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The effects of artificial selection have been studied in finite and infinite populations
through one locus models in discrete and continuous time (Haldane, 1931; Robert-
son, 1960). In most of these investigations the changes in the mean and .the vari-
ance of thegene frequency in the population and the rates of advance under selection
were studied by the * diffusion * approach employed by Kimura (1957, 1958). Prob-
lems of artificial selection in finite populations in which individuals are chosen as
parents for the next generation on a ranking of their phenotypic values for a quantx-
tative character have recently received the attention of several workers (Koyma,
1961 ; Pike, 1969; Hill, 1969).

Some forms of artificial selection result in sib mating giving rise to 1nbreedmg,
and the population becomes homozygous if the selection is continued for many
generations. Fisher (1965) in his book, The Theory of Inbreeding, visualised ‘ the
possibilities the (inbreeding) process opens out for the practical nnprovement
of domestic plants and animals’ and observed that ‘a theoretical and practical
study of the subject will form an essential part of future programmes clther of
genetic or of agricultural research’.

Inbreeding for a population with impressive yield, a breeder is faced at some
stage, with the problem of fixing the genes controlling the components of yield at
_ the highest frequency. The aim is to obtain essentially a populatlon of homo-
zygotes with a hlgh mean value of the metric character. Usually, if ngt always, the
_ process known as ‘ mass selection ’ is employed wherein the sceds of the plants
which are phenotypically uniform and which possess good' yield attributes -are
bulked. The same process is continued in the progeny populatlons However,
it is also not uncommon to choose one or two single plants which | Possess the most
desirable characters from a small segregating population and to raise the subse-
_ quent progeny generations from them. These methods of - sclectmn result in-
~inbreeding for the practical improvement of the population. It will, therefore, be
interesting to examine theoretically the speed of approach to homozygosity when
one or two or more individuals are selected on the basis of their phenotypic
performance and the progeny generations bred from them.

., We-consider in this paper a population consisting of three genotypcs resultmg
from a single locus with two alleles only. The models used are brlcﬂy described

“below.

G—1
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MODEL 1

Let the population consist of the three genotypes A4, Aa and aa numbered 1, 2
and 3 for convenient reference. We assume discrete generations throughout the
study. The individuals in the population are ranked on the basis of the pheno-
typic values of a metric; the best male and the best female are mated. Let this
mating produce N viable offsprings of each sex. Again the best male is mated to
the best female from this progeny population and the process is continued. We
assume that the progeny population contains 2N viable individuals in each genera-
tion. The initial mating can be any one of the six numbered in the following order :
1-AA % AA;2-AA x Aa;3-AAd xaa; 4-AaxAa; 5-Aa X aa; 6-aa X aa.

" Let ay be the conditional probability of occurrence of the genotype j given the
parental mating i (i = 1, 6; j=1, 3). For example, ay = -25, ag = 1 under
random mating. : : .

. Let ma be the genotypic value of the. genotype i (i = 1, 3). The phenotypic values
of the genotype i are considered to be normally distributed with mean po and a
common variance o2 S

We shall now evaluate s, the probability that the best genotype is in the
progeny population given that the parental mating is .

{.:et ’
) . 1 _éwl
SO =T5e
and
Foy= | f@ar
so that
F'(x) = £ (9. |
By the definition of the ays, it follows that
. o
2 U“‘U = l
=1

for each i (i = 1, 6).
Lét x; = X0 represent the phenotypic value of the genotype j so that
X —
tj = ——-!-—ﬂ~o. = X; — My
[en

begomes the standard normal variate (j = 1, 3). Under the mating i, the probability
that a member of the progeny population has a phenotypic value not exceeding Y is

2 ayF (Y — ) (1)

=1
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where
Y = x/o.

Hence the probability that all the N individuals have phenotypic values not
exceeding Y is

r

Py(F) = | 2 oy (v m] -

If Y is now the phenotypic value of the best of N individuals, its distribution
function is Py (7).

Hence the probability that the best individual has its phenotypic valuc in (¥, Y+
dY) and is of the genotype j

. N-1
= N[ Z b (¥ —w)| s (¥ - pyar,

Hence the probability that the best of N progeny is of genotype j given the parental
 mating i, is .

- N 3 N-1 ' T
5y = f Nayf (X —w) | 2 el (X — p) | dx, X = o @
—00 ! . : . .

r=1

. Thus, given N, a;; and p; one can.evaluate 8iy by numerical integration. Simplé
_ methods like Simpson’s or Weddle’s rule were not found to be efficient in evaluating
s, to the desired degree of ﬁccuracy. The method used is hence summarised in
 Appendix 1.

