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Abstract - The paper follows the line of the de-
sign and evaluation of new evolutionary algorithms
for constrained multi-objective optimization. The
evolutionary algorithm proposed (ENORA) incorpo-
rates the Pareto concept of multi-objective optimiza-
tion with a constraint handling technique and with
a powerful diversity mechanism to obtain multiple
non dominated solutions through the simple run of
the algorithm. Constraint handling is carried out in
an evolutionary way and using the min-max formu-
lation, while the diversity technique is based on the
partitioning of search space in a set of radial slots
along which are positioned the successive populations
generated by the algorithm. A set of test problems
recently proposed for the evaluation of this kind of
algorithm has been used in the evaluation of the algo-
rithm presented. The results obtained with ENORA
were very good and considerably better than those
obtained with algorithms recently proposed by other
authors.

I. INTRODUCTION

The effectiveness of Evolutionary Algorithms (EA) in
solving multi-objective optimization problems has been
widely recognised in recent years. Proof of this can be
seen in the growing number of special sessions and work-
shops on multi-objective evolutionary optimization incor-
porated into the framework of prestigious, international
congresses and in the recent appearance of the First In-
ternational Conference on Multi- Criteria Evolutionary
Optimisation, held in Zurich in March 2001.

The solution to a multi-objective optimization problem
is made up of a set of solutions which we call Pareto so-
lutions. EA are characterised by the application of an in
parallel search using a population of potential solutions.
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A multi-objective EA then incorporates the Pareto con-
cept to identify multiple solutions through a single run of
the algorithm. This practically leaves obsolete the classi-
cal tendency to aggregate the different objectives using a
weight vector or similar approach to obtain a single func-
tion which is then optimised - a process requiring several
executions of the EA, each with different weights, in or-
der to identify the Pareto solution in each case. We can,
therefore, conclude that it is in multi-objective optimiza-
tion that Evolutionary Computation really distinguishes
itself from its most direct competitors, like gradient tech-
niques, simulated annealing or neuronal networks.

In this paper we consider, and without any loss of
generality, the following constrained multi-objective op-
timization problem:

Minimize fi(x), i=1,...,n

s.t.: (1)
gJ(X)SO j=1,...,m

where x = (z1,...,%p) is a vector of real parameters

T € R belonging to a domain [lg,ux], kK = 1,...,p, and
fi(x), gj(x) are linear or non linear arbitrary functions.

The set of solutions for problem (1) is made up of
all those elements of solution space for which the corre-
sponding objectives vector cannot be simultaneously im-
proved in all its components. These solutions are called
non dominated, non inferior or Pareto-optimals. A so-
lution x is said to be non dominated iff there exists no
other x' such that f;(x') < fi(x),foralli=1,...,n, and
fi(x") < fi(x), for at least one i.

Since Schaffer implemented the first multi-objective
evolutionary algorithm (VEGA) in the mid eighties,
there have been numerous authors who have worked
along the same lines. Constraint handling with EA has
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usually been studied apart from multi-objective opti-
mization with, penalty methods, decoders and repair al-
gorithms being the most commonly used [11]. These are,
nevertheless, methods which are heavily dependent on
the specific problem of optimization. It is only in the
last few years that greater interest has been awakened in
the development of evolutionary techniques which enable
optimization problems with constraints and multiple ob-
jectives to be simultaneously solved {2], [4], {5], [6], [9],
[10}.

Another highly important aspect of multi-objective
evolutionary optimization is that of bestowing a good
diversity mechanism on the algorithm. Diversity tech-
niques in multi-objective Evolutionary Computation
were originally put forward by Goldberg (7] at the end
of the eighties and their importance lies fundamentally
in two facts. Firstly, multiple solutions captured in a
simple EA execution should cover all the Pareto-optimal
fronts which make up the solution. This means that the
algorithm has to search for non dominated solutions in a
diversified way. Secondly, all the non dominated individ-
uals of the population should have an equal probability of
being selected, since they are all equally good. This fact
may lead to the genetic drift phenomenon which causes
the EA population to converge to just a small region
of the solution space. Diversity techniques are, there-
fore, paramount in multi-objective and multi-modal op-
timization, and have usually been referred to as niche
formation techniques. According to Goldberg [7], niche
formation techniques can be classified into two categories:
implicit and explicit. With implicit techniques, diversity
is achieved through the selfsame generational substitu-
tion used by the EA, with the pre-selection scheme and
the crowding factor model being the most usual. In the
case of explicit techniques, sharing function is typically
defined to determine the degree of participation in each
individual of the population and this is used to degrade,
as a penalty, the fitness of each individual.

