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1. Introduction

In this note we consider the exact degeneracies of quarter-BPS dyons in N = 4 supersym-

metric gauge theories. For a gauge group of rank r, the gauge group is broken to U(1)r on

the Coulomb branch which is 6r-dimensional for N = 4. At a generic point in this Coulomb

branch moduli space, there is a rich spectrum of such dyons in this theory whose degeneracy

is known exactly in many cases from index computations and vanishing theorems as well as

from direct computations. Unlike the half-BPS dyons in N = 4 gauge theories which are

stable in all regions of the moduli space, these dyons exist as stable single particle states

only in some regions of moduli space. These dyons are prone to decay, or are ‘decadent’, on

certain submanifolds of the moduli space, which can be of real codimension one or higher

in N = 4 theories. We would like to know how ‘degenerate’ these decadent dyons are.

The stability criterion for the decadent dyons follows from the usual considerations of

charge and energy conservation using the BPS mass formula. For a dyon of electric charge

vector Q and magnetic charge vector P we denote the total charge vector by Γ = [Q;P ].

The BPS mass formula then gives the mass M of such a state, in the N = 2 notation, by

the relation

M = |Z(Γ)| . (1.1)

where Z(Γ) is the central charge that depends on the moduli fields and linearly on the

charge vector Γ . If the dyon with charge Γ decays into two dyons with smaller charges Γ1

and Γ2 then one has Z(Γ) = Z(Γ1) + Z(Γ2) which by triangle inequality implies that

M = |Z(Γ)| ≤ |Z(Γ1)| + |Z(Γ2)| = M1 + M2. (1.2)

Hence, by energy conservation, the only way the decay can proceed is if M becomes equal

to M1 + M2 at some point in the moduli space saturating the bound above. In N = 2
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theories, this defines a codimension one surface or a ‘wall’ in the moduli space. On one

side of the wall where M < M1 + M2, the dyon with charge Γ is stable. At the wall it is

marginally unstable and decadent. Upon crossing the wall it no longer exists as a single

particle stable state. In N = 4 theories, there are more than one central charges which

have to be aligned for the decay to occur and hence the submanifold of decadence can have

codimension one or higher. As a result, this submanifold is not a wall since one can just

avoid it by going around it and access other regions of the moduli space. It is therefore

more accurate it to call it the ‘surface of decadence’ in the N = 4 case.

Given such a dyon of charge Γ that is stable in some region of the moduli space,

we would like to know its degeneracy Ω(Γ) in that region. One can compute it applying

standard methods of semiclassical quantization of solitons in gauge theories, viewing the

dyon as a charged excitation of a monopole system. Collective coordinate quantization

then reduces the problem of computing the degeneracy Ω(Γ) to counting the number of

eigenvalues of the Hamiltonian of supersymmetric quantum mechanics of the bosonic and

fermionic collective coordinates. This counting problem then becomes roughly equivalent

to a cohomological problem of counting harmonic forms on the monopole moduli space

which can be handled using index formulae.1 Applying these methods, the degeneracy of

quarter-BPS dyons has been computed by Stern and Yi [1 – 4] for a special class of charge

assignments. The same formula has been derived from another quiver dynamics in [5].

We will give here a new derivation of the degeneracy of these dyons using a very simple

physical argument that makes use of the fact that the dyons are decadent near the surface

of decadence. We will utilize the known degeneracies of half-BPS dyons and an argument

similar to the one used by Denef and Moore [6] in their discussion of the wall-crossing

formula. The results are in perfect agreement with the known degeneracies of Stern-Yi

dyons computed using much more sophisticated techniques mentioned above. Moreover,

this method can be naturally generalized to more complicated charge assignments as well

as to arbitrary gauge groups giving predictions for situations that have not hitherto been

considered using the index methods.

