EVOLUTION OF NEW RACES OF UNIVOLITIES SILKWORM BY PHYSIOLOGICAL GENETICS

By E. S. NARAYANAN, F.A.Sc. AND B. L. TIKOO*

(Central Sericultural Research and Training Institute, Mysore)

Received December 2, 1968

ABSTRACT

- 1. With a view to fix improved pure strains of silkworm *Bombyx* mori Linn. suitable for the univoltine regions of India, two breeding plans were drawn up.
- 2. Out of eighty sublines isolated only five, viz., S_{18} , S_{21} , S_{36} , S_{58} and S_{79} were finally selected on the basis of their peak performances.

These have been christened as Mandakini, Shivalika maid, Himalayan nymph, Doon Crescent and Yamuna respectively.

3. Field trials both at Dehra Dun and Kashmir under village conditions have given encouraging results.

INTRODUCTION

KASHMIR is particularly conducive to the rearing of univoltine races of silk-worms on account of its temperate climate and the availability of nutritive mulberry leaves that sprout forth in the warmth of spring after hibernation in the severe winter. Indeed the climatic complex of Kashmir is considered even better than that of Japan for sericulture. Yet production is low and the cost of production higher than that of Japan. As Tazima observes, "Basically Kashmir sericulture suffers for want of its own races of silk-worms". In the history of sericultural research extending for more than three decades in India there has not been, as far as can be seen from published literature, a single successful experiment for the evolution of univoltine, bivoltine or multivoltine races of silkworm and unless the scientist harnessed the astonishing advances that genetics has made with in recent years the science and practice of sericulture will remain stagnant in our country.

^{*} Dr. E. S. Narayanan, Director, Central Sericultural Research and Training Institute, has since retired. B. L. Tikoo, Senior Research Officer, Central Sericultural Research and Training Institute, Shantivilas, Nazarbad, Mysore-1.

MATERIAL AND METHODS

In the spring of 1964 with a view to evolve new univoltine races of silkworms suitable to the climatic complex prevailing in the fair vale of Kashmir nestling in the Himalayas and the valley of Doon lying at the foothills of Sivalika and Himalayan ranges, two plans based on the most recent advances in animal genetics and breeding were drawn up and carried out to a successful conclusion at the Univoltine Sericultural Sub-Station, Premnagar, Dehra Dun. Investigations in the physiological genetics of silkworm by Watanabe (1919) had shown that if genetically bivoltine eggs were incubated at 15° C. after the blastokinesis stage of the embryo the moths that emerged from the cocoons laid non-hibernating eggs. If the eggs, however, were incubated above 24° C. the moths laid hibernating or univoltine eggs. The results obtained in these investigations were applied with suitable modifications in the Plans I and II referred to above. Investigations by Kogure and Kobayashi (1928) had shown that light influenced this characteristic to some extent. The long-day effect for more than sixteen hours was roughly comparable to a high and daily illumination shorter than twelve hours to a low temperature. It may be emphasised that these observations are important only from purely an academic point of view. For variation in temperature which will always be there when the eggs exposed to a long or a shorter illumination will not be as expressive as when the eggs are incubated at constant temperature with the requisite illumination. It was found during the course of these investigations that incubation at constant temperatures always gave satisfactory results.

Three exotic bivoltine races namely Meigetsu, J 122 and Shoka Ginrei that were being maintained in the Central Silkworm Seed Station, Srinagar, were selected for these experiments. The selection was based on their performance over a period of years from the point of view of some important characters like the percentage of hatching, percentage of missing larvae, yield, shell weight, filament length and other minor characters. Table I gives the data of their performance with reference to the characters mentioned above.

1. Meigetsu

This is a bivoltine race imported from Japan. It has beautiful oval cocoons and its development was always uniform.

2. J 122

This is a Japanese bivoltine race. This is one of the five P₃ races that has been selected, recommended and issued by the Central Silk Board to

various Sericultural States for preparation of hybrid silkworm seed to exploit heterosis.

