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actions can be deduced from the S-matrix. The cubic interactions between these tachyons

and the massless fields are computed in a closed form using orbifold CFT techniques. The

cubic interaction between nearly-massless tachyons with different charges is shown to van-

ish and thus condensation of one tachyon does not source the others. It is shown that to

leading order in N , the quartic contact interaction vanishes and the massless exchanges

completely account for the four point scattering amplitude. This indicates that it is neces-

sary to go beyond quartic interactions or to include other fields to test the conjecture for

the height of the tachyon potential.
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1. Introduction

There are a number of physical situations, for example in cosmology, where it is necessary

to deal with unstable and time-dependent backgrounds. It is of interest to develop cal-

culational tools within string theory that can describe such backgrounds in an essentially

stringy way.

A useful laboratory for studying unstable or time-dependent backgrounds in string

theory is provided by tachyons in open string theory. These tachyons correspond to the

instabilities of various unstable brane configurations and their condensation is expected

to describe the decay of these unstable branes to flat space. The static as well as time

dependent aspects of such decays have been analyzed quite extensively.

By comparison, tachyons in closed string theory, even though more interesting physi-

cally, have proved to be less tractable. For these tachyons, in most cases there is no natural

candidate for a stable minimum of the potential where the tachyon fields can acquire an

expectation value. For a closed-string tachyon with a string-scale mass it is difficult to

disentangle a well-defined potential from other gravitational effects. In some cases, as in

the case of thermal tachyon which signifies the onset of Hagedorn transition, the mass can

be fine-tuned to be very small [1, 2], but the tachyon has cubic couplings to the dilaton

and other massless scalar fields. Consequently, it sources other massless fields which con-

siderably complicates the dynamics and quickly drives the system into strong coupling or

strong curvature region [3, 4]. Similarly, for the open string tachyon in the brane-antibrane

system, the mass can be tuned to zero by adjusting the distance between the brane and

the antibrane [5] to be the string scale. However, at the endpoint of condensation, the

distance between brane and antibrane vanishes and the tachyon eventually has string scale

mass and the effective field theory breaks down.

In this paper we show that for localized tachyons in the twisted sector of the C/ZN orb-

ifold theories, some of these difficulties can be circumvented. The paper is organized as fol-

lows. In section 2, we motivate our computation and elaborate arguments that lead to a con-

jecture for the effective height of the tachyon potential. In section 3, we review the orbifold

CFT for a single complex twisted boson and the four-twist correlation function that is re-

quired to describe the scattering of four tachyons. Using factorization and symmetry argu-

ments we calculate all three-point correlation functions needed for our purpose. In section 4,

we review superstring theory on the C/ZN orbifold and using the CFT results compute the

four-tachyon scattering amplitude as well as the gauge-invariant cubic interactions between

the tachyons and the massless fields. We show that the tachyon of interest does not source

other tachyons to quartic order and its dynamics can thus be studied independently of oth-

ers in a consistent manner. In section 5, we fix the normalization of the four point amplitude

by factorization and show that to order 1/N 2, the four tachyon scattering is completely

accounted for by the massless exchanges. We conclude in section 6 with some comments.

2. A conjecture for the height of the tachyon potential

We now pursue some of the analogies of closed-string localized tachyons and open-string

tachyons with the aim of identifying a model where explicit computations are possible.

– 2 –



J
H
E
P
0
5
(
2
0
0
4
)
0
5
1

2.1 Analogies with open-string tachyons

There are three main simplifications which make the open-string tachyons tractable.

• The tachyons are localized on the worldvolume of an unstable brane. It is reasonable

to assume that condensation of the tachyon corresponds to the annihilation of the

brane and the system returns to empty flat space.

• Conservation of energy then implies Sen’s conjecture [6, 7] that the height of the

tachyon potential should equal the tension of the brane that is annihilated.

• The gravitational backreaction of D-branes can be made arbitrarily small by making

the coupling very small because the tension of D-branes is inversely proportional

to closed string coupling gc whereas Newton’s constant is proportional to g2c . This

makes it possible to analyze the tachyon potential without including the backreaction

of massless closed-string modes.

The twisted-sector tachyons in C/ZN string backgrounds are in many respects quite

analogous.

• The C/ZN theory has the geometry of a cone with deficit angle 2π(1− 1/N) and the

twisted-sector tachyons are localized at the tip [8, 9]. There is considerable evidence

now that condensation of these tachyons relaxes the cone to empty flat space and

thus much like the open string tachyons, there is a natural candidate for the endpoint

of the condensation [10].

• There is a precise conjecture for the effective height of the tachyon potential that is

analogous to the Sen’s conjecture in the open string case [11].

• At large-N , some of the relevant tachyons are nearly massless. Therefore, one would

expect that there is a natural separation between the string scale and the scale at

which the dynamics of the tachyons takes place and thus higher order stringy correc-

tions can be controlled. The required S-matrix elements are completely computable

using orbifold CFT techniques.

Note that for the C/ZN tachyons we can talk about the height of the tachyon potential

because the background is not Lorentz invariant. Quite generally, two closed-string CFT

backgrounds which are both Lorentz invariant cannot be viewed as two critical points of a

scalar potential at different heights. This is because a nonzero value of a scalar potential at

a critical point with flat geometry would generate a tadpole for the dilaton and the string

equations of motion would not be satisfied. By contrast, the C/ZN backgrounds are not flat

because there is a curvature singularity at the tip of the cone. It is natural to assume that

the tachyon potential provides the energy source for the curvature. There is not dilaton

tadpole because, for a conical geometry, the change in the Einstein-Hilbert term in the

action precisely cancels the change in the height of the potential. Hence the total bulk

action which generates the dilaton tadpole vanishes on the solution. There is an important

boundary contribution that is nonzero and as a result there is a net change in the classical

action. This reasoning leads to a sensible conjecture for the height of the tachyon potential.

– 3 –



J
H
E
P
0
5
(
2
0
0
4
)
0
5
1

2.2 A conjecture

String theory on the C/ZN orbifold background was first considered in [8, 12, 9] to model

the physics of horizons in euclidean space. Geometrically, C/ZN is a cone with deficit angle

2π(1− 1
N ). The tip of the cone is a fixed point of the ZN orbifold symmetry and there are

tachyons in the twisted sectors that are localized at the tip signifying an instability of the

background.

A physical interpretation of these tachyons was provided by Adams, Polchinski, and

Silverstein [10]. They argued that giving expectation values to the tachyon fields would

relax the cone to flat space. The most convincing evidence for this claim comes from the

geometry seen by a D-brane probe in the sub-stringy regime. In the probe theory, one

can identify operators with the right quantum numbers under the quantum ẐN symmetry

of the orbifold1 that correspond to turning on tachyonic vevs. By selectively turning on

specific tachyons, the quiver theory of the probe can be ‘annealed’ to successively go from

the ZN orbifold to a lower ZM orbifold with M < N all the way to flat space. The deficit

angle seen by the probe in this case changes appropriately from 2π(1 − 1
N ) to 2π(1 − 1

M ).

Giving expectation value to the tachyon field in spacetime corresponds to turning

on a relevant operator on the string worldsheet. Thus the condensation of tachyons to

different CFT backgrounds is closely related to the renormalization group flows on the

worldsheet between different fixed points upon turning on various relevant operators. An

elegant description of the RG flows is provided using the gauged nonlinear sigma model [13]

and mirror symmetry [14]. The worldsheet dynamics also supports the expectation that

the cone will relax finally to flat space. Various aspects of localized tachyons and related

systems have been analyzed in [15]–[34]. For a recent review see [35].

These results are consistent with the assumption that in the field space of tachyons

there is a potential V (T) where we collectively denote all tachyons by T. The ZN orbifold

sits at the top of this potential, the various ZM orbifolds with M < N are the other critical

points of this tachyonic potential, and flat space is at the bottom of this potential. Such a

potential can also explain why a conformal field theory exists only for special values of deficit

angles. We will be concerned here with the static properties such as the effective height of

the potential and not so much with dynamical details of the process of condensation.

