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1. Introduction

In this note, we study the charges and tensions of Dirichlet branes and orientifold planes in

plane wave backgrounds [1]–[4]. In a general curved spacetime, the effective brane tension

that is measured from the interaction energy of two widely separated branes is expected

to receive α′ corrections. From the point of view of sigma model perturbation theory,

these corrections will be governed by the α′ corrections to the low energy DBI action

and will be given in terms of invariants constructed from the background curvature, field

strengths, and the geometric data of the D-brane embedding [5]. Typically, one would also

expect corrections that are nonperturbative in α′. From the point of view of the boundary

conformal field theory, the tension of a D-brane is related to the regularized dimension of

the state space of the CFT [6]. When formulating string theory in a curved background, it
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is an important consistency check whether the Dirac quantization condition [7] for the RR

charges is satisfied (see [8] for a discussion in the case of branes in group manifolds). The

pp-wave background provides another simple example of a background with a nontrivial

metric and Ramond-Ramond fields where exact worldsheet computation of the D-brane

interaction energy is possible.

We find that the brane tensions for half-BPS D-branes in pp-wave backgrounds are

identical to their values in Minkowski space. This nonrenormalization is in accordance with

the expectation based on the symmetry and the geometry of the plane wave background

but the reasons are different for ‘time-like’ branes that are longitudinal to the light-cone

directions x+, x− and for ‘space-like’ branes that are transverse to the light-cone directions.

Time-like branes have translation invariance along x− which implies that the D-brane

interacts only with those closed string states that have vanishing p−. For these modes,

the metric reduces to the Minkowski metric and the background appears flat. Note that

this holds for the full interaction potential and not only for widely separated branes. In

other words, the one point functions of all closed string modes and not just the massless

ones are the same as in Minkowski space. The same result holds for orientifold planes and

their interactions with D-branes. It follows that for general orientifolds of the pp-wave

background, the orientifold gauge group is the same as in flat space (a particular case was

worked out in [9]).

Space-like branes are not translationally invariant along the light-cone directions. In

this case, the nonrenormalization follows instead from the special properties of the pp-

wave geometry and the fact that the half-BPS branes that we consider here are totally

geodesic [10]. In the pp-wave background, all local coordinate invariants constructed out

of the background fields vanish. This is essentially because the only nonvanishing compo-

nents of the background fields have a lower + index and there is no g++ to contract them.

Furthermore, for embeddings that are totally geodesic, the second fundamental form van-

ishes. Using the Gauss-Codazzi equations one can then conclude that all local invariants

constructed using the background fields and the embedding geometry also vanish. Hence

all α′ corrections to charge and tension are expected to vanish in this background. This

can be checked explicitly to leading order in α′ using the corrections to the DBI action

worked out in [11, 5] and is expected to be true to all orders. Note that this argument

depends on supersymmetry somewhat indirectly and only to the extent that the embedding

of the worldvolume of these branes is required to be totally geodesic in order to preserve

half the supersymmetries. Even if the corrections vanish to all order in α′, there remains

the possibility of corrections that are nonperturbative in α′, but the plane wave geometry

is topologically trivial and we do not expect any instanton corrections. It is neverthless

important to verify this expectation by an explicit worldsheet computation because the

pp-wave background is not a small deformation of Minkowski space in any sense. It is not

asymptotically flat and one cannot smoothly interpolate between flat space and the pp-

wave by varying a parameter. The dimensionful parameter µ that is often introduced can

be absorbed in a coordinate redefinition and is not a physical parameter of the background.

An exact worldsheet computation is therefore desirable to compare the brane tensions in

these completely different backgrounds.
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We compute the interaction potentials between a pair of branes and a brane and an

anti-brane in the pp-wave limit of AdS5 × S5 (henceforth denoted by PP10) and AdS3 ×
S3 × R4 (henceforth denoted by PP6 × R4). Strings moving in these backgrounds can

be quantized in the light-cone Green-Schwarz formalism [12, 13]. D-branes in these back-

grounds have been constructed in [14]–[20] and aspects of their interactions were discussed

in [21, 22, 23]. The branes we consider here all preserve half of the kinematical and half

of the dynamical supersymmetries and can be either spacelike or timelike. We calculate

the contribution from the exchange of masssless supergravity modes from the low energy

supergravity and DBI action and find that it agrees with the string result to all orders

in the parameter µ provided that the charges and tensions take the same values as in

Minkowski space.1 In agreement with [21], we find that the force between two parallel

spacelike D-branes in PP10 does not vanish. For spacelike branes in PP6 × R4 however,

the brane-brane potential is zero. This can be understood from the fermionic zero modes

in the open string description.