TABLE	I
--------------	---

Sl. No.	Race	Percentage of hatching	Percentage of missing larvae	Yield per 10,000 larvae brushed (kg.)	Shell percentage	Filament length (metres)
1	Meigetsu	80·4±4·3*	19·6±10·3	12.7±1.9	17·9±0·5	926±51
2	J 122	91.5±3.3*	6.9 ± 1.7	16·9±0·4	17-9±0-8	10 65±42
3	Shoka Ginrei	84·1±7·6†	5·6± 3·4	15·5±0·7	20•0±0•5	1038±60

^{*} Mean based on five observations.

3. Shoka Ginrei

This bivoltine race was imported from Japan and has been giving good results continuously for a number of years. This was probably a hybrid to start with. But due to several generations of inbreeding, it has been breeding true. This race was used in Japan during summer and autumn for commercial rearing due to its being resistant to unfavourable climatic and environmental conditions. In view of these desirable characters Shoka Ginrei was utilised as one of its parents (Plate X, Fig. 1).

Breeding Plan I

As mentioned earlier, the details of Breeding Plan I are as follows:

Meigetsu ... Shoka Ginrei

No. of layings = 5 F_1 ... Shoka Ginrei

No. of layings = 20 BF_2 ... Brushing after incubation at 26° C.

Selection for hibernating eggs

No. of layings
in two lots = 40

F₃

Incubation at 24°C.

F₄

Subline Subline Subline Subline Subline

[†] Mean based on ten observations.

(Selected promising sublines to be taken for trials. The characters for selection basing on peak performances after cocoon quality tests.)

EXPERIMENTS, OBSERVATIONS AND RESULTS

 F_1 Generation.—In Plan I, Meigetsu female was crossed with Shoka Ginrei male. In the F_1 generation five layings were selected and reared with meticulous care.

BF₂ Generation (Plate X, Figs. 2, 3).—The F₁ females were crossed with Shoka Ginrei males. In the BF₂ generation twenty layings of eggs were selected. At the blastokinesis stage of the embryo these layings were incubated on an average of five days at a constant temperature of 26° C. After incubation the layings were divided into two lots of ten each and brushed to make the rearings more compact, less crowded and to make further selection rational and vigorous. The quantitative characters of the BF₂ generation are given in Table II.

TABLE II

Programme	Hatch- ability percent- age	Larval morta- lity	Yield of cocoons per 10,000 larvae brushed (kg.)	Mean shell weight (C gm.)	Percent- age shell	Fila- ment length (metres)
A. Breeding Plan	I					
(i) Lot A	83.6	2.7	18.6	43.6	21.5	1115
(ii) Lot B	71.5	2.4	19•1	45.04	21.0	1214
B. Parental Races (i) Meigetsu	87.7	8.3	16.3	33.6	17.9	907
(ii) Shoka Ginrei	75.0	4.9	16-6	42.6	19•9	1161

 F_3 Generation.—In the BF₂ generation from each of the lots, the best cocoons were selected on the cocoon quality test for seed purposes. One hundred and twenty-five layings were prepared in all. These were incubated at 24° C. at the blastokinesis stage. At this stage itself a number of layings

that did not appear to be good and of uniform colour and of not good hatchability were rejected by the visual method. In this way forty-three layings were eliminated. The remaining eighty-two layings were brushed. Again out of the eighty-two, only forty, viz., S_1 to S_{40} were eventually selected on the basis of hatchability percentage and number of eggs per laying.

These forty sublines were separately reared in cellular beds to ensure the selection most rigorous. When the worms had spun the cocoons, only those cocoons that were oval with almost no constriction and other desirable characters like the percentage of silk, content of shell, filament length were selected in each bed and desired matings of the best male with the best female effected. Five disease-free layings from each of the line were retained. The rearing data for F₃ generation are given in Table III.

