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ABSTRACT
Existing test problems for multi-objective optimization are
criticized for not having adequate linkages among variables.
In most problems, the Pareto-optimal solutions correspond
to a fixed value of certain variables and diversity of solutions
comes mainly from a random variation of certain other vari-
ables. In this paper, we introduce explicit linkages among
variables so as to develop difficult two and multi-objective
test problems along the lines of ZDT and DTLZ problems.
On a number of such test problems, this paper compares
the performance of a number of EMO methodologies having
(i) variable-wise versus vector-wise recombination operators
and (ii) spatial versus unidirectional recombination opera-
tors. Interesting and useful conclusions on the use of above
operators are made from the study.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Nonlinear programming, un-
constrained optimization; I.2 [Artificial intelligence]: Prob-
lem solving, control methods and search

General Terms
Algorithms, experimentation

Keywords
Evolutionary Multi-objective optimization, linkages, test prob-
lems, recombination operator, NSGA-II, generalized differ-
ential evolution.

1. INTRODUCTION
There exists a number of test problems for multi-objective

optimization in the evolutionary multi-objective evolution-
ary optimization (EMO) literature [1, 17, 6, 14, 8]. The
reason for developing controllable yet challenging test prob-
lems for optimization and using them to test an optimiza-
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tion methodology is to investigate the problem difficulties,
for which a method performs well and problem features, for
which they do not perform so well. Identifying such prob-
lem features will enable developers and researchers to get a
better insight to the working of different methodologies, a
process which may help them develop better and more ef-
ficient algorithms. It has been criticized that many of the
existing test problems for multi-objective optimization are
either separable variable-wise, or possess linear functions of
the variables. It is then argued that such test problems may
not provide adequate difficulties to an EMO methodology
and therefore the whole purpose of applying an EMO to
these test problems for getting better insights about their
working principles is lost. Thus, there is a need for develop-
ing more difficult yet controllable test problems for creating
a more efficient EMO algorithm. Developed test problems
can also then be used to compare different leading EMO
methodologies to show the extent of difficulties provided by
these test problems.
In this paper, we make a brief review of the existing multi-

objective test problems and discuss the adequacy of these
problems as real test problems. Thereafter, we propose a
number of two and multi-objective test problems which al-
low an user to systematically introduce difficulties through
variable linkages. Finally, through simulation results, we
demonstrate that the EMO methodologies which use recom-
bination operators capable of handling variable interactions
are better able to solve these problems than those who do
not use such an operator. For this purpose, we have used two
EMO procedures using variable-wise recombination opera-
tors and two EMO procedures having vector-wise recombi-
nation and generation operators. Moreover, for both vector-
wise EMO (PCX-based NSGA-II procedure and DE-based
EMO procedure, GDE3), a parametric study is performed to
find good parameter settings. The results of this paper are
important for various reasons and should encourage readers
to appreciate the need of linkage based EMO methodologies
and simultaneously motivate them to use the proposed test
problems and encourage them to develop and use more such
test problems as benchmark problems before trying EMO
methodologies to real-world problems.

2. EXISTING EMO TEST PROBLEMS
David Van Veldhuizen, in his doctoral thesis [15], collated

a number of multi-objective test problems (both constrained
and unconstrained). These problems were explicit mathe-
matical functions of a number of variables (mostly two or
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three) and involve a fixed number of objectives (mostly two
and three). It was not clear what kind of difficulties these
test problems would provide to an EMO methodology. Since
the exact Pareto-optimal front were known to most of them
(and for some problems they were clearly worked out from
mathematical optimality conditions elsewhere [2]), these test
problems could simply be used to investigate if an algorithm
is able to find well-represented set of Pareto-optimal solu-
tions or not. If they did, the applied EMO procedure might
be considered to have overcome whatever difficulties these
problems were providing. If they did not, it gets difficult to
analyze why the applied methodology could not solve the
problem and what can be done to improve the algorithm for
solving the problem.
Thinking along these lines, Deb [1] introduced a procedure

of designing two-objective unconstrained test problems with
three explicit functionals f1, g and h, which introduced a
known and controllable difficulty to any EMO procedure.
Although the number of objectives were fixed to two, the
problems allowed users to set any number of variables. The
variable set is partitioned into two non-overlapping sets x =
(xI ,xII):

Minimize f1(x) = f1(xI),
Minimize f2(x) = g(xII) · h (f1(xI), g(xII)) ,

(1)

By choosing appropriate functions for f1, g and h, multi-
objective problems having specific features were created as
follows:

1. The shape and nature (convexity or discontinuity) of the
Pareto-optimal front can be affected by choosing an appro-
priate h function.

