ideas.

By now a fair amount is known about the finite temperature SYM theory we

will consider here. For example, the spatial Wilson loop has been calculated in the

theory and shows area law behavior thereby indicating that the theory has locally

stable flux tubes [5, 6]. In this paper we will follow the general framework discussed

in [7, 8] for including discrete flux in supergravity. Our calculation will be done

in an approximation where the string tension of these flux tubes is much bigger

than the size of the torus. As we will see, in this approximation, the dominant

configurations contributing to the partition function have a simple interpretation

in the gauge theory: they correspond to the worldsheets of flux tubes wrapping

appropriate two cycles of the torus. We will do the calculation in both the four-

dimensional and the five-dimensional theory. The latter, at energies low compared to

the temperature, should flow to the four-dimensional pure glue gauge theory without

supersymmetry. Unfortunately, as is well known, in the supergravity regime we use

here, there are extra Kaluza-Klein states in the theory which do not decouple [3, 9].

Thus, from the point of view of the non-supersymmetric gauge theory, our calculation

is at best an approximation, somewhat analogous to the strong coupling expansion

in lattice gauge theory. In fact, as we will show, the dual supergravity yields an

answer which, in its important quantitative features, agrees with the strong coupling

expansion. These features are in accord with the expectation about confining theories

and are likely to be universal.

It is also useful to consider the discussion in this paper from the perspective of the

supergravity theory. As was mentioned above, a black hole in the bulk is represented

as a thermal state in the boundary gauge theory. The classical no-hair theorems of

black hole physics then turn into a familiar statement in the gauge theory: a thermal

state is only characterized by its mass, angular momentum, and various conserved

global charges. But as is well known [10, 11], black holes can also possess quantum

hair. One might wonder what their description is in the boundary theory. For the

quantum hair considered in this paper they turn out to be related to the the discrete

electric and magnetic fluxes of the gauge theory.

This paper is organized as follows. The four-dimensional theory with N = 4 su-

persymmetric is discussed in section 2. The AdS/CFT correspondence for the black-

hole geometry is reviewed in section 2.1, discrete fluxes from the gauge theory and su-

pergravity points of view are described in section 2.2 and section 2.3 respectively, and

the calculation of the partition function is discussed in section 2.4. Nonsupersymmet-

ric gauge theories in three and four dimensions are discussed in section 3 and section 4

respectively starting with a supersymmetric theory in one extra dimension compact-

ified on a circle with thermal boundary conditions that break supersymmetry.
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2. Discrete fluxes in the AdS/CFT correspondence

2.1 The black hole geometry

In this section we consider the N = 4 supersymmetric SU(N) Yang-Mills theory on

a spatial torus T3 at finite temperature T . The boundary spacetime M in this case

has topology T3×S1. By the AdS/CFT correspondence [1, 3], this boundary theory
is dual to a bulk supergravity theory on B × S5 where B is an Einstein manifold
that hasM as the boundary at infinity. The relevant manifold B is well studied and

corresponds to a euclidean Schwarzschild black hole in AdS space [12]. In Poincaré

coordinates, the metric is1

ds2 =

(
r2

R2
− cG5M

r2

)
dx20 +

dr2

( r
2

R2
− cG5M

r2
)
+
r2

R2
(dx21 + dx

2
2 + dx

2
3) , (2.1)

where R = (4πgsα
′N)1/4 is the radius of curvature of AdS space, G5 = G10/(R5π3) is

the five-dimensional Newton’s constant, M is the mass of the black hole, and c = 32
3π
.

The black hole horizon is at

rH = (cG5M R2)1/4 (2.2)

and the temperature is

T =
1

π

rH
R2

. (2.3)

The coordinates xi (i = 1, 2, 3) parametrize a 3-torus. For simplicity we consider

a cubic torus of size L so that xi are identified with xi+L. Note that the physical size

of the torus at the radial position r in the bulk is rL/R. In the black hole geometry,

r is bounded from below by the radius of black hole horizon rH . As long as rHL/R is

large compared to the string scale, we expect that the dual supergravity description

will be well-defined. By contrast, at zero temperature (M = 0 in the above formulae),

the size of the torus becomes vanishingly small as r goes to zero. The supergravity

description then becomes inadequate at small r because the string modes that wind

around the torus become massless near r = 0 and have to be included in the low

energy description.