For a good EA design, all these aspects (the Pareto
concept, constraint handling and the diversity technique)
need to be integrated along with the other compo-
nents which characterise an EA (representation of so-
lutions, initialisation, evaluation function, selection and
sampling, variation operators, generational substitution
mechanism). Ranking [5], {9], [14] and tournament [8],
[10] are the selection methods most used in the literature,
and the importance of the elitist strategy in obtaining an
efficient multi-objective EA has also been recognised [15].

Lastly, it is extremely important in the evaluation of
the algorithms that a suitable set of test problems is avail-
able. While the literature provides test problems within
the framework of multi-objective optimization with con-
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straints, these are generally simple, with few decision
variables and with non linear constraints which are not
suitable enough for use in general optimization. Very re-
cently, Deb et al. [4] proposed a generator of test prob-
lems for multi-objective optimization with constraints.
This can be configured to obtain the degree of difficulty
desired through the setting of six parameters, those, in
fact, which have caused serious difficulties in the most
recent algorithms.

Taking into account all the above, this paper falls
into the field of design and evaluation of new evolution-
ary algorithms for multi-objective optimization with con-
straints and is laid out as follows. Section 2 shows the
main characteristics of the new EA for solving problems
as in (1), and places emphasis on those points already
highlighted, i.e. the constraint handling technique used
and the diversity mechanism incorporated, in turn closely
related to the generational substitution scheme proposed
and, therefore, to the elitist strategy employed. Section
3 presents a set of eight test problems which have been
used to evaluate the EA and which have been obtained
from the paper by Deb et al. [4]. Section 4 gives the
results obtained with the proposed EA for the test prob-
lems considered. Finally, section 5 provides the most
important conclusions and the most promising lines of
research for the future.

II. ENORA: AN EVOLUTIONARY
ALGORITHM OF NON DOMINATED
SORTING WITH RADIAL SLOTS

ENORA (Evolutionary NOn dominated sorting with
RAdial slots) presents a classical general structure. A
floating point representation is used and the initial pop-
ulation is obtained randomly and uniformly from the do-
mains of the variables. An iterative process follows, in
which, in each iteration, a new population is generated
through selection, sampling, variation and generational
substitution. The iterative process ends when the fin-
ishing condition, which consists of achieving a maximum
number of generations, is fulfilled.

A. Constraint handling

The populations generated by the algorithm are made
up of both feasible and unfeasible individuals. Guided
by the multi-objective optimization Pareto concept, the
feasible individuals evolve towards optimality, while the
non-feasible individuals evolve towards feasibility guided
by an evaluation function based on the min-maz formu-
lation. See below for details. Thus the resulting algo-
rithm is barely dependent on the problem to be optimised
since it is the evolutionary heuristics itself that is used
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to satisfy the constraints, unlike the repair, decoding or
penalty techniques which tend to be heavily dependent
on the problem.

B. Variation operators

Bearing in mind that the EA uses a floating point rep-
resentation and given the coexistence of feasible and un-
feasible individuals within the EA populations, the varia-
tion operators therefore act on chains (sequences) of real
numbers without any consideration regarding the feasi-
bility of new descendants. After experimenting for real
parameter optimization with different variation opera-
tors proposed in the literature and with others, it was
finally decided to use two cross types, uniform cross and
arithmetical cross, and three types of mutation, uniform
mutation, non-uniform mutation and minimal mutation.
The first four have been studied and described in depth
by other authors [11]. Minimal mutation causes a mini-
mal change in the descendant as compared to the father,
and it is especially appropriate in fine tuning real param-
eters. Hence it is the scheme for generating a new pop-
ulation in which the most innovative aspects of ENORA
have their roots and which we describe below.