*Hill (1969) has provided a formula for selecting a bestsub-sample of N individuals
__containing N, individuals of the genotype A4, N, of Aa, and N, of aa (N;+N, +
~ N;=N) from a finite sample of M individuals available for selection containing
. M, of A4, M, of Aaand M, of aa (My+My+ My=M). Theformula given here can
_also be derived from the one given by him. -

. Values of N were chosen as the geometric progression (G.P.) from 1 to 1024 with
__acommon ratio equal to 2; values of o2, the phenotypic variance formed another
~ G.P. from 0-25 to 2-0 with the same common ratio. Two levels of dominance (/)

for the values of the metric were considered—(i) no dominance (additive model)

 where =1, py = 0, py = — 1 and (i/) dominance towards 44 where =1, py=
25,y = —1. The matrix ((sy)) was computed for all combinations of N, o?
and h.

_ It is evident that under the parental mating 1, 5, =1, 515, = 0, 5,4 = 0 irrespec-
tiveof N, o? and /. Similar observations hold for the matings 3 and 6. The computed
_ values of s;; upheld these observations thus establishing the accuracy and adequacy
_ of the numerical methods employed. As expected, Sy = S5} 59y = Spg3 Sap = 8y = ()

for every combination of N, o? and . The results for the matings 44 x Aa and
 4a X Aa are shown in Figs. 1 and 2. Since the results for the mating da X aa
are a reflection of thosefor A4 X Aa, they are not shown separately in a figure.
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Fig. 1. Probabilities that a Sselected individual is of a given gejz:otype-Mating AA
Aa s

~~~~~ Additive Model X,, = I Xy =0; X, =—1

" Dominance Model X, = Iy X, = +25; Xpe =—1

I—0? = -25,2—02 = .5, 3 _ 42 =1-0;4 —o2= 240

Speed of Approach to Homozygosity :
18 i be m; before selection and m,’
the matrix ( (s4) ) gives the proba
mating i with 2 s;, = 1. For con

Let now the frequency that the parental mating
after selection and mating. As already -observed,
bilities of selecting genotype j given the parental
venient reference, the matrix is given in Table

i
After selection of the best genotype as described earlier, the
types k, (k = 1, 6) given the parental mating 7,
are given by the matrix ((cw)) of the order 6
easy to see that

: probabilities of matin
(=1, 6) in the previous generatio
X 6 as set out in Table 2, It is the

oy = Xeym,
k

(3

Table 1. The matrix (5:)

\\. Mating 1 2 3 4 ‘A5 6 :
-ﬁﬁl“_ﬁ_&____ :
—
S P | 1 Sap 0. Sa 0 0
Aa 0 Son 1 Sga Spe (4]
aa 0. 0 0
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Table 2. The matrix (cx)

,\C’\ 1 2 3 4 5 6
1 1 Sap® 0 S 0 0
2 0 2591522 0 2591 54p 0 0
3 0 0 0 2841844 0 0
4 0 Saa® 1 Syo® S50 0
5 0 0 0 2840848 2850851 0
6 0 0 0 S 555" 1

As shown by Fisher (1965) the process given by (3) is dominated by the largest
eigenvalue A less than unity of the matrix ((¢y)) . An examination of the structure .
of this matrix shows that two of its eigenvalues are equal to unity. The speed o
approach to homozygosity is then given by § = — log, A and an approximate esti
mate of the number of generations required for the frequency of gene A4 to reach
0-95 starting from a very low frequency in the populationis- given by #ng.g5 =
— log, (0-05)/S. The speeds of approach to homozygosity computed fo
different levels of N,¢? and /1 are presented in Fig. 3 (i).

() ' /

[ AP ' . (in

SPEEL

tog, N 199 ,4

Fig. 3. Speed (= —Log,, A the dominant latent root) of Approach to Homozygosity
by Selection ;
(i) Selection of one best
(if) Selection of a best pair

————— Additive Model x,, = 1; X,, = 0; X,y = —1

""""" Dominance Model x,, = 1; X, = °25;x,, = — 1

] —o%=:25;2—0%="5;3—c?=10;4—0*=20
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MODEL’ 2

- This model is essentially the same as model 1 except that the best pair of indivi-
duals is selected instead of the best individual in each sex on the basis of the pheno-
typic values of the metric. We do not impose the matings to be (best male X best

female) and the (next high male X the next high female) only, and so the mating
_ between the selected pair is at random. This random mating results in N offsprings
of each sex. The process is repeated until a desired level of homozygosity is attained
_in the population.

- Let the progeny pair be specified by a number; as follows:

J=LAA, AA (1,1); j=2:44, Aa(l, 2); j=3:44, aa (1, 3); j=4:4a, Aa (2, 2);
J=5:4a, aa (2, 3); j=6:aa, aa (3, 3). : )

The types of mating can equally be specified by J (=1, 6) for convenience.

We shall now find u;, the probability that the selected pair is j [= (k, 1), k; f=