TABLE III

						
Sl. No.	Selection No.	Total number of eggs in the laying	Hatch- ability percent- age	Yield of cocoons per 10,000 larvae brushed (kg.)	percent- age of shell	Fila- ment length (metres)
			Plan I,	Lot A		
1	S_1	643	74.4	14.8	19.1	1182
2	S_2	779	71.7	15.3	21.4	1024
3	S_8	733	87.8	11.3	20.1	1096
4	S_4	807	85.2	15.4	21 · 1	1031
5	S_5	729	86.7	15.8	20.9	953
6	S_6	772	77.0	14.2	20.5	1083
7	S_7	737	83.7	14.6	20.9	1080
8	S_8	685	85.3	15.1	21.5	1204
9	S_9	848	81.0	16.0	20.7	1130
10	S_{10}	663	76.2	12.7	21.7	1212
11	S_{11}	630	89.7	17.8	21.1	1008
12	S_{12}	745	70.0	17.8	20.0	1075
13	S_{13}	721	81.5	13.5	21.2	1118
14	S_{14}	787	83.3	17.3	21.6	1138
15	S ₁₅	704	74.3	17.0	21.4	1050
16	S ₁₆	711	79·0	16.8	20.7	1283

TABLE III—Contd.

	. A Company		IABLE	.II—Conta.		
Sl. No.	Selection No.	Total number of eggs in the laying	Hatch- ability percent- age	Yield of cocoons per 10,000 larvae brushed (kg.)	percent- age of shell	Fila- ment length (metres)
17	S ₁₇	745	80.8	16.1	22.2	1035
18	S ₁₈	701	82.1	17.1	22.1	1272
19	S_{19}	827	82.3	16.0	21.5	1246
20	S_{20}	693	85.1	15.7	21.6	1143
	_,		Plan I	f, Lot B		
21	S_{21}	729	74.9	16.6	21.3	1261
22	S_{22}	788	71-3	12.5	21.0	1367
23	S_{23}	813	78.0	18.0	20.7	1208
24	S_{24}	788	78 • 1	15.1	20.1	1032
25	S_{25}	755	71.2	12.0	20.5	1014
26	S_{26}	880	62.5	15.7	21.7	1020
27	S ₂₇	856	78.3	14.6	20.2	1070
28	S_{28}	851	74.7	15.0	21.3	970
29	S_{29}	657	80.2	14.5	18.3	114
30	S ₈₀	816	76.4	15.8	20.5	1137
31	S ₃₁	853	71.3	14.9	20.7	1115
32	S ₃₂	702	75.9	16.2	20.3	994
33	S ₃₃	822	83.3	15.8	17.9	1128
34	S ₃₄	796	86.3	13.6	21.8	1131
35	S ₈₅	806	81.2	13.8	18.7	1041
36	S ₃₆	747	76.9	14.3	17.8	1047
37	S ₃₇	778	75.9	12.3	18.8	1246
38	S_{38}	717	83.5	17.5	17.8	1221
39	S ₃₉	784	75.5	14.6	21.5	1153
40	S ₄₀	702	75.0	13.8	19.0	1145
	. 1		Paren	tal Races	· .	
1	Meigetsu	630	.88.0	13.0	16.7	916
2	Shoka Gir	rei 692	75.3	14.8	19.6	1172

 F_4 Generation.—Five layings from each of the forty sublines were incubated at a temperature of 24°C. and after incubation only No. 1 laying, the best among the five was brushed. When these worms spun cocoons, out of forty lines reared in cellular beds, twenty-one sublines were preliminarily selected in Plan I. The rearing data of these twenty-one sublines are given in Table IV.

