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Abstract— Evolutionary multi-objective optimization (EMO)
may be computatinally quite demanding, because instead of
searching for a single optimum, one generally wishes to find
the whole front of Pareto-optimal solutions. For that reason,
parallelizing EMO is an important issue. Since we are looking
for a number of Pareto-optimal solutions with different trade-
offs between the objectives, it seems natural to assign different
parts of the search space to different processors. In this paper,
we propose the idea of cone separation which is used to divide
up the search space by adding explicit constraints for each
process. We show that the approach is more efficient than simple
parallelization schemes, and that it also works on problems with
a non-convex Pareto-optimal front.

I. INTRODUCTION

One possible drawback of evolutionary algorithms (EAs) is
that they usually have to evaluate a relatively large number of
solutions before generating good results. That is particularly
true for multi-objective problems in higher dimensions, as here
a rather large population size is required. Luckily, the afore-
mentioned potential drawback is at least partially compensated
by the apparent ease of parallelizing EAs. So it comes at
no surprise that there is a significant amount of literature on
parallelizing EAs. With regards to parallelization, the main
difference between single- and multi-objective evolutionary
algorithms seems to be that in the multi-objective case, a
set of solutions is sought rather than a single optimum. This
opens the possibility of having the different processors search
for different solutions, rather than to follow an identical goal.
The hope is that such a “divide-and-conquer” principle is more
efficient that if all processors work on the whole problem. One
first approach in that direction has recently been proposed by
Deb et al. [9]. That paper was based on an island model with
migration and used the guided dominance principle [3] to give
the different islands ( � processors) different search directions.
The approach produced excellent results, in the sense that
it converged much quicker to the Pareto-optimal front than
without guidance scheme (i.e. when every island searched
for the whole Pareto-optimal front). The drawbacks of the
approach were that it may be difficult to define appropriate
search directions before the shape of the Pareto-optimal front
is known. Furthermore, the approach only works if the Pareto-
optimal front is convex.

In this paper, we propose an alternative way to allow
different processors to focus on different areas of the Pareto-
optimal front. The idea is to explicitly divide up the search
space into different regions, and to assign each region to one
of the processors for exploration.

The paper is structured as follows: In the next section, we
will briefly survey related work. Then, in Section III we will
present our new approach of dividing up the search space. The
approach is evaluated empirically in Section IV. The paper
concludes with a summary and some ideas for future work in
Section VI

II. RELATED WORK

A. Parallel Evolutionary Algorithms

Evolutionary algorithms are very suitable for parallelization,
as crossover, mutation, and in particular the time-consuming
evaluation can be performed independently on different indi-
viduals. The main problem is the selection operator, where
global information is required to determine the relative per-
formance of an individual with respect to all others in the
current population. There is a vast amount of literature on
how to parallelize EAs. The approaches can be grouped into
three categories:

1) Master-slave: Here, a single processor maintains control
over selection, and uses the other processors only for
crossover, mutation and evaluation of individuals. How-
ever, the algorithm is useful only for very few processors
and very large evaluation times, as otherwise the strong
communication overhead outweighs the benefits from
parallelization.

2) Island model: In this model, every processor runs an
independent EA, using a separate sub-population. The
processors cooperate by regularly exchanging migrants
(good individuals). The island model is particularly suit-
able for computer clusters, as communication is limited.

3) Diffusion model: Here, the individuals are spatially
arranged, and mate with other individuals from the local
neighborhood. When parallelized, there is a lot of inter-
processor communication (as every individual has to
communicate with its neighbors in every iteration), but



the communication is only local. Thus this paradigm
is particularly suitable for massively parallel computers
with a fast local intercommunication network.

A detailed discussion of parallelization approaches is out of
the scope of this paper. The interested reader is referred to
[14], [4], [1].

B. Parallel Multi-Objective Evolutionary Algorithms

Since multi-objective EAs not only search for a single opti-
mum, but usually for a whole set of Pareto-optimal solutions,
they are even more in need of efficient parallelization than
their single-objective counterpart. Nevertheless, the amount of
papers on that topic is limited, for a general discussion see
[16].