2. Convergence to the true Pareto-optimal front can be affected
by using a difficult g function.

3. Uniformity in the distribution of solutions on the Pareto-
optimal front can be affected by choosing an appropriate f1

function.

The functional h is chosen in such a manner that for a fixed
value of f1 (say for xd

I), the minimum of h corresponds to the
minimum of g (say at g∗ = g(x∗

II)). Since f1 and g do not
involve any common variable, the above construction forces
the following relationship to exist between the objectives for
Pareto-optimal solutions:

f2 = g∗ · h(f1, g
∗). (2)

Thus by choosing an appropriate h functional, different shapes
of the Pareto-optimal frontier can be developed. Since for
any non-Pareto-optimal points xd = (xd

I ,xd
II), g(xd

II) > g∗,
for a fixed f1 value at f1(x

d
i ), the solution xd gets dominated

by the corresponding Pareto-optimal solution (xd
I ,x∗

II). By
choosing a multi-modal function for g, multiple optimal fronts
can be introduced in a problem so that an EMO algorithm
may have difficulties in converging to the true Pareto-optimal
front. Similarly, by choosing a non-linear function for f1,
differential densities of solutions along the Pareto-optimal
front can be introduced, thereby making an EMO to have
difficulty in finding a uniformly distributed set of points.
Based on the above concept, a test-suite of six test prob-

lems were suggested elsewhere [17] by using a linear, single-
variable function for f1. In five of the six problems, f1(x1) =
x1 were used. These so-called ZDT (Zitzler-Deb-Thiele) test

problems have been extensively used in many EMO studies
in the recent past. Due to the simplicity in their construc-
tion, simultaneously these functions were also criticized for
being too simple [14, 8].
The popularity of the six specific test problems have made

researchers forget a couple of important matters related to
the philosophy of constructing original test problems:

1. The functional f1 can be chosen as a function of more than
one variable and non-linear functionals can also be chosen.

2. The original study [1] also suggested a variable mapping
strategy y = M · x, in which an EMO solution vector (x) is
first mapped to another variable vector y by using a constant
matrix M . The objective functions are then computed using
equation 1 and replacing x with y.

The mapping concept allows every Pareto-optimal solution
to have a fixed yd

II (which minimizes g(yII) function) and
solutions differ with different values of yI . Representing the
linear mapping as follows:»

yI

yII

–
=

»
A B
C D

–
·

»
xI

xII

–
, (3)

we obtain the following relationships between Pareto-optimal
solution vectors, x and y:

xI = (A − BD−1C)−1
“
yI − BD−1yd

II

”
, (4)

xII = D−1(yd
II − CxI). (5)

Since different yI vectors produce different Pareto-optimal
solutions, it is likely that all Pareto-optimal solutions x will
be different from each other. Thus, in every variable xi, an
EMO is expected to maintain a wide range of solutions in
order to maintain a well-represented set of Pareto-optimal
solutions. An EMO with a proper niching strategy must now
be used to maintain a wide variety of solutions in the popula-
tion. This is certainly a more difficult task compared to the
case for which M = I , an identity matrix (with which ZDT
problems were designed). In the ZDT problems, all Pareto-
optimal solutions have a fixed value of xII , thereby making
it easier to maintain a diverse set of solutions by simply
maintaining a diversity in xI variables. In ZDT problems,
only one variable was used for xI , thereby making the task
of generating a diverse set of Pareto-optimal solutions even
easier. The mapping suggested above or its variations would
not allow a variable-wise optimization of objectives to reach
the Pareto-optimal front. This property introduces a link-
age [11] among the variables and demands a linkage-learning
EMO to find the entire Pareto-optimal front.
Another study [3] constructed a test problem using the

linear mapping approach discussed above and the NSGA-II
procedure with a variable-wise SBX recombination operator
was found to be difficult in finding a well-converged and
well-distributed set of solutions.
A study [12] suggested two-objective test problems by ex-

plicitly using three operations – deformation, rotation and
shift – of the decision parameter space and suggested two
test problems. Two EMO procedures were shown to have
difficulties in finding the Pareto-optimal solutions in both
problems. Although the study highlights the importance of
linkages among variables, issues of difficulties in designing
explicit mathematical operations for the above three tasks
explicitly for a large number of objectives and variables were
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not addressed and remain as important task for extending
the idea. Further follow-up studies are needed to establish
the utility and ease of application of the procedure as a task
of test problem development.
Later, Deb et al. [6] suggested and designed a set of scal-