The computation of interaction energy is of interest also from the point of view of

the dual gauge theory. In the dual description, a single D-brane corresponds to a defect

conformal field theory (dCFT) [24]–[30]. The interaction energy between two D-branes

is expected to correspond to the Casimir energy between the two defects. The precise

value of the interaction energy from the string computation thus gives a prediction for

the corresponding quantity in the dual theory. Factorizing the string cylinder diagram in

the closed string channel gives one point functions of off-shell closed string states emitted

from the D-brane. These correspond to one-point functions of various ambient operators in

the dCFT. It would be interesting to compare some of these predictions by a gauge theory

computation. For timelike branes, the vanishing of the one point functions for closed string

states with nonzero p− corresponds to the vanishing of one point functions of ambient gauge

theory operators with nonzero J charge as a consequence of conservation of J charge in

the dCFT. To compare with the nonzero tadpoles of offshell gravitons with vanishing p−
however would require a nontrivial computation in the dCFT and we leave this problem

for future work.

This note is organized as follows. Space-like branes are discussed in sections § 2 and

§ 3 and time-like branes are discussed in §4. The details of the supergravity calculation of

the massless exchanges are given in appendix A. The supergravity calculation requires the

knowledge of the exact propagators for the tensor mode fluctuations in this background

which we derive explicitly in the light-cone gauge.

2. Spacelike branes in PP10

The PP10 background is given by (see appendix A.1 for more details on our conventions):

ds2 = 2dx+dx− − µ2xIxI(dx+)2 + dxIdxI

RI++J = −µ2δIJ R++ = 8µ2

F+1234 = F+5678 = 4µ (2.1)

1In [22], a calculation to leading order in µ was performed for the D-instanton in PP10 .
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where I = 1, . . . , 8. The Ramond-Ramond background breaks the SO(8) acting on the xI

to SO(4) × SO′(4), the first factor acting on xi, i = 1, . . . , 4 and the second one acting

on xi
′
, i′ = 5, . . . , 8. Denoting a spacelike D-brane with m worldvolume directions along

the xi and n worldvolume directions along the xi
′
by (m,n), the branes preserving half of

the kinematical and half of the dynamical supersymmetries are of the type (m,m+2) (or,

equivalently, (m+2,m)) with m = 0, 1 or 2 [14, 10]. Hence we are to consider D1, D3 and

D5-branes. These are to be placed at the origin of the SO(4) × SO′(4) directions in order

to preserve the aformentioned supersymmetries. We will calculate the interaction energy

between pairs of (anti-) D-branes separated along the x+, x− directions.

2.1 String calculation

The string theory calculation of the interaction energy between a pair of D-branes of the

same dimension was performed in [21]; we will briefly review it here in order to extract the

contribution from the lowest lying string modes.

We would like to perform the string calculation in the open string loop channel to get

a correctly normalized amplitude. However, in the standard light-cone gauge X+ = p−τ ,

X± are automatically Neumann directions. We can remedy this by using a nonstandard

light-cone gauge for the open string [21, 22] in which X± are Dirichlet directions. Here,

one quantizes the open strings stretching from one brane to the other in the gauge

X+ =
r+

π
σ

where r+ is the brane separation along the x+ coordinate and σ is the worldsheet coordi-

nate, σ ∈ [0, π]. The Virasoro constraints then determine X− to be a Dirichlet direction

as well2 In this gauge, the worldsheet action contains eight massive bosons and fermions

with mass

m =
µr+

π
.

The interaction energy between branes can be written as

ET = 2 · 1
2
iTr(−1)Fs ln(L0 − iε)

= i

∫ ∞

0

ds

s
Tr(−1)Fse−i(L0−iε)s (2.2)

where Fs is the spacetime fermion number and the trace is taken in the space of open string

states stretching between the branes. L0 is the generator of worldheet time translations

and can be written as L0 = p−H lc with H lc the light-cone hamiltonian. In writing (2.2), we

chose to work in lorentzian signature for spacetime with a suitable iε prescrition [31, 32].

For a Dp-brane interacting with an anti-Dp-brane, L0 receives a contribution from the

separation from the strings being stretched along the transverse directions x+, x− and

contributions from harmonic oscillators with frequencies ωk = sign(k)
√
k2 +m2, where k

2Note that this gauge is consistent with the Virasoro constraints only if the worldsheet is euclidean [22].
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is integer for the bosonic oscillators and half-integer for the fermionic ones. The resulting

interaction energy is

EDp−D̄p = i

∫ ∞

0

dse−εs

s
e
−2πis

(
2r+r−

4π2α′

)

(2i sin πms)3−p
(
f
(m)
4 (q)

f
(m)
1 (q)

)8

, (2.3)

where we have defined modified f -functions as in [21]:

f
(m)
1 (q) = q−∆m(1− qm) 1

2

∞∏

n=1

(
1− q

√
m2+n2

)
, (2.4)

f
(m)
2 (q) = q−∆m(1 + qm)