Several people simply use the master-slave idea, which
is straightforward (see e.g. [11]). However, due to its low
communication overhead, the island model seems to be the
most appropriate parallelization scheme for todays predomi-
nant parallel computer architecture, which is simply a cluster
of PCs. The island model has been used e.g. in [10], [13]

As has already been mentioned in the introduction, we think
that the search for a set of solutions opens the possibility of
dividing up the search, and having different islands/processors
search for different parts of the Pareto-optimal front. To our
knowledge, there are only two previous publications which
exploit similar ideas. In the approach by Hiroyasu et al.
[15], at regular intervals, the population is gathered, sorted
according to one of the objectives (objective used for sorting
is chosen in turn), and then distributed onto the different
processors. In other words, this approach divides up the
population, and has each sub-population work on its share
of “similar” individuals with respect to the chosen sorting
objective. This implicitly also results in a division of the
search space. However, the separation is somewhat arbitrary
(according to changing objectives), only temporary (as there is
no mechanism to keep populations separated), and the regular
collection of individuals requires a lot of communication. An
almost identical idea has also been suggested in [5]. The
second approach is the aforementioned one by Deb et al. [9].
That paper does not explicitly divide up the search space (all
islands search on the whole space), but instead uses the domi-
nance principle [3] to give the different islands ( � processors)
different search directions. The approach produced excellent
results, in the sense that it converged much quicker to the
Pareto-optimal front than without guidance scheme (i.e. when
every island searched for the whole Pareto-optimal front). The
drawbacks of the approach were that it may be difficult to
define appropriate search directions before the shape of the
Pareto-optimal front is known. Furthermore, the approach only
works if the Pareto-optimal front is convex.

III. CONE SEPARATION

As has already been stated in the introduction, the basic
idea of this paper is to divide the search space into several
regions, which are then assigned to the different processors.
Since the fitness space to be searched and the shape of the
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Fig. 1. Example for the partitioning of the (normalized) search space.

Pareto-optimal front are usually unknown at the start of the
optimization, such a partitioning of the fitness space has to be
adaptive. Let us first consider the case of only two objectives
being minimized. An extension to three dimensions will be
discussed later.

The partitioning of the search space is adapted at regular
intervals by normalizing the fitness values in such a way that
the whole non-dominated front is within the unit square (hy-
percube in more than 2 dimensions). After the normalization,
the fitness space is partitioned into cones by, starting from the
reference point (1,1), dividing the ����� angle encompassing the
non-dominated front into equal parts. Each processor is then
assigned one part. Figure 1 illustrates the concept. Note that
each region is bounded by two lines, except the leftmost and
rightmost regions which are constrained in only one direction.

In order to have each island focus on the specified region,
the borders of the regions are treated as constraints, and
handled by using the constrained domination principle as
suggested in [7], which basically means that all solutions
outsided the designated region are dominated by all solutions
within.

Frequent normalization adapts the regions to the current
search progress. However, re-normalization may cause some
very good individuals to violate the constraints of the sub-
population they are in. Therefore, whenever the constraints
are adapted, individuals violating the constraints are migrated
into the population where they do not violate the constraints.
Thereby, individuals are just added to the receiving population,
without explicitly deleting others (this is done anyway at a
later step).

Note that little inter-processor communication is necessary
to compute the reference point, since we only need the
extreme individuals, i.e. the individuals with minimum 	�
 and
minimum 	�� .

Overall, the approach is integrated into NSGA-II [7] and
works as described in Algorithm 1 (steps requiring inter-
processor communication are italic).