It may seem difficult to evaluate the change in the classical action in going from the

ZN orbifold to the ZM orbifold but we are helped by the fact that the orbifold is exactly

conformal. Hence the equations of motion for the dilaton and the graviton are satisfied

exactly for both backgrounds. To calculate the change in the action, let us consider the

string effective action to leading order in α′

S =
1

2κ2

∫

M

√−g e−2φ [R+ 4(∇Mφ∇Mφ)− 2κ2δ2(x)(∇µT∇µT̄+ V (T))] +

+
1

κ2

∫

∂M

√
−g e−2φK , (2.1)

1The quantum ẐN symmetry is simply the selection rule that twists are conserved modulo N . The twist

field in the k-th twisted sector has charge k under this symmetry.
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where K is the extrinsic curvature, κ2/8π is Newton’s constant G, and V (T) denotes the

tachyon potential localized at the defect. Here M = 0, . . . , 9 run over all spacetime direc-

tions, the cone is along the 8, 9 directions, and µ = 0, . . . , 7 are the directions longitudinal

to the eight dimensional defect localized at the tip of the cone. The extrinsic curvature

term is as usual necessary to ensure that the effective action reproduces the string equations

of motion for variations δφ and δg that vanish at the boundary.

The action is very similar to the one for a cosmic string in four dimensions. For a

cosmic string in four dimensions or equivalently for a 7-brane in ten dimensions, the deficit

angle δ in the transverse two dimensions is given by δ = 8πGρ ≡ κ2ρ where ρ is the tension

of the 7-brane. We are assuming that when the tachyon field T has an expectation value

TN , its potential supplies an 7-brane source term for gravity such that the total spacetime

is M8×C/ZN whereM8 is the flat eight-dimensional Minkowski space. Einstein equations

then imply R = 2κ2δ2(x)V (T) and a conical curvature singularity at x = 0. Because of

this equality, there is no source term for the dilaton and as a result the dilaton equations

are satisfied with a constant dilaton. We see that the bulk contribution to the action is

precisely zero for the solution. The boundary has topology R8 × S1. For a cone, the circle

S1 has radius r but the angular variable will go from 0 to 2π/N . The extrinsic curvature

for the circle equals 1/r and thus the contribution to the action from the boundary term

equals 2πA/Nκ2. There is an arbitrary additive constant in the definition of the action

that is determined by demanding that flat space should have vanishing action. In any case,

we are concerned with only the differences and we conclude that in going from C/ZN to

flat space the total change in action per unit area must precisely equal 2π
κ2
(1− 1

N ).

In the full string theory, we should worry about the higher order α′ corrections to the

effective action. These corrections are dependent on field redefinitions or equivalently on the

renormalization scheme of the world-sheet sigma model. However, the total contribution

of these corrections to the bulk action must nevertheless vanish for the orbifold because

we know that the equations of motion of the dilaton are satisfied with a constant dilaton

which implies no source terms for the dilaton in the bulk. Thus, the entire contribution

to the action comes from the boundary term even when the α′ corrections are taken into

account and we can reliably calculate it in a scheme independent way using the conical

geometry of the exact solution at the boundary.

One can convert this prediction for the change in action into a conjecture for the height

of the tachyon potential. We expect that the tachyon potential should be identified with

the source of energy that is creating the curvature singularity. Let us see how it works in

some detail. Note that a cone has a topology of a disk and its Euler character χ equals

one. Using the Gauss-Bonnet theorem, we then conclude χ = 1
4π

∫

C/ZN R + 1
2π

∫

S1 K = 1.

This implies that R = 4π(1− 1
N )δ2(x) and we arrive at our conjecture that

V (TN ) =
2π

κ2

(

1− 1

N

)

. (2.2)

We are thus led to a plausible picture rather analogous to the open-string tachyons in

which the tachyon potential V (T) supplies the source of energy required to create a defect

and flat space is the stable supersymmetric ground state. The landscape of the tachyon

– 5 –
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fields in the closed string case is, however, more intricate. There are several tachyonic

modes and many critical points corresponding to cones with different deficit angles and

thus a richer set of predictions to test.

2.3 A model and a strategy for computing off-shell interactions

The potential for open-string tachyons been analyzed using a number of different ap-

proaches. It has been possible to test Sen’s conjecture within open string field theory

in a number of different formalisms [36]–[39] both for the bosonic and the superstring. For

a recent review and a more complete list of references see [40]. Some properties of the

decay process have also been analyzed exactly in boundary conformal field theory [41] and

in certain toy models exactly even nonperturbatively [42, 43, 44].

It would be interesting to similarly develop methods within closed-string theory to test

the conjecture above for the potential of localized tachyons. For the bosonic string, the

string field theory does not have the simple cubic form as in Witten’s open string field

theory [45]. Nevertheless, a well-developed formalism with non-polynomial interactions is

available [46]. Okawa and Zwiebach have recently applied this formalism successfully in

the level-truncation approximation [47] and have found more than 70% agreement with

the conjectured answer which is quite encouraging. We will be interested here in the local-

ized tachyon in the superstring. For superstrings, there is a string field theory formalism

available only for the free theory [48] but not yet for the interacting theory so we need to

approach the problem differently.

Corresponding to (2.2), there is a natural object in the worldsheet RG flows that can be

identified with the tachyon potential [49]. For relevant flows, however, the relation between

worldsheet quantities and spacetime physics is somewhat indirect given the fact that away

from the conformal point the Liouville mode of the worldsheet no longer decouples. It is

desirable to see, to what extent, (2.2) can be verified directly in spacetime.

To sidestep the use of string field theory, we work instead in the limit of large-N and

consider the decay process that takes C/ZN to C/Zk with k = N − j, for some small even

integer j = 2, 4, . . . We assume that the tachyonic field Tk that connects these two critical

points has a well-defined charge k under the quantum ẐN symmetry with its mass given

by m2
k = −2(N−k)

α′N . This assumption is motivated from the worldsheet mirror description

of this process [14] where the relevant operator that is turned on has a well-defined charge

under the quantum symmetry. To justify this assumption further we will check that there

are no cubic couplings between this tachyon and other nearly massless tachyons. Therefore,

giving expectation value to this particular tachyon does not create a tadpole for other

tachyons.

Because this tachyon is nearly massless we can consider its effective dynamics much

below the string mass scale by integrating out the massive string modes and are justified

in ignoring possible string scale corrections to the effective action. The simplest way to

model the condensation process is to imagine an effective potential

2π

κ2

(

1− 1

N

)

−
(

2

α′

)

(N − k)
N

|Tk|2 +
λk
4
|Tk|4 . (2.3)

– 6 –
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The potential has two extrema. At Tk = 0 it has a maximum and its value at the maximum

is given by (2.2) which supplies the energy source required at the tip of the cone C/ZN .

There is a minimum at |Tk|2 = 4(N−k)
α′λkN

and the energy at this minimum is lowered. We

would like to identify this minimum with the cone C/Zk which implies the prediction

1

λk

(

2

α′

)2(N − k
N

)2

=
2π

κ2

(

1

k
− 1

N

)

, (2.4)

so that the energy at the minimum is exactly what is needed to create the smaller deficit

angle of the cone C/Zk. We are implicitly working at large N because we have assumed

that the tachyon is nearly massless and it is meaningful to talk about its potential ignoring

the α′ corrections. In the large N limit, the final prediction for the quartic term becomes

λk =
κ2

2π

(

2

α′

)2

(N − k) . (2.5)

It would be natural to set α′ = 2 here as in most closed string calculations but we prefer

to maintain α′ throughout to keep track of dimensions and to allow for easy comparison

with other conventions.

For the consistency for this picture it is essential that the tachyon Tk does not source

any other nearly massless fields apart from the dilaton. We have already explained that

the dilaton tadpole vanishes because the bulk action is zero for the cone. However, if there

are tadpoles of any of the very large number of nearly massless tachyons in the system,

it would ruin the simple picture above. Quantum ẐN symmetry surely allows terms like

TkTkTN−2k because the charge needs to be conserved only modulo N . If such a term is

present then the tachyon TN−2k will be sourced as soon as Tk acquires an expectation value

and its equations of motion will also have to satisfied. We will then be forced to take into

account the cubic and quartic interactions of all such fields. Fortunately, as we show in

section 4.4, even though the cubic couplings of this type are allowed a priori, they actually

vanish because of H-charge conservation. We can thus restrict our attention consistently

to a single tachyon up to quartic order.