1
2

∞∏

n=1

(
1 + q

√
m2+n2

)
, (2.5)

f
(m)
3 (q) = q−∆

′
m

∞∏

n=1

(
1 + q

√
m2+(n−1/2)2

)
, (2.6)

f
(m)
4 (q) = q−∆

′
m

∞∏

n=1

(
1− q

√
m2+(n−1/2)2

)
, (2.7)

and ∆m and ∆′m are defined by

∆m = − 1

(2π)2

∞∑

p=1

∫ ∞

0
ds e−p

2se−π
2m2/s ,

∆′m = − 1

(2π)2

∞∑

p=1

(−1)p
∫ ∞

0
ds e−p

2se−π
2m2/s . (2.8)

For two parallel Dp-branes, the harmonic oscillator frequencies are ωk with k integer for

both the bosons and fermions. The fermionic “zero-modes” have frequency m and give a

nonzero contribution to the interaction energy. The result is

EDp−Dp = i

∫ ∞

0

dse−εs

s
e
−2πis

(
2r+r−

4π2α′

)

(2i sin πms)3−p (2.9)

The large distance behaviour of (2.3) and (2.9) comes from the leading behaviour of

the integrand for small s. This can be extracted using the modular transformations

f
(m)
1 (s) = f

(m̂)
1 (−1/s) , f

(m)
2 (s) = f

(m̂)
4 (−1/s) , f

(m)
3 (s) = f

(m̂)
3 (−1/s), (2.10)

where

m̂ = im s . (2.11)

This gives the leading behaviour

EDp−D̄p = −(4π2α′)3−p(2πr−)p−3µ3−p cot4 µr+Γ(3− p) + · · ·
EDp−Dp = −(4π2α′)3−p(2πr−)p−3µ3−pΓ(3− p) + · · · . (2.12)

The expression in the first line diverges in the flat space limit µ→ 0; this is the standard

divergence due to the infinite volume of the brane. We can separate out the volume
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factor by rewriting the result in terms of the integrated propagator I 9−p0 (r+, r−) over the

worldvolume directions with the remaining transverse pp-wave coordinates set to zero (see

in (A.12)):

EDp−D̄p = −4π(4π2α′)3−p cos4 µr+I9−p0 (r+, r−) + · · ·
EDp−Dp = −4π(4π2α′)3−p sin4 µr+I9−p0 (r+, r−) + · · · . (2.13)

One recovers the correct flat space expression [33] as µ → 0 taking into account that,

from (A.8),

lim
µ→0

I9−p0 (r+, r−) = Vp+1G
9−p
0 (r+, r−)

where Vp+1 is the divergent D-brane volume and G9−p
0 (r+, r−) stands for the Minkowski

space scalar propagator integrated over the worldvolume directions.

2.2 Field theory calculation

We will presently see how the long-range potentials (2.13) are reproduced exactly from the

type-IIB supergravity action (A.1) supplemented with D-brane source terms

Sp = −Tp
∫
dp+1x

√
−g̃e p−3

4
Φ + µp

∫
A[p+1] (2.14)

where g̃ stands for the induced metric on the worldvolume and Tp and µp are the brane ten-

sion and RR charge respectively. In appendix A.1 we expand the bulk action to quadratic

order in the fluctuations around the PP10 background, adopting the light-cone gauge for

the fluctuations. The resulting action is a sum of decoupled terms characterized by an

integer c:

Sψ =
1

4κ2

∫
d10xψ†(¤− 2iµc∂−)ψ. (2.15)

In general, ψ is in a tensor representation of SO(4) × SO′(4) and a contraction of tensor

indices is understood. The decoupled fields ψ, their values of c and their SO(4) × SO ′(4)

representations are given in the appendix in table 1. Expanding the source action (2.14)

to linear order in the fluctuations we get source terms for the components ψα of the form

Ssource =

∫
d10x δ9−p(x− x0) k(ψα + εψ̄α) (2.16)

where k is a constant proportional to either Tp or µp and ε = ±1. The contribution of

such a mode to the interaction energy can then be written in terms of the integrated

propagator and the constants (c, k, ε). For example, if ψ is an SO(4) × SO′(4) singlet one

gets a contribution to the interaction energy

E(c,k,ε) = 8εκ2k2 cosµcr+I9−p0 (r+, r−) . (2.17)

When ψ is in a tensor representation SO(4) × SO′(4), this expression can get an extra

overall factor from the fact that one has to use a propagator with the right symmetry

properties.

– 6 –



J
H
E
P
1
1
(
2
0
0
3
)
0
3
2

2.2.1 D1-brane

We can take the worldvolume along the directions x1, x2. The source terms are given by

Lsource =
iT1
2

(h11 + h22 − φ)± µ1a12

=
iT1√
2
(h⊥11 + h⊥22) +

iT1
4

(H + H̄)− iT1
2
φ+

iT1
4
h± µ1√

2
(G12 + Ḡ12)

where the upper (lower) sign applies to a brane (antibrane) source. The factors of i mul-

tiplying the tension arise because −g̃ is negative for spacelike branes. The trace h doesn’t

propagate in the light-cone gauge. The constants (c, k, ε) for the other source terms are

summarized in the following table:

ψ h⊥11, h
⊥
22 H φ G12

(c, k, ε) (0, iT1

2
√
2
, 1) (4, iT1

4 , 1) (0, −iT1
4 , 1) (2, ±µ1√

2
, 1)

Summing up all contributions to the interaction energy gives

E = −4κ2
[
T 2
1

8
cos 4µr+ +

3

8
T 2
1 ∓

µ21
2

cos 2µr+
]
I80 (r

+, r−) (2.18)

where the upper (lower) sign applies to the brane-brane (brane-antibrane) system.