2.2 Fluxes in the boundary gauge theory

The finite temperature partition function of the Yang-Mills theory on the boundary

is obtained by computing the euclidean path integral on the 4-torus T3 × S1. In
the N = 4 supersymmetric theory, the center ZN of SU(N) acts trivially because all

fields transform in the adjoint representation. Therefore, one is really dealing with

an SU(N)/ZN gauge bundle on a 4-torus. Such gauge bundles are labeled by six

1Since we are working in a situation where the spatial boundary is T3 as opposed to S3, the

relevant solution is obtained by taking the large mass limit of the metric in [3].
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topological invariants nµν = −nνµ (µ, ν = 0, . . . , 3) which are all integers modulo N .
We would like to calculate the dependence of the partition function on these integers.

Let us briefly review the origin of these integers and their physical interpreta-

tion [4, 13]. In the path integral, one sums over field configurations that are periodic

up to a gauge transformation.2 This allows for twisted gauge fields. For example, in

the x1 − x2 plane with x0 and x3 fixed, a field Φ satisfies the boundary condition
Φ(L, x2) = Ω1(x2)Φ(0, x2) ,

Φ(x1, L) = Ω2(x1)Φ(x1, 0) . (2.4)

Here ΩΦ denotes schematically the appropriate gauge transformation of Φ by Ω:

Aµ → ΩAµΩ−1 − i∂µΩΩ−1 for the gauge fields, λ → ΩλΩ−1 for the gauginoes, and
similarly for the scalars. For consistency, the gauge transformations must satisfy the

cocycle condition

Φ(L,L) = Ω1(L)Φ(0, L) = Ω1(L)Ω2(0)Φ(0, 0)

= Ω2(L)Φ(L, 0) = Ω2(L)Ω1(0)Φ(0, 0) . (2.5)

Therefore, Ω1(L)Ω2(0) and Ω2(L)Ω1(0) must be equal up to an element of the center

ZN ,

Ω1(L)Ω2(0) = exp

(
2πin12
N

)
Ω2(L)Ω1(0) . (2.6)

The integer n12 is defined modulo N and is a topological invariant because it cannot

be changed by a periodic gauge transformation or by smooth deformations of the

field. There are altogether six independent integers nµν corresponding to the six

2-cycles of the 4-torus that completely specify the topological class of the gauge

fields.

The integers {nij} (i, j = 1, 2, 3) are related to the magnetic flux on the torus.
For example, consider the contractible Wilson loop Ω1(L)Ω2(0)Ω

−1
1 (0)Ω

−1
2 (L) that

measures the total magnetic flux passing through the x1−x2 plane. We immediately
see from the cocycle condition eq. (2.6) that there is n12 units of magnetic flux in the

x3 direction for the twisted gauge fields considered above. In general, one can define

the integer mi ≡ 1
2
εijknjk as the magnetic flux in the ith direction.

The physical interpretation of n0i is clearest in the hamiltonian formalism. In the

gauge A0 = 0, the theory has a residual invariance under time-independent gauge

transformations. States in the physical Hilbert space must furnish a representa-

tion of this invariance group. For a gauge transformation Ω(x) that is continuously

connected to the identity, one must choose the trivial representation for the corre-

sponding operator consistent with Gauss law:

Ω̂(x)|ψ〉 = |ψ〉 . (2.7)
2The fermions are actually periodic on T3 and antiperiodic on S1 but we will ignore this dis-

tinction in this subsection.
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However, for the SU(N)/ZN theory on T
3 there are quasiperiodic gauge transforma-

tions that are is not continuously connected to the identity. A quasiperiodic gauge

transformation is periodic modulo an element of the center. For example, consider a

gauge transformation that is quasiperiodic in the x3 direction

Ω[k3](x1, x2, L) = Ω[k3](x1, x2, 0) exp

(
2πik3
N

)
(2.8)

and periodic in the x1, x2 directions. Two such gauge transformations that are labeled

by the same integer k3 have the same action on physical states because they differ by

a homotopically trivial gauge transformation that leaves such states invariant as in