able multi-objective test problems (so called DTLZ prob-
lems) which are scalable to any number of objectives (M ≥
2) and having any number of variables (n ≥ M). The mo-
tivation behind these test problems is to first construct a
Pareto-optimal surface in the objective space (either para-
metrically using decision variables (f1(xI), . . . , fM (xI))) or
directly fM = fM (f1, . . . , fM−1) and by choosing any func-
tional relationships fj = fj(xI)). Thereafter, in this bottom-
up approach, each objective function is multiplied by a term
g(xII). By choosing a function g such that the minimum
value of g is one, a multi-objective test problem is con-
structed with each Pareto-optimal solution to correspond
to the minimum value of g. Based on different desired dif-
ficulties in DTLZ problems, nine such test problems were
suggested [6]. These problems were attempted to be solved
up to 30 objectives in a recent study [5]. However, in most of
these problems, the variables are partitioned into two non-
overlapping groups (xI and xII) and moreover the variable
in each group are also independent to each other. Although
in DTLZ5, DTLZ8 and DTLZ9 problems, some linkages
among some of the variables occur through explicit pair-wise
dependencies or through constraint satisfaction, mostly the
problems are inadequate to test an algorithm’s ability to
handle linkages among variables.
Recently, a couple of multi-objective test suites were also

suggested [8, 14]. However, their construction procedure
is similar to the above approaches and do not provide an
adequate test for handling linkages among variables.
Thus, there is a need for a set of test problems having

controllable linkages among variables so that EMO method-
ologies can be adequately tested. In the following sections,
we modify the ZDT and DTLZ problems in a systematic
manner for this purpose. Based on different levels of link-
ages, three different types of problems are developed here.

3. MODIFIED ZDT PROBLEMS WITH LINK-
AGES OF TYPE-1 (L1-ZDT)

First, we introduce linkages among xI and xII variables
individually, that is, there is no linkages set between two
variables s and t, where s ∈ xI and t ∈ xII , but linkages
exist among variables within each group. Thus, we set B
and C matrices to be zero matrices. Let us denote that
there are k variables in xI and (n − k) variables in xII .
Then A and D matrices are of size k × k and (n− k)× (n−
k), respectively, and each element can take a value within
[−1, 1]. The above matrix causes the function f1 and the
function g to be sheared, scaled and rotated independent of
each other. Finally, in effect, the functions f1 and g will
be influenced in such a way that their variable separability
will be lost, if they are separable. The sub-matrix Ak×k is
responsible for bringing changes in the f1 profile, while sub-
matrix D(n−k)×(n−k) is responsible for bringing changes in
the g function. With the above mapping, the function f1 is
still a function of variable vector xI and the function g is
still a function of variable vector xII .
EMO procedures having variable-wise recombination op-

erator (such as the SBX operator [2]) would not be able to

perform well on such test problems, as the transformation
makes the variables (x) of the problem to be linked to each
other group-wise. But still the entire front is decided by the
minimum value of g. Using the approach, all ZDT problems
can be modified and a test problem providing difficulties as
they did in the original ZDT problems and an additional dif-
ficulty of variable linkage for g function can be created. To
illustrate the procedure, we consider only one ZDT problem.

3.1 L1-ZDT4
This is a n = 10 variable problem which is a modifica-

tion to the original ZDT4 problem having a convex Pareto-
optimal set:

f1(y) = y2
1 ,

g(y) = 1 + 10(n − 1) +
Pn

i=1(y
2
i − 10 cos(4πyi)),

h(f1, g) = 1− p
f1/g,

x1 ∈ [0, 1], xi ∈ [−5, 5], i �= 1,

y =

»
A 0
0 D

–
x,

A = [aij ], aij ∈ R(−1, 1),
D = [dij ], dij ∈ R(−1, 1),

(6)

where R(−1, 1) denotes a uniformly distributed random num-
ber in the range [−1, 1]. Here, k = 1, a11 = 1, and the matrix
D is a 9× 9 matrix.

4. MODIFIED ZDT PROBLEMS WITH LINK-
AGES OF TYPE-2 (L2-ZDT)

Next, we consider a transformation matrix which involves
linkages among two variables, thereby making all four sub-
matrices to be non-zero matrices. The matrix B is of size
k × (n − k) and the matrix C is of size (n − k) × k. In
this type, each and every function is a function of all vari-
ables (x1, x2, . . . , , xn). In this case it becomes difficult to
decide the entire Pareto-optimal front, as the function g no
longer remains constant on the Pareto-optimal front. Since
the Pareto-optimal frontier may be placed anywhere on the
real space by this mapping, we normalize the objective func-
tions so that each normalized objective value for all Pareto-
optimal solutions lies in [0,1]. The original functions are
modified as follows:

Min. F1(yI) =
f1(yI)−fmin

1
fmax
1 −fmin

1
,

Min. F2(y) =

h
g(yII)−g(ymax-I

II )
i
h(f1(yI),g(yII ))h

g(ymin-I
II

)−g(ymax-I
II

)
i
h

“
f1(ymin-I

I
),g(ymin-I

II
)
” .