In what follows, we proceed with this simple ansatz. Note that N − k = j is of order

one and thus the required quartic term that is of order one. To extract the contact quartic

term, we first need to calculate the four point tachyon scattering amplitude and subtract

from it the massless exchanges.

There is a subtlety in this procedure that is worth pointing out. We are interested

in the one-particle irreducible quartic interaction. To obtain it from the four particle

scattering amplitude, we should subtract all one-particle reducible diagrams. Now, in

string theory, an infinite number of particles of string-scale mass are exchanged along

with the massless fields of supergravity and it would be impractical if we have to subtract

all such exchanges. Note however, that the mass of the tachyon of interest is inversely

proportional to N and there is a clear separation of energy scales. We are interested in

the effective field theory at these much lower energies that are down by a factor of 1/N

compared to the string scale. Therefore, massive string exchanges are to be integrated

out. For tree-level diagrams, integrating out a massive field simply means that we keep all

– 7 –
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one-particle reducible diagrams in which the massive field is exchanged. This generates an

effective quartic interaction in much the same way the four-fermi interaction is generated

by integrating out the massive vector boson. For this reason, we do not need to subtract

the exchanges of massive string modes.

The procedure would then be to compute the four-point amplitude, subtract from it

all massless or nearly-massless exchanges, and then take the string scale to infinity and N

to infinity keeping fixed the tachyon mass and the external momenta to focus on the energy

scale of interest. To put it differently, if we subtract only the massless exchanges, we are

automatically solving the equations of motion the massive fields [50]–[53]. This observation

explains why the full formalism of string field theory is not needed in our case as it would

be for a string scale tachyon and we can proceed consistently within effective field theory.

An analogous large-N approximation was used by Gava, Narain, and Sarmadi [54] to

analyze the off-shell potential of an open string tachyon that arises in the D2-D0 system.

This tachyon signals the instability of the system towards forming a lower energy bound

state in which the D0-brane is dissolved into the D2-brane. These authors introduce a

parameter N by considering a system of a single D2 brane with N D0-branes already

dissolved in it and then introduce an additional D0-brane. The relevant tachyon is then

nearly massless when N is large and one can consistently analyze the system in effective

field theory in much the same way as we wish to do here. For the open string tachyon also,

the mass-squared is inversely proportional to N and the quartic term turns out to be of

order one. The potential then has a lower energy minimum corresponding precisely to the

lowered energy of the additional D0-brane dissolved into the D2 brane.

One would hope that a similar story works for the nearly massless closed-string

tachyons but there is no a priori way to determine the value of the quartic term with-

out actually computing it. Unfortunately, our computation shows that the quartic term in

this case is not of order one but much smaller, of order 1/N 3. We discuss the results and

implications in some detail in section 6.

It is now clear that for our purpose we require the S-matrix element for the scattering of

four tachyons and the three-point couplings of these tachyons to massless or nearly massless

fields. We in turn need the four-point and three-point correlation functions involving the

twist fields of the bosonic and fermionic fields. The fermionic twist fields have a free

field representation and their correlation function are straightforward to compute. The

computations involving the bosonic twist fields are fairly involved and require the full

machinery of orbifold CFT. For this reason in the next section we focus only on the CFT of a

single complex twisted boson and determine the required correlators using CFT techniques

and factorization.

3. Bosonic CFT on C/ZN

The main thrust of this section will be the computation of various three-point functions in-

volving the bosonic twist fields. These correlation functions enter into the cubic interactions

of the tachyon with the untwisted massless fields carrying polarization and momenta along

the cone directions. The orbifold CFT is fairly nontrivial and the correlations cannot be

– 8 –
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computed using free field theory. Fortunately, it turns out that all the three-point functions

required for our purpose can be extracted from factorization of the four-twist correlation

function which is already known in the literature. This fact considerably simplifies life.

Our starting point will be the four-twist correlation function which has been computed

in [55, 56, 57]. We review some basic facts about the CFT of a single complex boson in

the twisted and the untwisted sector in sections 3.1 and 3.2 and the relevant aspects of

the four-twist correlation function in section 3.3. We then calculate the various three-

point functions in section 3.4 up to a four-fold discrete ambiguity using factorization and

symmetry arguments. The discrete ambiguity will be fixed later by demanding BRST

invariance of the full string vertex.

3.1 Untwisted sector

We begin with a review of the Hilbert space of the untwisted sector a complex scalar X

taking values in C/ZN . The purpose of this section is to keep track of factors of N and

to collect some formulas on how the states in the oscillator basis split into primaries and

descendants of the conformal algebra. This will be important later for factorization using

conformal blocks.

3.1.1 States and vertex operators

States in the untwisted sector of the CFT on C/ZN are constructed by projecting the

Hilbert space HC of CFT on the complex plane onto ZN invariant states. The ZN generator

R satisfying RN = 1 acts on HC as a unitary operator; R† = R−1. From this one constructs

the orthogonal projection operator

P =
1

N

N−1
∑

k=0

Rk

satisfying P 2 = P ; P † = P . The C/ZN Hilbert space is then HC/ZN = PHC. Defining

complexified momenta

p =
1√
2
(p8 − ip9) p̄ =

1√
2
(p8 + ip9) ,

we start from momentum states |p, p̄〉 in HC normalized as

〈p′, p̄′|p, p̄〉 = (2π)2δ(p− p′)δ(p̄ − p̄′).

The states

|p, p̄〉N ≡ P |p, p̄〉 = 1

N

N−1
∑

k=0

|ηkp, η̄k p̄〉

with η = e2πi/N form a continuous basis on C/ZN with normalization

N 〈p′, p̄′|p, p̄〉N = (2π)2δN (~p, ~p′) (3.1)

– 9 –
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where we have defined

δN (~p, ~p′) ≡ 1

N

N−1
∑

k=0

δ(p− ηkp′)δ(p̄ − η̄kp̄′) .

The completeness relation on HC/ZN reads

1 =

∫

C

dpdp̄

(2π)2
|p, p̄〉N N 〈p, p̄| .

For an arbitrary vertex operator O, we denote its projection onto the ZN invariant

subspace by [O]N defined by

[O]N ≡
1

N

N−1
∑

k=0

RkOR−k . (3.2)

The vertex operators corresponding to the states |p, p̄〉N are [ei(pX+p̄X̄)]N . Their BPZ inner

product is related to the hermitean inner product (3.1) on the Hilbert space by an overall

normalization constant A and a sign change on one of the momenta

〈[ei(p′X+p̄′X̄)]′N (∞)[ei(pX+p̄X̄)]N (0)〉 = A(2π)2δ2N (~p,−~p′) (3.3)

where the prime means O′(∞) = limz→∞ z2hz̄2h̃O(z) [58]. By construction, the overall

normalization A should be the same as for the CFT on C. We will later explicitly check

this from unitarity.

The full Hilbert space in the untwisted sector is built up by acting on the momentum

eigenstates with creation operators α−{m}, ᾱ−{m}, α̃−{m}, ¯̃α−{m} and then taking the ZN

invariant combinations. A general state can be written as

O{m̄}{ ¯̃m}{m}{m̃}(p, p̄) =





∏

i

(α−i)
mi

∏

j

(ᾱ−j)
m̄j

∏

k

(α̃−k)
mk

∏

l

(¯̃α−l)
ml · ei(pX+p̄X̄)





N

.

The level of a state is defined as the pair (M,N) withM =
∑

(mi+m̄i), N =
∑

(m̃i+ ¯̃mi).

Of particular interest to us are the lowest level operators which are part of the vertex

operators for massless string states:

level(0, 0) : O00
00

level (1, 0) : O00
10, O10

00

level (0, 1) : O00
01, O01

00

level (1, 1) : O00
11, O11

00, O01
10 , O10

01 . (3.4)

Their explicit definition is

O00
00 = [ei(pX+p̄X̄)]N

O00
10 = [α−1 · ei(pX+p̄X̄)]N , O00

01 = [α̃−1 · ei(pX+p̄X̄)]N

O10
00 = [ᾱ−1 · ei(pX+p̄X̄)]N , O01

00 = [¯̃α−1 · ei(pX+p̄X̄)]N

O00
11 = [α−1α̃−1 · ei(pX+p̄X̄)]N , O11

00 = [ᾱ−1 ¯̃α−1 · ei(pX+p̄X̄)]N

O01
10 = [α−1 ¯̃α−1 · ei(pX+p̄X̄)]N , O10

01 = [ᾱ−1α̃−1 · ei(pX+p̄X̄)]N .
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For example, the vertex operator for O00
01 is given by

O00
01(p, p̄) = i

√

2

α′
[∂̄Xei(pX+p̄X̄)]N .