2.2.2 D3-brane

We take the worldvolume directions to be x1, x2, x3, x5. The source terms are

Lsource =
iT3
2

(h11 + h22 + h33 + h55) + µ3a1235

=
iT3√
2
(h⊥11 + h⊥22 + h⊥33 + h⊥55) +

iT3
4

(H + H̄) +
1

2
h∓ iµ3

2
(H45 − H̄45) .

(2.19)

These give the following interaction energy contributions

ψ h⊥11, h
⊥
22, h

⊥
33, h

⊥
55 H H45

(c, k, ε) (0, iT3

2
√
2
, 1) (4, iT3

4 , 1) (2, ∓iµ3

2 ,−1)

The total is

E = −4κ2
[
T 2
3

8
cos 4µr+ +

3T 2
3

8
∓ µ23

2
cos 2µr+

]
I60 (r

+, r−) . (2.20)

2.2.3 D5-brane

The calculation is the same as for the D1-brane due to S-duality invariance of the type-IIB

supergravity action and the fact that the PP10 background is also S-duality invariant. The

end result is again

E = −4κ2
[
T 2
5

8
cos 4µr+ +

3T 2
5

8
∓ µ25

2
cos 2µr+

]
I40 (r

+, r−) . (2.21)
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2.2.4 D-brane charges and tensions

Comparing the string calculation (2.13) with the field theory results (2.18), (2.20), (2.21)

we find agreement only if the charges and tensions are equal and their numerical value is

the same as in Minkowski space [33]:

T 2
p = µ2p =

π(4π2α′)(3−p)

κ2
p = 1, 3, 5 . (2.22)

To see this, one has to use the trigonometric identities

cos4 x =
1

8
cos 4x+

3

8
+

1

2
cos 2x

sin4 x =
1

8
cos 4x+

3

8
− 1

2
cos 2x . (2.23)

These identities in a sense encode the equivalence between the open- and closed string

descriptions and were instrumental in proving Cardy’s condition for boundary states in [21].

3. Spacelike branes in PP6 ×R4

Our conventions for the PP6×R4 coordinates and background fields are (see appendix A.3

for more details)

ds2 = 2dx+dx− − µ2(zz̄ + ww̄)(dx+)2 + dzdz̄ + dwdw̄ + dxadxa

Rz++z̄ = −1

2
µ2 Rw++w̄ = −1

2
µ2 R++ = 4µ2

F+zz̄ = F+ww̄ = iµ (3.1)

The allowed D-branes in PP6 × R4 were classified in [15]. Here, we restrict attention to

spacelike branes with worldvolumes lying in the PP6 part of the geometry. Branes with

worldvolume directions along the R4 (and their tensions) can be obtained by applying T-

duality along the R4 directions. Denoting by (m,n) a brane with m directions along the

U(1) and n directions along U′(1), the branes preserving half the kinematical and half the

dynamical supersymmetries are of the type (m,m) with m = 1, 2. This leaves the D1 and

D3 branes to be considered. Supersymmetry requires that the D1-brane be placed at the

origin of the transverse U(1) ×U′(1) directions.

3.1 String calculation

The string theory calculation of the interaction energy proceeds as in the PP10 case. After

fixing a non-standard light-cone gauge, the worldsheet action for strings stretching between

branes contains four massive bosons and fermions with mass

m =
µr+

π

as well as four massless bosons and fermions. The interaction energy between a Dp-brane

and an anti-Dp-brane is given by the open string one-loop amplitude

EDp−D̄p = i

∫ ∞

0

ds e−εs

s
e
−2πis

(
2r+r−+rara

4π2α′

)

(2i sin πms)1−p
(
f
(m)
4 (q)

f
(m)
1 (q)

)4(
f
(0)
4 (q)

f
(0)
1 (q)

)4

.

(3.2)
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The leading contribution comes from massless exchanges and is given by

EDp−D̄p = −4π(4π2α′)3−p cos2 µr+I9−p0 (r+, r−, ra) (3.3)

where I9−p0 (r+, r−, ra) stands for the scalar propagator integrated over p+1 longitudinal D-

brane directions with the remaining transverse pp-wave coordinates set to zero (see (A.20)).

We again observe that (3.3) reduces to the correct flat-space expression [33] as µ→ 0.

Contrary to the PP10 case, the interaction energy between two parallel branes in

PP6 ×R4 is zero:

EDp−Dp = 0 . (3.4)

This follows immediately from the fact that an open string stretching between the branes

has four actual (meaning zero-frequency) fermionic zero modes.