C. Generating a new population

ENORA performs the following steps in the generation
of a new population:

1. Two random individuals are selected.

2. Two offspring are obtained by parent crossing and
mutation.

3. The offspring are inserted into the population.

Before offering a detailed description of the mechanism
for inserting offspring into the new population, we will
define the following terms:

« f;: Objective functions’ value vector for the individ-
ual j. _
f;i=0f,....f),i=1,...,N
where N is the size of the population.
o F: The set of feasible individuals within the popula-
tion.
e fhaz: Objective maximum values vector of the func-
tions for the feasible individuals.
frnae = ( ln.zaz,”.’f:lnaz)

where f"%* = n‘lza}({ 1}
7

o fin: Objective minimum values vector of the func-
tions for the feasible individuals.
fmin = (flmin’ cee f;lmn)
where " = min{f/} .
JEF
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e h;: Objective normalised values vector of the func-
tions for the individual j.
h; = (h{, ey
E Fitd

maz _ fmin *

k1)
where hf: =

o Cin: The set of j individuals in the population such
that Vi = 1,...,n, fmn < fI < fmoz,

e Cout: The set of j individuals in the population
which do not belong to Cj,.

In this scheme the insertion of the children is the funda-
mental point for maintaining diversity. The individuals
belonging to C;, are distributed in D lists L},,...,LP,
where D = d"1, with d = |[N=-7]. We also have an
additional list, L,y for individuals belonging to C,y:. In
each list the individuals are ordered according to the best
function, described below. The insertion is performed as
follows:

1. If the individual belongs to C,y, it is inserted ac-
cording to the best function into its corresponding
position in the L,,; list and the last individual of
L,y is eliminated.

2. If the individual belongs to C;,, the corresponding
slot ¢ is calculated and inserted into the list L.
The calculation of the ¢ slot corresponding to an
individual j is performed as follows:

n—1
. o
t=)» dtd—],
Z L 7/ 2J
i=1 .
Z ) if hl=0
B P
arctan(—%*) if hl#0
(a) If Lt, is empty, the LI, list containing a higher
number of individuals is sought. If this number
is greater than 1, then the last element of L}, is
eliminated and the individual is inserted into L.
(b) If Lt is not empty, the individual is inserted into

its corresponding position according to the func-
tion best, and the last element of L, is eliminated.

i=1,...,n—1

The function best is established as follows:

o A feasible individual is better than another, unfeasi-
ble one.

« One unfeasible individual is better than another if
the function j_rilaxm{ g;(x)} of the first is better than

that of the second.
o One feasible individual is better than another if the
first dominates the second.

It should be observed that we are using the min-maz
formulation to satisfy the constraints. This method has
been used in multi-objective optimization [1] to minimise
the relative deviations of each objective function from its
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individual optimum, and the best compromise solution
can be obtained when objectives of equal priority are op-
timised. Since constraints and objectives can be treated
in a similar way, and it is assumed that all constraints
have equal priority, the min-maz formulation is appro-
priate for satisfying constraints and is, furthermore, a
technique which is independent of the problem.

It should also be noted that insertion of the new indi-
viduals is not always carried out, but only in those cases
in which the new individual is better than the individual
substituted and the diversity is not worsened, or when
the new individual is no worse than the one substituted
and diversity is improved. Thus the technique simultane-
ously permits optimization and conservation or improve-
ment of the diversity. It is also an elitist technique, since
individuals are never replaced by others which are worse.

III. TEST PROBLEMS

Deb et al. [4] propose a set of new test problems in
which the degree and type of difficulty can be controlled
by variations to a set of parameters associated to the
problem. The test problems proposed have been designed
to provoke two particular types of difficulty:

« Difficulty near the Pareto-optimal front.
« Difficulty in all the search space.

In the first test problem, CTP1, constraints only
arise near the Pareto-optimal front. Part of the Pareto-
optimal front is defined by the constraints :

Min fi(x) =z
f2(x) = g(x) exp(—f1(x)/g(x))
s.t.: f2(x) — aj exp(—bj f1(x)) > 0,
i=1,...,J

where 0 < 73 < 1, =5 < z9,73,24 < 5 and g(x) =
31+ 3% (22 —-10cos(4nz;)). We have J constraints. We
have considered the case J = 2, with values a; = 0.858,
b1 = 0541, as = 0.728 and b2 = 0.295.