3.1.2 Primaries and descendants

For computing cubic vertices, We need to write the operators (3.4) in terms of primaries

and descendants of the Virasoro algebra. For a primary field at level (M,N) we will use

the notation V (M,N)(p, p̄).2

The state at level (0, 0) is obviously a primary,

V(0,0) = O00
00 = [ei(pX+p̄X̄)]N . (3.5)

At level (1, 0), there is a primary V (1,0) and a descendant L−1 · V(0,0):

V(1,0) =
1√
2pp̄

(

p̄O00
10 − pO10

00

)

L−1 · V(0,0) =

√

α′

2

(

p̄O00
10 + pO10

00

)

. (3.6)

where primary fields are delta-function normalized under the BPZ inner product as in (3.3).

Similarly, at level (0, 1) we have:

V(0,1) =
1√
2pp̄

(

pO00
01 − p̄O01

00

)

L̃−1 · V(0,0) =

√

α′

2

(

pO00
01 + p̄O01

00

)

. (3.7)

At level (1, 1), we find a primary and three descendants:

V(1,1) =
1

2pp̄

(

p2O00
11 − pp̄O01

10 − pp̄O10
01 + p̄2O11

00

)

L̃−1L−1 · V(0,0) =
α′

2

(

p2O00
11 + pp̄O01

10 + pp̄O10
01 + p̄2O11

00

)

L̃−1 · V(1,0) =

√

α′

2pp̄

(

p2O00
11 + pp̄O01

10 − pp̄O10
01 − p̄2O11

00

)

L−1 · V(0,1) =

√

α′

2pp̄

(

p2O00
11 − pp̄O01

10 + pp̄O10
01 − p̄2O11

00

)

. (3.8)

3.2 Twisted sector

Twisted sector states are created by the insertion of twist fields. The bosonic twist field

that creates a state in the k-th twisted sector is denoted by σk. The σk are primary fields

of weight h = h̃ = 1
2k/N(1 − k/N). Their OPE’s are given by

∂X(z)σk(0) ∼ z−1+k/Nτk(0) + · · ·
∂X̄(z)σk(0) ∼ z−k/Nτ ′k(0) + · · · (3.9)

2For the levels that we need to consider, there is only one primary field at each level so for our purposes

there is no ambiguity in this notation.
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where τk, τ
′
k are excited twist fields. In the presence of a twist field, the mode numbers

of ∂X, ∂X̄ get shifted:

∂X = −i
√

α′

2

∑

m

αm−k/Nz
−m−1+k/N

∂X̄ = −i
√

α′

2

∑

m

ᾱm+k/Nz
−m−1−k/N . (3.10)

The state |σk〉 ≡ σk(0)|0〉 is annihilated by all positive frequency modes. The commutation

relations are

[αn−k/N , ᾱm+k/N ] =

(

m+
k

N

)

δm,−n .

We take the BPZ inner product between twist fields to be normalized as

〈σ′N−k(∞)σk(0)〉 = A (3.11)

where A is the same constant that appears in (3.3). This is just a convenient choice — a

different normalization of the twist fields can be absorbed in the proportionality constant

multiplying the vertex operators for strings in the twisted sectors. The latter is ultimately

determined by unitarity as we discuss in section 4.

3.3 Four-twist correlation function

The four-twist amplitude is given by [55, 56, 57]

Z4(z, z̄) ≡ 〈σ′N−k(∞)σk(1)σN−k(z, z̄)σk(0)〉 = AB|z(1− z)|−2 k
N
(1− k

N
)I(z, z̄)−1 (3.12)

where

I(z, z̄) = F (z)F̄ (1− z̄) + F̄ (z̄)F (1− z) ,

F (z) = 2F1

(

k

N
, 1− k

N
, 1, z

)

.

The overall normalization A is expressible as a functional determinant and is common to

all amplitudes of the X, X̄ CFT on the sphere, while B is a numerical factor which we

will relate, through factorization, to the normalization of the two-twist correlator. We will

frequently need the asymptotics for the hypergeometric function F :

F (z) ∼ 1 , z → 0 ,

F (1 − z) ∼ − 1

π
sin

πk

N
ln
z

δ
, z → 0 ,

F (z) ∼ eπik/N
Γ(1− 2k/N)

Γ2(1− k/N)
z−k/N − e−πik/N Γ(2k/N − 1)

Γ2(k/N)
z−(1−k/N) , z →∞ ,

F (1 − z) ∼ Γ(1− 2k/N)

Γ2(1− k/N)
z−k/N +

Γ(2k/N − 1)

Γ2(k/N)
z−(1−k/N) , z →∞ , (3.13)

where δ is defined by

ln δ = 2ψ(1) − ψ
(

1− k

N

)

− ψ
(

k

N

)

(3.14)
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with ψ(z) ≡ d
dz ln Γ(z). For 1− k/N small, ln δ behaves as

ln δ =
N

N − k +O
(

N − k
N

)2

.

3.4 Three-point correlation functions

We are now ready to calculate various three-point functions of two twist fields and an

untwisted field by factorizing the four-twist amplitude.3 In a general CFT, the four-point

amplitude can be expanded as

Z4(z, z̄) =
∑

p

(Cp
−+)

2F(p|z)F̄ (p|z̄) (3.15)

where the sum runs over primary fields, Cp
−+ are coefficients in the σN−kσk OPE, and

F(p|z), F̄(p|z̄) are the conformal blocks. The conformal blocks in turn can be expanded

for small z as

F(p|z) = zhp−k/N(1−k/N)

(

1 +
1

2
hpz +O(z2)

)

F̄(p|z̄) = z̄hp−k/N(1−k/N)

(

1 +
1

2
h̃pz̄ +O(z̄2)

)

. (3.16)

For a discussion and derivation of this formula see for example [59].

In our case, the sum over primaries in (3.15) is in fact a discrete sum over primaries

at different levels as well as an integral over ‘momenta’ (p, p̄). Therefore, to order |z|2 we

have

Z4(z, z̄) =

∫

C

dpdp̄

(2π)2A
|z|α′pp̄−2k/N(1−k/N) ×

×
[

(C
(0,0)
−+ (p, p̄))2 + z

(

α′

4
pp̄(C

(0,0)
−+ (p, p̄))2 + (C

(1,0)
−+ (p, p̄))2

)

+ z̄

(

α′

4
pp̄(C

(0,0)
−+ (p, p̄))2 + (C

(0,1)
−+ (p, p̄))2

)

+

+ |z|2
((

α′pp̄
4

)2

(C
(0,0)
−+ (p, p̄))2 + (C

(1,1)
−+ (p, p̄))2

+
α′pp̄
4

((C
(1,0)
−+ (p, p̄))2 + (C

(0,1)
−+ (p, p̄))2)

)

+ · · ·
]

. (3.17)

The coefficients C
(M,N)
−+ are the three-point functions

C
(M,N)
−+ (p, p̄) = 〈σ′N−k(∞)σk(1)V(M,N)(p, p̄)(0)〉

that we are interested in.

3Some of the correlation functions have been computed independently in [47].
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Factorization implies that the above expression for Z4 should equal the expansion

of (3.12) for small z which is given by

Z4(z, z̄) =
ABπ

4 sin(πkN )
|z|−2k/N(1−k/N)

(

− 1

log |z|δ
+
a(z + z̄)

(log |z|δ )
2
− 2a2|z|2

(log |z|δ )
3
+ . . .

)

=
α′AB

2 sinπk/N

∫

C
dpdp̄|z|α′pp̄−2k/N(1−k/N)δ−α

′pp̄ ×

×
[

1 + aα′pp̄(z + z̄) + (aα′pp̄)2|z|2 + . . .
]

(3.18)

where

a =
1

2

(

(

k

N

)2

+

(

1− k

N

)2
)

. (3.19)

In the second line of (3.18), we have used the identity

(

log
|z|
δ

)−(n+1)

=
(−α′)n+1

2πn!