(7)
Above terminologies will be clear from the following descrip-
tion. The derived variable vectors can be written after trans-
formation (equation 3), as follows:

yI = AxI + BxII , yII = CxI + DxII .

Since f1 is a function of yI alone, its minimum and max-
imum values can be independently found and the function
can be normalized to form the function F1. Let us say that
the minimum and maximum value of f1 occurs at ymin-I

I and

ymax-I
I , respectively. Let us also say that these two values

correspond to the following two solutions vectors:

ymin-I
I : xmin-I = (xmin-I

I ,xmin-I
II ),

ymax-I
I : xmax-I = (xmax-I

I ,xmax-I
II ).

Now it is clear that at xmin-I, the first normalized objective
value is zero (F1 = 0) and both denominator and numerator
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of the second normalized objective are equal, thereby hav-
ing a value of one (F2 = 1). On the other hand, at xmax-I,
the first normalized objective value is F1 is one and corre-
sponding F2 value is zero. Since these two extreme solutions
are likely to be singleton solutions (that is, there exist only

one solution xmin-I and xmax-I each for minimum and max-
imum of f1, these two solutions are never dominated (being
extreme solutions) by any other solution in the search space.
Thus, they form two extreme Pareto-optimal solutions for
the modified normalized test problem. Based on the spe-
cific choice of f1, g and h functions and the chosen trans-
formation metric M , the other Pareto-optimal solutions get
determined, but the exact location is difficult to determine.
It is interesting to note that a fixed value of g no longer de-

fines the entire Pareto-optimal front. But still the function
in the variable domain defining the Pareto-optimal front is
linear and might be helpful to the linear operators.

4.1 Modified L2-ZDT Problems
This problem is based on the n = 30 variable ZDT1 prob-

lem having a convex Pareto-optimal set:

f1(y) = y2
1 ,

g(y) = 1 + 9
n−1

Pn
i=2 y2

i ,

h(f1, g) = 1− p
f1/g,

xi ∈ [0, 1], y = Mx, Mn×n = [mij ], mij ∈ R(−1, 1).
(8)

Similarly, we define L2-ZDT2 to L2-ZDT4 and L2ZDT6 prob-
lems with following modified g functions:

L2-ZDT2 : g(yII) = 1 + 9
n−1

Pn
i=2 y2

i ,

L2-ZDT3 : g(yII) = 1 + 9
n−1

Pn
i=2 y2

i ,

L2-ZDT4 : g(yII) = 1 + 9
n−1

Pn
i=2(y

2
i − 10 cos(4πyi)),

L2-ZDT6 : g(yII) = 1 + 9[
Pn

i=2 y2
i /9]0.25 .

All other functions are the same as that in the original ZDT
problems. Figure 1 shows the objective space of the above
L2-ZDT4 problem for n = 2 variable with 106 random so-
lutions. Notice how the two extreme points are singleton
points on the Pareto-optimal front, causing an algorithm
difficulty in finding the end portions of the front.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Modified ZDT4

Figure 1: Objective space for a two-dimensional
modified L2-ZDT4 problem.

5. MODIFIED ZDT PROBLEMS WITH LINK-
AGES OF TYPE-3 (L3-ZDT)

In both the above types of modification for linkages, there
is a potential degeneracy which happens particularly for

problems having a linear hyper-plane. In such cases, if a
linear recombination operator, such as creating an offspring
along a line joining two parents, is used, in both type of
modifications the offspring created from two Pareto-optimal
parent solutions will also lie on the Pareto-optimal front.
This can be seen from equations 4 and 5. Since the vari-
able transformation is a linear one, for linear hyper-plane
problems, such a transformation does not provide adequate
difficulty to an algorithm. This degeneracy is specific to
the line-recombination operator, but to any other recombi-
nation operator the variable-linkage introduced here should
cause difficulties. To make the problems more difficult to
be solved, we may use a non-linear mapping between y and
x. Here, we use the modified and normalized L2-ZDT prob-
lems, but use the following mapping:2

64
y1

...
yn

3
75 = M ·

2
64

x2
1

...
x2

n

3
75 . (9)

This will not allow linear recombination operators to take
any advantage of creating a Pareto-optimal solution from
two Pareto-optimal solutions. Here also, we consider all
five ZDT problems and create five L3-ZDT problems. The
three fundamental functionals are the same as in L2-ZDT
problems.

6. THREE EMO PROCEDURES
To investigate its effect on different EMO procedures, we

use three different procedures:

1. SBX-NSGA-II: The NSGA-II procedure is used with the
variable-wise SBX recombination operator [2].

2. L-SBX-NSGA-II: The NSGA-II procedure is used with the
SBX recombination operator applied along a line joining the
two parents.

