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Superfluid-Insulator transition of ultracold atoms in an optical lattice in the presence
of a synthetic magnetic field
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We study the Mott insulator-superfluid transition of ultracold bosonic atoms in a two-dimensional
square optical lattice in the presence of a synthetic magnetic field with p/q (p and ¢ being co-prime
integers) flux quanta passing through each lattice plaquette. We show that on approach to the
transition from the Mott side, the momentum distribution of the bosons exhibits ¢ precursor peaks
within the first magnetic Brillouin zone. We also provide an effective theory for the transition and
show that it involves ¢ interacting boson fields. We construct, from a mean-field analysis of this
effective theory, the superfluid ground states near the transition and compute, for ¢ = 2, 3, both the
gapped and the gapless collective modes of these states. We suggest experiments to test our theory.

PACS numbers: 74.45+c, 74.78.Na

The physics of ultracold bosonic atoms in an opti-
cal lattice can be well described by the Bose-Hubbard
model [1,12]. In fact, experiments on the Mott insulators-
superfluid (MI-SF) transitions of such bosonic atoms
in two-dimensional (2D) optical lattices [3] is found to
agree with predictions of theoretical studies of the Bose-
Hubbard model quite accurately [4-6]. More recently,
several experiments have successfully generated time- or
space- dependent effective vector potentials for these neu-
tral bosonic atoms by creating temporally or spatially
dependent optical coupling between their internal states
I8, [9]. Such a generation of synthetic space-dependent
vector potential and hence magnetic fields is complemen-
tary to the conventional rotation technique [10]. Several
theoretical studies have also been carried on the prop-
erties of the bosons in an optical lattice in the presence
of an effective magnetic field [11]. In particular, the MI-
SF phase boundary has been computed using mean-field
theory [12] and excitation energy calculation using a per-
tubative expansion in the hopping parameter [13]. How-
ever, experimentally relevant issues such as the momen-
tum distribution of the bosons in the Mott phase, the
critical theory of the MI-SF transition, and the nature
of the superfluid ground states and collective modes near
criticality have not been addressed so far.

In this letter, we present a theory of the MI-SF tran-
sition for ultracold bosons in a 2D square optical lattice
with commensurate filling ng and in the presence of a syn-
thetic vector potential corresponding to p/q (p and g are
co-prime integers) flux quanta per plaquette of the lattice
which addresses all of the above-mentioned issues. The
novel results of our work which have not been addressed
in earlier studies are as follows. First, using a strong-
coupling RPA theory for the bosons |5], we provide an an-
alytical formula for their momentum distribution in the
Mott phase and show that it develops ¢ precursor peaks
on approach to the MI-SF transition. Second, based on
both the microscopic strong-coupling theory and a sym-

metry analysis, we construct the critical field theory for
the transition and show that it necessarily involves ¢ cou-
pled boson fields [14]. Third, using a mean-field analy-
sis of this effective theory, we find the superfluid ground
state to which the transition takes place and chart out the
corresponding spatial patterns of the superfluid density.
Finally, we compute the collective modes of the superfluid
phase for ¢ = 2, 3, explicitly demonstrating the nature of
both the gapped and gapless collective modes near the
transition, and provide analytical expressions for their
masses and group velocities in terms of microscopic pa-
rameters of the theory. We suggest realistic experiments
which can verify specific predictions of our theory.

The Hamiltonian of a system of bosons in the presence
of an optical lattice and a synthetic magnetic field is given
by 1,13, 4, 12, 13

U
Ho= > Jewblbe + > [—pite + S = 1] (1)

r,r’ r

where Jpp = —Jexp(—ig* f:/ A* - dl/he), if r and 1/
are nearest neighboring sites and zero otherwise, A* =
B*(0,z) is the synthetic vector potential, ¢*(B*) is the
effective charge (magnetic field) for the bosons, J is the
hopping amplitude determined by the depth of the op-
tical lattice, and the value of ¢*B* can be controlled by
varying the detuning between the hyperfine states of the
bosonic atoms [9]. Here u is the chemical potential, U
is the on-site Hubbard interaction, and by (fiy = bjby) is
the boson annihilation (density) operator. In the rest of
this work, we consider the magnetic field to correspond to
p/q flux quanta through the lattice: ¢* B*a?/hc = 27p/q,
and set the lattice spacing a, &, and ¢ to unity.