∫

C
dpdp̄(pp̄)n

( |z|
δ

)α′pp̄

.

Comparing 3.17 and 3.18, we can now read off various operator product coefficients.

For the first coefficient we find

(C
(0,0)
−+ (p, p̄))2 =

π2α′A2B

sinπk/N
δ−α

′pp̄ .

Using the fact that

C
(0,0)
−+ (0, 0̄) = A

as in (3.5) and (3.11) we can determine the numerical constant B that appears in 3.12,

B =
sin πk

N

π2α′
. (3.20)

Further comparing (3.17) and (3.18) determines the higher operator product coefficients

up to signs:

C
(0,0)
−+ (p, p̄) = Aδ−α

′pp̄/2

C
(1,0)
−+ (p, p̄) = −C(0,1)

−+ (p, p̄) = ε1A

√
α′pp̄
2

(

1− 2k

N

)

δ−α
′pp̄/2

C
(1,1)
−+ (p, p̄) = ε2A

α′pp̄
4

(

1− 4k

N

(

1− k

N

))

δ−α
′pp̄/2 . (3.21)

where ε1,2 = ±1 are the sign ambiguities that arise from taking square roots. In the

second line, we have taken the opposite sign for the coefficients as required by worldsheet

parity, which takes V(1,0) → V(0,1) and σk → σN−k. The three-point functions involving

descendants are easily calculated from the ones involving primaries using the fact that L−1
and L̃−1 act on vertex operators as ∂ and ∂̄ respectively.
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These results are easily transformed to the α-oscillator basis. The operators we need

were denoted by Om̄ ¯̃m
mm̃ in section 3.1. Using the formulas (3.5)–(3.8) to transform to the

α-oscillator basis one finds the required three-point functions. Using the notation

Dm̄ ¯̃m
mm̃(p, p̄, k) ≡ 〈σ′N−k(∞)σk(1)Om̄ ¯̃m

mm̃(p, p̄)(0)〉

we find

D00
00 = Aδ−α

′pp̄/2

D00
10 =

√

α′

2
Ap̄δ−α

′pp̄/2

(

1

2
(1 + ε1)−

ε1k

N

)

D10
00 =

√

α′

2
Apδ−α

′pp̄/2

(

1

2
(1− ε1) +

ε1k

N

)

D00
01 =

√

α′

2
Ap̄δ−α

′pp̄/2

(

1

2
(1− ε1) +

ε1k

N

)

D01
00 =

√

α′

2
Apδ−α

′pp̄/2

(

1

2
(1 + ε1)−

ε1k

N

)

D00
11 =

α′

8
Ap̄2δ−α

′pp̄/2

(

ε2

(

1− 4k

N

(

1− k

N

))

+ 1

)

D11
00 =

α′

8
Ap2δ−α

′pp̄/2

(

ε2

(

1− 4k

N

(

1− k

N

))

+ 1

)

D01
10 =

α′

8
App̄δ−α

′pp̄/2

(

−ε2
(

1− 4k

N

(

1− k

N

))

+ 1 + 2ε1

(

1− 2k

N

))

D10
01 =

α′

8
App̄δ−α

′pp̄/2

(

−ε2
(

1− 4k

N

(

1− k

N

))

+ 1− 2ε1

(

1− 2k

N

))

. (3.22)

We later argue that the correct choice for our purpose is ε1 = ε2 = −1 which makes the

total cubic string vertex BRST-invariant.

Note that this method to calculate the three-point function from factorization works

only as long as there is only one primary field at each level. At level (2, 0), for example,

one finds that there are two primaries and their correlators cannot be determined from fac-

torization only. Computation of these higher correlators is substantially more difficult but

fortunately we do not require them here. We need to subtract only massless exchanges and

the higher level primary fields do not enter into the massless vertex operators. Equipped

with the four and three point correlation functions we are thus ready to discuss the tachyon

interactions.

4. Strings on C/ZN

We now consider type-IIA/B strings onM8×C/ZN withM8 representing 7+1 dimensional

Minkowski space. After reviewing the conventions and the vertex operators, we write the

four point scattering amplitude. We then write the gauge invariant cubic interaction be-

tween the tachyon and the massless fields and finally determine the one-particle irreducible

effective quartic interaction.
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4.1 Conventions

We use the coordinates XM = (Xµ, X, X̄) where µ = 0, . . . , 7 and X = 1√
2
(X8 + iX9).

Similarly, the world-sheet fermions are ψM = (ψµ, ψ, ψ̄) with ψ = 1√
2
(ψ8 + iψ9). Our

metric signature is (−++ · · ·+). The orbifold C/ZN represents a cone with opening angle

2π/N . The ZN generator is given by

R = exp

(

2πi
N + 1

N
J89

)

.

where J89 generates rotations in the X8, X9 plane. We take N to be odd so that RN = 1

on spacetime fermions and the bulk tachyon is projected out by GSO projection [10].

In the untwisted sector, one has to project onto ZN invariant states, for which we use

the notation [. . .]N :

[O]N ≡
1

N

N−1
∑

k=0

RkO(R−1)k . (4.1)

The vertex operators in the sector twisted by Rk will contain bosonic twist fields σk and

fermionic ones sk. Their role is to create branch cuts in the OPEs with X, X̄ and ψ, ψ̄

respectively. In the presence of a twist field, mode numbers get shifted by an amount k/N .

The bosonic twisted sector has been discussed in detail in the previous section. The

fermionic twist fields are denoted by sk. Their OPEs are

ψ(z)sk(0) ∼ zk/N tk + · · ·
ψ̄(z)sk(0) ∼ z−k/N t′k + · · · . (4.2)

The mode expansions in the NS sector are

ψ(z) =
∑

r∈Z+ 1
2

ψr−k/Nz
−r− 1

2
+k/N

ψ̄(z) =
∑

r∈Z+ 1
2

ψ̄r+k/Nz
−r− 1

2
−k/N (4.3)

with commutation relations

{ψr−k/N , ψ̄s+k/N} = δr,−s.

These twist fields have a free field representation in terms of bosonized fields H, H̃. The

latter are defined by
ψ = eiH , ψ̄ = e−iH

ψ̃ = eiH̃ , ¯̃ψ = e−iH̃ (4.4)

The twist fields are then represented by

sk = ei
k
N
H , s̃k = e−i

k
N
H̃ . (4.5)

In this representation, the only computationally nontrivial CFT correlators are the ones

involving the bosonic twist fields σk that were calculated in the previous section. General

amplitudes are restricted by quantum symmetry ẐN and charge conservation for the H, H̃

fields.
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4.2 Tachyon spectrum and vertex operators

Let us review the GSO projection and the tachyonic spectrum [8, 10]. The vertex operator

for the k-th twisted sector ground state, in the −1 picture, is

σke
i k
N
(H−H̃)e−φ−φ̃ .

For k odd, this ground state is not projected out by the GSO projection and the lowest

lying mode is a tachyon with mass m2 = −2/α′(1− k
N ). Its vertex operator is

T
(−1,−1)
k (z, z̄, p) = g′ce

ip·Xcc̃σke
i k
N
(H−H̃)e−φ−φ̃(z, z̄) k odd . (4.6)

The normalization constant g′c will be determined in terms of the closed string coupling

gc from factorization and the requirement that the tachyon vertex operator represents a

canonically normalized field in 7 + 1 dimensions.

For k even, the ground state is projected out by GSO projection and the tachyon is

an excited state ψ̄− 1
2
+k/N ψ̃− 1

2
+k/N |0, p〉 with vertex operator

T
(−1,−1)
k (z, z̄, p) = g′ce

ip·Xcc̃σke
i(k/N−1)(H−H̃)e−φ−φ̃(z, z̄) k even .

Its mass-shell condition is −α
′p2

4 = −1
2
k
N . This vertex operator is the complex conjugate

of TN−k and we denote it by T̄N−k. Henceforth, we take k to be odd and describe all

tachyons by the vertex operators Tk, T̄k. The most marginal tachyon has k = N − 2 and

m2 = −4/Nα′.
We will also need the tachyon vertex operators in the 0 picture

T
(0,0)
k (z, z̄, p) = −α

′

2
g′ce

ip·Xp · ψ p · ψ̃cc̃σkei
k
N
(H−H̃)(z, z̄) + · · · .