eq. (2.7). Such gauge transformations obviously generate a ZN group and moreover

commute with the hamiltonian. One can choose the physical states to be eigenstates

of this gauge transformation

Ω̂[k3]|ψ〉 = exp
(
2πik3e3
N

)
|ψ〉 , (2.9)

for some integer e3 modulo N . To see that the integer e3 can be interpreted as the

electric flux in the x3 direction, consider the action of Ω[k3] on a Wilson loop

A(C3) = trP exp
(
i

∫
C3

dxµAµ

)
(2.10)

that runs along a curve C3 in the x3 direction at x1 = x2 = 0. It is clear that

Ω̂[k3]A(C3) = A(C3)Ω̂[k3] exp
(
2πik3
N

)
. (2.11)

Thus A(C3) acting on a state increases the value of e3 by one unit. Since the Wilson
loop creates a line of electric flux, it is natural to regard e3 as the discrete electric

flux.

One can project onto states with a well defined electric flux e3 by using the

projection operator

P(e3) = 1
N

∑
k3

exp

(−2πik3e3
N

)
Ω̂[k3]. (2.12)

The finite temperature partition sum over states with a specified value of e3 is then

given by

Z(e3) ≡ Tr
[
P (e3) exp

(−H
T

)
] =
1

N

∑
k3

exp

(−2πik3e3
N

)
Tr[Ω̂[k3] exp

(−H
T

)]
.

(2.13)

It is easy to see that each term Tr[ Ω̂[k3] exp (−H/T )] in the sum can be expressed
as a euclidean functional integral over gauge fields that are twisted in the x0 − x3

5
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plane as in eq. (2.4) with n03 = k3. The partition function Z(e3) is then obtained

as a discrete Fourier transform using eq. (2.13). Thus, the integer k3 is conjugate to

the electric flux e3.

More generally, the electric fluxes {ei} are the quantum numbers of the Z3N
electric symmetry and are conjugate to the integers {ki ≡ n0i}. In addition, we also
have Z3N magnetic symmetry. The integersmi that we defined earlier can equivalently

be regarded as the quantum numbers of the this magnetic symmetry in the dual

description.

2.3 Fluxes in the bulk supergravity

We would like to identify the topological Z6N symmetry and the quantum numbers

that correspond to the discrete electric and magnetic fluxes in the dual supergravity

theory. We will follow the general framework described in [8, 7] although the specific

context here is somewhat different.

Consider, for example, the electric flux e3 which is the quantum number of the ZN
symmetry that is generated by Ω̂[k3]. A defining property of Ω̂[k3] is the commutation

relation eq. (2.11) with the Wilson loop A(C3). In the AdS/CFT correspondence, a
Wilson loop A(C) that runs along a curve C in the Yang-Mills theory is identified
with the boundary of a fundamental string worldsheet D that extends in the bulk

geometry [5, 6]. For A(C3), the corresponding string worldsheet D3r extends, at a
fixed euclidean time x0, in the x3 − r plane such that ∂D3r = C3. The worldsheet

couples to the NS-NS 2-form field BNS through the coupling

exp

(
i

∫
D3r

BNS
)
. (2.14)

In particular, if we have a nonzero expectation value

a =

∫
D3r

BNS (2.15)

in the bulk then the worldsheet would pick up a phase eia. It follows from the

commutation relations eq. (2.11) that the operator that corresponds to Ω̂[k3] would

shift this expectation value

a→ a+ 2π
k3

N
. (2.16)

We will see that in the supergravity theory, there is a natural candidate for this ZN
shift symmetry. Obviously, the generator of this symmetry would be the momentum

conjugate to a which we can find from the classical action and the corresponding

translation operator can then be identified with Ω̂[k3].

The relevant part of the supergravity lagrangean on the euclidean AdS space is

L = 1

2g2s

(|dBNS|2 + |dBR|2)+ iN

4π

(
BNS ∧ dBR − BR ∧ dBNS) . (2.17)

6
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The first two terms are the usual kinetic terms restricted to the AdS part. The last

two terms are topological and arise from the Chern-Simons coupling in ten dimensions

of the two B-fields to the 5-form field strength G5. The factor of N arises from the

integration of G5 over the sphere S
5 and corresponds to the total 5-form flux of N

D3-branes.