The effect of the magnetic field manifests itself in the
first term of Eq. [l and thus vanishes in the local limit
(J = 0). In this limit the boson Green function at
T = 0 can be exactly computed [2, |5, 16]: Go(iwy,) =
(no + 1) (iw, — Ep) ™t —ng(iw, + Ep)~'. Here w,, denote
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FIG. 1: Color online) The MI-SF phase boundary for ¢ = 2.
The red dot indicates the value of J and p for which n(k) in
the left panel Fig. 2l has been plotted.

bosonic Matsubara frequencies and E, = p — U(ng —
1)(Ep = —p+ Unyg) are the energy cost of adding a hole
(particle) to the Mott state. To address the effects of the
hopping term, we write down the coherent state path
integral corresponding to H: Z = [ Dy Dy* exp(—S)
where S = [V dr[(3, 43 (1)d- e () + HG*, )], 7 is
the imaginary time, § = 1/kgT is the inverse tem-
perature (T), and kp is the Boltzman constant. Fol-
lowing Ref. ﬂﬂ], we then decouple the hopping term by
two successive Hubbard-Stratonovitch transformations,
integrate out the original boson and the first Hubbard-
Stratonovitch fields, and obtain the final form of the
strong-coupling effective action Seg = Sg + 51

So = /k¢;(iwn,k)[—Gal(iwn)I+Jq(k)wq(mmk),

B
Si = g/2 / dr / 2o (1) (7, ()

where 1, denotes the g-component auxiliary field intro-
duced through the second Hubbard-Stratonovich trans-
formation and have the same correlation functions as the
original boson fields ¢ [5], [, = (1/8) > [ PE/(27)?,
I denotes the unit matrix, and g > 0 is the static limit
of the exact two-particle vertex function of the bosons in
the local limit [5]. Here Jq(k) is a ¢ x ¢ dimensional tridi-
agonal hermitian matrix whose upper off-diagonal [diag-
onal] elements are —J exp(—iky) [—2J cos(k, + 2w /q)],
with @ = 0,1,..¢ — 1. It is well-known that J,;(k) has ¢
eigenvalues € (k) within the first magnetic Brillouin zone
(—m < ky <m, —7/q < ky < 7/q) which are g-fold de-
generate. In particular, the lowest eigenvalue € (k) has
¢ degenerate minima at Q* = (0, 27/q) [15]. Note that
Sy reproduces correct bosons propagator both in the lo-
cal (J = 0) and the non-interacting (U = 0) limits. Also,
since Gy ! is independent of momenta, finding the bo-
son Green function G (iw,, k) = [~Gg " (iwn) I + J4 (k)] 7}
amounts to inverting J, (k).

FIG. 2: (Color online) Plot of n(k) for ¢ = 2 (left panel)
and ¢ = 4 ( right panel) at p/U = 0.414 and J/J. = 0.95
indicating the precursor peaks in the Mott phase.

The critical hopping J. for the MI-SF transition as a
function of p can be determined from the condition ﬂa]

rg = —Gy'(iw, =0)+ e (k=Q%) =0. (3

The MI-SF phase boundary so obtained is shown in Fig.[I]
for ¢ = 2 and agrees qualitatively with those obtained us-
ing mean-field theory [12] and J/U expansion [13]. Note
that J. remains same for all Q® due to the g-fold degen-
eracy of ep*(k).

The consequence of the ¢ fold degeneracy of €; becomes
evident in the momentum distribution of the bosons in
the Mott phase, which, at ' = 0, is given by n(k) =
limr—0(1/8) >_,,, TrG(iwn, k). After some straightfor-
ward algebra, one obtains

Eg=(k)+op+Up
= 2 Erwomw

a=0..q—1 q

where op = p— U(ng — 1/2), p = (ng + 1/2) and
BoE (k) = —0pu+e(k)/2+ \/eg (k)2 + 4e2(k)Up + U2/2
denotes the position of the poles of G(k, iw,,) in the Mott
phase. Note that £’ can also be obtained from a time-
dependent variational method [16].

Eq. s a central result of this work and generalizes its
counterpart in Ref. 5 in the presence of a magnetic field.
The peaks of n(k) occur when Eg+ (k) — Eg ~ (k) becomes
small near the MI-SF transition. The degeneracy of ¢ (k)
and hence E;”i(k) ensures that this happens at ¢ points
in the first Brillouin zone leading to ¢ precursor peaks
in n(k) at k = Q* This is demonstrated in Fig.
for ¢ = 2 and ¢ = 4. Note that the positions of these
peaks in the Brillouin zone depend on the specific form
of the vector potential realized in the experiments; for
symmetric vector potentials generated by rotation they
would appear at (ra/q,7a/q). However, their number
depends only on p/q and the lattice geometry.