The omission stands for terms that arise from the part of the picture-changing operator in-

volving the C/ZN fields. These terms have different (H, H̃) charges from the one displayed.

In the amplitudes we consider it is possible to choose pictures such that the omitted terms

do not contribute because of H-charge conservation.

4.3 Scattering amplitude for four tachyons

We are now ready to write down the four-tachyon scattering amplitude. Using (3.12) it is

given by

V4 =

∫

d2z〈T̄ (−1,−1)
k (z∞, z̄∞, p1)T

(0,0)
k (1, 1, p2)T̄

(−1,−1)
k (z, z̄, p3)T

(0,0)
k (0, 0, p4)〉

=
g′c

4C

π2α′
sin

(

πk

N

)

∆(α′p1 · p3/2)2
∫

d2z|1− z|−α′t
2
−2|z|−α′s

2
−2I(z, z̄)−1 , (4.7)

where C represents the product of A with similar functional determinants from the X µ,

the fermions and the ghosts. The assignment of pictures and worldsheet positions of the

vertex operators are shown in figure 1. The Mandelstam variables s, t, u are defined as

s = −(p1 + p2)
2 , t = −(p2 + p3)

2 , u = −(p1 + p3)
2
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Figure 1: Four-tachyon scattering amplitude.

and the symbol ∆ to denotes the 8-dimensional momentum-conserving delta-function

∆ ≡ i(2π)8δ8
(

∑

pi

)

.

All momenta are incoming and the arrows indicate the flow of quantum ẐN charge.

The asymptotics of I(z, z̄) as z → 0 or z → 1 imply that V4 does not have the usual pole

structure in the s and t channels. This is a consequence of the noncompactness of the cone.

In the s and t channels, the exchanged states are untwisted states which have momentum

along the cone directions (X, X̄) and a continuous mass spectrum from eight-dimensional

point of view. These states can contribute because there is no translation invariance in

those directions and hence momentum is not conserved. As a result, the poles are replaced

by softer logarithmic divergences. The leading s-channel behavior comes from integrating

near z = 0,

V s
4 ≈ −

g′c
4C

2πα′
∆
(

α′p1 ·
p3
2

)2
∫

0
d2z

|z|−α′s
2
−2

log |z|δ
. (4.8)

Integrating near z = 1 gives the leading t-channel contribution

V t
4 ≈ −

g′c
4C

2πα′
∆
(

α′p1 ·
p3
2

)2
∫

0
d2z

|z|−α′t
2
−2

log |z|δ
. (4.9)

In the u channel, which comes from the z →∞ region of the integral, the exchanged states

are localized twisted sector states and there one gets a sum over pole terms. There are no
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massless (or nearly massless) poles in the u-channel; the first contribution comes from a

massive exchange

V u
4 ≈ −

2g′c
4C

πα′
tan

(

πk

N

)

∆
(

α′p1 · p3/2
)2 Γ4( kN )

Γ2(2kN − 1)

1

α′u/2 + 2(2− 3k/N)
. (4.10)

4.4 Cubic couplings to other twisted states

We now show that, at least in the quartic approximation to the tachyon potential, a

constant vev for one of the nearly-marginal tachyons does not generate a tadpole for any of

the other nearly-massless fields in the twisted sectors. It is therefore consistent to neglect

these states in the analysis to quartic order.

The couplings between twisted sector states are severely restricted by quantum ẐN

symmetry andH-charge conservation. Let us start with the three-point couplings. Possible

tadpoles come from couplings 〈T̄ (−1,−1)
k T̄

(−1,−1)
k Φ(0,0)〉 where the superscript denotes the

picture. Quantum symmetry and H-charge conservation imply that the zero-picture state

Φ(0,0) has to be proportional to σ2k−Nei2k/N(H−H̃). The lowest state with these quantum

numbers has vertex operator

Φ(0,0) = eipµX
µ

σ2k−Ne
i2k/N(H−H̃)cc̃

which has mass-squared m2 = 4/α′(−2 + 3k/N) which is of order of the string scale if

k/N is close to one for example when k = N − 2. This is consistent with what we find

in equation (4.10). It shows that the lowest lying exchanged state in the u-channel has

precisely this mass, and there are no poles from exchanging tachyonic or nearly massless

fields.

There are four-point couplings of the form 〈T̄ (−1,−1)
k T

(0,0)
k T̄

(−1,−1)
k Φ(0,0)〉 which could

also source other nearly-massless tachyons. Again using quantum symmetry and H-

charge conservation one sees that Φ(0,0) is either equal to T
(0,0)
k or proportional to

σke
i(k/N+1)(H−H̃). The lowest mass state with the latter quantum numbers has vertex

operator

Φ(0,0) = eipµX
µ

σke
i(k/N+1)(H−H̃)cc̃

with m2 = 2/α′(−1 + 3k/N). This is again a massive state with string scale mass for

k/N ≈ 1.

It seems possible to generalize this argument for at least a large class of higher point

functions but we restrict ourselves only up to quartic order.

4.5 Cubic coupling to untwisted massless fields

We now calculate the cubic vertex for two tachyons and one massless field from the un-

twisted sector. The vertex operator for a massless state with polarization tensor eMN in

the zero picture is

H(0,0)(z, z̄, p, e) ≡ −gceMN
2

α′

[(

i∂XM +
α′

2
p ·ψψM

)(

i∂̄XN +
α′

2
p · ψ̃ψ̃N

)

cc̃eip·X(z, z̄)

]

N

.

(4.11)
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Gravitons are described by a symmetric, traceless polarization tensor and B-field fluctu-

ations correspond to an antisymmetric polarization tensor. The dilaton vertex operator

requires a bit more care. In the (−1) picture, it is given by [60]

1√
8

[

(ψ · ψ̃e−φ−φ̃ − ∂ξη̃e−2φ − ∂ξ̃ηe−2φ̃)cc̃eip·X
]

N
.

Applying the picture changing operator to this, we find that the zero-picture dilaton vertex

operator is given by (4.11) with eMN = 1√
8
ηMN plus terms with either φ-charge different

from zero or ghost number different from one. Such terms don’t contribute to the three-

point amplitude.

Using the three-point functions from (3.22) with ε1 = ε2 = −1 one finds the cubic

coupling

V3(p1, p2; p3, e) = 〈T (−1,−1)
k (z∞, z̄∞, p1)T̄

(−1,−1)
k (1, 1, p2)H

(0,0)(0, 0, p3, e)〉 (4.12)

= −α
′g′c

2gcC

2
δ
−α′p3p̄3

2 ∆
(

eµνp
µ
2p

ν
2 − eµXpµ2 p̄3 − eX̄µp

µ
2p3 + eX̄Xp3p̄3

)

.

Note that this expression is not symmetric in the polarization indices; this means that there

is a coupling to the B-field as well as to the graviton and dilaton. One way to motivate

the choice ε1 = ε2 = −1 in (3.22) is that it is the only one that leads to a BRST-invariant

amplitude; indeed one easily checks that (4.12) is invariant under

eMN → eMN + p3MaN + p3NbM (4.13)

upon using p21 = p22 = −m2, p23 = 0. In (4.12), the graviton is in the transverse-traceless

gauge. In order to compute the graviton exchange diagram we would like to know the

correct vertex to use in the harmonic gauge pMe(MN) − 1
2pNe

M
M = 0 for the graviton. In

this gauge there is more residual gauge invariance and one would typically expect to have

to add terms proportional to pMe(MN) and e
M
M until the vertex is invariant under the larger

set of gauge transformations. In our case however we saw that (4.12) is already invariant

under (4.13) without imposing a · p3 = b · p3 = 0. Hence (4.12) is the correct vertex to use

in the harmonic gauge. Another proof of the validity of (4.12) in the harmonic gauge will

be given in [61].

The final form of the cubic coupling (4.12) shows that the tachyon has a gaussian form

factor in its coupling to the massless untwisted fields. At large-N , the width of the gaussian

in position space scales as
√
N . The coupling is thus not point-like but spread over a very

large radius of order
√
N times the string length. Because the opening angle of the cone

is also getting smaller as 1/N , the total area over which this interaction takes place is still

of order one in string units.