3. PCX-NSGA-II: The NSGA-II procedure is used with the
vector-wise PCX recombination operator [4].

4. GDE3: The generalized differential evolution procedure is
used [9].

SBX-NSGA-II is the original NSGA-II procedure. In L-
SBX-NSGA-II, we replace variable-wise SBX operation by
a unidirectional SBX along the line joining the two parent
solutions. The PCX-NSGA-II and GDE3 procedures are
more involved and we make a brief description of them next.

6.1 PCX-NSGA-II Procedure
Here, for the first time, we introduce the PCX recombi-

nation operator [4] in NSGA-II. The PCX operator involves
two parameters σζ and ση controlling the variances along the
principal direction (centroid towards the index parent) and
in each of the rest (n− 1)-directions, respectively. Here, we
assume both these parameters to be identical and represent
them with σ. We we use four different σ values in this study.
In the PCX-NSGA-II procedure, we choose three solutions
using the usual binary tournament selection operator from
the parent population. Each of them is, in turn, used as the
index parent and an offspring solution is created by applying
the PCX operator to three chosen solutions. Each of three
offspring solutions are then operated by a polynomial muta-
tion operator [2]. This operation is continued till a complete
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offspring population (of the same size as the parent popula-
tion) is created. Thereafter, a non-dominated sorting of the
combined population and a subsequent crowding distance
operations are applied to create a population for the next
generation, similar to that in the original NSGA-II proce-
dure [3]. Thus, the only difference between SBX-NSGA-II
(original NSGA-II) and PCX-NSGA-II procedures lies in the
choice of the recombination operator.

6.2 New Generalized Differential Evolution
(GDE3) Procedure

This procedure is again similar to the NSGA-II procedure,
but the usual SBX recombination operator is replaced with a
differential evolution operator. Generalized differential evo-
lution 3 (GDE3) [9] is an extension of differential evolution
(DE) for constrained multi-objective optimization. Evolu-
tionary part of the algorithm is DE [13] and multi-objective
part is from NSGA-II. In DE, an offspring of a parent is
created using recombination of the parent with a mutated
vector, which is created by a linear combination of three ran-
domly selected members from the population in a way which
makes DE self-adaptive. Control parameters CR and F are
used to control recombination and mutation, respectively.
After a generation, the combined parent and child popula-
tion is then reduced back to original population size using
sorting based on non-dominance and crowdedness same way
as is in the original NSGA-II.

7. SIMULATION RESULTS
In all simulations presented here, we perform 11 runs from

different initial populations. For each simulation on two-
objective problems, we use a fixed population of size 100
and for three objectives problems we use a population of
size 200.

7.1 Type-1 Problems
To investigate the difficulties posed by Type-1 problems

to four EMO methodologies, we use L1-ZDT4 problem, de-
scribed in equation 6. In this problem, the convergence of
an algorithm can be determined by the g value obtained by
a solution. Since different solutions in the final front may
have different g values, we use the average-g value for all ob-
tained non-dominated solutions. The true Pareto-optimal
front corresponds to g = 1. Thus, the closer the value of
average-g to one, the better is the converging ability of an
EMO procedure.
First, we use PCX-NSGA-II with four different σ values –

0.01, 0.1, 0.4 and 0.7. To investigate the effect of linkages in
variables, we systematically make the matrix D more dense
by increasing the number of rows having randomly created
elements (we refer to this number as the ‘order of linkage’
here). Thus, if the order of linkage is l, the D matrix has
only l rows having randomly created elements and the diag-
onal entries of other (n−k−l) rows are one. Figure 2, shows
the performance of different PCX-NSGA-II procedures with
the order of linkage. We have run the procedures till 2,000
generations to get a distribution of solutions close to the
true Pareto-optimal front. For the polynomial mutation op-
erator, we use ηm = 20. In each case, the best, average,
and the worst average-g values of 11 runs are shown. We
observe that the performance of all four PCX-NSGA-II pro-
cedures deteriorate with an increase in the order of linkage.
However, all four procedures seem to have performed almost

equally well, indicating that the σ value in the range of 0.01
to 0.7 does not make much of a difference to the performance
of PCX-NSGA-II in this problem.
Next, we apply the GDE3 procedure for different values

of CR and F values. Once again, 11 runs are made from
different initial population and the best, average, and worst
average-g values are shown in Figure 3. The performance
is also seen to deteriorate with the order of linkage and the
GDE3 with CR=0.9 and F = 0.1 is found to perform well
on most situations.
Figure 4 shows the average values of front-average g value

of 11 runs for five strategies: PCX-NSGA-II with σ = 0.1
and 0.4, SBX-NSGA-II with ηc = 11 and with ηm = 20
(which was found to be performing the best after some ex-
perimentations), and GDE3 with two different CR and F
values. It is clear from the figure that PCX-NSGA-II proce-
dures are able to get closer to the true Pareto-optimal front
compared to SBX-NSGA-II and GDE3 procedures. How-
ever, it is quite evident that beyond the two-variable linkage
none of the procedures is able to find the true Pareto-optimal
front. Thus, the linkage among variables xII is adequate to
provide enough difficulty to all these EMO procedures.