At J., the MI-SF transition occurs since the energy gap
to addition of particles and/or holes to the Mott state
vanishes. In contrast to standard superfluid-insulator
transition M—B], the presence of ¢ degenerate minima at
k = Q necessitates the corresponding Landau-Ginzburg




FIG. 3 (Color online) Plot of the normalized superfluid den-
sity ps ? for g = 2 (left panel) and ps () for g = 3 (right panel).

theory to be constructed out of ¢ low-energy fluctuating
fields ¢“(r,t) around these minima:

¢q(ra t) = Z X?(r)(ba (I‘,t), (5)

a=0..q—1

where g (r) denotes the eigenvectors of J,(Q®) in real
space, and we have Wick-rotated to real time. The
quadratic part of the Landau-Ginzburg theory, obtained
by expanding Sy (Eq. 2]) about the minima, is given by

SO = /dz’l”dt Z (ba* (I', 7') [K()af + iKlat

a=0..q—1
+ry — v?(@ﬁ + 85)]¢°‘(r, T), (6)

where Ko = 1/20°Gy " /0w?| =0 = no(no + 1)U/ (u +
U)3, K1 = 0Gy " /0w|w=0 = 1 — no(no + 1)U?/(un+ U)?,
and vg = Vﬁegl(k)/2 with v3 = J/\/§ At the tip of
the Mott lobe, where u = uyip = U(y/no(no +1) — 1),
K; = 0. Thus we have a critical theory with dynamical
critical exponent z = 1. Away from the tip, K3 # 0
rendering z = 2 [2].

The most general quartic Landau-Ginzburg action
in terms of ¢ bosonic fields which is allowed by in-
variance under projective symmetry group (PSG) of
the underlying square lattice has been obtained in
Ref. [14]. The elements of the PSG for the square
lattice include translation along x and y, rotation
by /2 about z axis, and reflections about z and
y axes. The transformation properties of ¢ fields
under these operations are tabulated in Ref. [14].
The invariant quartlc action so obtained is given
by Si = [dPrdt S0 o THVg™ gm gt 1ge iy,
where I'9? = To=8 = 19788 = 122~ and sums
over 1ntegers Q, B , and -y are taken modulo ¢q. Eq. [Blalong
with &7 has been analyzed in details in Ref. [14]. How-
ever, the lack of microscopic knowledge of 1"2‘/3 did not
allow identification of the exact ground state of S1; only
possible symmetry-allowed ground states were charted.

Here, taking advantage of the microscopic knowledge
of g and x, we determine the exact superfluid state to
which the transition takes place. This is done by sub-
stituting of Eq. Blin Eq. 2l followed by coarse-graining of

the resultant action which involves replacing x by its
sum over ¢ lattice sites: [ d*rdtLi[x§(r)]La[¢*(r,t)] —
{(1/¢? )Zmy o Lilx§ ()]} [ d®rdtLa[¢®(x, )] = co [ dPr
dt Lo[¢®(r,t)]. Here Ly and Lo denotes arbltrary fourth
order polynomial functions and the coarse-graining pro-
cedure is applicable due to the natural separation of
scale between the spatial variation of x§ (r) and ¢*(r, ).
The effective action so obtained is then compared to S;
to obtain I‘g‘ﬁ . Finally, we minimize the resultant ac-
tion at the mean-field level and obtain the superfluid
ground state near the MI-SF transition. This procedure
is most easily demonstrated for ¢ = 2. Here, €5'(k) =
—2J/cos?(ky) + cos?(ky) leading to two minima at
(ky, ky) = (O 0) and (0, 7) with eigenfunctions x3(r) =
(14+v2+exp(imz))/ V4 + 2v/2 and x4 (r) = exp(iTy)(1+
V2 — exp(imz))/V/4+2v/2. Putting these values in
Eq. Bl and Eq. Bl the coarse-grained effective action
reads S%7 = 1/8 [ d?rdt[3g(|¢°(x, t)[* + o' (r,1)|?)? +
g(6% (x,6)¢" (x,£) — ¢'*(x,)¢° (r, 1))*]. Comparing Si;”
with 81 for ¢ = 2, we find TY® = 3g/2 and T'* = g/2.
A mean-field analysis then yields the superfluid ground
state: (¢0(r,t)) = ¢ = i¢pt = (¢'(r,t)). The renor-
malized superfluid density can be obtained by using
P2 (x) = [T (x) /|03 (0)[* where w3 is obtained by
substituting (¢%!(r,t)) in Eq. Analogous procedure
carried out for ¢ = 3 yields the superfluid ground state:
(¢°(r,t)) # 0, (¢*7O(r,t)) = 0. The resultant plots of
pﬁf’) (r), shown in Fig. @ for ¢ = 2, and ¢ = 3, display 2
and 3 sublattice patterns respectively. We note that the
procedure mentioned above constitutes a general method
for obtaining the superfluid ground state and density near
the MI-SF critical point for any q.