-			TT.
' I ' A	T	•	
1 A	нı	₩.	1 1

Sciection				INDLE			
1 S ₅ 54·8 16·4 20·9 1101 Oval 2 S ₉ 72·1 16·5 20·9 957 Slightly constricted 3 S ₁₀ 52·4 17·3 21·8 1018 do. 4 S ₁₁ 93·1 16·6 20·3 918 do. 5 S ₁₂ 90·3 13·0 20·9 1092 do. 6 S ₁₄ 67·7 17·3 20·6 1021 Oval 7 S ₁₅ 90·6 16·9 19·9 965 Slightly constricted 8 S ₁₈ 93·5 13·7 21·2 1106 Oval 9 S ₂₀ 79·8 15·5 20·1 925 Slightly constricted Plan I, Lot B 10 S ₂₁ 73·1 18·3 20·1 1153 Oval 11 S ₂₈ 90·1 16·7 21·3 988 Slightly constricted 12 S ₂₄ 59·0 16·9 20·1 1019 do. 13 <		tion	ability percent-	cocoons per 10,000 larvae brushed	age of	ment length	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Plan I	I at A	······································	
2 S ₉ 72·1 16·5 20·9 957 Slightly constricted 3 S ₁₀ 52·4 17·3 21·8 1018 do. 4 S ₁₁ 93·1 16·6 20·3 918 do. 5 S ₁₂ 90·3 13·0 20·9 1092 do. 6 S ₁₄ 67·7 17·3 20·6 1021 Oval 7 S ₁₅ 90·6 16·9 19·9 965 Slightly constricted 8 S ₁₈ 93·5 13·7 21·2 1106 Oval 9 S ₂₀ 79·8 15·5 20·1 925 Slightly constricted Plan I, Lot B 10 S ₂₁ 73·1 18·3 20·1 1153 Oval 11 S ₂₈ 90·1 16·7 21·3 988 Slightly constricted 12 S ₂₄ 59·0 16·9 20·1 1019 do. 13 S ₃₀ 93·5 17·1 18·7 1085 Oval 14 S ₃₈ 70·6 17·2 19·6 1071 Slightly constricted 15 S ₃₄ 87·2 16·4 19·4 955 do. 16 S ₃₅ 91·4 16·0 23·8 970 do. 17 S ₃₆ 67·8 15·5 22·1 1257 Oval 18 S ₃₇ 55·4 15·4 20·5 1052 Oval 19 S ₃₈ 84·2 12·0 20·3 1180 Slightly constricted 20 S ₈₀ 83·6 17·7 22·0 1076 do. 18 S ₃₇ 75·6 17·7 22·0 1076 do. 21 S ₄₀ 72·6 16·6 19·9 1095 Oval Parental Races 1 Meigetsu 89·1 15·8 19·7 1034 Oval Slightly Constricted Ao. Parental Races 1 Meigetsu 89·1 15·8 19·7 1034 Oval Slightly Slightly Constricted Ao. Slightly Const	1	S.	54.8			1101	Ovol
Constricted	2	S _o					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	~,		20 0	20)	, , ,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	S_{10}	52.4	17.3	21.8	1018	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	S_{11}^{-1}	93.1	16.6	20.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	S_{12}	90.3		20 9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	S_{14}					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	S_{15}^{-1}	90.6				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	S_{18}					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	S_{20}	79 · 8	15.5	20 · 1	925	Slightly
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							constricted
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							Oval
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	S_{28}	90 · 1	16.7	21.3	988	Slightly
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	~					
14 S ₃₈ 70.6 17.2 19.6 1071 Slightly constricted 15 S ₈₄ 87.2 16.4 19.4 955 do. 16 S ₃₅ 91.4 16.0 23.8 970 do. 17 S ₃₆ 67.8 15.5 22.1 1257 Oval 18 S ₃₇ 55.4 15.4 20.5 1052 Oval 19 S ₃₈ 84.2 12.0 20.3 1180 Slightly constricted 20 S ₃₉ 83.6 17.7 22.0 1076 do. 21 S ₄₀ 72.6 16.6 19.9 1095 Oval Parental Races 1 Meigetsu 89.1 15.8 19.7 1034 Oval 2 Shoka Ginrei 80.5 9.5 19.3 1059 Slightly		S ₂₄					
15 S ₃₄ 87·2 16·4 19·4 955 do. 16 S ₃₅ 91·4 16·0 23·8 970 do. 17 S ₃₆ 67·8 15·5 22·1 1257 Oval 18 S ₃₇ 55·4 15·4 20·5 1052 Oval 19 S ₃₈ 84·2 12·0 20·3 1180 Slightly 20 S ₃₉ 83·6 17·7 22·0 1076 do. 21 S ₄₀ 72·6 16·6 19·9 1095 Oval **Parental Races** 1 Meigetsu 89·1 15·8 19·7 1034 Oval 2 Shoka Ginrei 80·5 9·5 19·3 1059 Slightly		S ₈₀					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	S_{33}	70.6	17.2	19.6	1071	Slightly
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5	C	07.3	16.4	10.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S ₃₄					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ა ₃₅					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D38					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		S ₃₇					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	D38	04.7	12.0	20.3	1180	
21 S ₄₀ 72·6 16·6 19·9 1095 Oval **Parental Races** 1 Meigetsu 89·1 15·8 19·7 1034 Oval 2 Shoka Ginrei 80·5 9·5 19·3 1059 Slightly	20	S	83.6	17.7	22.0	1076	
Parental Races 1 Meigetsu 89·1 15·8 19·7 1034 Oval 2 Shoka Ginrei 80·5 9·5 19·3 1059 Slightly	21	S.,					
1 Meigetsu 89·1 15·8 19·7 1034 Oval 2 Shoka Ginrei 80·5 9·5 19·3 1059 Slightly	~1	540	72.0			1095	Ovai
2 Shoka Ginrei 80.5 9.5 19.3 1059 Slightly				Parental	Races		
2 Shoka Ginrei 80·5 9·5 19·3 1059 Slightly	1		89.1	15.8	19.7	1034	Oval
1037 Brightry	2				•		- V
		Ginrei	80.5	9.5	19.3	1059	