1,3, k> t] given that the parental mating is i (7, j=1,6). The probability
that out of N progeny there will be (N—2) individuals having a phenotypic score
_ less than x;, an individual of genotype k, k=1, 3, between x; and x, and another
_of genotype /4, r=1, 3, greater than x, is given by

N
N—2)1 PN paps

__where

3
=20 F(y; —p,)
r=1

P2 = ay [F(ye — 1) — F(yy — )]
and ‘

Py =ay [l — F(yy — )]
where

Vi = xi/o asshown in (1).

If now we consider the interval (xp, xy) as (x, x, dx), the probability that the
- two top individuals are of genotypes k and ¢, given the parental mating 7 is

- =1

o ?‘o 3 ) N-2
= N = Dass [ | £ ar =]

X =Fy—pw)F(y — ) dy

where j represents the pair whose genotypes are (k, ¢).
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Since the order of ranking in the selected pair is irrelevant, the probability of
selecting the pair j given the parental mating i = Probability of selecting (k, 1) ~[—
Probability of selecting (1, k) .

Hence,

3 ' N-2
g =N = Degay [ [ ZenF -]

XM —=FQ —wlf (¢ — ) +
[1—F(y—pw)]1f(y—w)} dy (5)

The same method of numerical integration asin model I was employed to
evaluate (5) (See Appendix I).

Values of u;, at different levels of N, o? and / have thus been evaluated numeri-
cally. The results are parallel to those under model 1. Hence the results for o®=
0:25and o® =2 -0 for the parental matings A4 X Aa and Aa X Aa only are summa-
rised in Tables 5 and 6.

Table 3. The 21 parental pair combinations

Genotypes of the Code Genotypes of the Code
5 parental pairs number s parental pairs number
1 AA, AA; AA, A4 51 12 AA, aa; 44, a0 333
2 AA, AA; AA, Aa 3 2 13 AA, aa; Aa, Aa 3; 4
3 AA, AA; AA, aa 1;3 14 AA, aa; Aa, aa 3;5
4  AA, AA; Aa, Aa 1;4 15 AA, aa; aa, aa 3;6
5 AA, AA4; Aa, aa 1;5 16 Aa, Aa; Aa, Aa 4 4
6 AA, AA; aa, aa 1;6 17 Aa, Aa; Aa, aa 4;5
7 AA, Aa; AA, Aa 2;2 18 Aa, Aa; aa, aa 4;6
8 AA, Aa; AA, aa ‘ 2;3 19 Aa, aa; Aa, aa 5;5
9  AA, Aa; Aa, Aa 2;4 20 Aa, aa; aa, aa 5;6
10 AA, Aa; Aa, aa 2;5 21 aa, aa; aa, aa 6;6
11 AA, Aa; aa, aa 2; 6 )

Speed of approach to Homozygosity.—The inbreeding process in this model is
a bit complicated and can be specified by an equation similar to (3). The process
involves random mating of the best male pair with the best female pair. We thus
have 21 parental pair combinations as indicated in Table 3. We shall
use in the following r and s as the sufﬁxes to denote the parental and selected pzurs
r, s =1, 21,
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T@ble 4. Probabilities that the selected best individual be of a given genotype
- under the parental mating Aa x Aa (Additive Model) '

Deterministic Simulation

AA Aa aa AA Aa aa

1 -2500 - 5000 - 2500 2333 4817 - 2850 8090 " 14 500
2 +4175 - 5000 - 0825 - 3933 5017 1050 6609 7 923
4 -6219 +3627 0154 6200 3717 0083 - 3305 2 807
8 8064 +1917 -0019 - 8050 11917 0033 (1105 1 65-3

025

16 -9203 -0795 - 0002 <9133 -0867 0 -0344
32 +9690 -0310 ¢ -9717 -0283 0 0137
64  -9866 <0134 3 -9817 -0183 0 -0066
128 -9934 0066 0 -9900 -0100 V] 0035
0-50 1 -2500 -5000 2500 2667 4600 2733 -8090 14 45.7
: 2 +3950 - 5000 - 1050 3817 5017 - 1166 - 7070 8 89:3
4  -5592 4066 <0342 -4933 4700 - 0367 4698 3 81-7
8§ 7085 -2819 -0096 - 7483 - 2483 <0034 2620 2 90-3
16 -8189 -1784 0027 - 8400 - 1600 0 - 1407 1 707
32 -8890 - 1102 -0008 - 8750 -1250 0 -0779 1 767
64 -9304 -0693 - 0003 <9350 - 0650 0 0490 .. ..
128  -9548 0451 -0001 +9583 - 0417 0 <0219
1-00 1 -2500 + 5000 2500 -2750 4817 -2433 -8090 14 50-0
2 3677 5000 -1323 +3733 “5000 -1267 <7467 10 93-3
4 -4915 4440 <0645 5217 4217 0566 5981 5 92:3
8 6044 3648 -0308 - 6000 3583 -0417 -4418 3 87-7
16 -6971 - 2878 -0151 - 6683 3150 -0167 -3177 2 847
32 -7686 - 2237 0077 7783 2133 -0084 - 2297 2 930
64 -8219 -1739 - 0042 -8133 - 1817 0050 1694 I 66:0
128 -8615 -1362 - 0023 - 8600 1350 0050 <1278 1 72:7
200 1 -2500 - 5000 - 2500 2433 5283 -2284 <8090 . 14 48-0
2 -3405 5000 1595 3583 -5117 - 1300 *7741 11 86-7
4 -4300 4680 -101G -4200 -4750 - 1050 - 6896 8 93.3
8§ 5116 4236 - 0648 5167 4150 - 0683 5907 5 890
16 -5823 3749 - 0428 - 5850 3767 0383 4977 4 9G-3
32 6422 3289 0289 +6567 -3083 -0350 4176 3 887
64 6922 - 2877 - 0201 -6933 - 2900 -0167 -3514 2 47-7*
128 - -7340 2517 0143 <7350 2500 -0150 2972 2 54.3*%
A —  Greatest eigenvalue < 1; for x and p see text.
* —  Slight underestimate.

 Let m, be the probability that the selected pairs are given by s (s = 1,21) and
', the corresponding probability in the next generation.

21
m, = X Pr(the selected pairs are given by s|the parental pairs are r)

r=1

X Pr(the parental pairs are r)
21 . -
= 2 C.,. ‘ ' (6)