3.2 Field theory calculation

In appendix A.3 we expand the bosonic type-IIB action around the PP6 ×R4 background

and identify the independent fluctuations. The field theory calculation of the interaction

energy again reduces to a sum of contributions of the form (2.17), characterized by constants

(c, k, ε) which can be read off by writing the D-brane source terms in terms of the decoupled

fields listed in table 2 of the appendix.

3.2.1 D1-brane

We take the worldvolume directions to be x1, x3. Expressing the D-brane sources in terms

of the decoupling fields in table 2 one gets the worldvolume lagrangian

Lsource =
iT1
2

(h11 + h33 − φ)± µ1a13

=
iT1
4

(h̃zz + h̃z̄z̄ + h̃ww + h̃w̄w̄ +H + H̄ +H ′ + H̄ ′) +
iT1
4
h±

±µ1
4
(H+

zw +H+
z̄w̄ −H−zw −H−z̄w̄ +H+

zw̄ +H+
z̄w −H−zw̄ −H−z̄w) .

where the upper sign refers to a brane and the lower one to an anti-brane. The trace

h does not propagate in the light-cone gauge. The other fields give contributions of the

form (2.17) to the interaction energy. These are summarized in the following table:

ψ h̃zz, h̃ww H, H ′ H+
zw, H

−
zw H+

zw̄ H−zw̄
(c, k, ε) (0, iT1

4 , 1) (2, iT1
4 , 1) (0, ±µ1

4 , 1) (2, ±µ1

4 , 1) (−2, ±µ1

4 , 1)

where the upper sign applies to the brane-brane system and the lower sign applies to the

brane-antibrane configuration. Summing all contributions, one gets the total interaction

energy

E = −2κ2
[
T 2
1 (cos 2µr

+ + 1)∓ µ21(cos 2µr+ + 1)
]
I80 (r

+, r−, ra) (3.5)

= −2κ2[T 2
1 ∓ µ21] cos2 µr+I80 (r+, r−, ra) . (3.6)
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3.2.2 D3-brane

The worldvolume directions are x1, x2, x3, x4. The source terms are

Lsource =
iT3
2

(h11 + h22 + h33 + h44)± µ3a1234

=
iT3
4

(H + H̄ +H ′ + H̄ ′) +
iT3√
2
H0 +

iT3
2
h±

± µ3

2
√
2
(G+ Ḡ)± µ3√

2
G0 .

(3.7)

The contributions to the interaction energy are summarized in the following table:

ψ H, H ′ H0 G, G′ G0

(c, k, ε) (2, iT3
4 , 1) (0, iT3

2
√
2
, 1) (2, ±µ3

2
√
2
, 1) (0, ±µ3

2
√
2
, 1)

Summing all contributions, one gets the total interaction energy

E = −2κ2
[
T 2
3 (cos 2µr

+ + 1)∓ µ23(cos 2µr+ + 1)
]
I60 (r

+, r−, ra) (3.8)

= −2κ2[T 2
3 ∓ µ23] cos2 µr+I60 (r+, r−, ra) . (3.9)

Again, the upper sign applies to the brane-brane system and the lower sign applies to the

brane-antibrane configuration.

3.3 D-brane charges and tensions

Comparing the results (3.3) and (3.4) of the string calculation with the field theory re-

sults (3.6) and (3.9), we find the value of the D-brane charge and tension:

T 2
p = µ2p =

π(4π2α′)(3−p)

κ2
p = 1, 3 . (3.10)

These values are again the same as in Minkowski space.

4. Timelike branes

In this section we will argue that interactions between timelike D-branes that extend along

the x+, x− directions in a plane wave geometry are the same as in Minkowski geometry.

This is a consequence of the fact that these branes preserve translation invariance in the

x− direction. Similar results hold for orientifold planes.

For definiteness, we illustrate this in the PP6 × R4 background and comment on the

generalization to other pp-wave backgrounds at the end of this section. Let us consider

a brane-brane or a brane-anti-brane pair in this background separated along the R4 di-

rections. From the point of view of the low-energy effective field theory, the long-range

interaction potential comes from the exchange of massless modes between the branes. The

Feynman propagator Gc(x1, x2) of such modes is given by (see (A.17))

∑

n

∫
dp+dp−d4pa

(2π)6
ei(p+(x+

1 −x
+
2 )+p−(x

−
1 −x

−
2 )+pa(xa1−xa2))ψ(µp−)

n (xA1 )ψ
(µp−)
n (xA2 )

2p+p− + µp−
∑

I(nI +
1
2) + 2cµp− + papa − iε

.
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In calculating the interaction energy between a pair of branes, we have to integrate (A.8)

over the worldvolume directions which include x−1 , x
−
2 . This gives a delta function for p−,

hence the result is independent of µ. We recover the flat space result for the interaction

energy (times the interaction time):

ET = 2κ2(T 2
p ∓ µ2p)G9−p(r

a)Vp+1 . (4.1)

A similar argument can be made for the exchange of massive modes, which shows that

the full brane-antibrane interaction potential is the same as in Minkowski space. In the

language of boundary states,3 The interaction energy, say, between a brane and an anti-

brane is given by the overlap 〈Dp̄|∆|Dp〉 where ∆ is the closed string propagator and

|Dp〉, |Dp̄〉 are the boundary states. Since the boundary states satisfy p−|Dp〉 = p−|Dp̄〉 =
0, the closed string propagator is projected on the p− = 0 subspace and these states

propagate as in flat space.