Finally, we compute the collective modes of the su-
perfluid ground state near the transition. First we

consider the case ¢ = 2 and rewrite SC(? in terms of
a linear combination of the ¢ fields: €° = (¢ +
[~]i¢")/v/2. The quartic action becomes S;§:2 =
1/8 [ d*rdt[3g(|¢°(r,0)[* + [¢*(r,)[?)* — g(I€°(x,)|* —
|€L(r,t)|?)?] so that the superfluid ground state corre-
sponds to condensation of £°. The quadratic action can
be written as Sy = [ d2rdt .0 { €4 (r, t)[~ Gyt (w) —
co + v3Kk[2€% (r, 1), with co = —ea(k = 0) = 2v/2J. Us-
ing these actions, and carrying out a straightforward lin-
earization £0(r,t) = €9+ 6€°(r, t) and & (r,t) = 6&1 (v, t),

where £° = |/2|ra|/g, we find that there are four collec-
tive modes. Two of these correspond to the condensed

field £€° and €%, and have dispersions
1/2
Wi = (£B()/2 + [B3 (k) /4 — Ca(0)] )2 (1)
where By (k) = [25,u — As(k)]? + 200 (v3|k|? — 73) — 73,
Ca(k) = afvi|k]*(vi|k]* — 2r2), ag = (U + p), and
Az(k) = —ca + v3|k|? — 2rp. At low wave-vector, wELl)

is gapped with a mass m; = 1/ Bz(0) while w™ has lin-
ear dispersion with velocity vg = vaagy/2|r2|/mi1. The
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FIG. 4: (Color online) Top left, right, and bottom left panels:
Plot of m,2,3 as a function of u for J/J. = 1 (solid black
line), 1.2 (red dotted line) and 1.5 (blue dashed line). Bottom
right panel: Plot of vg /v vs p for J/J. = 1.01 (black solid
line), 1.2 (red dotted line) and 1.5 (blue dashed line). U =1,
no =1, ¢ = 2, and pyip = 0.414 for all the plots.

other two modes, which correspond to the non-condensed
field x* and x**, have dispersions

Wi = £D5(k)/2 + [Da(k)? /4 + ao(|ra|/2 + v3 Kk [2)] /2,

where Do(k) = —(26u + co — v3|k|> + r2/2). Both
these modes are gapped in the superfluid phase with
masses Moz = +[—]D2(0)/2 + 1/D2(0)2/4 + aplra|/2.
The masses m1 2,3 and the velocity vg of these modes,
plotted as a function p in Fig. @ for several representa-
tive values of J/J., displays the following characteristics.
At p = pip and J = J,, where 261 = —co rendering
B5(0) = 0 and D5(0) = 0, all the modes become gapless
with w ~ |k| dispersion. Also at p # piip, one of the two
modes wf ) always remain gapless at J = .J, with w ~ k|2
dispersion. The velocity vg at J = J., is non-zero only
at = fuip; thus it shows a peak at puip for J close to J..
We emphasize that our theory specifies v and m; 23 in
terms of the parameters of the Bose-Hubbard model.
For ¢ = 3 only ¢° condense, and the corre-
sponding collective modes are given by Eq. [ with
C2,V2,T2 — c3,v3,73 (where ¢ = —€5'(0)). This
leads to similar gapped and a gapless mode with lin-
ear dispersion as for ¢ = 2. However, the disper-
sion of the non-condensed modes are different. The
effective action S_4=° turns out to be O(3) sym-
metric: 470~ [d2rdi(S,_y 5 [€9(r,1)]2)? lead-
ing to two doubly-degenerate non-condensed modes
W = (£D3(k) + \/D3(k)? + v3]k[?)/2, where Ds(k) =
— (264 c3 —v3]k|?). Thus there are two gapped and two
gapless modes with w ~ |k|2. These two modes become

gapless due to the O(3) symmetric form of S;§:3. For
q > 3, there are in general 2¢q collective modes, and we
have left their analysis as a subject of future study.

For experimental verification of our theory, we suggest
measurement of n(k) for the bosons in the Mott phase
near the transition as done earlier in Ref. [3] for 2D opti-
cal lattices without the synthetic magnetic field. This
distribution is predicted to display g precursor peaks.
The collective modes in the superfluid phase can also
be directly probed and compared to the theory by stan-
dard lattice modulation experiments [17] and response
functions measurement by Bragg spectroscopy |18].

In conclusion, we have analyzed the MI-SF transition
of ultracold bosons in a 2D optical lattice in the presence
of a synthetic magnetic field. We have demonstrated the
presence of ¢ precursor peaks in their momentum distri-
bution near the MI-SF transition, provided a critical field
theory for the transition, analyzed this theory to predict
the ground state and the collective modes of the bosons
in the superfluid phase, and suggested experiments to
probe our theory. K.S. thanks DST, India for financial
support under Project No. SR/S2/CMP-001/2009.
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