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Tunneling conductance of graphene NIS junctions
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We show that in contrast to conventional normal metal-insulator-superconductor (NIS) junctions,
the tunneling conductance of a NIS junction in graphene is an oscillatory function of the effective
barrier strength of the insulating region, in the limit of a thin barrier. The amplitude of these
oscillations are maximum for aligned Fermi surfaces of the normal and superconducting regions and
vanishes for large Fermi surface mismatch. The zero-bias tunneling conductance, in sharp contrast
to its counterpart in conventional NIS junctions, becomes maximum for a finite barrier strength.
We also suggest experiments to test these predictions.
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Graphene, a two-dimensional single layer of graphite,
has been recently fabricated by Novoselov et. al. [1]. This
has provided an unique opportunity for experimental ob-
servation of electronic properties of graphene which has
attracted theoretical attention for several decades [2]. In
graphene, the energy bands touch the Fermi energy at
six discrete points at the edges of the hexagonal Bril-
louin zone. Out of these six Fermi points, only two are
inequivalent; they are commonly referred to as K and K ′

points [3]. The quasiparticle excitations about these K
and K ′ points obey linear Dirac-like energy dispersion.
The presence of such Dirac-like quasiparticles is expected
to lead to a number of unusual electronic properties in
graphene including relativistic quantum hall effect with
unusual structure of Hall plateaus [4]. Recently, exper-
imental observation of the unusual plateau structure of
the Hall conductivity has confirmed this theoretical pre-
diction [5]. Further, as suggested in Ref. [6],the presence
of such quasiparticles in graphene provides us with an
experimental test bed for Klein paradox [7]

Another, less obvious but nevertheless interesting, con-
sequence of the existence Dirac-like quasiparticles can be
understood by studying tunneling conductance of a nor-
mal metal-superconductor (NS) interface of graphene [8].
Graphene is not a natural superconductor. However, su-
perconductivity can be induced in a graphene layer in
the presence of a superconducting electrode near it via
proximity effect [8, 9, 10]. It has been recently predicted
[8] that a graphene NS junction, due to the Dirac-like en-
ergy spectrum of its quasiparticles, can exhibit specular
Andreev reflection in contrast to the usual retro reflec-
tion observed in conventional NS junctions [11, 12]. Such
specular Andreev reflection process leads to qualitatively
different tunneling conductance curves compared to con-
ventional NS junctions [8]. However, the effect of the
presence of a potential barrier between the normal and
superconducting regions in graphene NS junction has not
been studied so far.

In this letter, we study the tunneling conductance of
a normal metal-insulator-superconductor (NIS) junction

of graphene in the limit of thin barrier. We show that in
contrast to the conventional NIS junctions, the tunneling
conductance of a graphene NIS junction is an oscillatory
function of the effective barrier strength. The ampli-
tude of these oscillations is maximum for aligned Fermi
surfaces of the normal and superconducting regions and
vanishes for large Fermi surface mismatch. In particular,
we point out that the zero-bias conductance, in complete
contrast to its behavior in conventional NIS junctions,
reaches its maximum value for a finite barrier strength.
By using the fact that the effective barrier height can be
tuned experimentally by changing a gate voltage [5, 6],
we suggest an experimental setup where these effects can
be observed. We also point out that our analysis re-
produces the results of previous work on graphene NS
junctions as a special case [8].

We consider a NIS junction in a graphene sheet oc-
cupying the xy plane with the normal region extending
x = −∞ to x = −d for all y. The region I, modeled by
a barrier potential V0, extends from x = −d to x = 0
while the superconducting region occupies x ≥ 0. Such
a local barrier can be implemented by either using the
electric field effect or local chemical doping [5, 6]. The
region x ≥ 0 is to be kept close to an superconducting
electrode so that superconductivity is induced in this re-
gion via proximity effect [8, 9]. In the rest of this work,
we shall assume that the barrier region has sharp edges
on both sides. This condition requires that d ≪ 2π/kF ,
where kF is the Fermi wave-vector for graphene, and can
be realistically created in experiments [6]. The NIS junc-
tion can then be described by the Dirac-Bogoliubov-de
Gennes (DBdG) equations [8]

(

Ha − EF + U(r) ∆(r)
∆∗(r) EF − U(r) −Ha

)

ψa = Eψa.

(1)

Here, ψa = (ψA a, ψB a, ψ
∗
A ā,−ψ

∗
B ā) are the 4 component

wavefunctions for the electron and hole spinors, the in-
dex a denote K or K ′ for electron/holes near K and K ′

points, ā takes values K ′(K) for a = K(K ′), EF denote
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the Fermi energy, A and B denote the two inequivalent
sites in the hexagonal lattice of graphene, and the Hamil-
tonian Ha is given by

Ha = −i~vF (σx∂x + sgn(a)σy∂y) . (2)

In Eq. 2, vF denotes the Fermi velocity of the quasiparti-
cles in graphene and sgn(a) takes values ± for a = K(K ′).