resy, ‘

_ For different values of r and s, the values of ¢,, form a matrix ((C)) of the order
21 X 21. The method of constructing the matrix ((C)) is detailed in Appendix II.
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The speed with which the gene A4 tends to get fixed in the population obtaineg
by random mating of the selected best pair can now be obtained as explained undep
model 1 as —log, A where A is the largest latent root of the matrix ( (C)) less than
unity in absolute value. The speeds of approach to homozygosity for differeng
values of N, o% and / are shown graphically in Fig. 3 {ii).

Simulation of Models | and 2.—A compmr-‘l programme was written to simuy late
the models 1 and 2 using Monte Carlo methods. The methods used were essen-
tially thosc outlined by Fraser (1957 a, b). For each mating, N progeny of each
sex were obtained and their genotypes identificd. Their phenotypic values were
obtained from the normai distribution with its mean at the genotypic value of the
metric and its variance equal to ¢® which was given. The genotypes were rankeqd
on the basis of their phenotypic values and the top one or two individuals ( as the
case 1equued\ of each sex were selected to form the parents of the first generation
They were mated again to produce & progeny of each sex and the process repeated,
The process was stopped at the generation when the frequency of gene 4 in the
population containing N individuals of each sex reached 0-95 and the number of
generations taken to reach this stage was recorded. This constituted one run of
the experiment. Simulation of the process was done in each of the 300 replicate
runs to the number of generations given by deterministic calculation, required for
the frequency of gene A4 to reach 0-95. The computer also recorded those runs in
which gene 4 did and did not reach the frequency of 0-95 within the specified num:
ber of generations. The number of times one best individual of a given genotype
or one best pair of individuals of a given type (as defined earlier) were selected, was
counted over 300 replicate rnns. On this basis, the probability that the selected
individual is of a particular type was calculated. This was done for both the sexes
and averaged to give the required probabilities.

Table 4 summarises the probabilities that the selected individual is of a given
genotype (denoted hereafter by PG for convenience) obtained by simulation, for
the mating Aa X Aa and for the additive model. For purposes of comparison,
the probabilities obtained by numerical integration and by simulation are given side -
by side. The dominant latent root of the process and on this basis, the approxi-
mate number of generations x, for gene 4 to reach 0-95 in the population are also
shown. The last column shows the percentage of replicate runs in which gene 4
reached 0-95 in (x -+ 1) generations or less.

RESULTS

Model 1.—The probabilities that the selected individual is 44, Aa or aa are
plotted against log,N in Figs. | and 2 for the matings 44 X Aa and Ada X Aa
respectively. Under an additive model, the probability of selecting 44 increases
when the proportion selected is reduced. The probability 1s much higher (almost
unity) when one best genotype is selected out of 1024 progeny than when one is
selected out of 1 or 2 progenies per mating, The trend of this increase in the proba--
bilities slows down when the variance of the distribution of- phenotypes is increased
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This is because the variance increases the spread of the distribution which, in turn,
_increases the area of selection, reducing the chances of A4 alone getting selected.
Thus we find a sharp increasing curve for o= 0-25 compared to that for o® = 2'-0.
Incidentally we note that ths (p-log,N) graph for Ade in Fig. 1 is the reflection
of the graph for 44 about the x-axis as either A4 or Aa has got to be sclected
under the mating A4 X Aa.

~.In the dominance mode! we have considered, the dominance deviation h is
cqual to 0-25. Due to this dominance towards AA, the chance that 4a genotypes
“are selected is increased, thus bringing down the probability of selecting the A4
__genotype.  The level of dominance chosen appears to be sufficient to modify the
__probabilities to be very near those under the next variance level with no dominance-
 Thus in general, ‘the (p-log,N) graph for dominance with o® = 0-25 is very near
 to the graph for no dominance with o2 = 0-5 and so on. An interesting pattern of
~ modification by dominance is revealed in Figs.1and2. Under the mating 44 X