Since we are interested in spatially constant modes of the B fields, we can inte-

grate over space for the relevant modes and reduce this problem to particle mechanics.

Let us define

b =

∫
Σ12

BR , (2.18)

for a nontrivial cycle Σ12 along x1 − x2 directions. Then the lagrangean after an

integration by parts reduces to

L =
1

2

(
µ1ȧ

2 + µ2ḃ
2
)
+
iN

2π
aḃ . (2.19)

Here the dot indicates a derivative with respect to the euclidean time. The regularized

effective masses µ1, µ2 arise from integrating the r dependence of the metric in the

original lagrangean but their precise form will not be important in what follows.

This is the lagrangean of a particle moving on a plane in the presence of a constant

magnetic field of magnitude N/2π perpendicular to the plane. We also know that

the 2-form B fields are both compact gauge fields because both the D-string and the

F-string charge is quantized. Consequently, their zero modes a and b are compact

coordinates with period 2π.

Now, without the coupling to the magnetic field, the lagrangean clearly has a

U(1) shift symmetry a→ a+ c for an arbitrary periodic constant c. The coupling to

the magnetic field breaks this U(1) to a ZN subgroup. This follows from the the fact

that e−
∫
L would be invariant under the shift of a→ a+2π/N because b has period

2π. It will suffice for our purposes to consider the limit of large magnetic field and

drop the kinetic terms. The remaining lagrangean is automatically first order and

we can readily identify b as the momentum conjugate to a. They would satisfy the

Heisenberg commutation relation

[â, b̂] =
2πi

N
. (2.20)

Using this commutator it then follows that in our original problem we have the

operator relation

exp

(
ik3

∫
Σ12

B̂R
)
exp

(
i

∫
D3r

B̂NS
)
=

= exp

(
ik3

∫
Σ12

B̂R
)
exp

(
i

∫
D3r

B̂NS
)
exp

(
2πik3
N

)
, (2.21)
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which is identical to the relation eq. (2.11) that we were seeking. It implies the

operator identification

Ω̂[k3]↔ exp
(
ik3

∫
Σ12

B̂R
)
. (2.22)

A state in supergravity with a well defined flux e3 is an eigenstate of this operator

with ∫
Σ12

BR =
2πe3
N

. (2.23)

By an analogous reasoning one can see that turning on m3 units of magnetic flux

in the x3 direction then corresponds to turning on an expectation value∫
Σ12

BNS =
2πm3
N

. (2.24)

This also follows from the SL(2,Z) duality symmetry which in the type IIB theory

interchanges BR and BNS and in the Yang-Mills theory on the D3-brane worldvolume

exchanges electric and magnetic fluxes. Under this duality the Wilson loop A(C)
that creates electric flux tube gets interchanged with the ’t Hooft loop B(C) which
creates a magnetic flux tube. In the supergravity theory, B(C) is thus a boundary of
a D-string worldsheet. In general, turning on the fluxes ei and mi in the Yang-Mills

theory corresponds in the supergravity to turning on the expectation values∫
Σij

BR =
2πεijkek
N

,

∫
Σij

BNS =
2πεijkmk

N
. (2.25)

2.4 Finite temperature partition function

Having identified the discrete fluxes in the supergravity description we now turn

to calculating the finite temperature partition function. When the 2-form gauge

potentials are zero, we saw in section 2.1 that the relevant configuration in the

supergravity theory is a black hole. What happens when the gauge potentials are

turned on? A careful quantization of the zero modes as in [7] shows that, when the

gauge potentials are constant and take the quantized values, there is no extra cost

in energy. In turn this means that the metric, the 5-form field strength, and the

dilaton stay unchanged from their values in the black hole background. Thus the

discrete fluxes do not change the classical behavior of the black hole and the related

thermodynamic quantities.