The pair-potential ∆(r) in Eq. 1 connects the electron
and the hole spinors of opposite Dirac points. We have
modeled the pair-potential as ∆(r) = ∆0 exp(iφ)θ(x),
where ∆0 and φ are the amplitude and the phase of the
induced superconducting order parameter respectively
and θ is the Heaviside step function. The potential U(r)
gives the relative shift of Fermi energies in normal, insu-
lating and superconducting regions of graphene and can
be modeled as U(r) = −U0θ(x)+V0θ(−x)θ(x+d). At this
stage, we introduce the dimensionless barrier strength

χ = V0d/~vF , (3)

which is going to play a key role in the subsequent anal-
ysis. In particular, we define a thin barrier as one with
V0 → ∞ and d → 0 such that χ remains finite. For the
NS junction studied in Ref. [8], χ = 0. The gate potential
U0 can be used to tune the Fermi surface mismatch be-
tween the normal and the superconducting regions. No-
tice that the mean-field conditions for superconductivity
is satisfied as long as ∆0 ≪ (U0 +Ef ); thus, in principle,
for large U0 one can have regimes where ∆0 ≥ Ef [8].

Eq. 1 can be solved in a straightforward manner to
yield the wavefunction ψ in the normal, insulating and
the superconducting regions. In the normal region, for
electron and holes traveling the ±x direction with a
transverse momentum ky = q and energy ǫ, the wave-
functions are given by

ψe±
N =

(

1,±e±iα, 0, 0
)

exp [i (±knx+ qy)] ,

ψh±
N =

(

0, 0, 1,∓e±iα′

)

exp [i (±k′nx+ qy)] ,

sin(α) =
~vF q

ǫ+ EF

, sin(α′) =
~vF q

ǫ− EF

, (4)

where for the electron wavefunctions kn =
(ǫ+ EF ) cos(α)/~vF and α is the angle of incidence
of the electron. Similarly for the hole wavefunctions,
k′n = (ǫ− EF ) cos(α′)/~vF with angle of incidence α′.
Note that for an Andreev process to take place, the
maximum angle of incidence for an electron is given by
αc = arcsin [|ǫ− EF | / (ǫ+ EF )] [8].

In the barrier region, one can similarly ob-
tain ψe±

B =
(

1,±e±iθ, 0, 0
)

exp [i (±kbx+ qy)] and

ψh±
B =

(

0, 0, 1,∓e±iθ′

)

exp [i (±k′bx+ qy)] for elec-

tron and holes moving along ±x. Here the angle
of incidence of the electron(hole) θ(θ′) is given by
sin [θ(θ′)] = ~vF q/ [ǫ+ (−)(EF − V0)] and kb(k

′
b) =

[ǫ− (+)(EF − V0)] cos [θ(θ′)] /~vF . Note that in the limit
of thin barrier, θ, θ′ → 0 and kbd, k

′
bd→ χ.

In the superconducting region, the BdG quasiparticles
are mixtures of electron and holes. Consequently, the
wavefunctions of the BdG quasiparticles moving along
±x with transverse momenta q and energy ǫ has the form

ψ±
S =

(

e∓iβ,∓e±i(γ−β), e−iφ,∓ei(±γ−φ)
)

,

× exp [i (±ksx+ qy) − κx] ,

sin(γ) = ~vF q/(EF + U0), (5)

where ks =

√

[(U0 + EF ) /~vF ]
2 − q2 and γ is the an-

gle of incidence for the quasiparticles. Here κ−1 =
(~vF )2ks/ [(U0 + EF )∆0 sin(β)] is the localization length
and β is given by

β = cos−1 (ǫ/∆0) if |ǫ| < ∆0,

= −i cosh−1 (ǫ/∆0) if |ǫ| > ∆0, (6)

Note that for |ǫ| > ∆0, κ becomes imaginary and the
quasiparticles can propagate in the bulk of the supercon-
ductor.

Let us now consider an electron incident on the barrier
from the normal side with an energy ǫ and transverse
momentum q. The wave functions in the normal, insu-
lating and superconducting regions, taking into account
both Andreev and normal reflection processes, can then
be written as [12]

ΨN = ψe+
N + rψe−

N + rAψ
h−
N , ΨS = tψ+

S + t′ψ−
S ,

ΨB = pψe+
B + qψe−

B +mψh+
B + nψh−

N , (7)

where r and rA are the amplitudes of normal and An-
dreev reflections respectively, t and t′ are the amplitudes
of electron-like and hole-like quasiparticles in the super-
conducting region and p, q, m and n are the amplitudes
of electron and holes in the barrier. These wavefunctions
must satisfy the appropriate boundary conditions:

ΨN |x=−d = ΨB|x=−d, ΨB|x=0 = ΨS |x=0. (8)

Notice that these boundary conditions, in contrast their
counterparts in standard NIS interfaces, do not impose
any constraint on derivative of the wavefunctions at the
boundary. Thus the standard delta function potential
approximation for thin barrier [12] can not be taken the
outset, but has to be taken at the end of the calculation.