 Aa, the (p-log,N) graph for o® = 0-25 with dominance is very near but above the
_ graph for o® = 0-5 with no dominance, and'so on for the genotype 44. In the
case of Aa, the situation is reversed and the (p-log,N) graph for o® = 0-25 with
dominance is very near but below the graph for o? = 0-5 with no dominance, and
soon. Similar results hold for the genotypes A4 and Aa under the mating Aa X Aa.
An intermediate situation is revealed in the case of selection of Aa (Figure 2). For
: example, the graph for o% = 0-25 with dominance shows that the rate of decrease
of probability is slower than for ? = 05 with no dominance when the proportion
of selected individuals is approximately greater than or equal to 4 and is faster when
the proportion is below 4. Similar observations hold for the other cases. There
is thus an optimum proportion of selection (which is between 1/8 and 132
~ in the case considered here) below which dominance with o2 = 0-25 favours more
_ the selection of 44 genotypes than additivity witho? = 05, under the mating of a
heterozygote x heterozygote. This is true for the other levels of variance as well. .

Figure 3 (i) shows the speeds of approach to homozygosity under this model.
We see that the speed of approach is much higher when o® = 0-25 than when o2=
2-0 as expected. Dominance modification of the speed of approach are in line
with the observations made earlier.

Model 2.—Tables 5 and 6 summarise the probabilities of selecting one of the
possible six pairs under - the mating A4 X Aa and Aa x Aa respectively. The
general trends of variation in the (p-log,N) graphs - are similar to those for model 1
except that six possibilities of selecting a pair of genotypes exist in this model corres-
ponding to the three possibilities of selecting one genotype in Model 1. The
modifications due to dominance are also very similar to those in Model 1. As one
expects, the speed of approach to homozygosity by selecting a pair of individuals
is in almost all cases lower than the speed by selecting one best (Fig. 3). The
speeds of approach to homozygosity under these models and the relative speed
under Model 1 as compared to Model 2 are presented in Table 7.
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 Table 5. Probabilities of a selected pair of individuals being of a given type
Parental Mating ! AA X Aa

Selected Addi-
pair  tive or N
domi- —_— e

nance 2 4 8 16 32 64 128 256 512 1024

0-25 1 A -250 591 843 -946 -979 -990 995 -997 -998  -999
D .25 -522 -734 -858 -920 -952 970 -080 - 986  -990
2 A -500 -333 -145 -052 -G21 -010 -005 -003 <002 -001
D -500 -385 -239 -136 ‘078 -047 -030 -020 -C14 010"
4 A -250 -076 -012 -002 0 0 0 0 0 Q
D -250 -092 -027 -006 -002 -001 0 0 ) 0
2:00 1 A -250 -379 482 -565 633 -688 -732 769 - 799 -825:
D -250 -346 -420 -483 -536 <582 622 -655 -686 +713
2 A -500 -468 -421 371 -324 282 246 216 <189 -167
D -500 -481 -453 -422 -391 361 -333 -308 <284 -263
4 A 250 -153 -097 -064 -043 -030 -022 -01S -012 008
D 250 -173 -127 -095 -073 -057 -045 -037 (030 -024

Table 6. Probabilities of a selected pair or individuals being of a given type
; . Parental Mating : Aa X Aa

) Selected  Addi- N
. of pair  tive or ' ;
domi- 2 4 8 16 32 64 128 256 512 1024
nance
025 1 A 063 -226 493 -752 -900 ‘959 981 -990 994 -997 -
D -063 -201 -403 607 -760 -855 -910 -942 -962 -973
2 A -250° 414 374 217 095 041 -019 -010 -006 003 |
D 250 -433 433 -332 220 -138 -088 -057 -038 -027
3 A -125 4033 5005 001 0 0O 0 0 o0 0
D 125 024 02 0 0 0 0 0 ¢ 0
4 A 250 265 -122 629 005 0 0 0 0 0
D 250 -292 159 -G6L -020 -007 -GG2 -001 G O
5 A 25 057 -006 001 0O 0 6 0 0 0
D 250 -045 003 0 0 0 0 0 0 o0
6 A 062 005 ¢ G 0 0 0 0 o0 0
D 062 065 0 0 0 0 ¢ 0 0 0
2:00 1 A 063 -132 -209 -288 -365 436 -500 -557- 608  -651
‘ D 063 -121 -179 -235 -288 -338 -384 -427 466 -502
2 A -250 354 -411 -433 430 413 387 -359 -329 -300
D 256 -361 -422 -452 -463 -461 -452 -430 422  -404
3 A -125 -097 075 -057 -043 -033 -025 -019 -014 -0i1
D 125 -085 -060 -043 -031 -023 -017 -013 -010 -008.
4 A -250 -250 -214 <171 132 -101 -078 -059 -045 -035
D -250 -277 -256 -223 -190 -160 -135 -114 -097 -082
5 A 250 145 -083 -047 028 -017 -010 -006 -004 -003
D 250 -138 077 044 -027 -0I8 -0I12 -007 -005 -004
6 A 062 02 -008 ‘004 002 O O O 0 0
D 062 018 -006 003 00l O O O 0 0
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Table 7. Relative speed of approach to homozygosity by selection of
oite or two best

o= .25 ©g? =5 o =10 o =2-0
A D A D A D A  p_

2 si 414 381 -347 319 202 -273 -256 -244