Once quantum fluctuations around the black holes background are included

though a dependence on the fluxes does arise. These quantum fluctuations include

euclidean fundamental string worldsheets that wrap around non-trivial 2-cycles in

the bulk geometry. These can be viewed as F-string instantons and in this instanton

sector the partition function depends on the expectation value of the 2-form gauge

potential BNS . One can also have D-string instantons that are sensitive to BR and

more generally (p, q)-string instantons [14, 15]. The discrete fluxes thus manifest

themselves in the dual supergravity theory as quantum hair [10, 11].
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Let us first consider the case where a single component of magnetic flux m3 is

turned on. From eq. (2.24), we see that the quantum fluctuations of relevance then

will involve fundamental string euclidean worldsheets that wrap around Σ12. We

can organize the partition function as a sum over configurations that wrap n times

around the 2-cycles:

Z = Zsugra +
∑
n

Z(sugra+n strings) (2.26)

The leading term Zsugra is the contribution of the pure supergravity theory without

any extra strings. It is determined by the black hole solution, eq. (2.1), to be:

Zsugra = e
(c2N2T 3L3) , (2.27)

where c2 =
π2

8
. To precisely calculate the next term Z(sugra+1string) we would really

need to know type IIB string theory on the black hole background or at least the

sigma model in the Green-Schwarz formalism. We will estimate here the cost of

including the string instanton using the Nambu-Goto action:

Z(sugra+1string) = e
(c2N2T 3L3)

∫
DXe−SNG+i

∫
BNS . (2.28)

The dominant contribution that is sensitive to the magnetic flux eq. (2.24) is obtained

by the minimum area surface Σ12 that extremizes the Nambu-Goto action. From

eq. (2.1) we see that this surface arises from a string world sheet located at the

horizon in the radial direction which spans the x1 − x2 plane at some definite value
of x3.

The area of this minimal surface in units of the fundamental string tension is,

AH

2πα′
=
1

2π

r2HL
2

R2α′
. (2.29)

Including the effects of an anti-string (or equivalently a string oppositely wound

in the x1 − x2 plane) gives:

Z(sugra+1string) = e
(c2N2T 3L3) 2CF e

−AH/(2πα′) cos
(
2πm3
N

)
. (2.30)

The coefficient CF arises in the string path integral from fluctuations around the

minimal area surface. It includes a contribution, LT , due to the zero mode associated

with the location of the surface in the x3 direction, and the contribution due to non-

zero modes as well. We also need to include the fluctuation of the fermionic modes.

In particular, we need to worry if there are fermionic zero modes that might make

the contribution vanish as a consequence of spacetime supersymmetry. We expect

however that the zero modes of the spacetime Green Schwarz fermions will be lifted

because the thermal boundary condition breaks supersymmetry completely.
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Using eq. (2.3), eq. (2.29), the minimum area can be re-expressed as:

e−AH/(2πα
′) = e−π

3/2
√
gsNT 2L2 . (2.31)

Not surprisingly the coefficient π3/2
√
gsNT

2 is identical to the string tension of the

electric flux tube in the finite temperatureN = 4 theory. From the supergravity point

of view, the theory has stable flux tubes because at finite temperature the classical

geometry is given by the black hole geometry, eq. (2.1), in which the value of the

metric parallel to the brane goes to a minimum non-zero value at the horizon [3, 16].

Thus the behavior of large Wilson loops is determined by the geometry at the horizon

which also determines the exponential factor, eq. (2.31), above.

The contributions to the partition function from the single string instanton in

the case of a general electric and magnetic flux can now be written down by including

the contributions of F and D strings wrapping the corresponding two-cycle:

Z(sugra+1string)[mj , ei] = e(c2N
2T 3L3)

[
2CFe

−π3/2√gsNT 2L2
∑
j

cos

(
2πmj
N

)
+

+ 2CDe
−π3/2
√
N/gsT 2L2

∑
i

cos

(
2πei
N

)]
. (2.32)

There are subleading contributions to eq. (2.32) which arise from string-worldsheets

that either wrap multiply or wrap more than one two-cycle simultaneously. How-

ever, these contributions are exponentially suppressed compared to those included

in eq. (2.32) as long as

√
Ngs T

2 L2 � 1 ,
√
N

gs
T 2L2 � 1 . (2.33)

For small gs the first condition is more restrictive. Physically, eq. (2.33) means that

the torus has a size much bigger than the electric and magnetic string tensions. When

this is true the contributions to the partition function from multi-string sectors are

also suppressed. In addition, there are subleading contributions from (p, q) string

worldsheets which we discuss shortly in eq. (2.34). Eq. (2.32) thus gives the leading

dependence of the partition function on the discrete fluxes. It is the main result of

this section.