Using the boundary conditions (Eq. 8), one can now
solve for the coefficients r and rA in Eq. 7. After some
straightforward but cumbersome algebra, we find that in
the limit of thin barriers, the expressions for r t, t′, and
rA depend on the dimensionless coefficient χ as

r =
cos(χ)

(

eiα − ρ
)

− i sin(χ)
(

1 − ρeiα
)

cos(χ) (e−iα + ρ) + i sin(χ) (1 + ρe−iα)
,

t′ =
cos(χ) (1 + r) − i sin(χ)

(

eiα − re−iα
)

Γe−iβ + eiβ
, t = Γt′,

rA =
t′ (Γ + 1) e−iφ

cos(χ) − ie−iα′ sin(χ)
, (9)
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FIG. 1: Plot of tunneling conductance of a NIS junction
graphene as a function of bias voltage for different effective
barrier strengths for U0 = 0 and ∆0 = 0.01EF . Note that the
curves for χ = 0 (black line) and χ = π(pink circles) coincide
reflecting π periodicity.

where the parameters Γ and ρ can be expressed in terms
of γ, β, α, and α′ (Eqs. 4, 5, and 6) as

Γ =
e−iγ − η

eiγ + η
, η =

e−iα′

cos(χ) − i sin(χ)

cos(χ) − ie−iα′ sin(χ)
,

ρ =
e−i(γ−β) − Γei(γ−β)

Γe−iβ + eiβ
. (10)

The tunneling conductance of the NIS junction can now
be expressed in terms of r and rA by [12]

G(eV ) = G0

∫ αc

0

(

1 − |r|2 + |rA|
2 cos(α′)

cos(α)

)

cos(α) dα,

(11)

where G0 = 4e2N(eV )/h is the ballistic conductance
of metallic graphene, eV denotes the bias voltage, and
N(eV ) = (Ef + ǫ)w/(π~vF ) denotes the number of avail-
able channels for a graphene sample of width w. Note
that for eV ≪ EF , G0 is a constant. Eq. 11 can be eval-
uated numerically to yield the tunneling conductance of
the NIS junction for arbitrary parameter values.

Eqs. 9 and 10 represent the key result of this work.
From these equations, we find that in contrast to conven-
tional NIS junctions [12], both r and rA are oscillatory

functions of the effective barrier potential χ for any an-

gle of incidence α < αc. Consequently, we expect G(eV )
(Eq. 11) to demonstrate oscillatory behavior as a func-
tion of χ with a period π. We also note that our work
reproduces the results of Ref. 8 as a special case when
χ = nπ for any integer n.

Let us now consider the regime where the Fermi sur-
faces of the normal metal and the superconductor is

0 2 4 6 8
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FIG. 2: Plot of zero-bias tunneling conductance as a func-
tion of effective barrier potential χ for U0 = 0 and ∆0 =
0.01EF . The π periodic oscillatory behavior with maxima at
χ = (n+1/2)π is to be contrasted with the monotonous decay
of G(eV = 0) with increasing χ in conventional NIS junctions

aligned (U0 = 0) and ∆0 ≪ EF . A plot of the tun-
neling conductances as a function of the bias voltage eV
for different barrier strength χ, shown in Fig. 1, confirms
the π periodic oscillatory behavior. The oscillation am-
plitude is maximum for zero-bias (eV = 0), as shown in
Fig. 2, and vanishes at the gap edge (eV = ∆0). From
Fig. 1, we find two noteworthy features. First, the tun-
neling conductance at the gap edge reaches a value close
to 2G0 independent of the barrier strength, and second,
the subgap tunneling conductance becomes close to 2G0

when χ = (n+1/2)π for any integer n and any eV ≤ ∆0.
Both of the above-mentioned features can be under-

stood by noting that when eV ≪ EF , α ≃ −α′ ≃ γ
(Eq. 4). In this limit, using Eqs. 9 and 10, it can be
shown that the reflection amplitude, for eV ≤ ∆0,
becomes r ≃ N [cos (χ) + i sin(χ) cos(α)] /D, where D =
[

cos(α) [cos(β) cos(2χ) + i sin(β)] + 2 sin(2χ) sin(β) sin2(α)
]

and

N = 2 sin(α) [sin (χ+ β) − sin (χ− β)] . (12)

Note that N and hence r vanishes and when α = 0 or
sin(χ + β) = sin(χ − β). The former condition (α = 0)
is a manifestation of the well-known Klein paradox [7]
and occurs since scattering of normal-incident Dirac elec-
trons from a potential barrier can not change their chi-
rality [6]. This effect, however, is not manifested eas-
ily in the tunneling conductance since G receives con-
tribution from electron approaching the barrier with all
possible incidence angles α ≤ αc. The latter equality
(sin(χ+ β) = sin(χ− β) ) represents condition for trans-
mission resonance (r = 0 and |rA| = 1) of a graphene NIS
interface and has the solutions β = 0 and χ = (n+1/2)π.