S2 349 349 -349 -349 +349 349 349 349

RS 119 109 099 091 08 078 o7 0-70

Sl 1107 -514 -755 626 -514 <440 372 -331

S2 -535 <498 476 447 -426 -407 -392 -381

RS 2:07 184 1-59 140 1.9 1-08 095 .37

St 2:203  1-590  1-339 1002 -817 - 648 526 442

S2 -826 737 <704 613 -573 -510 475 . 439

RS 2:67 216  1-9] 163 143 127 141 .01

Sl 3:369 20239 1-961  [-370  [-147 -860 <698 -561

S2 -945 -880 859 .75] 712 611 -566 -502

RS 3:57  2:54 228 183 {.4 1-41 123 112

32 SI 4292 2813 - 2:527 1703 1471 1-qe4 -873 <678
S2 -971 -938 <925 -841 -811 -696 651 562

RS 442 300 273 204 1.8 1-53 1-34 1-21

64 S1 5020 3314 3-015 2.026  1-776  1.255  [.q46 -792
S2 -977 <960 -952 -893 -871 -763 722 616

RS Sl 345 307 227 204 1.6 o4s 1-29

128 St SO4 3758 3442 2313 2.058 1436 (.93 -902
S2 979 969 -964 922 -907 -814 778 664

RS STT 388 357 2951 227 176 1.4 1-36

256 S1 6197 4:150  3-823  2.578  2.318  1.g05 1-374 1007
S2 980 973 -970 940 .927 -850 -821 - 706

RS 6:32 421 394 274 250 1.3 q.¢ 1-43

512 St 6:699 4526 4171 2.824 2559 1.765 1.5 1-108
S2 980 -976 -974 +951 -943 877 -853 - 743

RS 6:85 464 428 2:97 2.7 4.0 1479 1-49

1024 s1 7-162  4-867  4-493 035 20784 10917 1676 1.204

3
S2 8L 918 976 w959 o5y .ggy g0 L 774
RS 730 498 460 319 20 2y o] 1-56

S1-Speed under Model 1. S2-Speed under Model 2. RS = S1/82, the 1elative speed..

Simulation.—The probabilities PG obtained by simulation of Model 1 are close
to those obtained by numerical integration (Table 4). Allowing a fixed standard
error of one generation, the percentage of runs pin which the gene A reaches a value
of 0:95 in (x 4 1) generations or less is calculated and is shown in the last column.
An examination of these P values indicate that a good degree of accuracy is obtained
_ bysimulation when N > 1 and N <32, One of the ways to achicve close accuracy

Cat N =1ig to increase the number of replicate runs, and this will tend to even out
~ the deficiencies of the pseudo-random number generators génerally used for simu-
_lation. Since the estimates of the probabilities were close to the estimates obtained
by numerical integration (the difference being less than or of the order of 10% in
most of the cases) when the replicate runs were 300, no attempt to increase it beyond
300 is made. Though the results of simulation are shown only for the mating
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Table 8. The matrix (B,) s=1, 21, j=1, 6

s/j [ 2 3 4 5 6

1 | . .. .

2. 916 3/8 .. 116

3 14 12 R 7

4 1/4 12 .. 1/4

5 1/16 3/8 .. 9/16

6 . .. .. 1 .. ..

7 81/256 27/64 9/128 9/64 3/64 ©1]256
8 9/64 3/8 3/32 ) 1/4 1/8 1764
9 9/64 3/8 3/32 1/4 1/8 1/64
10 . 9/256. 15/64 9/128 25/64 15/64 9/256
11 o e .. 9/16 3/8 1/16
12 1/16 1/4 1/8 1/4 1/4 1/16
13 1/16 1/4 1/8 1/4 1/4 1/16
14 1/64 1/8 3/32 1/4 3/8 9/64
15 . .. . 1/4 1/2 1/4
16 1/16 1/4 1/8 1/4 1/4 1/16
17 1/64 18 3/32 1/4 38 9/64
18 . 1/4 12 1/4
19 1/256 3/64 9/128 9/64 27/64 81/256
20 .. - 1/16 3/8 9/16

Aa X Aa, a few sample estimates were made for the other matings which have shown
parallel results. However, not less than 600 runs were found necessary to obtain
results as good as those from numerical integration for Model 2. ,

DISCUSSION

This study has brought out some salient features of simple selection models
which promotc a certain amount of inbreeding in the population. The main aim
of this study is to formulate theoretically the probability PG of obtaining a given
genotype by selecting on the basis of measurements of a quantitative character an
to use this in deriving a measure for the speed of approach. to homozygosity. This
Iras a certain bearing on the artificial selection experiments conducted on living organ-
isms or crop plants, since it is usual to select the top few individuals and to use them
as parents of the next generation. It is admitted that the models studied here arg
simplified though the theoretical formulation of the process is not quite so.

The probability PG is found to depend on 1/N, the proportion selected (2/N
in Model 2), and on the variance of the distribution of the phenotypes, since they
are the determinants of these models. A close examination of the probabilities
suggest that the probability can be expressed as an algebraic function of o®, 1/N and
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f the value of the metric for the particular genotype. Initial attempts were not

beSSfUl. In the literature, we do find approximations relating the effect of a
eie o a quantitative character with the consequent selective advantage caused
y,artiﬁcial selection (see Falconer, 1964, Chapter 11). An approximation for 7,