 F_5 Generation.—It has already been mentioned earlier that twenty-one sublines for the excellence of their characters at the F_4 stage were selected. Two layings from each of these twenty-one sublines were reared in cellular beds keeping the incubation temperature as in F_4 generation with a view that the genetic impact may become stronger. The rearing data of these sublines is given, with their cocoons shape in Table V. The data given in

TABLE V
(Mean)

		(1	neurij		
Selection No.	Hatch- ability percent- age	Yield of cocoons per 10,000 larvae brushed (kg.)	Percent- age of shell	Fila- ment length	Cocoon shape
S ₅ S ₉	60 · 7 75 · 6	16·2 16·0	16·1 19·9	1001 1014	Oval Slightly
$egin{array}{c} S_{10} \ S_{11} \ S_{12} \ S_{14} \ S_{15} \ \end{array}$	79·2 64·9 81·4 63·4 90·1	16·5 16·4 13·9 16·6 16·0	19·7 19·0 19·0 18·8 19·3	1058 1101 1116 1066 1041	constricted do. do. do. Oval Slightly
$\overset{\mathbf{S_{18}}}{\mathbf{S_{20}}}$	89·8 86·6	17·3 13·4	20·2 17·2	1220 1001	constricted Oval Slightly constricted
$S_{21} \\ S_{28}$	80·4 54·7	16·1 15·6	18·9 18·8	1312 1179	Oval Slightly constricted
S ₂₄ S ₃₀ S ₂₃	88·8 86·4 87·1	13·4 14·6 14·4	16·1 18·2 17·7	1042 1128 955	do. Oval Slightly
S ₃₄ S ₃₅ S ₃₆ S ₃₇	65·1 72·6 76·8 71·4	14·4 15·1 15·9 15·7	18·8 20·2 19·4 20·1	1144 1164 1143 1041	constricted do. do. Oval Oval
S ₃₈ S ₃₉ S ₄₀	86·4 59·9 84·5	16·1 17·8 16·1	18·2 19·1 19·6	1192 1406 1151	Slightly constricted do. Oval
Total Mean S.D	1607·8 76·5 10·9	327·5 15·6 1·2	394·3 18·9 1·2	23475 1118 108	* * * * •

Table V were screened critically, with the cocoons in front and on this basis only three namely S_{18} , S_{21} and S_{36} were finally selected (Plate X, Figs. 4-6). These have been christened as Mandakini, Shivalika Maid and Himalayan Nymph respectively.