Some comments are now in order. First, it is worth noting that the minimum

area surface which gave the dominant contribution to eq. (2.32) above has a simple

interpretation in the gauge theory as well. It corresponds to an electric or magnetic

flux tube, which is small at first but grows with time to span the full 2-cycle. Second,

we have neglected terms which are down in the α′ and gs expansions here. Thus our
result pertains to the gauge theory at large N and strong ’t Hooft coupling. Third,

the result above does not apply to the zero temperature case. In this limit the

condition, eq. (2.33), is no longer met and the contributions from multiply-wound

and multi-string states cannot be neglected.
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Finally, to understand the SL(2,Z) transformation properties of eq. (2.32) one

needs to include the effects of general (p, q) strings as well. Doing so gives a partition

function:

Z[mi, ej](τ) =
∑
i,j

∑
p,q

Cp,q(τ) exp (−ATp,q(τ)) cos
[
2π

N
(−p ·m+ q · e)

]
. (2.34)

Here, τ = χ + ie−φ is the axion-dilaton field and Cp,q(τ) is the determinant of
small fluctuations which can in general depend on τ . The string tension Tp,q(τ)

of the (p, q) string and the area of the two-cycle A = 2π5/2α′
√
NT 2L2 are both

measured in the Einstein metric. Both (ei, mi) and (pi, qj) transform as vectors

under the SL(2,Z) transformation, and τ transforms as usual by fractional linear

transformation. Keeping this in mind we see that the last two terms of eq. (2.34)

are invariant. Determining the full transformation properties of Z[mi, ej] requires

additional information about Cp,q though which is beyond the scope of this paper.

3. Non-supersymmetric gauge theory in three dimensions

At energies smaller than the temperature, the four dimensional theory reduces to

a non-supersymmetric theory in three dimensions. The fermions and scalars of the

N = 4 theory acquire temperature dependent masses leaving the pure glue degrees

of freedom at low energies. The results of the previous section can be reinterpreted

to tell us about the behavior of this theory. Before proceeding though it is important

to emphasize that the resulting theory is quite different from the usual definition of

three-dimensional QCD. From the three-dimensional point of view the temperature

acts like a cutoff. We mentioned in the previous section that the confining scale

in the theory is of order (gsN)
1/4T . Thus, in the limit of strong ’t Hooft coupling

considered here, the theory is already strongly coupled at the cutoff scale. Despite

these differences it is interesting to ask how the three-dimensional theory behaves

as a function of the discrete fluxes. The resulting answers are analogous to those

obtained in the strong coupling expansion of lattice gauge theory which, despite

differences with the continuum theory, are often illuminating.

We denote the two spatial directions of the three-dimensional theory as x1, x2 and

the time direction as x3. There is one integer m3 which characterizes the magnetic

flux in the x1 − x2 plane. There are two electric fluxes in the x1, x2 directions

respectively, characterized by the integers, e1, e2. We are interested in the partition

function of this theory when both the spatial directions and the time direction are

taken to be circles of length L, and periodic boundary conditions are imposed in all

three directions. As was discussed in section 2 the dependence on the electric flux ei
is related by a Fourier transform to the partition function obtained by introducing

twisted boundary conditions in the x1 − x3 and x2 − x3 directions.
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In the supergravity theory the background geometry describing the theory is of

course still described by the black hole, eq. (2.1). However, in the three-dimensional

setting the coordinate axis have a somewhat different interpretation. x0 can be re-

garded as the extra spatial direction along which supersymmetry breaking boundary

conditions are imposed, while x3 is the euclidean continuation of the time direction.

The leading dependence of the partition function on the fluxes is therefore ob-

tained by keeping the first term in eq. (2.32) above:

Z[m3, n1, n2] = e(c2N
2T 3L3) 2CF e

−π3/2√gsNT 2L2 ×
×
[
cos

(
2πm3
N

)
+ cos

(
2πn1
N

)
+ cos

(
2πn2
N

)]
. (3.1)

Turning on the twists in the x1 − x2, x1 − x3 and x2 − x3 planes, corresponds in the
supergravity theory to turning on expectations values for the BNS field along the

appropriate two-cycle, eq. (2.24).