16 selection intensity was also given as i= 0-8 4 0-4In (N—1) (Smith, 1969),
ut the approximation desired here is for the probability that a selected genotype
. a-specified one say A4 (or that the selected pair of genotypes be specified ones
A, Aa say). - The approximation, if found, will be theoretically advantageous in
rder to calculate easily the probabilities that a number k (k > 2) of selected indi-
duals based on their phenotypic scores be of desired genotypes and hence to obtain
efat.e of approach to homozygosity.

The speed of approach to homozygosity slows down considerably when a best
pair of individuals is selected instead of the best single individual (Table 7). When
each mating produces only 2 or 4 individuals, Model 2 appears to be better than
M‘od'el‘l above certain levels of the variance of the phenotypic distribution. This
ituation is, however, unlikely in praciice; otherwise Mcdel ] promotes homo-
zygosity more quickly than Model 2 as expected. It is again interesting to observe
:hét dominance {with % = 0-25) modifies the speed of approach such that the
relative speed when o2 = 0-25 with dominance approximately equals that when
02 = 0-5 with no dominance for all N. and so on. As observed earlier, such a
sattern was evident in the probabilities PG as well.

:'Reéve (1955) has discussed the effects of inbreeding when both the homozygotes
re at a selective value s in a single locus model. He has considered the Speed
[ approach to homozygosity in selfing, half-sib and double first cousin matings.,
Within-line selection was considered and selection was through differential surviva]
f the homozygotes and heterozygotes, closely approximating to the process of naty-
ral selection. Though we have considered here only the effects of artificial selec.-
tion, the results suggest that a given level of homozygosity is obtained much faster
in the models considered in this paper than in the matings considered by Reeve.
s is so because the selection process discussed here is very intensive.

s

Projecting the results of this study, it seems desirable tosay, in a plant breeding
DProgramme (i) to select from a population which has already approached a desired
level of yield, a small number of plants showing superior individual performance,
and (ii) to obtain from it, a progeny population fixed for all the components of
vield. The results of Robertson (1970} that greater selection advance can be
obtained by varying the proportion  selected over generations, the proportion
selected being made small as selection proceeds, are of direct relevance.

_ This study also reveals the necessity of eXercising caution in interpreting the
results by simulation of any artificial selection experiment.  All simulation experi-
ments depend ultimately to a large extent on the random number generators that
are used. Although very eficient random number generators are available,
are nevertheless pseudo-random. This makes it all the more necessary to

they
have
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as many replicate runs as possible. There seems to be no yardstick to meagy
low many such runs are an absolute necessity before one may rely on the reAsuf
though it can be agreed that the validity of the simulation is checked on a ‘nulp
a ‘trial’ run of the model with known parameters and known results. In this st
simulation of simple selection models whose results can, of course, be obta
exaotly by analytical methods, was done because it would be then be possible to fip
out the number of replicate runs that are needed to match the results obtained
analytical methods. Even in a simple situation as we had, 300 replicate runs
more were needed to get close estimates.

In complicated experiments, the problem of ascertaining the number of rep
cate runs needed to obtain reliable results assumes crucial importance.

These points are not made to argue that the simulation of genetic models
general, should be dispensed with, but to stress the need to handle the probl ems.
simulation with caution.. When possible, it is fruitful to solve the model by math
matical or other means to the extent possible and use those results to further sim
late the model. However, when problems arise for which simulation is the on
solution, it is profitable to base the results on a large number of replicate runs and
to interpret them with care and caution.
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SUMMARY

An attempt is made to study the progress of inbreeding in a population by simple