Another way of introducing difficulties near to the
Pareto front is to include constraints in such a way that
the Pareto front is feasible in some slots and unfeasible
in others. In the extreme case, the Pareto front is a set of
discrete points. Such a function can be described math-
ematically in the following way:

CTP1:

Min fi(x)=z1
CTP2— fZ(X) = g(x)(l _ \/£)
CTP7: s.t.:  cos(8)(fa(x) — e) —sin(8) f1(x) >

a|sin(brr(sin(0) (f2(x) — €) + cos(f)
A |

where 0 < 1 < 1, =5 < z9,73,74 < 5 and g(x) =
31 + Z?:l (#? — 10cos(47z;)). The parameters chosen
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for the different CT P2 to CT P7 problems were those by
Deb at al. [4], and which correspond to the following:

g a b c d e
CcTP2 —-02« 0.2 10 1 6 1
CTP3 —0.27 0.1 10 1 0.5 1
CTP4 —0.27 0.75 10 1 05 1
cTP5 —-02r 075 10 2 0.5 1
CTP6 0.1xw 40 05 1 2 -2
CTP7 -0.05= 40 5 1 6 0

Finally, we have also taken into account the OSY prob-
lem [4], [12] which is a typical test problem and consid-
ered difficult to solve. It is, moreover, highly appropriate
for testing the effectiveness of diversity techniques.

(Min  fi(x) = —(25(z1 — 2)® + (22 — 2)?
+(xa — 1) + (za — 4)% + (x5 — 1)?)
fo(x) = 22 + 2% + 22 + 22 + 22 + 2
st.: zi+22—22>0

OSY{ 6—-zy—222>0
2—x2421 20
2—-z2y+3x2 >0
4—(1:3—3)2-$420

L (z5 —3)2+26—4>0

with 0 < 11,722,726 < 10,1 < z3,75 < 5,and 0 < z4 < 6.

IV. RESULTS

The ENORA algorithm has been executed for CT P1-
CTPT7 and OSY problems and the following parameters
have been used : probability of cross 0.6 (50% uniform
and 50% arithmetic), probability of mutation 0.6 (20%
uniform, 30% non-uniform and 50% minimum) and pop-
ulation size N = 100. The results obtained are shown in
Figure 1.

The NSGA-II algorithm proposed by Deb et al. [4],
converges suitably in the CTP2, CTP3, CTP5 and
CTP6 problems. However, for the CTP4 and CTP7
problems, NSGA-II presents difficulties both in the loca-
tion of Pareto points and in the diversity. A modifica-
tion of NGSA-II with controlled elitism, proposed by Deb
and Goel [3], improves the results for CTP7 in the case
of diversity, although the solutions obtained are remain
at some distance from the Pareto-optimal front. While
the solutions obtained for the OSY problem are on the
Pareto-optimal front, they are not perfectly distributed.
Deb et al. [4] did not show any results for CT P1.

From the results shown in [4], the algorithm proposed
by Ray et al. [13] has difficulties with all the problems,
both in convergence and in diversity.

Figure 1 shows the good behaviour of ENORA in all
the test problems with uniformly distributed solutions
being obtained on all the Pareto-optimal fronts.
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V. CONCLUSIONS AND FUTURE
RESEARCH

The paper presented is the result of some years of re-
search in the field of the design and evaluation new evolu-
tionary algorithms for multi-objective optimization with
constraints. The approaches of evolutionary constrained
multi-objective optimization based on ranking and tour-
nament selection which opened the research gave satis-
factory results in small test problems. The results, how-
ever, were not so satisfactory in more complicated test
problems, like those treated herein. In perfecting these
algorithms, the research has led to a new algorithm, the
success of which has been fundamentally due to the di-
versity technique used. The algorithm proposed incor-
porates a problem independent constraints satisfaction
technique together with a powerful diversity mechanism
which permits the identification of multiple non domi-
nated solutions distributed uniformly along the Pareto-
optimal fronts. The experimental results in test problems
designed specifically to evaluate such algorithms show a
considerable improvement on those obtained to date us-
ing other recently created algorithms. As regards the
main line of research in the future, work is already being
carried out on the applications of ENORA in the field of
the fuzzy modelling of hydrological resources. The multi-
objective algorithm is used to optimise the weights and
structure of a fuzzy neural network RBF (Radial Based
Function) in which we consider as objectives the minimi-
sation of the mean squared error and of the number of
neurones in the neural network, and as a constraint that
the mean squared error of the learning and the evaluation
data do not exceed a given threshold.
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Fig. 1. Non dominated solutions obtained with ENORA for the test problems CTP1 — CTP7 and OSY.
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