5. Unitarity and massless exchanges

In this section, we first determine the over-all normalization from unitarity in section 5.1,

and then compute the massless exchange diagrams in 5.2. By subtracting these exchanges

from the four tachyon scattering amplitude we can extract a possible quartic contact term.
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Figure 2: Factorization and the quartic contact interaction.

The Feynman diagram is shown in figure 2. We find that in the u-channel only massive

particles of string-scale mass are exchanged consistent with (4.10). Hence we need to

subtract only the s and t channel exchanges. As explained in 2.3, the quartic contact term

on the right hand side of figure 2 is the effective quartic term at low energy and includes

the exchanges of particles of string scale mass.

5.1 Determination of normalization constants

So far we have introduced a number of undetermined normalization constants:

C: overall normalization of the path integral on the sphere.

gc: normalization of the graviton vertex operator or the ‘closed string coupling’.

g′c: normalization of the tachyon vertex operator.

Note that the constant A that was introduced for the XX̄ CFT in (3.11) is absorbed

in C along with other functional determinants and the constant B is already determined

in (3.20).

Unitarity of the S-matrix allows us to express all constants in terms of α′ and gc.

The latter is in turn proportional to the gravitational constant κ. We now work out these

relations keeping track of possible factors of N .

The constant C can be expressed in terms of α′ and gc by factoring the four-tachyon

amplitude on graviton exchange. From (4.12) we calculate the contribution to the 4-point

function coming from the exchange of longitudinal gravitons,

V exch
4 = −i

∫

d8pµ

(2π)8

∫

C

dpdp̄

(2π)2
V 3
µν(p1, p2; p)V

3µν(p3, p4; p)

pµpµ + 2pp̄
(5.1)

= −g′c
4
g2cC

2 1

16π2
∆(α′p1 · p3/2)2

∫

0
d2z

|z|−α′s
2
−2

log |z|δ
. (5.2)

In writing the momentum space propagator in the first line, we have assumed a specific

normalization for the spacetime field created by the vertex operator with normalization

gc. The normalization we used is appropriate for a canonically normalized field on the
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covering space M8 × C which is periodic under x→ e2πi/Nx. The details are explained in

appendix A. Comparing (5.2) with (4.8) we find the overall normalization

C =
8π

α′g2c
. (5.3)

This is the familiar flat-space value as it should be by construction.

The normalization of the tachyon vertex operator g ′c can be determined in terms of gc
by factoring the 2 graviton-2 tachyon amplitude on the pole coming from tachyon exchange:

W4 ≡
∫

d2z〈T (0,0)
k (z∞, z̄∞, p1)H

(−1,−1)(1, 1, p2, e2)T̄
(0,0)
k (z, z̄, p3)H

(−1,−1)(0, 0, p4, e4)〉 .
(5.4)

For simplicity we can take the graviton to have polarization along the longitudinal X µ

directions. For z → 0, there is a pole at s = −2/α′(1 − k/N) coming from tachyon

exchange. We can find the coefficient at the pole from the OPE of T̄
(0,0)
k with H(−1,−1).

From the 3-point function (3.22) we know that

σN−k(z)[e
i(px+p̄x̄)]N (0) ∼ |z|−α′pp̄δ−α′pp̄/2σN−k .

Using this we find the OPE

T̄
(0,0)
k (z, z̄, p3)H

(−1,−1)(0, 0, p4, e4) ∼
α′

2
gcg
′
ce4µνp

µ
3p

ν
3 |z|−s−m

2−2δ−α
′p4p̄4 ×

×ei(p3+p4)µXµ

σN−ke
−i/N(H−H̃)cc̃e−φ−φ̃(0) .

Substituting in (5.4) and integrating around z = 0 gives the pole term

W4 ∼
−2πα′g2cg′c2Cδ−α

′/2(p3p̄3+p4p̄4)(e2µνp
µ
1p

ν
1)(e4ρσp

ρ
3p

σ
3 )

s+ 2/α′(1− k/N)
∆ .

Comparing with (4.12) we get

g′c
2
C =

8π

α′

and hence

g′c = gc . (5.5)

An extra check of these relations is provided in appendix B where we compute the first

massive exchange in the u-channel and find agreement with (4.10).

We have not yet determined the proportionality constant between the vertex operator

normalization gc and the gravitational coupling κ. To compare with the prediction (2.2) we

should use κ which is the cubic coupling for gravitons canonically normalized on M8 ×C.

Hence, it is related to the closed string coupling as usual by

κ = 2πgc . (5.6)
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5.2 Massless exchange diagrams

Having obtained the cubic vertex for two tachyons and a massless field in (4.12), we can

calculate the contribution of massless exchange diagrams to the 4-tachyon amplitude. These

diagrams will contain integrals over the momentum along the cone; they will be of the form

In(s) ≡
∫

C

dpdp̄

(2π)2
(pp̄)n−1δ−α

′pp̄

−s+ 2pp̄

= −(−α′)1−n(n− 1)!

16π2

∫

D1

d2z
|z|−α′s

2
−2

(log |z|δ )
n
. (5.7)

The second form is useful for comparing with the string amplitude (4.7). The domain D1

is the unit disc.

Dilaton exchange. The vertex is

V dil
3 (p1, p2; p3) = −

κ√
2
(p3p̄3 −m2)δ−α

′p3p̄3/2

and the dilaton propagator is given by:

− i

pMpM
.

Hence we find the exchange amplitude

V exch, dil
4 =

4κ2

8
∆(m4I1 − 2m2I2 + I3) .

B-field exchange. The vertex is

V B
3 (p1, p2; p3, e) = 2κ∆

(

e[µx]p
µ
2 p̄3 + e[x̄µ]p

µ
2p3 + e[xx̄]p3p̄3

)

δ−α
′p3p̄3/2 .

The propagator is, in the Feynman gauge pMe[MN ] = 0,

− i

pMpM

(

1

2
ηMRηNS −

1

2
ηMSηNR

)

.

This gives the exchange amplitude

V exch, B
4 = −4κ2∆(p2 · p4I2 +

1

2
I3) .

Graviton exchange. The vertex is given by

V grav
3 (p1, p2; p3, e) = −2κ∆

(

e(µν)p
µ
2p

ν
2 − e(µx)pµ2 p̄3 − e(x̄µ)p

µ
2p3 +

1

2
e(x̄x)p3p̄3

)

δ−α
′p3p̄3/2 .

(5.8)

The propagator in the harmonic gauge pMe(MN) − 1
2pNe

M
M = 0 reads

− i

pMpM

(

1

2
ηMRηNS +

1

2
ηMSηNR −

1

8
ηMNηRS

)

.

This gives the exchange amplitude

V exch, grav
4 = 4κ2∆

((

(p2 · p4)2 −
m4

8

)

I1 +
m2

4
I2 + p2 · p4I2 +

1

2
I3 −

1

8
I3

)

. (5.9)
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5.3 Subtractions and quartic term for the tachyon

Summing these contributions, we see that many terms cancel and we are left with

V exch, total
4 = 4κ2∆(p1 · p3)2I1(s) . (5.10)

A similar term comes from the massless t-channel exchanges. These contributions yield

precisely the asymptotics of the string amplitude (4.8) without extra terms finite at zero

momentum. Such terms, if present, would have contributed to the quartic contact term for

the tachyon. In fact, for the open string system studied in [54], the massless subtractions do

yield such extra terms and, in that case, they give the leading contribution to the quartic

tachyon potential.

The quartic tachyon coupling is given by integral (4.7) with the massless exchanges

subtracted. The coefficient in front of the integral reads

g′4c Cα
′

4π2
sin

πk

N
(p1 · p3)2 =

κ2

2π3
sin

πk

N
(p1 · p3)2

which is of order 1/N 3. We shall now show that the remaining integral is of order one. It

is given by

J =

∫

C
d2z|1 − z|−α′t

2
−2|z|−α′s

2
−2I(z, z̄)−1 +

π

2 sin(πk/N)

∫

D1

|z|−α′s
2
−2 + |z|−α′t

2
−2

ln |z|δ
.