Such transmission resonances occur for all barrier
strengths χ and angle of incidence α when eV = ∆0 (i.e.
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FIG. 3: Tunneling conductance as a function of bias voltage
for effective barrier strengths χ = 0 (solid line) and χ = π/2
(open circle) for U0 = 25EF and ∆0 = 2EF . The tunneling
conductance becomes barrier independent and vanishes for
eV = EF . The inset shows a schematic experimental setup.
The dashed region sees a variable gate (shown as pink filled
region) voltage V0 which creates the barrier. Additional gate
voltage U0, which may be applied on the superconducting
side, and the current source is not shown to avoid clutter.

β = 0). Consequently, G(eV = ∆0) ≃ 2G0 independent
of the barrier strength, as is also well-known for conven-
tional NIS junctions [12]. The novel aspect of a graphene
NIS junction comes from the second class of solution of
the transmission resonance condition: χ = (n + 1/2)π.
At these special values of the barrier, G ≃ 2G0 for any
subgap voltage as long as eV ≪ EF [13]. This fea-
ture, clearly seen in Figs. 1 and 2, is in sharp contrast
to conventional NIS junction where G(eV < ∆0) al-
ways decreases with increasing barrier strength [12]. For
χ 6= (n + 1/2)π or eV 6= ∆0, r 6= 0 and consequently
|rA| < 1 so that G < 2G0. In particular, r reaches a
maxima leading to minimum value of subgap tunneling
conductance for χ = nπ. Thus, in contrast to conven-
tional NS junctions, G(eV = 0) < 2G0 for χ = 0 in
graphene NS junctions as noted earlier in Ref. [8].

Next, we briefly explore the regime where ∆0 ≥ EF

and U0 ≫ EF , so that ∆0 ≪ (U0 + EF ) [8]. Here the
tunneling conductance, shown in Fig. 3 for ∆0 = 2EF

and χ = 0, π/2, becomes independent of barrier strength.
This can be intuitively understood from the fact that a
large Fermi surface mismatch acts as an effective barrier
for the electrons tunneling at the interface [12] which
makes the presence of an additional barrier irrelevant.
Further, as seen from Fig. 3, the tunneling conductance
vanishes for eV = EF = 0.5∆0 due to the absence of
Andreev reflection since αc = 0 at this bias-voltage. Our
results in this limit therefore becomes identical to those
for NS junction studied in Ref. [8].

Finally, we discuss possible experimental setup (shown
in inset of Fig. 3) to test our predictions. In the exper-
iment, the local barrier can be fabricated using meth-
ods of Ref. [5]. The easiest experimentally achievable
regime corresponds to ∆0 ≪ EF with aligned Fermi sur-
faces for the normal and superconducting regions. We
suggest measurement of tunneling conductance curves at
zero-bias (eV = 0) in this regime. Our prediction is
that the zero-bias conductance will show an oscillatory
behavior with change of effective bias voltage with max-
ima(minima) when χ becomes odd(even) integer multi-
ples of π/2 . In graphene, typical Fermi energy is EF ≃
80meV and the Fermi-wavelength is λ = 2π/kF ≃ 100nm
[5, 6]. For realization of the thin and sharp barriers dis-
cussed in this work, one needs d/λ << 1 and V0/EF ≫ 1.
Effective barrier strengths of 500− 1000meV and barrier
widths of d ≃ 20− 10 nm, which can be achieved in real-
istic experiments [5, 6], shall therefore meet the demands
of the proposed experimental setup. To observe the oscil-
latory behavior of the zero-bias tunneling conductance,
it would be necessary to change χ in small steps δχ. For
barriers of a fixed width, with values of d/λ = 0.1 and
V0/EF = 10, this would require changing V0 in steps of
approximately 12meV which corresponds to δχ = 0.1.

In conclusion, we have a presented a theory of tunnel-
ing conductance of graphene NIS junctions. We have
demonstrated that the tunneling conductance exhibits
novel π periodic oscillatory behavior as a function of bar-
rier strength of the junction and have suggested exper-
iments to observe this effect. The authors thank S.M.
Bhattacharjee, A. Ghosh, P.K. Mohanty,M. Khan, T.
Senthil and V. B. Shenoy for valuable discussions and
Graduate Associateship Program at Saha Institute which
made this work possible.
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