7.2 Type-2 Problems
Here, we consider all five L2-ZDT problems with a full M

matrix with order of linkage same as n. As mentioned ear-
lier, in these problems, although we know exactly the loca-
tion of the two extreme Pareto-optimal solutions, the knowl-
edge of other Pareto-optimal solutions is absent. To vali-
date the obtained front, we use the normal-constraint (NC)
method [10] to obtain 20 different well-dispersed Pareto-
optimal solutions. We use a single-objective PCX-based GA
procedure for this purpose.
Two performance criteria are used to measure converging

and distributing ability of the chosen EMO procedures. The
first approach uses the graphs showing the obtained frontier
for 0% and 100% attainment values [7] of 11 runs. The sec-
ond approach computes the hypervolume metric value [16] of
the 0% attainment surface obtained with all 11 runs. Since
in all these test problems, the extreme points are singleton
solutions, we use a slightly different hypervolume measure.
For all 11 runs obtained by an EMO procedure, we find the
nadir point and use it as a reference point for computing
the hypervolume measure. This way, different procedures
will use different reference points. If a procedure does not
find the complete Pareto-optimal front, the area covered by
the front, as computed by the corresponding nadir point,
may have a drastically small value.

7.2.1 L2-ZDT1 Problem
Figure 5 shows the performance of PCX-NSGA-II, SBX-

NSGA-II and GDE3. In each case, the parameters which
produced a consistently better performance in all test prob-
lems are used. All EMO procedures are run for 500 gen-
erations. The figure shows clearly that both 0% and 100%
attainment surfaces are close to each other, thereby indicat-
ing that the procedures reliably find non-dominated frontiers
close to the true Pareto-optimal frontier (shown in the NC
plot). However, the SBX-NSGA-II procedure cannot find
the complete frontier, due to its limitation in handling link-
ages by using a variable-wise recombination operator. On
the other hand, both PCX-NSGA-II and the GDE3 find the
complete frontier.
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Figure 2: The bar represents av-
erage value of g from 11 runs
along with the deviation for
PCX(0.01), PCX(0.1), PCX(0.4)
and PCX(0.7), respectively (left to
right) against the order of linkage.
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Figure 3: The bar represents
average value of g from 11 runs
along with the deviation for
GDE3(1.0,1.0), GDE3(0.1,0.1),
GDE3(0.5,1.0), GDE3(0.5,0.5) and
GDE3(0.9,0.1), respectively (left
to right).
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Figure 5: Pareto-optimal fronts obtained from PCX-
NSGA-II(0.4), GDE3(1.0,1.0), SBX-NSGA-II, and
NC methods for L2-ZDT1.

Table 1 shows the hypervolume measures for all 11 algo-
rithms. L-SBX is a line-SBX operator which creates two
offspring on the line joining the two parents. The table
shows that SBX-based NSGA-II runs are not able to find
a good distribution, whereas all PCX-NSGA-II and some
GDE3 procedures are able to find a good distribution. Due
to restriction of solutions being created on a line joining the
parents, the search power of L-SBX based NSGA-II is not
as good as SBX-NSGA-II.

7.2.2 L2-ZDT2 Problem
For brevity, here we do not show figures showing the dis-

tributions visually. Instead, we only present the hypervol-
ume measures in Table 2. All parameters are set as that in
L2-ZDT1. Again, we observe a very similar trend in perfor-
mance of the chosen EMO procedures. The variable-wise re-
combination operator (SBX) or the line-SBX operator does
not perform well, but vector-wise recombination operators
(PCX and DE) perform well to negotiate the linkages among
the variables.

Table 1: Hypervolume
metric for PCX(σ), SBX
and GDE3(CR,F ) for L2-
ZDT1 and L3-ZDT1.

Method Hypervol.
Type-2 Type-3

PCX(0.01) 0.9057 0.9864
PCX(0.10) 0.9771 0.9797
PCX(0.40) 0.9757 0.9759
PCX(0.70) 0.9743 0.9750
SBX 0.4210 0.5705
L-SBX 0.3921 0.3847
GDE3(1.0, 1.0) 0.9783 0.9769
GDE3(0.5, 0.5) 0.7842 0.8957
GDE3(0.1, 0.1) 0.3318 0.3266
GDE3(0.9, 0.1) 0.7605 0.8689
GDE3(0.5, 1.0) 0.9786 0.9715

Table 2: Hypervolume
metric for PCX(σ), SBX
and GDE3(CR,F ) for L2-
ZDT2 and L3-ZDT2.