The paper is organized as follows. In section 2 we derive the degeneracies of these dyons

from their behavior near the surface of decadence. We present the basic physical argument

in section 2.1. We then discuss the case of SU(3) Stern-Yi dyons in section 2.2 and of

SU(N) Stern-Yi dyons in section 2.3 and show that the degeneracy obtained using these

arguments precisely agrees with the results known in these cases from index computations

both in N = 4 and N = 2 cases. In section 3 we discuss the relation of these dyons to the

dyons in the field theory limit of string theory. We explain in particular why only some of

the decadent dyons considered here are accounted for by the partition function for string

theory dyons given by the inverse of the Igusa cusp form [7 – 13]. In section 4 we conclude

with comments.

1For quarter-BPS dyons, unlike in the half-BPS dyons, the problem is a little more subtle involving a

potential on the moduli space as discussed in [1].
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2. Computing degeneracies near the surface of decadence

For simplicity and also for comparison with known results, we consider in this section

dyons in SU(N) gauge theories but these considerations are more general and would apply

to other groups.

It is well known that dyons in SU(N) gauge theory have a nice geometric realization

in terms of (p, q) strings stretching between N D3-branes. The low energy world volume

theory of N D3-branes is a U(N) Yang-Mills theory with N = 4 supersymmetry. Factoring

out an overall center-of-mass U(1) degree of freedom, one obtains an SU(N) gauge theory.

Simple roots of SU(N) are {αi} with i = 1, . . . N−1 with the usual Cartan inner product αi·

αi = 2, αi·αj = −1 for i = j±1, and 0 otherwise. Giving expectation values to the six Higgs

scalars in the adjoint representation corresponds to placing the D-branes at non-coincident

positions in the transverse R
6 space which breaks the gauge symmetry to U(1)N−1.

Consider a dyon with electric charge Q and magnetic charge P expanded in the basis

of simple roots as

Q = qiαi, P = piαi. (2.1)

If the electric and magnetic charge vectors are parallel to each other then the dyonic

configuration preserves half the supersymmetries. Since it breaks eight supersymmetries,

there are four complex fermionic zero modes for the center of mass motion giving rise to

a 16-dimensional ultra-short multiplet. If the electric and magnetic charge vectors are

nonparallel, the dyon preserves only a quarter of the supersymmetries. Since now it breaks

twelve supersymmetries, there are six complex fermionic zero modes for the center of mass

motion giving rise to a 64-dimensional short multiplet. In N = 2 theories by contrast,

in both cases, the dyon is half-BPS and there are four broken supersymmetries. Hence

there are always two complex fermionic zero modes giving rise to a 4-dimensional half-

hypermultiplet for the center of mass motion.

2.1 Basic physical argument

Let us first summarize the argument for N = 2 dyons of the type considered by Stern and

Yi [1]. Given a dyon with charge Γ = [Q;P ] of the Stern-Yi type, we would like to compute

its degeneracy in a region of moduli space where it exists. Now, as we will discuss in the

next sections, there exist surfaces of decadence for such a dyon where it decays into two

dyons with charges Γ1 = [Q1;P1] and Γ2 = [Q2;P2] respectively.

Very close to the surface of decadence, the products of the decay are arbitrarily far

away. In this case, one would expect that the degeneracy of the total configuration would

be just the product of the degeneracies of individual fragments if the interactions between

them were short-ranged. However, this configuration has angular momentum in the long-

ranged electromagnetic field

J =
1

2
(〈Γ1,Γ2〉 − 1) , (2.2)

from the Saha effect as for a electron in the magnetic field of a magnetic monopole, where

〈Γ1,Γ2〉 = Q1 ·P2−Q2 ·P1 is a symplectic product of charges that is invariant under SL(2, Z)

electric-magnetic duality. Note that there is a shift of −1/2 to the angular momentum of
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the electromagnetic field above, which has to do with the contribution of fermion zero

modes [5]. Taking into account this additional degeneracy of (2J + 1) one concludes that

the degeneracy of the original dyon is given by

Ω(Γ) = | 〈Γ1,Γ2〉 |Ω(Γ1)Ω(Γ2). (2.3)

Note that the formula above counts the internal degeneracies, and hence does not include

the overall multiplicity of four coming from the fermionic oscillators associated with the

center of mass coordinate. To get the total number of states, we must multiply (2.3) by

this factor of 4.