 F_6 Generation.—The three sublines namely S_{18} , S_{21} and S_{36} were reared in four batches. Parallel rearing of the two parental races, viz., Meigetsu and Shoka Ginrei were carried out in two batches. The analysis of variance showed that the new races gave significantly higher yield than two parental races (P < .05). However there was no significant difference in hatchability and shell percentage. The mean values of these characters are given in Table VI.

TABLE VI

Sl. No	Selection No.		Hatch- ability percent- age	Yield of cocoons per 10,000 larvae brushed (kg.)	Shell percent- age
1	S ₁₈		88.6	21.8	20.7
2	S ₂₁		96-2	21 • 4	21.2
3	S ₃₆		94.5	22.7	20-1
4	Meigetsu	• •	96.9	16.5	18.8
5	Shoka Ginrei	••	88.7	19.6	19.5

These three sublines (Plate X, Figs. 4-6) finally selected have been added to the germ plasm stock maintained at Srinagar.

Breeding Plan II

The details of Breeding Plan II are as follows:

Shoka Ginrei ... J_{122} No. of layings = 5 F_1 ... Shoka Ginrei
No. of layings = 20 BF_2 ... Brushing after incubation at 26° C,

Selection for hibernating eggs.

No. of layings
in two lots = 40

F₃

Incubation at 24°C.

No. of layings
in two lots = 40

F₄

Subline Subline Subline Subline Subline

(Selected promising sublines to be taken for trials. The characters for selection basing on peak performances after cocoon quality tests).

The rearings of the F_1 , F_2 , F_3 and F_4 were carried out in regard to the number of layings, incubation, rearing and the selection of cocoons and subsequent matings, exactly in the same manner as in Plan I.

 F_1 Generation.—In Plan II, Shoka Ginrei female was crossed with J_{122} male. In the F_1 Generation five layings were selected and reared.

BF₂ Generation (Plate X, Figs, 7-8).—The F₁ females were crossed with Shoka Ginrei males and twenty layings were brushed in two lots as in Plan I.

The quantitative characters of the BF₂ generation of Plan II are given in Table VII.

TABLE VII

Programme	Hatch- ability percent- age	Larval morta- lity	Yield of cocoons per 10,000 larvae brushed (kg.)	Mean shell weight (Cgm.)	Percent- age shell	Fila- ment length (metres)
(A) Breeding Pla	n II					١
(i) Lot A	67 - 3	2.4	18.4	43.6	20.6	1192
(ii) Lot B	60.8	4.2	18.5	44.0	21.0	1261
(B) Parental Rac (i) Shoka	e e					
Ginrei	75.0	4.9	16.6	42.6	19.9	1161
(ii) J 122	54.7	8.3	14.9	35.3	19.5	813

 F_3 Generation.—In the BF₂ generation from each of the two lots, the best cocoons were selected on the cocoon quality test for seed purposes as in Plan I. Here again one hundred and twenty-five layings were prepared. They were incubated at 24° C. at the blastokinesis stage. At this stage fifty-seven layings that did not appear to be good or uniform in colour and were not of good hatchability were rejected, again by the visual method, the remaining sixty-eight were brushed. Out of these sixty-eight, forty, viz., S_{41} to S_{80} were selected on the basis of hatchability percentage and number of eggs per laying. The rearing of these forty layings and the selection of cocoons were carried out exactly in the same manner as was carried out in Plan I. The rearing data of F_3 generation is given in Table VIII.