The second term comes from subtracting the massless exchanges (5.10). In evaluating the

first term in J for large-N , one should be careful because the hypergeometric function I

does not converge uniformly. The function I approaches the value 2 everywhere except in

the points z = 0, 1 (see (3.13)). In evaluating the integral numerically, one finds numerical

convergence problems in the regions around z = 0, 1. A similar situation was encountered

in [62]. We therefore split the integral in three parts: we cut out two small discs of radius

ε around z = 0, 1 where we approximate the integrand by its asymptotics (3.13) which we

can integrate analytically. The integral over the remainder of the complex plane will be

easy to evaluate numerically using Mathematica. After summing the three integrals and

subtracting the massless exchanges we take ε to zero.

Let us start with the integral near zero with the s-channel exchanges subtracted. The

result is an integral over the unit disc with a small disc around z = 0 removed:

Jz=0 =
2π2

sin(πk/N)

∫ 1

ε
dr
r−

α′s
2
−1

ln |z|δ

=
2π2

sin(πk/N)
δ−

α′s
2

(

E1

(

α′s
2

ln
ε

δ

)

−E1

(

−α
′s
2

ln δ

))

≈ 2π ln ε+O
(

1

N2

)

(5.11)

Here, E1 is the exponential integral E1(x) =
∫∞
x dte−t/t and, in the last line, we have

displayed the leading term at large-N . The integral around z = 1 with the t-channel
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Figure 3: The integral J for s, t = 0 and N = ∞ as a function of 1/ε.

exchanges subtracted has the same leading behavior. So the leading term for J is

J ≈ 4π ln ε+
1

2

∫

C\discs
|1− z|−2|z|−2 .

The integral runs over the complex plane with small discs around z = 0, 1 removed. We

have used that, in this integration region, the function I uniformly approaches the value

of 2 at large N . We have also taken s = t = 0. The result of the numerical integration is

plotted as a function of 1/ε in figure 3. As ε goes to zero, J converges to

J ≈ −0.691 .

6. Conclusions and comments

We have seen that the system of localized tachyons in C/ZN backgrounds provides a

tractable system to study aspects of off-shell closed string theory. Condensation of these

tachyons connects all C/ZN backgrounds to each other and to flat space. There is a

well-defined conjecture for the height of the potential that is rather analogous to the open-

string case. Moreover, considerable computational control is possible using orbifold CFT

techniques.

We have analyzed the system in the large-N approximation where it is possible to read

off the off-shell action from the S-matrix. We have been able to compute all three-point

correlation functions required to describe the interaction of the tachyons with massless

untwisted fields. Motivated by a simple model of the tachyon potential we compute the

quartic contact term. If the quartic contact term is of order one, then the minimum can

occur very close to the origin and higher point interactions can be consistently ignored.

Our calculation however yields a quartic term that is much too small and goes instead as

1/N3. This implies that our simple model is not valid for describing the potential.

There are a number of possible ways to get around this problem. One possibility is

that by going beyond quartic order one can find the new minimum of the potential of the

desired depth. It is not clear however how one can obtain a very shallow minimum if higher
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order terms are important. Another more likely possibility is that the direction that we

have chosen in the field space of tachyons is not the correct one for finding the minimum.

Our choice of this specific tachyon was guided by the analysis of [13, 14] which indicates

that to go from C/ZN orbifold to the C/Zk orbifold by RG-flow, one needs to turn on a

specific relevant operator of definite charge k under the quantum symmetry. Our tachyon

corresponds precisely to this relevant operator near the conformal point. This assumption

is further supported by our finding in section 4.4 that turning on the tachyon of charge k

does not source other tachyons and thus is a consistent approximation.

It is possible however that other excited tachyons are also involved in this process.

There are a number excited states in the twisted sectors that are nearly massless or massless.

The analysis of [14] is not sensitive to excited tachyons because it deals with only the chiral

primaries. In particular, the analysis of [10] shows that to go from C/ZN to C/Zk, the

operator that is turned on in the quiver theory does not have definite charge under the

quantum symmetry. It would be important to understand how these two pictures — the

D-probe analysis and the RG-flows — are consistent with each other. This might help in

identifying all the fields that are involved in the condensation [61].

A computation of the height of the potential for the C/ZN tachyons was attempted

earlier in [63] where a large-N approximation was made inside the integral over the world-

sheet coordinate z. As we have seen, this approximation is, however, not uniform over

the region of integration and breaks down near z = 0, 1. As a result one obtains poles for

massless exchanges instead of the correct softer logarithmic behavior that we have found.

Moreover, the subtractions made in [63] were based on a postulated effective action which

differs substantially from the actual cubic interactions that result from our computations.
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A. Feynman rules on the cone

In order to compare string amplitudes with the momentum space Feynman rules of a field

theory on C/ZN , it is convenient to mimic the construction of section 3 and work with

fields φ defined on C and with periodicity

φ(ηx, η̄x̄) = φ(x, x̄) (A.1)
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with η = e2πi/N . Suitable basis states on the cone are

Ψp,p̄(x, x̄) =
1

N

N−1
∑

k=0

exp i(ηkpx+ η̄k p̄x̄) . (A.2)

These are normalized just like the basis states of the CFT (3.1):
∫

C
dxdx̄Ψ∗p′,p̄′Ψp,p̄ = (2π)2δN (~p, ~p′) .

Momentum space Feynman rules are obtained by expanding fields in this basis:

φ(x, x̄) =

∫

C

dpdp̄

(2π)2
φ̃(p, p̄)Ψp,p̄(x, x̄) .

In writing the factorization (5.1) we have assumed that the string vertex operators cre-

ate spacetime fields with propagator pµpµ + 2pp̄. Hence we should compare the string

amplitudes with Feynman rules for spacetime fields φ with canonically normalized kinetic

term

Skin =

∫

d8x

∫

C
dxdx̄φ(∂µ∂µ + 2∂∂̄)φ ,

=

∫

d8pµ
∫

C

dpdp̄

(2π)2
φ̃(pµpµ + 2pp̄)φ̃ . (A.3)

B. Consistency check: massive exchange

We saw that there is a nonvanishing coupling 〈T̄ (−1,−1)
k T̄

(−1,−1)
k Φ(0,0)〉 with Φ(0,0) a state

with mass m2 = 4/α′(−2 + 3k/N). We shall now show that its exchange diagram is in

agreement with the string result (4.10).

First, we need the three-twist correlator (for k/N > 1/2)

C−,−,++ ≡ 〈σ′N−k(∞)σN−k(1)σ2N−2k(0)〉 .

This can be obtained from the z →∞ factorization limit of (3.12) which has intermediate

states in the twisted sector. Using the asymptotics (3.13), the result is

|C−,−,++| = A

√

2

α′

√

| tanπk/N |
2π

Γ2(k/N)

|Γ(2k/N − 1)| . (B.1)

This agrees with the finite volume result (formula (4.47) in [55]) upon taking α ′ = 2 and

the momentum space volume VΛ = 1/4π2.

In the (−1,−1) picture, the vertex operator for the massive state is

Φ(−1,−1) =
N

2k −N α− 2k−N
N

¯̃α− 2k−N
N

· σ2k−Nei
2k−N
N

(H−H̃)eip
µXµcc̃e−φ−φ̃ .

One can check that this is indeed a physical state. In the (0, 0) picture, the relevant part

of the vertex operator is

Φ(0,0) =
2k −N
N

σ2k−Ne
i 2k
N
(H−H̃)eip

µXµcc̃+ · · · .
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Using the bosonic amplitude (B.1), we find for the three-point amplitude

M3 ≡ 〈T̄ (−1,−1)
k

′(∞, p1)T̄ (−1,−1)
k (1, p2)V(0,0)(0, p3)〉

= g′3c C

√

2

α′
2k −N
N

∆

√

| tan πk/N |
2π

Γ2(k/N)

|Γ(2k/N − 1)| . (B.2)

Note that one cannot decide from the on-shell 3-point function whether the coupling is

derivative or nonderivative. The exchange diagram reads

Amassive exch
4 = −g′6c C2(

2k −N
N

)2
| tan πk/N |

4π2
Γ4(k/N)

Γ2(2k/N − 1)
∆

2/α′

u− 4/α′(−2 + 3k/N)
.

(B.3)

This agrees with the string amplitude (4.10) at the u-channel pole; we also see from (4.10)

that the three-point coupling is in fact a derivative one.
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