Note that in eq. (3.1) there is no dependence on BR because turning on an

expectation value for BR field corresponds in the gauge theory to twisted boundary

conditions in a plane involving x0, the extra compactified direction, which has no

intrinsic significance from the point of view of the three-dimensional theory.

4. Non-supersymmetric gauge theory in four dimensions

We turn next to discussing a non-supersymmetric four-dimensional theory. In anal-

ogy with our discussion of the previous section we will start with a five-dimensional

theory realized by considering the world volume theory of D4 branes and break

supersymmetry by compactifying one of the brane directions on a circle with super-

symmetry breaking boundary conditions [3, 9]. We compute the partition function

of this theory as a function of the various electric and magnetic fluxes.

The supergravity solution is given by the near-horizon geometry of a configura-

tion of N near-extremal D4 branes [17]. The metric is

ds2 =

(
r3/2

R3/2

)(
1− r3H

r3

)
dx20 +

(
R3/2

r3/2

)
dr2(
1− r3H

r3

) +
+
r3/2

R3/2
(dx21 + dx

2
2 + dx

2
3 + dx

2
4) +
√
rR3dΩ24 , (4.1)

and the dilaton is

exp (φ) = gs

( r
R

) 3
4

, (4.2)

with R3 = πgsN(α
′)3/2. From the point of view of the four-dimensional theory, x0

is the extra spatial direction along which supersymmetry breaking boundary condi-

tions are imposed, x1, x2, x3 are the three spatial directions and x4 is the euclidean

continuation of the time direction of the four-dimensional theory.
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We are interested in the partition function of the gauge theory when the the three

spatial and euclidean time directions are each compactified on a circle of length L.

There are six independent two cycles in this case and correspondingly six integers,

modulo N, which characterize the twisted boundary conditions that can be intro-

duced. Three of these directly correspond to the magnetic flux, while the remaining

three, which correspond to twisted boundary conditions involving x4, can be related

to the electric flux by a Fourier transform.

By reasoning similar to that in section 2 we find that turning on twisted boundary

conditions along any of these six two-cycles corresponds to turning on an expectation

value for
∫
BNS , with the integral being evaluated along the two-cycle:

2πnIJ
N

=

∫
ΣIJ

BNS , (4.3)

where I, J go from 1, . . . , 4. The Supergravity lagrangean contains a coupling of the

form:

δL =

∫
BNS ∧ dC3 ∧ dC3 , (4.4)

where C3 denotes the 3 form RR field under which the D4 brane is magnetically

charged. This coupling is analogous to the Chern-Simons term in eq. (2.17) and

ensures that the
∫
BNS can take only N distinct values.

The leading dependence of the partition function on the discrete fluxes can now

be determined. It is

Z[nIJ ] = e
SBH

[
1 + C̃ e−Λ

2L2
∑
IJ

cos

(
2πnIJ
N

)]
. (4.5)

The overall exponential factor arises from the free energy of the black hole geom-

etry; an explicit calculation yields that SBH ∼ N2(gsN
√
α′T )T 4L4. The second

term arises from the one fundamental string instanton sector, the corresponding ex-

ponential factor comes from the minimal area of the world sheet which sweeps out

the appropriate two-cycle. By considering large Wilson loops one can easily show

that the theory confines. Reasoning entirely analogous to that in section 2.3 shows

that the constant, Λ2, is the string tension of the electric flux tube in the theory.

Numerically,

Λ2 =
32

27
π3
(
gsN
√
α′T
)
T 2 . (4.6)