TABLE VIII

Sl. No.	Selec- tion No.	Total number of eggs in the laying	Hatch- ability percent- age	Yield of cocoons per 10,000 larvae brushed (kg.)	percent- age of shell	Fila- ment length (metres)
***************************************			Plan II,	Lot A		
1	S ₄₁	759	71.8	13.3	21.0	1009
2	S_{42}	697	77.1	13.1	22.5	1033
3	S_{43}	637	77.7	9.3	21.7	957
4	S_{44}	834	90.9	14.8	19.0	1250
5	S ₄₅	843	76.4	13.5	21.1	1020
6	S46	815	93 • 1	13.8	21.0	1323
7	S ₄₇	809	86.5	13.5	20.0	1309
8	S_{48}	710	87.0	14-2	21.5	964
9	S_{49}	696	72.1	11.1	20.5	1124
10	S ₅₀	705	74.4	13.1	21.7	1118
11	S_{51}	740	7 8 · 3	12.2	21.1	990
12	S_{52}	763	92.4	13.1	18.5	1222
13	S ₅₃	731	92.8	15.2	20.5	976
14	S_{54}	803	90 • 1	13.5	18.6	1067
15	S55	765	84.0	14.6	19·1	1159
16	S ₅₆	719	95.8	10.7	19.6	1106
17	S ₅₇	665	97.7	16.3	19·1	1264

TABLE VIII—Contd.

Sl. No.	Selec- tion No.	Total number of eggs in the laying	Hatch- ability percent- age	Yield of cocoons per 10.000 larvae brushed (kg.)	percent- age of shell	Fila- ment length (metres)
18	S ₅₈	740	84.4	12.7	18.9	1159
19	S ₅₉	707	93.0	14.0	20 · 1	1240
20	S 60	796	92.5	13.9	20.1	1254
			Plan	II, Lot B		
21	S ₆₁	739	81.1	12.7	20.8	1147
22	S ₆₂	685	82.6	12.6	21.0	1075
23	S ₆₃	562	77.6	15.9	22.9	1064
24	S ₆₄	715	77.5	11.3	20.6	1055
25	S_{65}	806	73.0	12.8	20.3	1260
26	S 66	751	77 · 1	12.2	19.0	1105
27	S ₆₇	706	70.0	15.1	22.0	1289
28	S ₆₈	700	72.8	12.0	21.4	1117
29	S 69	682	70.7	9.3	21.6	1123
30	S ₇₀	682	61.6	17.1	21.5	1154
31	S ₇₁	711	61 · 1	13.3	22.1	1179
32	S ₇₂	606	72.3	13.0	19.2	1133
33	S ₇₈	661	65.6	12.0	23 · 8	1134
34	S ₇₄	896	62.2	14.3	18.8	1101
35	S ₇₅	776	81.4	12.7	19.4	1203
,36	S76	773	75.7	13.0	19.1	1008
37	S ₇₇	725	76.2	14.8	19.0	1170
38	S ₇₈	664	84.2	10.9	19.7	1087
39	S ₇₉	710	84.7	14.2	20.1	1150
40	S ₈₀	696	91.3	13.0	20 • 1	1082
		A	Parenta	l Races	· %*	V s. a
1 a.	ShokaGir	rei 692	75.3	14.8	19.6	1172
2.	J 122	567	76-9	10.9	19.0	1007

 F_4 Generation.—In the F_4 generation five layings from each of the forty lines were incubated at a temperature of 24° C. as in Plan I and after incubation only No. 1 laying that was the best among the five wasbrushed. When these worms spun cocoons, out of forty lines reared in cellular beds, seventeen lines were preliminarily selected. The rearing data of these seventeen sublines are given in Table IX.

TABLE IX

Sl. No.	Selec- tion number	Hatch- ability percent- age	Yield of cocoons per 10,000 larvae brushed (kg.)	Percent- age of shell	Fila- ment length (metres)	Cocoon shape							
	Plan II, Lot A												
1	S_{42}	58-1	12-4	21.6	1228	Constricted							
2	S ₄₅	95 ·6	16.3	18.6	958	Slightly							
3	S47	95.2	15.5	21.5	948	constricted do.							
4	S_{51}	84.5	14.3	21.8	1169	do.							
5	S ₅₄	71 · 4	16.6	19.8	1000	do.							
6	S_{55}	87.0	16.0	19.7	960	do.							
7	S ₅₈	84.9	14.3	20.3	1051	Oval							
			Plan II, I	Lot B									
8	S_{63}	71.8	17.2	19.0	970	Oval							
9	S ₆₅	92.8	13.8	19.1	1099	do.							
10	S 66	79.9	15.4	19.7	973	Slightly							
11	S ₇₀	74.3	13.7	18.6	976	constricted Oval							
12	S ₇₁	76.5	12.9	19.5	1138	Slightly							
13	S ₇₂	69 · 8	13.9	20.0	1106	constricted do.							
14	S75	93.5	15.1	18.7	1278	Oval							
15	S ₇₆	57.5	15.2	19.0	962	do.							
16	S ₇₉	75.1	14.8	19.8	1414	do.							
	· ·				<u></u>								