models of artificial selection. One or two top ranking individuals are selected
based on the phenotypic value of a metric from the NV progenies resulting from any
particular mating (denoted as Model 1 and Model 2). The generation matr
method is employed to study the progress towards homozygosity. The probab:
lity that a selected individual is of a given genotype or that a selected pai
consists of speciﬁed genotypes has been computed by numerical integration as- wel
as by simulation, assuming the phenotyplc distribution to be normal with . the
mean at the genotyplc value and a given variance. It is observed that Model |
promotes homozygosxty more quickly than Model 2 as expected. Modification:
due to dominance in the progress towards homozygosity are also discussed. The
Study thtows some light on simulation studies in genetics.
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APPENDIX 1

Numerical method of calculating Sij given. in (2) of the text
Let ‘

:l/ (X) = él—f} j‘ e dt,

Hastings (1955) has given a valid numerical approximation to Erf (x).

Eif (x) = 1 — [1/(I + ax + apx® -+ . .. agx®) 16]

where
a, = +0705230784 ay = -0422820123 as = 0092705272
a, = 0001520143 as = 0002765672 ag = -0000430638,

when 0 < x < oo. Noting that
Erf(x) = — Ef ()

when x = — y, we can sh.-ow that

FO =) = 5+ 5 B (X502 = g, say),

where
X = x/o.
Hence
Si = f Na"ti/ X — IU“J) ’-—‘1 airﬁr) dx
B 0‘0 N-1
= WVE) Nay [ b (Za) d
Let
X — o M
= == ,
V2 V2
- le.,
x = (V24w
so that
X — 1t

\/hz“ =1 f‘ \/2 —m(Sw)
Hence

Br - % “I_ %E"f(ﬂr)

Itis
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so that

" c K1
sy=Uvm Ny [ e (Sag) a

‘ e 7 . ;
which is now of the form [ e* ¢ (¢) dt where

—00

g (1) = (I/4/m) N.a‘ij( {-1 C‘irﬁr)m1 .

~ Goodwin (1949) has given an approximation to integrals of this form. Using
his approximation,
oo -,
sy~ 2 glkrye™™ where ris the step length. This gives a very
k= —00

good approximation to the integral so long as r is kept reasonably small. In this

_investigation, r was taken to be = 0-2 and the summation was carried between
k= —30 and k= 30. These values of k and r were found to be adequate for
5iy’s to be accurate to 4 places of decimal.

Numerical method of calculating v,y given in (5) of the text
Rewriting (5) we get,
uy =N (N — 1) ayay (4 + B)

where
+ N-2 .
A = f [ZcurF (y — IL,)] [t —F@Q—p)lf(— 1z) dy
and
i N-2
B = f [ 2 CL{,-F (J) - I~Lr) ] [1 —_ F(y - /“Lk)]‘f‘(y — /‘Lt) dy

Splitting up 4 into two integrals and following the procedure outlined above,
it is easy to see that

(==

—

l__]- Tyef Pre —
X ‘[2 5 Erf (z - —»\/T)] dz,
where
x =0a (2 V2 + |1;).

We can evaluate B in a similar manner and hence u;;.
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APPENDIX II

Method of calculation of matrix ((C))

Let i, j denote the order of pairs as mentioned in (4). Let u;; be the pro-
bability that the pair j is selected from the parental mating i (i, j=1,6). The
matrix U of the order 6 X 6 formed by u;; is given below:

N\ 1 2 3 4 5 6
AN

1 1 iy, 0 g 0 0
2 0 Ugy 0 {7 0 0
3 0 0 0 Iy 0 0
4 0 Iy 1 Uy Hgy == llgy 0
5 0 0 i5y Ugs==lUas 0
6 0 0 0 Uy U= ling 1

Let o, be the conditional probability that a progeny is of the genotype
h(h=1for AA; = 2 for Aa; = 3 for aa) giver the parental pairs s.

The process of random mating among the parental pairs can completely be
specified by the random union of the gametes whose frequencies in the parental
pairs are as follows:

Parental pair, Gametic Frequency

i A a
1-AA, A4 1 0
2-AA, Aa 3 1
3-4A, aa % %
4-Aa, Aa % %
5-Aa, aa 4 3
6-aa, aa 0 1

The distribution of a,; can now be completely specified. For example, for the
parental pairs 9, i.e., for the pair A4, Aa; Aa, Aa (see Table 3), agy = §, agy = 4
“and ag = 4. Thus the matrix of values for a,, of the order 21 X 3 can be written
down. From this matrix, it is possible to calculate B, the probability of a (pro-
geny) mating of type j given the parental pairs s, s = 1, 21; j =1, 6. For the
above example, we would have Py, = 9/64, By, = 3/8, Bgy = 3/32, By, = 1/4, Bys
= 1/8 and By; = 1/64. The matrix of values B,; is presented in Table 8.
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From the w;’s, we can now get v,, the probability of two pairs given
by r (=k, ¢ say) getting selected given the parental pair j, r=1, 21; J Kk, t=1, 6,

Vip = 2upayy, if kAt
= “ﬂo2 if k=1
. Thus it follows that

¢rs = Pr(the two selected pair is slparental pair is r)

Pr (the two selected pair is simating /) %

-

I
Ibge

Pr (mating j|Parental pair r).
[i]
= 2";,'3[3”-.
i=1

-~ The matrix (C) is thus determined.