If three objectives are involved, the region constraints are



Algorithm 1 Cone-separated NSGA-II
Initialize the different sub-populations
Normalize fitness values
Determine region constraints
Non-dominated sorting
REPEAT

Generate Offspring
IF (migration)

Normalize fitness values
Determine region constraints
Migrate individuals violating constraints

Non-dominated sorting
Prune population to original size

UNTIL stop-condition

G[1/3,1/3,1/3]

A[1,0,0]

B[0,1,0]

Processor 1

Processor 2

Processor 3

C[0,0,1]

O
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X

Fig. 2. Example for the partitioning of the search space in 3 dimensions.

determined as follows: first, we determine the plane which
goes through each axis at length 1. Then, we simply divide that
plane into equal angles, starting at the center 
������������������������ .
Figure 2 illustrates the concept for three processors.

IV. EMPIRICAL RESULTS

In this section, we test the proposed cone separation ap-
proach on a number of different test problems taken from
[17] and [8]. We show that the approach is capable of
assigning different parts of the Pareto-optimal front to different
processors, on a number of test problems including convex,
concave, 2D, and 3D Pareto optimal fronts. Furthermore, we
show that using cone separation results in faster convergence
compared to a simple island model where each population
searches for the whole Pareto-optimal front.

As has been described in the previous section, our algorithm
is based on NSGA-II. Unless specified otherwise, the standard
settings in the experiments reported below were crowded
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Fig. 3. Non-dominated front obtained with two processors for ZDT1 problem,
when hypervolume of 0.794 has been reached.

tournament selection [7], simulated binary crossover [6] with��� ����� and probability � � ���� � , and polynomial mutation [7]
with �"! �$#�� and probability ������� . Total population size has
been set to 200, standard migration interval is 1, i.e. infeasible
individuals migrate in every generation. The algorithm has
been implemented in C using MPI[12] for communication
between processors. For computation, we use a cluster of
Linux PCs connected via Ethernet.

A. ZDT1 problem

Let us start with a very simple multi-objective problem with
convex Pareto-optimal front, the 30-dimensional ZDT1:%'&)( 	 
 
+*,�-� * 
%'&)( 	��"
+*,�-� ./
0*,��12�4365 
7	"
���./
0*8���:9.8
+*,�-� �<; �= 3>� ?@ A B � * A�DC * A CE� FG���H � � ��"�

Figure 3 shows the Pareto optimal front obtained by the
two processor cone separation idea, each of the two sub-
populations now has 100 individuals. As can be seen, the
workload is distributed evenly onto the two processors, and a
good overall distribution of individuals on the Pareto optimal
front is achieved. Similar results are obtained in the case of
3 and 6 processors with 66 and 34 individuals per island,
respectively (cf. Figures 4 and 5).

In the introduction, we conjectured that dividing up the
search space should increase the search efficiency In order
to validate this conjecture, we will now look at the number
of generations an algorithm requires to achieve a given hyper-
volume1.

We compare our new cone-separated NSGA-II with

1) The standard single-population NSGA-II
2) A parallel version with an independent NSGA-II running

on each processor

1The hypervolume measures the area dominated by the combined set of all
the solutions in the population. It is one of the typical performance measures
for multi-objective optimization algorithms (see e.g. [18]).
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Fig. 4. Non-dominated front obtained with three processors for ZDT1
problem, when hypervolume of 0.794 has been reached.
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Fig. 5. Non-dominated front obtained with six processors for ZDT1 problem,
when hypervolume of 0.794 has been reached.

3) The standard island model with migration. We tested
a number of configurations and here report only on
the best configuration, which was to have the two best
individuals migrating every second generation.

The results (averaged over 10 independent runs) are summa-
rized in Table I. Figure 6 visualizes the most important details.
Clearly, performance deteriorates with an increasing number of
processors, independent of the approach used. Simply running
several NSGA-II in parallel performs worst. Migration clearly
helps, as the island model performs much better. The new
cone-separated NSGA-II performs best, confirming our as-
sumption that dividing up the search space and having different
populations focus on different areas improves efficiency.