Finally, C̃ is the contribution of the determinant for fluctuations about the minimal

area surface in the string path integral, it includes a factor proportional to L2T 2

which arises from zero modes which correspond to moving the two-cycle in the two

directions transverse to it. The equation eq. (4.5), is the analogue of eq. (3.1) in the

three-dimensional case. The dependence on the electric fluxes can be obtained by

doing a Fourier transform in the nI4 variables.
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A few comments are now in order. First, as in the finite temperature four-

dimensional theory, the answer we obtain here has a simple interpretation in the

gauge theory. The leading dependence on the discrete fluxes arises from electric flux

tubes whose world volume sweeps out the relevant two-cycle of the torus. Second,

eq. (4.5) is the leading contribution for a big torus, i.e. when ΛL � 1. Subleading
terms arise from multiply wrapped and multi string configurations. Third, we have

neglected both α′ corrections and gs corrections here. It is important to emphasize
that neglecting the α′ corrections in particular requires us to work in a region of
coupling constant space where the four-dimensional theory is much different from

ordinary QCD. Extra Kaluza-Klein states in the theory have a mass of order the

temperature T . The ’t Hooft coupling of the four- dimensional theory at the cutoff

scale, T , is λ2 = gsN
√
α′T . Keeping the curvature small in string units requires,

λ2 � 1. Thus the four-dimensional theory is already strongly coupled at the cutoff
scale.3 Finally, from the point of view of the five-dimensional theory there can be

additional twists along planes involving the temperature direction. The dependence

on such twists arises due to D-2 branes whose world volume is a three cycle dual to the

two-cycle along which the twisted boundary conditions are turned on. These twists

do not have any intrinsic significance from the point of view of the four-dimensional

theory.

The 4-torus has a geometric SL(4,Z) duality symmetry and it is easy to verify

that the answer obtained here, eq. (4.5), has that symmetry too once the discrete

fluxes nIJ are appropriately transformed. The significance of this duality symmetry

was first realized by ’t Hooft who formulated the conditions for invariance under it

in terms of various duality relations. Of particular interest are 90◦ rotations in the
euclidean theory, involving the time and one space directions, which exchange some

of the electric and magnetic fluxes. The corresponding ’t Hooft duality relations

place strong constraints on the partition function which in turn constrain the phase

structure of the gauge theory. It is worth sketching out how these general consider-

ations apply in the present context. Let Z[~e, ~m] denote the partition function as a

function of the electric and magnetic fluxes (this is a discrete Fourier transform of

eq. (4.5)) and let us consider it in the the infinite volume limit, L → ∞. One can
show that the duality relations allow for a solution which in this limit has the behav-

ior: Z[0, ~m]/Z[0, 0]→ 1, while Z[~e, ~m]/Z[0, 0]→ 0. This implies that the free energy
of a purely magnetic flux tube goes to zero in this limit whereas that of an electric

flux tube diverges. Therefore, only electric flux tubes are stable and the theory is

confining. In the large N limit under discussion here, we know beforehand from a

direct computation of the Wilson loop that the theory confines. Even so, it is reveal-

ing to explicitly compute the limiting behavior of Z[0, ~m]/Z[0, 0] and Z[~e, ~m]/Z[0, 0].

One finds that it is of the form mentioned above, consistent with confinement.

3Alternatively, we see from eq. (4.6) that when λ2 � 1, the string tension is bigger than the
cutoff scale T .
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We end with a brief discussion of another approximation to QCD, the strong

coupling expansion in lattice gauge theory. The partition function as a function

of the discrete fluxes can be easily computed in this approximation and goes as

Z[nIJ ] ∼ e−Λ
2A cos(2πnIJ

N
), where Λ is the string tension. This is in agreement

with eq. (4.5). Let us briefly review how this result is obtained. The fundamental

degrees of freedom in lattice gauge theory are link variables. The action in terms

of these is defined by taking the product of all the links around a plaquette. The

leading contribution to the partition function which depends on the twisted boundary

conditions then arises from tiling a two cycle of the torus minimally. This gives

rise to the exponential dependence on the area. Once the two cycle is tiled the

integrals over the interior link variables can be done simply using the fact that4∫
dUU ij(U

†)lk = δik δ
l
j . Finally, the integrals over the edge link variables can be

done after taking into account the twisted boundary conditions. Summing over both

orientations for tiling gives the cosine dependence. In fact, intuitively, one would

expect any confining theory to give rise to a dependence on the twisted boundary

conditions of the form, eq. (4.5). Such a dependence can only arise from a non-

local operator, the Wilson loop. This operator costs exponentially in the area in

the confining theory and gives rise to the cosine term simply because it measure the

flux by Stokes theorem. It is reassuring that our calculation above agrees with this

expectation and with the strong coupling expansion.
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