It is instructive to see how the same conclusion follows from a calculation in the open

string picture. This, in some sense, is the natural picture to use for timelike branes since

the open strings can be quantized in the usual light-cone gauge X+ = p−τ . In this gauge,

the coordinates X± automatically obey Neumann boundary conditions [14]. The brane-

antibrane interaction energy is given by

ET = iV+−

∫ ∞

0

ds e−εs

s

∫
dp+dp−
(2π)2

e−4πα
′isp+p−Z(s, µp−) (4.2)

where

Z(s, µp−) = Tr(−1)Fsqα′p−Hlc

= q
rara

(2π)2α′ (2i sin πµp−s)
3−p

(
f
(µp−)
4 (q)f

(0)
4 (q)

f
(µp−)
1 (q)f

(0)
1 (q)

)4

. (4.3)

The function Z(s, µp−) is the partition function for a combined system of four massive

scalars and fermions with mass µp− and four massless scalars and fermions, with appro-

priate boundary conditions. Returning to (4.2), we see that the p+ integral yields a delta

function. Integrating over p− we find

ET = iV+−

∫ ∞

0

ds e−εs

8π2α′s2
Z(s, 0) . (4.4)

In particular, using a modular transformation to extract the small s behaviour of the

integrand, one finds the dominating contribution for widely separated branes

ET = 4π(4π2α′)(3−p)Vp+1G9−p(r
a) + · · · . (4.5)

Comparing with (4.1) we find

T 2
p = µ2p =

π(4π2α′)(3−p)

κ2
, (4.6)

which is indeed the flat-space value [33].

3The only subtlety here is that one has to quantize the closed string in a nonstandard light-cone gauge

in order for the coordinates X± to have the right boundary conditions [21].
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Similar results hold for the interactions between timelike orientifold planes, and be-

tween orientifold planes and D-branes in PP6×R4 . This can be argued from the fact that

the crosscap state is annilated by p− or, in the open string picture, from the fact that the

interaction energy is again of the form (4.2) but with a different function Z(s, µp−) [9, 34].

Hence the tadpole cancellation conditions for timelike orientifolds in PP6×R4 are the same

as in Minkowski space. The above argument shows that not only the massless tadpoles but

the one point functions on a disk of even the massive string modes take the same value as

in Minkowski space.
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A. Massless modes and propagators in PP6 and PP10

In this appendix we obtain the lagrangian and the propagator for the bosonic massless

supergravity modes in the pp-wave background. The starting point is the bosonic part of

the type-IIB action in the Einstein frame:

S =
1

2κ2

∫
d10x

√−g
[
R− 1

2
(∂Φ)2 −

H2
[3]

2 · 3! −
1

2
e−2ΦF 2

[1] −
e−ΦF̃ 2

[3]

2 · 3! −
F̃ 2
[5]

4 · 5!

]
−

−1

2

∫
A[4] ∧H[3] ∧ F[3] (A.1)

where F[2n+1] ≡ dA[2n], H[3] ≡ dB[2] and

F̃[3] ≡ F[3] −A[0] ∧H[3]

F̃[5] ≡ F[5] −
1

2
A[2] ∧H[3] +

1

2
B[2] ∧ F[3] . (A.2)

In the following we will expand the action around the PP6 and PP10 backgrounds to

quadratic order in the fluctuations

gµν → gµν + hµν

Φ → Φ+ φ

B[2] → B[2] + b[2]

A[2n] → A[2n] + a[2n] . (A.3)

It’s convenient to split the metric fluctuations into a trace part h and a traceless tensor

hTµν . We adopt the light-cone gauge for the fluctuations:

h−µ = b−µ = a−µ1,...,µ2n−1 = 0 . (A.4)

In this gauge, after shifting the fields with a + index, one finds that h, hT+µ, b+µ and

a+µ1,...,µ2n−1 decouple. This situation is familiar from the light-cone gauge in Minkowski
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space (see e.g. [35]). Hence the only propagating fields are the transverse modes hIJ , bIJ ,

aI1,...,I2n ; I, J, . . . = 1, . . . , 8. In the presence of general sources, the gauge-fixed lagrangian

contains Coulomb-like terms as a result of shifting the fields. In the cases we consider,

these are absent because spacelike branes do not provide a source for the fields with a +

index.