In the N = 4 case there is an additional complication. In this case, we will be

considering a decay in which one center, say Γ1, is half-BPS. This center breaks eight

supersymmetries. Since the overall state is quarter-BPS, the total configuration must break

twelve supersymmetries. This can happen in two ways. Either, the center Γ2 is quarter-

BPS and breaks twelve supersymmetries by itself which includes the eight supersymmetries

broken by the first center. Or, the center Γ2 is half-BPS but breaks a different half of

the supersymmetries such that altogether there are twelve broken supersymmetries. In

either case, additional four supersymmetries are broken in the internal theory of the two

charge centers Γ1 and Γ2. These broken supersymmetries give rise to two complex fermion

zero modes that furnish a 4-dimensional multiplet with the same spin content as the half

hypermultiplet of N = 2. The degeneracy then is similar to (2.3) with an additional

multiplicative factor of 4:

Ω(Γ) = 4| 〈Γ1,Γ2〉 |Ω(Γ1)Ω(Γ2). (2.4)

To deduce this by a slightly different argument, one can think of the total angular mo-

mentum of the system to be given by the tensor product of the half hypermultiplet with

the spin j of the electromagnetic field given by (2.2). The half hypermultiplet has spin

content of one (1

2
) + 2(0). The total system of the electromagnetic field and the relative

zero modes has spins (j + 1) + 2(j) + (j - 1) with j given by (2.2). The multiplicity from

these four representation is then 4| 〈Γ1,Γ2〉 |.

Let us now see how these formulae can be applied to compute the degeneracies of

decadent dyons, for example, in the N = 4 case. The formula (2.4) effectively reduces the

task of finding the degeneracy of Ω(Γ) of a state with charge Γ to finding the degeneracies

Ω(Γ1) and Ω(Γ2) of the subsystems. This in itself would not be useful in general unless

we knew how to compute Ω(Γ1) and Ω(Γ2) independently which is indeed the problem at

hand. However, we will be considering the situation when at least one of the dyons with

charge Γ1 is half-BPS and stable so that its electric and magnetic charges are parallel and

are relatively prime. Such a dyon we call irreducible, otherwise it is reducible.

Now, an irreducible dyon can be shown to have unit degeneracy using duality as follows.

Since the electric and charge vectors are parallel, we must have Q1 = aV1 and P1 = cV1 a

primitive charge vector V . Further, since the dyon is an absolutely stable single particle

half-BPS state, the integers a and c must be relatively prime for otherwise the dyon can

split into subsystems without costing any energy. Now, a primitive vector V1 corresponds
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to a purely electric state and hence is proportional to the charge vector of a massive gauge

boson of the theory. In this case, by an SL(2, Z) electric-magnetic duality transformation,

the state is dual to a purely electric gauge boson of the theory

(

a b

c d

)(

Q1

P1

)

=

(

V1

0

)

. (2.5)

Since a massive gauge boson of the theory is known to have unit degeneracy, by duality

it then follows that the half-BPS dyon with charge Γ1 also has unit degeneracy. This

conclusion can be explicitly checked also by a calculation similar to the one in [14].

The other decay product with charge Γ2 can be either reducible or irreducible. If it is

irreducible, then no further decay is possible. We then know the degeneracy of both decay

products and hence of the original dyon using (2.4). An example of such a decay when a

quarter-BPS dyons goes directly into irreducible fragments will be discussed in section 2.2

for SU(3) dyons.

If the dyon with charge Γ2 is reducible, then its degeneracy is a priori not known.

However, one can now apply the reasoning in the previous paragraph iteratively. We can

consider the surface of decadence of this dyon with charge Γ2 where at least one of the

decay products is irreducible. Continuing in this manner, one can relate the degeneracy

of the original dyonic configurations to the degeneracies of the irreducible fragments up to

factors coming from angular momentum degeneracies. An example of such a decay will be

discussed in the subsection section 2.3 for SU(N) dyons with N > 3.