B. ZDT2 problem

Let us now apply the cone-separated NSGA-II to the 30
variable ZDT2 test problem. The Pareto-optimal front of that
problem is concave, and could thus not be solved by the
guided-domination approach proposed in [9]. ZDT2 is defined
as follows:%'&)( 	 
 
+*,�-� * 
%'&)( 	 � 
+*,�-� ./
0*,��12�I3>
J	 
 
+*,�K��.8
+*,�K� � 9.8
+*,�-� �<; �= 3>� ?@ A B � * A

TABLE I

NUMBER OF GENERATIONS REQUIRED TO OBTAIN HYPER-VOLUME OF

0.794, RESULTS L STD. ERROR.

Approach # processors Popsize/processor Generations
1 200 42.5 L 2.02

Standard 2 100 54.3 L 1.12
no migration 3 66 65.4 L 0.70

5 40 97.2 L 1.17
Island 2 100 50.0 L 2.04
with migration 3 66 60.1 L 1.71

5 40 69.2 L 0.98
Cone-separated 2 100 41.6 L 1.17
with migration 3 66 51.2 L 3.36

5 40 66.9 L 4.49
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Fig. 6. Required number of generations depending on the parallelization
approach and the number of processors used.
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Figures 7 and 8 show the results obtained by the cone-

separated NSGA-II on two and five processors, respectively.
As can be seen, the cone separation idea works for the concave
problems just as well as it did on the convex ones.

C. ZDT3 problem

Now let us look at a problem where the front is not only
concave, but also not continuous. ZDT3 is defined as follows:%D&)( 	 
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The difficulty here is that a particular processor may not
know that a solution does not belong to the overall non-
dominated front if it only looks at its restricted part of the
search space. In order to alleviate this problem, we decided
take the extreme individuals from the neighboring processors,
and include them in a population’s non-dominated sorting.
Although this means limited additional communication for
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Fig. 7. Non-dominated solutions obtained with two processors for ZDT2
problem.
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Fig. 8. Non-dominated solutions obtained with five processors for ZDT2
problem.

exchanging extreme individuals, it seems necessary to obtain
satisfying results on this problem.

Figures 9 and 10 again show the resulting non-dominated
front generated with 2 and 5 processors, respectively. Again,
a good distribution of individuals on the front is obtained.

V. EXTENSION TO 3-DIMENSIONS

In this section, we would like to explore the cone-separation
idea with 3 objectives. As test problem, we use the modified
DTLZ2 problem having = ����[ variables:%'&)( 	"
�
+*,�-� [\3>
��43]./
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While we have used a total population size of 200 in the

2D test problems, we are using a population size of 300 for
DTLZ2. Figures 11 to 13 show the resulting non-dominated
front obtained with two, three or six processors, respectively.
As can be seen, in 3D, although the overall distribution is
still acceptable, there is an accumulation of individuals at the
borders between the different regions. We still have to explore
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Fig. 9. Non-dominated front obtained with two processors for ZDT3 problem.
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Fig. 10. Non-dominated front obtained with five processors for ZDT3
problem.

what causes this accumulation in 3D and how to circumvent
it.

VI. CONCLUSION

Due to their inherent parallel search for multiple solutions
and the consequential large computation times, parallelizing
multi-objective evolutionary algorithms is an important issue.
In this paper, we have argued that in addition to parallelizing
single-objective evolutionary algorithms, in the multi-objective
case there is the opportunity to divide up the search among the
different processors, and have them search for different parts
of the Pareto-optimal front.

We have then proposed the cone-separated NSGA-II, which
explicitly divides up the search region by introducing addi-
tional constraints for each processor. First results on problems
with two objectives were rather promising. We have shown that
the approach is more efficient that the standard island model,
and that it works independent of the shape of the Pareto-
optimal front (even when it is concave and non-continuous).
On problems with three objectives, the distribution of individ-
uals was not as good, future work is necessary to address this
problem. Also, we are currently looking into improved adapta-
tion schemes (rather than just normalizing the objective space)
and the effect of overlapping search regions. Furthermore, the
ideas presented in this paper could also be used to bias the
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Fig. 11. Non-dominated front obtained with two processors for DTLZ2
problem.
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Fig. 12. Non-dominated front obtained with three processors for DTLZ2
problem.
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search towards regions defined as interesting by a user (cf.
[2]).
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