Method Hypervol.
Type-2 Type-3

PCX(0.01) 0.8611 0.8586
PCX(0.10) 0.9269 0.9277
PCX(0.40) 0.9254 0.9241
PCX(0.70) 0.9229 0.9239
SBX 0.4318 0.3243
L-SBX 0.3994 0.3043
GDE3(1.0, 1.0) 0.9284 0.9264
GDE3(0.5, 0.5) 0.8121 0.8238
GDE3(0.1, 0.1) 0.2789 0.2480
GDE3(0.9, 0.1) 0.7574 0.8236
GDE3(0.5, 1.0) 0.9272 0.9263

7.2.3 L2-ZDT3 Problem
Figure 6 shows the 0% and 100% attainment surfaces of

11 runs for three EMO procedures with a good parameter
setting. As also evident from the Table 3, SBX-NSGA-II
does not perform well compared to the PCX-NSGA-II and
GDE3 procedures. It can be seen that in this problem
PCX with a large σ works better. Like before, GDE3 with
(CR,F ) values of (1,1) and (0.5,1) consistently perform well.

7.2.4 L2-ZDT4 Problem
Figure 7 shows that there is a significant difference in

the 0% and 100% attainment surfaces for all three method-
ologies. This problem involves a number of local Pareto-
optimal fronts and is comparatively harder to solve for op-
timality. For this problem, PCX with σ = 0.4 and 0.7 and
GDE3 with CR=1 and F = 1 perform the best, as evident
from Table 4.

7.2.5 L2-ZDT6 Problem
Table 5 shows the hypervolume metric values. We observe

that in this problem PCX-NSGA-II with larger σ values
perform better than other methods, including the GDE3
procedures.
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Figure 6: Pareto-optimal fronts obtained from PCX-
NSGA-II(0.4), GDE3(1,1), SBX-NSGA-II, and NC
methods for L2-ZDT3.

Table 3: Hypervolume
metric for PCX(σ), SBX
and GDE3(CR,F ) for L2-
ZDT3 and L3-ZDT3.

Method Hypervol.
Type-2 Type-3

PCX(0.01) 0.3935 0.3650
PCX(0.10) 0.6384 0.6578
PCX(0.40) 0.8556 0.8772
PCX(0.70) 0.9044 0.8749
SBX 0.2903 0.3156
L-SBX 0.2889 0.2723
GDE3(1.0, 1.0) 0.8561 0.8535
GDE3(0.5, 0.5) 0.5729 0.5928
GDE3(0.1, 0.1) 0.2089 0.2244
GDE3(0.9, 0.1) 0.4322 0.3572
GDE3(0.5, 1.0) 0.8550 0.8463

Table 4: Hypervolume
metric for PCX(σ), SBX
and GDE3(CR,F ) for L2-
ZDT4 and L3-ZDT4.

Method Hypervol.
Type-2 Type-3

PCX(0.01) 0.4352 0.5716
PCX(0.10) 0.5204 0.7443
PCX(0.40) 0.7539 0.7440
PCX(0.70) 0.7349 0.7420
SBX 0.4010 0.6138
L-SBX 0.4205 0.4113
GDE3(1.0, 1.0) 0.7353 0.7433
GDE3(0.5, 0.5) 0.5118 0.7104
GDE3(0.1, 0.1) 0.4275 0.6314
GDE3(0.9, 0.1) 0.4580 0.6217
GDE3(0.5, 1.0) 0.4206 0.7412

7.3 Type-3 Problems
These problems use a non-linear transformation rule, thereby

causing difficulties to linear recombination operators. Since
these EMO procedures except L-SBX-NSGA-II do not use
a linear recombination operator, the performances of these
algorithms do not get deteriorated by the non-linear trans-
formation rule, as evident from the hypervolume metric val-
ues shown in Tables 1 to 5. However, the performance of
NSGA-II having the line-SBX operator deteriorates in ev-
ery Type-3 problem.

8. THREE-OBJECTIVE MODIFIED DTLZ
PROBLEMS

Like two-objective ZDT problems, we use the variable
transformation method using linear (Type-2) and non-linear
(Type-3) transformation rules. To investigate the difficulties
of the chosen EMO procedures, here we choose 12-variable
DTLZ2 and DTLZ3 problems. Both problems give rise to
a three-dimensional, non-convex Pareto-optimal front. But
DTLZ3 introduces multiple local Pareto-optimal fronts. In
the modified versions (L2-DTLZ and L3-DTLZ problems),
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Figure 7: Pareto-optimal fronts obtained from PCX-
NSGA-II(0.4), GDE3(1,1), SBX-NSGA-II, and NC
methods for L2-ZDT4.