The reasoning outlined here is similar to the one used by Denef and Moore to derive

the wall crossing formula for dyons in N = 2 string compactifications [6]. But there are

differences. First, here we are using an additional input in the N = 2 case that on one

side of the wall the degeneracy is zero. This can be ascertained for these field theory dyons

from their realization as string webs. Second, for N = 4 dyons, the surface of decadence is

generically surface of codimension bigger than one and is not really a wall. So we are not

crossing any wall but merely approaching a surface of decadence. In N = 2 string theories,

the dyon degeneracies are not known explicitly for a generic compactifications and there

is no independent way of checking the validity of this reasoning. Here, in the context of

supersymmetric gauge theories, explicit formulae are known for the degeneracies in the work

of Stern and Yi. Our rederivation of the Stern-Yi degeneracies that we now describe in the

following sections can thus be viewed as a check of the heuristic reasoning outlined above.

2.2 Two-centered Stern-Yi dyons in SU(3) gauge theories

Consider an SU(3) dyon in an N = 4 theory which has electric and magnetic charge vectors

given by

Q = q1α1 + q2α2 (2.6)

P = p1α1 + p2α2 (2.7)

Following earlier work of [2] and [3], Stern and Yi [1] considered a simple charge

configuration with magnetic charge vector P = α1 + α2. A quarter-BPS dyon can be

– 5 –



J
H
E
P
0
3
(
2
0
0
8
)
0
2
6

viewed as a quantum charged excitation of a half-BPS monopole configuration. Now if

q1 = q2, then the electric and magnetic charge vectors of the dyon would be parallel,

both along α1 + α2. Such a configuration would give a half-BPS state. To break the

supersymmetry further and obtain a quarter-BPS dyon it is necessary that s = q1 − q2 is

nonzero so that the electric and magnetic charge vectors are misaligned. It is then useful

to write the electric charge vector as

Q = (n + s)α1 + (n − s)α2. (2.8)

Dirac quantization condition then demands that n ± s must be integral although n and s

could individually be half-integral [2]. At some point in moduli space these states could

decay into dyonic states into irreducible states

[(n + s)α1 + (n − s)α2;α1 + α2] → [(n + s)α1;α1] + [(n − s)α2;α2] , (2.9)

so that V1 = α1 and V2 = α2 in the notation of the discussion in section 2.1 and both decay

products are irreducible.

Indeed in the string web picture [15 – 25], the dyons are realized as a two-centered

configuration. Near the surface of decadence the distance between the two centers becomes

very large. Note that the decay process across the wall is well described by semi-classical

field configurations purely in terms of the low energy effective action on the Coulomb

branch even when it occurs at strong coupling as would be the case for N = 2 dyons [22].

Now since, both centers are half-BPS dyons, they have unit degeneracy. The contri-

bution from the angular momentum degeneracy factor is given by

| 〈Γ1,Γ2〉 | = |(n + s)α1 · α2 − (n − s)α2 · α1| = 2|s| (2.10)

Hence the degeneracy of a SU(3) quarter-BPS dyon with charge vectors P = α1 + α2 and

Q = (n + s)α1 + (n − s)α2 is given by an application of the formula (2.4)

4 · 2|s| · 1 · 1 = 8|s|, (2.11)

in precise agreement with the results of Stern and Yi. To get the total number of states,

we multiply by a factor of 16 coming from the center of mass multiplicity.

2.3 Multi-centered Stern-Yi dyons in SU(N) gauge theory

We now consider more general Stern-Yi dyons in a SU(N) N = 4 gauge theory where a

cascade of decays is necessary to get to decay products that are all half-BPS. The charge

vector is Γ = [Q;P ] with

Q = (n+s1+· · ·+sn−2)α1+(n−s1+· · ·+sn−2)α2+· · · (n−s1 . . . sn−2)αn−1 (2.12)

P = α1 + α2 + · · · + αn−1. (2.13)

In the string web picture, these dyons are realized as multi-centered configurations.

– 6 –
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We now approach the surface of decadence in the moduli space where the dyon breaks

up into half-BPS dyon with charge Γ1 and a quarter-BPS dyon with charge Γ2 given by

Γ1 = [(n + s1 + s2 + · · · + sn−2)α1;α1] , Γ2 = [Q − Q1;P − P1] . (2.14)

The angular momentum factor 〈Γ1,Γ2〉 equals 2s1. The Γ2 charge center can further decay

and we can iterate the process until we are left as the decay products with irreducible

dyons of unit multiplicities. This iteration gives the degeneracy to be

16 ·
N−2
∏

i<j

|8si| , (2.15)

precisely what Stern and Yi obtained using their index computation.