 F_5 Generation.—Two layings from each of these seventeen sublines, selected at F_4 stage, were reared in cellular beds keeping the incubation temperature as in F_4 generation. The rearing data of these sublines are given with their cocoon shape as in F_4 , in Table X. The data given in Table X were

TABLE X

Selection No.	Hatch- ability percent- age	Yield of cocoons per 10,000 larvae brushed (kg.)	Percent- age of shell	Fila- ment length (metres)
S ₄₂	82.4	10.4	19.7	1214
S ₄₅	89.7	13.7	18.2	1117
S47	79.5	14.2	18.0	941
S ₅₁	68.6	15.5	19.7	1440
S ₅₄	80.3	14.5	20.4	1061
S ₅₅	70.0	14.6	18.2	1036
S ₅₈	75.1	15.2	20.2	1172
S 60	78.6	12.8	20 · 1	1110
S ₆₃	64.8	16.0	20.1	1211
S ₆₅	90.6	11.8	19.4	1159
S_{68}	79 · 1	13.3	19·1	1006
S ₇₀	77-2	11 · 4	16.5	1046
S_{71}	80.4	12.6	18.7	1107
S_{72}	77.9	11.8	18 - 4	915
S ₇₅	59 • 1	13.0	19.1	1177
S ₇₆	60.2	14.4	18-7	1277
S ₇₉	79.0	14.6	19.5	1150
Total	1292 · 5	229 · 8	324 · 0	19139
G. Mean	76.0	13.5	19·1	1126
S.D	8.9	1.6	1.0	126

screened critically with the cocoons, in front and on this basis, only two, viz., S_{58} and S_{79} were finally selected (Plate XI, Figs. 9, 10). These have been christened as Doon Crescent and Yamuna respectively.

 F_6 Generation.—The two sublines, viz., S_{58} and S_{79} were reared in four batches. Parallel rearing of the two parental races, viz., the Shoka Ginrei and J 122 were carried out in two batches. The analysis of variance showed that the new races gave significantly higher yield than two parental races (P<.05). However, there was no significant difference in hatchability and shell percentage. The mean values of these characters are given in Table XI.

TABLE XI

SI. No.	Subline No.	Hatch- ability percent-	Yield of cocoons per 10,000	Percent- age of
	, , , , , ,	age	larvae brushed (kg.)	shell
1	S ₅₈	90.9	19.2	19.9
2	S ₇₈	92.9	18.0	19.4
3	Shoka Ginrei	88.7	19.6	19.5
4	J 122	8 3·3	14:4	18.9

These two sublines (Plate XI, Figs. 9-10) finally selected have been added to the germ plasm stock maintained at Srinagar.

FIELD TRIALS OF THE NEW RACES IN DEHRA DUN AND KASHMIR

The second stage in any biological research work leading to the fixation of new races with superior characters in plants or animals, is their performance under natural field conditions. So with this view field trials of S_{18} , S_{21} , S_{36} , S_{58} , and S_{79} were carried out in a village Jajra in Dehra Dun in March 1967.

Two of the sublines, viz., S₁₈ and S₈₈ were further tried in village Kandizal, Pampore (Kashmir). The environmental conditions of the village on the

S. Narayanan and B. L. Tikoo

Proc. Ind. Acad. Sci., B, Vol. LXIX, Pl. X

Figs. 1-8