Table 5: Hypervolume Metric for PCX(σ), SBX and
GDE3(CR,F ) for L2-ZDT6 and L3-ZDT6.

Method Hypervolume
Type-2 Type-3

PCX(0.01) 0.0706 0.1699
PCX(0.10) 0.0822 0.1804
PCX(0.40) 0.1244 0.1599
PCX(0.70) 0.1574 0.2006
SBX 0.0982 0.1148
L-SBX 0.0811 0.0789
GDE3(1.0, 1.0) 0.1174 0.2301
GDE3(0.5, 0.5) 0.1127 0.1113
GDE3(0.1, 0.1) 0.1094 0.1476
GDE3(0.9, 0.1) 0.1088 0.1408
GDE3(0.5, 1.0) 0.1121 0.1111

we have not normalized the objectives, as we did in the case
of L2-ZDT and L3-ZDT problems. For these problems, we
have used a population size of 200 and run each method for
500 generations.

8.1 DTLZ2 Problems with Linkages (L2-DTLZ2
and L3-DTLZ2)

Table 6 shows the hypervolume metric for PCX-NSGA-II,
SBX-NSGA-II, L-SBX-NSGA-II and GDE3 methods. The
performance of PCX-NSGA-II and GDE3 methods are much
better than SBX-based NSGA-II procedures. Once again,
it is evident that although the performance of SBX-NSGA-
II procedure does not depend on the non-linear transfor-
mation, that of line-SBX based NSGA-II degrades when a
non-linear transformation is used.

8.2 DTLZ3 Problems with Linkages (L2-DTLZ3
and L3-DTLZ3)

Table 7 shows the performance of all EMO methodologies
considered in this paper on L2-DTLZ3 (with linear trans-
formation) and L3-DTLZ3 (with non-linear transformation)
problems. Due to the use of a multi-modal g function hav-
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Table 6: Hypervolume
metric values for L2-
DTLZ2 and L3-DTLZ2.

Method Hypervol.
Type-2 Type-3

PCX(0.40) 1536.52 1533.12
SBX 1178.85 1176.87
L-SBX 1135.23 1003.45
GDE3(1,1) 1535.58 1533.63

Table 7: Hypervolume
metric values for L2-
DTLZ3.

Method Hypervol.
Type-2 Type-3

PCX(0.40) 3.2321E10 3.1014E10
SBX 2.6532E10 2.1745E10
L-SBX 2.4313E10 2.1012E10
GDE3 3.2287E10 3.0135E10

ing a wide range of function values in these problems, the
hypervolume metric values are larger here. However, as ev-
ident from the table, PCX-NSGA-II and GDE3 procedures
performed better than EMO with variable-wise recombina-
tion procedures. Again, the line-SBX operator seem to be
get affected by the use of a non-linear transformation of the
variables.

9. CONCLUSIONS
In this paper, we have addressed the issue developing

multi-objective test problems which introduce controllable
linkages among variables so that existing EMO methodolo-
gies can be provided with stringent tests. Several linkages
are considered: (i) linkages among variables affecting either
the convergence or diversity individually (ii) linkages among
all variables causing a simultaneous effect in both conver-
gence and maintenance of diversity among solutions and
(iii) linkages which are non-linear, causing linear operators
to face difficulty in preserving optimality of solutions. On a
number of different test problems (which are modifications
of existing two-objective ZDT and three-objective DTLZ
problems), a few EMO methodologies have been tested: (i)
NSGA-II with variable-wise recombination operators (SBX),
(ii) NSGA-II with a variable-wise line-SBX operator, (iii)
NSGA-II procedure with a vector-wise recombination opera-
tor (PCX), and (iv) a generalized multi-objective differential
evolution procedure, GDE3 (having a vector-wise operation
for creating offspring solutions). Several conclusions can be
made from this extensive study:

1. An increase in order of linkage among variables cause a de-
terioration of the performance of the EMO methodologies.

2. EMO procedures with variable-wise recombination opera-
tors does not perform as well as those with vector-wise op-
erators, due to their increased ability to handle linkages.

3. A non-linear transformation of variables does not affect the
performance of SBX or PCX-based NSGA-II and GDE3
procedures, but deteriorates the performance of a line-SBX
based NSGA-II.

Thus, vector-wise recombination operators are recommended
for handling linkage-based multi-objective optimization prob-
lems.
Despite the existence and use of many test problems for

multi-objective optimization, there seem to be a lack of test
problems having controllable linkages among variables. This
paper has hopefully demonstrated a procedure for creating
such test problems and specifically suggested a set of two
and multi-objective test problems for this purpose.
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