For the N = 2 dyons, similar reasoning using the formula (2.3) gives

4 ·
N−2
∏

i<j

|2si|, (2.16)

once again in agreement with Stern and Yi.

3. Relation to string theory dyons

The partition function that counts the degeneracies of quarter-BPS dyons in heterotic string

theory compactified on a six-torus T6 is given in terms of the Igusa cusp form which is a

modular form of weight ten of the group Sp(2, Z). It depends on three complex variables

with a Fourier expansion given by

1

Φ10(p, q, y)
=
∑

c(m,n, l)pmqnyl, (3.1)

where the sum is over m,n ≥ −1 and l ∈ Z. A quarter-BPS dyons in this theory is

specified by a charge vector Γ = (Qe;Qm) where here both Qe and Qm are Lorentzian

vectors that take values in the Γ22,6 Narain lattice. There are three quadratic combinations

Q2
e, Q

2
m, Qe ·Qm with respect to a Lorentzian inner product invariant under the O(22, 6, ; Z).

For a given vector Qe in this lattice, one can define the right-moving part QeR to be the

projection onto the 22 space-like directions and QeL to be the projection onto the 6 time-like

directions. The inner product is then defined by

Q2

e = Q2

eR − Q2

eL. (3.2)

The degeneracy d(Γ) is then given in terms of the Fourier coefficients by

d(Γ) = c
(

Q2

e/2, Q
2

m/2, Qe · Qm

)

. (3.3)

This formula was proposed in [26] and derived in [9, 11] using the 4d-5d lift and

using a genus-two partition function in [10]. Generalization to CHL orbifolds have been

– 7 –
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discussed in [27 – 32]. Note that according to the prescription above, we can have nonzero

degeneracies apparently only for states that have

Q2

e ≥ −2, Q2

m ≥ −2. (3.4)

A more careful treatment of the degeneracy formula extends them by analytic continuation

to all other states related by electric-magnetic duality to those that satisfy Q2
e ≥ −2 and

Q2
m ≥ −2 in a way that the spectrum is duality invariant [13, 12, 33].

Since the low energy effective action for the heterotic string contains the action for su-

persymmetric nonabelian Yang-Mills theory, it is natural to ask if the dyon partition func-

tion above also counts degeneracies of these decadent dyons that we have considered in the

previous sections. Indeed, our work was partly motivated by this question. If this is true, it

would give a nontrivial check of the degeneracies predicted by the dyon partition function.

If the dyon partition function could count the field theory dyons like the Stern-Yi

dyons then it would lead to many puzzles. Firstly, the degeneracies derived from the

dyon partition function depend only on the three integers Q2
e, Q

2
m, Qe ·Qm and not on the

components of the charges as the Stern-Yi degeneracy (2.15) seems to depend on. Second,

the Stern-Yi degeneracies only grow polynomially as a function of charges, whereas the

stringy dyon degeneracy grows exponentially if the discriminant

∆ = Q2

eQ
2

m − (Qe · Qm)2, (3.5)

is positive.

We will show that these puzzles get resolved by the fact that the field theory dyons are

in a different duality orbit than the ones that are counted by the dyon partition function.

Hence one cannot apply the dyon partition function to count the Stern-Yi dyons except

for special ones when the gauge group is SU(3).