A.1 Massless modes in PP10

We use the following index conventions:

µ, ν, . . . = 0, . . . , 9 SO(9, 1)vector indices

I, J, . . . = 1, . . . , 8 SO(8)vector indices

i, j, . . . = 1, . . . , 4 SO(4)vector indices

i′, j′, . . . = 5, . . . , 8 SO′(4)vector indices . (A.5)

The nonvanishing PP10 background fields are given by

ds2 = 2dx+dx− − µ2xIxI(dx+)2 + dxIdxI

RI++J = −µ2δIJ R++ = 8µ2

F+1234 = F+5678 = 4µ (A.6)

In light-cone gauge, the SO(4) × SO′(4)
ψ linear combination c irrep

h⊥ij = 1√
2
(hTij − 1

4δijh
T
kk) 0 (9,1)

h⊥i′j′ =
1√
2
(hTi′j′ +

1
4δi′j′h

T
kk) 0 (1,9)

H = 1
2(h

T
ii +

i
12aijklεijkl) 4 (1,1)

Hii′ = hTii′ +
i
6ai′jklεijkl 2 (4,4)

Gij = 1√
2
aij +

i
2
√
2
εijklbkl 2 (6,1)

Gi′j′ =
1√
2
ai′j′ +

i
2
√
2
εi′j′k′l′bk′l′ 2 (1,6)

bij′ 0 (4,4)

aij′ 0 (4,4)

φ 0 (1,1)

Table 1: Decoupled massless fields in PP10 .

subgroup of the background symmetry

group is manifest with xi and xi
′
trans-

forming as vectors under SO(4) and

SO′(4) respectively.. Expanding the ac-

tion (A.1) around this background to

quadratic order one can organize the fluc-

tuations into (complex) decoupled fields

ψ which transform in irreducible repre-

sentations of SO(4) × SO′(4) [12]. We

choose our normalizations so that each

field ψ contributes a term to the la-

grangian density of the form

L =
1

4κ2
ψ̄(¤− 2iµc∂−)ψ (A.7)

where contractions of the SO(4)×SO′(4) indices are implied where appropriate and the bar

denotes complex conjugation. The operator ¤ = 2∂+∂− + µ2xIxI∂2− + ∂I∂I is the scalar

laplacian in PP10 and c is an integer. The results needed for the calculation of the D-brane

tensions are summarized in table 1. It displays the fields ψ, their definition in terms of the

original fluctuations (A.3), their value of c and their irrep of SO(4)× SO′(4).
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A.2 Massless propagators in PP10

We will also need the Feynman propagator Gc(x1, x2) corresponding to the operator ¤−
2iµc∂−. It can be written as

Gc(x1, x2) = −i
∑

n

∫
dp+dp−
(2π)2

ei(p+(x+
1 −x

+
2 )+p−(x

−
1 −x

−
2 ))ψ

(µp−)
n (xI1)ψ

(µp−)
n (xI2)

2p+p− + µp−
∑

I(nI +
1
2) + 2cµp− + pIpI − iε

(A.8)

Here, n = (n1, n2, . . . , n8), and ψ
(m)
n is a product of normalized harmonic oscillator eigen-

functions satisfying (−∂I∂I +m2)ψ
(m)
n = 2m(

∑
I nI + 1/2)ψ

(m)
n . Introducing a Schwinger

parameter s and performing the discrete sums and the p+, p− integrals one gets

Gc(x1, x2) = eicµr
+
G0(x1, x2)

with

G0(x1, x2) = i

(
µr+

sinµr+

)4 ∫ ∞

0

ds

(4πis)5
e−

σ+iε
4is (A.9)

with

σ = 2r+r− +
µr+

sinµr+
(
(xI1x

I
1 + xI2x

I
2) cos µr

+ − 2xI1x
I
2

)
. (A.10)

and we have defined rµ ≡ xµ1 −x
µ
2 . The quantity σ is proportional to the invariant distance

squared Φ:

σ =
µr+

sinµρ+
Φ .

The integral in (A.9) can be performed to give

G0(x1, x2) =
3

2π5(Φ + iε)4

in agreement with [36, 22]. The limit µ→ 0 yields the Feynman propagator in Minkowski

space. In the calculation of D-brane interaction energies, we will need the integrated

propagator I9−pc (r+, r−) over p+1 longitudinal xI directions with the transverse xI set to

zero. From (A.9) one gets

I9−pc (r+, r−) = eicµr
+
I9−p0 (r+, r−) (A.11)

=
1

4π
eicµr

+ (2πr−)p−3µ3−p

sin4 µr+
Γ(3− p) . (A.12)

A.3 Massless modes in PP6 ×R4

We use the following index conventions:

µ, ν, . . . = 0, . . . , 9 SO(9, 1) vector indices

I, J, . . . = 1, . . . , 8 SO(8) vector indices

i, j, . . . = 1, 2 U(1) vector indices

i′, j′, . . . = 3, 4 U′(1) vector indices

a, b, . . . = 5, . . . , 8 SO(4) vector indices . (A.13)
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ψ linear combination c irrep

h̃zz=2hTzz 0 1(2,0)

h̃ww=2hTww 0 1(2,0)

h⊥ab=
1√
2
(hTab + δab(h

T
zz̄ + hTww̄)) 0 9(0,0)

ãab=
1√
2
aab 0 6(0,0)

H±zw=2(hTzw ± azw) 0 1(1,1)

H±zw̄=2(hTzw̄ ± azw̄) ±2 1(1,−1)

H0=
√
2(hTzz̄ + hTww̄) +

1√
2
φ 0 1(0,0)

H=2hTzz̄ − 1
2φ+ 2azz̄ 2 1(0,0)

H ′=2hTww̄ − 1
2φ+ 2aww̄ 2 1(0,0)

H±az=
√
2(hTaz ± aaz) ∓1 4(1,0)

H±aw=
√
2(hTaw ± aaw) ∓1 4(0,1)

G0=
1√
2
(a− 4azz̄ww̄) 0 1(0,0)

G′0=−i
√
2(bzz̄ − bww̄) 0 1(0,0)

G=
√
2(bzz̄ + bww̄) +

1√
2
(a+ 4azz̄ww̄) 2 1(0,0)

Table 2: Decoupled massless fields in PP6 ×R4 .

It is convenient to work with complex coordinates z, w instead of xi and xi
′
:

z = x1 + ix2 (A.14)

w = x3 + ix4 . (A.15)

The nonvanishing PP6 ×R4 background fields are then given by

ds2 = 2dx+dx− − µ2(zz̄ + ww̄)(dx+)2 + dzdz̄ + dwdw̄ + dxadxa

Rz++z̄ = −1

2
µ2 Rw++w̄ = −1

2
µ2 R++ = 4µ2

F+zz̄ = F+ww̄ = iµ . (A.16)

In light-cone gauge, the U(1) × U′(1) × SO(4) subgroup of the background symmetry

group is manifest with z and w carrying charge -1 under U(1) and U ′(1) respectively and

xa transforming as a vector under SO(4). We can again organize the massless modes into

decoupled fields ψ which transform in irreps of U(1)×U ′(1)×SO(4) and whose contribution

to the action is characterized by an integer c as in (A.7), where the scalar laplacian is now

¤ = 2∂+∂− + µ2(zz̄ + ww̄)∂2− + 4∂z∂z̄ + 4∂w∂w̄ + ∂a∂a. The results of this heartwarming

calculation are summarized in table 2. It displays the fields ψ, their definition in terms of

the original fluctuations (A.3), their value of c and their irrep of U(1)×U ′(1)×SO(4). We

use the notation d(q,q′) for the d-dimensional representation of SO(4) with charges (q, q ′)

under U(1) ×U′(1).

A.4 Massless propagators in PP6 ×R4

The Feynman propagator Gc(x1, x2) corresponding to the operator ¤ − 2iµc∂− can be
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written as

−i
∑

n

∫
dp+dp−d4pa

(2π)6
ei(p+(x+

1 −x
+
2 )+p−(x

−
1 −x

−
2 )+pa(xa1−xa2))ψ(µp−)

n (xA1 )ψ
(µp−)
n (xA2 )

2p+p− + µp−
∑

A(nA + 1
2) + 2cµp− + papa − iε

(A.17)

Here, A = 1, . . . , 4, n = (n1, n2, n3, n4) and ψ
(m)
n is a product of harmonic oscillator

eigenfunctions satisfying (−∂i∂i − ∂i′∂i′ +m2)ψ
(m)
n = 2m(

∑
A nA + 1/2)ψ

(m)
n . Introducing

a Schwinger parameter s and performing the discrete sums and the p+, p−, pa integrals

one gets

Gc(x1, x2) = eicµr
+
G0(x1, x2)

with

G0(x1, x2) = i

(
µr+

sinµr+

)2 ∫ ∞

0

ds

(4πis)5
e−

σ+iε
4is (A.18)

with

σ = 2r+r− + rara +

+
µr+

sinµr+

(
(xi1x

i
1 + xi

′

1 x
i′
1 + xi2x

i
2 + xi

′

2 x
i′
2 ) cosµr

+ − 2(xi1x
i
2 + xi

′

1x
i′
2 )
)

and we have defined rµ ≡ xµ1 − xµ2 . In the calculation of D-brane interaction energies, we

need the integrated propagator, denoted by I9−pc , over p+1 longitudinal D-brane directions

(which we take be a subset of the pp-wave directions x1, . . . , x4) and with the remaining

pp-wave coordinates set to zero:

I9−pc (r+, r−, ra) = eicµr
+
I9−p0 (r+, r−, ra) (A.19)

=
1

4π
eicµr

+

(
πr2
)p−3

(µr+)1−p

sin2 µr+
Γ(3− p) (A.20)

where r2 ≡ 2r+r− + rara.
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