To see this clearly, we need to think more carefully about the field theory limit of string

theory. To be able to analyze a dyon in field theory we would like to decouple stringy states

and gravity from the consideration. At the same time, we would like to have a nonabelian

structure in the gauge theory so that we do not have to deal with a Dirac monopole which

is a singular field configuration but have instead a t’Hooft-Polykov monopole. In this case,

the monopole is smooth solitonic configuration with a finite core which can be analyzed in

field theory using semiclassical quantization. Such a limit is easily achieved if we consider

the gauge group like SU(3) to be embedded in the left-moving E8 × E8 symmetry for

example and consider Higgs expectation value v that is much smaller compared to the

string mass scale Λ. In this case massive string states can be ignored. Moreover, the mass

M of dyons will go as v/g2 where g is the string coupling and gravitation backreaction will

go as GM2 = v2/Λ2 using the fact Newton’s constant G goes as g2/Λ2. Thus, gravitational

back reaction can also be ignored as long as v is much smaller than Λ and one can analyze

the dyons in a field theory limit.

It is crucial for a useful field theory limit that the charges are purely left-moving,

that is Q2
e < 0 and Q2

m < 0. This is because, in the heterotic string, which consists of a

right-moving superstring and a left-moving bosonic string, only the left-moving U(1) gauge

– 8 –
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symmetries can get enhance at special points in the moduli space of toroidal compactifica-

tion. For example, for a circle compactification, at a generic radius of the circle we have

U(1)L × U(1)R which couples to the charges

qL,R =

√

α′

2

(m

R
± α′wR

)

, (3.6)

where m is the Kaluza-Klein momentum and w the winding number along the circle. At

the self-dual radius of the circle however where R2 = α′, only U(1)L gets enhanced to

a nonabelian SU(2)L but the U(1)R remains abelian. This is a consequence of the fact

that the left-moving ground state energy is −1 as the bosonic string whereas the right-

moving ground state energy is 0 as for the superstring. As a result, while certain states

carrying left-moving momentum become massless at the self-dual radius, all states carrying

right-moving momentum remain massive.

This implies that dyons coupling to both right-moving and left-moving U(1) fields

cannot be analyzed in a field theory limit as nonsingular solitonic configuration and stringy

corrections would have to taken into account. For this reason we should embed our field

theory gauge group into the purely left-moving symmetry.

Following, this reasoning, we can embed an SU(N) gauge group into the SO(32) gauge

group of the heterotic string for N ≤ 16. In this case Qe = Q and Qm = P with

Q2
e = −Q2 and Q2

m = −P 2 with the understanding that the Q2
e and Q2

m are defined

using the Lorentzian inner product (3.2) whereas Q2 and P 2 are defined using the positive

definite Euclidean Cartan metric on the root space of the gauge group as we have used

in the previous sections.2 We refer to the charge vector as spacelike, timelike, or lightlike

depending on whether the Lorentzian norm is positive, negative, or zero respectively. With

the embedding above, we conclude that the field theory dyons must correspond to states

with timelike charge vectors in the Narain lattice.

To understand the main issues, let us first focus on the SU(3) Stern-Yi dyons. For the

degeneracy of a string theory dyon that satisfies the bound (3.4) to match with a Stern-

Yi dyon, the two charge configurations must lie in the same U-duality orbit. Now, the

U-duality group G(Z) of the string theory is

G(Z) = O(22, 6, ; Z) × SL(2, Z). (3.7)

The U-duality orbit of the charges can be characterized by various invariants. To start

with, we have the discriminant defined in (3.5) which is the unique quartic invariant of the

continuous duality group G(R). In addition, as noted in [13], there is a discrete invariant

I = gcd(Qe ∧ Qm). (3.8)

The wedge product gives the antisymmetric area tensor of the parallelogram bounded by

the vectors Qe and Qm. The invariant I then counts the number of lattice points inside

this parallelogram [13]. See also [34, 35].

2Once we turn on Wilson lines to break the gauge group we will have more accurately Qe = Q+k where

k is a light-like vector with Q ·k = 0 so that Q2

e still equals −Q2. Moreover, the charge vector is not strictly

left-moving. This does not change the main point of the argument and hence we will ignore it.
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For an SU(3) Stern-Yi dyon with charge vectors are

P = α1 + α2, Q = (n + s)α1 + (n − s)α2. (3.9)

Using the embedding described above, we see that the two invariants for such an configu-

ration are given by

∆ = 12s2, I = 2s (3.10)

We note that ∆ > 0 as it must be for a BPS configuration. Now, starting from spacelike

Q2
e and Q2

m, one can show that its impossible to go by U-duality to a configuration with

both electric and magnetic charges timelike. To prove this we consider a general S-duality

transformation acting on Qe and Qm as

Q′

e = aQe + bQm (3.11)

Q′

m = cQe + dQm (3.12)

Now, if Qe and Qm are positive norm vectors then aQe ± bQm is a positive norm vector.

So, Q′

e
2 ≥ 0 and similarly Q′

m
2 ≥ 0. Thus, the only string dyonic configurations which can

be U-dual to a field theory dyon will be those with timelike Qe and Qm.3 By definition

of Φ10, the only such charges it counts are those with Q2
e = −2 and Q2

m = −2. Taking

Qe ·Qm = M to be arbitrary, we obtain a dyonic charge configuration with invariants I = 1

and ∆ = 4 − M2. Hence the two sets of invariants match only for s = 1

2
and M = ±1

which corresponds to Q2
e = −2, Q2

m = −2 and |Qe · Qm| = 1. Consequently, only these

string dyonic configurations lie in the duality orbit of SU(3) Stern-Yi dyons.

It is easy to see that in fact all Stern-Yi dyons with electric charge 2.8 are counted

by the dyon degeneracy formula for all values n with s = 1/2. This follows from the fact

that one can change the value of n by a duality transformation of the form

(

1 n − 1

2

0 1

)

(3.13)

Note that n must be half-integral for configuration with s = 1/2.

For an SU(N) Stern-Yi dyonic configuration with N > 3 given by

Qe =
N−1
∑

i=1



n +
N−2
∑

j=1

Pijsj



αi (3.14)

Qm =
N−1
∑

i=1

αi (3.15)

where Pij = −1 for j < i and Pij = 1 for i ≥ j, the U-duality invariants are ∆ =

4(2
∑N−2

i=1
si

2 +
∑N−2

i,j=1
sisj) and I = gcd(2s1, 2s2, . . . 2sN−2). For matching to the config-

urations whose degeneracy is counted by Φ10 we must have I = 1 which translates to the

3The other possibility is having the electric(magnetic) charge to be timelike and the magnetic(electric)

charge to be spacelike. But this will yield ∆ < 0 and breaks supersymmetry.
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condition that the various 2si are mutually coprime. Further, we can easily see that ∆ > 3

for these Stern-Yi dyons.4 Hence the string theory dyons do not lie in the U-duality orbit

of any field theory SU(N) dyon with N > 3.

We therefore conclude that with the exception of the SU(3) dyons with I = 1, the field

theoretic dyons considered earlier are outside the realm of applicability of the dyon partition

function of string theory dyons in terms of the Igusa cusp form. A similar analysis has

been carried out independently in [36, 37]. For other values of I > 1, a different partition

function is required. For a recent proposal for the dyons with I=2 see [38].

4. Conclusions

We have seen that a simple physical argument allows one to compute the degeneracies of

decadent dyons in N = 2 and N = 4 supersymmetric Yang-Mills theory with little work.

These results are in agreement with the known results obtained using much more elaborate

and sophisticated index computations. Our results could also be viewed as a test of the

reasoning underlying the wall-crossing formula in N = 2 theories and of the degeneracy

formula near the curve of decay in N = 4 theories. This method of course allows one

to count decadent dyons with more general charges in general gauge groups not hitherto

considered in the field theory literature. It would be interesting to test such predictions

using index computations.

It may seem surprising that this almost classical computation is capable of capturing

the quantum degeneracies precisely. In this context, we note that a number of essentially

quantum ingredients have implicitly gone into our reasoning. First, the shift of −1/2 to

the classical field angular momentum from the fermionic zero modes in 2.2 is essentially

quantum. Second, the angular momentum multiplicities of 2J +1 are also quantum. What

is interesting is that after incorporating this information into an almost classical reasoning,

one can determine the degeneracies exactly.

Finally, we have also seen that the dyons counted in field theory are not accounted

for by the dyon partition functions recently derived in the context of string theory dyons

except for one special case. This is because they lie in a different duality orbit than the

dyons for which the dyon partition function has been derived.
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