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Abstract. Interplanetary trajectory optimization studies mostly considered a sin-
gle objective of minimizing travel time between two planets or launch velocity
of spacecraft at the departure planet or maximizing delivered payload at the des-
tination planet. Despite a few studies, in this paper, we have considered a simul-
taneous minimization study of both launch velocity and time of travel between
two specified planets with and without the use of gravitational advantage (swing-
by) of some intermediate planets. Using careful consideration of a Lambert’s ap-
proach with the Newton-Raphson based root finding procedure of developing a
trajectory dictated by a set of variables (departure date, swing-by planets, etc.), a
number of derived parameters, such as time of flight between arrival and destina-
tion planet, date of arrival, and launch velocity, are computed. A commonly-used
evolutionary multi-objective optimization algorithm (NSGA-I1) is then employed
to find a set of trade-off solutions. The accuracy of the developed software (we
called GOSpel) is demonstrated by matching the trajectories with known mis-
sions.

1 Introduction

The interplanetary mission design is a challenging task. These missions are complicated
due to dynamics of our solar system. As spacecraft travels through our solar system it
may encounter many celestial bodies, and may get influenced by their gravitational
fields (swing-by of planets). These gravitational fields may be used in a constructive
way to help in reducing energy requirement of a flight. Sending satellites to interplane-
tary trajectory is risky and expensive. There can be various trajectories which a space-
craft may follow. But there has to be an optimal trajectory which when followed, gives
high performance boost either in energy requirement or in time required for the mission.
Genetic Algorithms (GAs) have been used for over 20 years in various applications
of optimization. GAs are successfully applied in many complex real-world optimiza-
tion problems where the function to be optimized is highly non-linear and discrete. In
the recent past, they have been adapted very successfully in solving multi-objective
optimization problems involving more than one conflicting objectives. Non-dominated
sorting algorithm-11 (NSGA-II) [7] is an example of such GA based multi-objective
optimizers. In this paper, we develop NSGA-II-based trajectory optimization problems



in a software, we called GOSpel. The time of window in which optimal solutions are
sought, type of the transfer, choice of mission and information about the swing-by plan-
ets is accepted from the user. The practical limits on launch parameters like difference
in flyby velocities, maximum and minimum bounds on number of days taken are also
asked from the user. GA parameters, which become very relevant play an important role
and need some tuning. The software displays a number of trade-off optimized solutions
and allows user to investigate the trajectory through a graphical user interface.

2 Previous Studies on Interplanetary Trajectory Optimization

The celestial mechanics of the *swing-by’ is known to astronomers for at least 150

years. A lot of research work have been done in the area of Interplanetary Trajectory

Optimization (IPTO), for both direct transfer and with swing-by of other planets. In

1925, Walter Hohmann [9] designed the transfer trajectory for two non intersecting

orbits, which later has been used for direct transfer from one planet to another planet.

Cornelisse [6] studied the various methods for computation of interplanetary trajectory

and showed that interplanetary trajectories were most efficiently accomplished by the
method of patched conics. Miele and Wang [10] presented fundamental properties of

optimal orbital direct transfer using the cases of transfer from Earth orbit to Mars orbit

and from Earth orbit to Venus orbit. They focused on compromised trajectories between

flight time and propellant mass. Biesbroek and Ancarola [4] studied genetic algorithm

setting for trajectory optimization. They used swing-by calculator [3] for their work for

finding trajectory of rockets and interplanetary trajectories. Weeks [12] optimized flight
time for interplanetary trajectory using GA and also studied effects of GA parameters.

In 1973-74, Mariner 10 spacecraft was the first spacecraft to use the gravitational field
of any planet. It used swing-by of Venus and Mercury to reach Mercury. Voyager1,

launched on September 5 1977, visited Jupiter in 1979 and Saturn in 1980. Voyager 2,

launched August 20 1977, visited Jupiter in 1979, Saturn in 1981 and Uranus in 1986

before making its closest approach to Neptune on August 25, 1989. In 1989, Galileo

spacecraft used swing-by of Venus, Earth (two times) and Jupiter to reach to one of

the moon of Jupiter. It also uses two swing-bys from other celestial bodies between

Earth-Earth swing-by and Earth-Jupiter swing-by.

There are some softwares available for optimizing interplanetary trajectories. One
of them is ”Orbital Mechanics with Numerit PRO” [2]. The package contain Numerit
Prol application that can be used to solve variety of technical problem in orbital me-
chanics, including interplanetary trajectory optimization. The major disadvantage of the
software is that the user has to decide certain parameters like, to use swing-by or not,
which planet to be used as swing-by and at what altitude etc. The software also uses grid
search technique (exhaustive search) to optimize the trajectory. Another disadvantage
is that, at most only one planet can be used for swing-by. Another software ”Swing-By
Calculator” provided by Jaquar Space Engineering [3] adds extra feature for performing
multiple swing-bys. It is dependent on user choices like which planet to take swing-by
and at what dates. In this paper, we try to overcome these deficiencies and develop a
Genetically Optimized Spacecraft Launcher (GOSpel).



3 Proposed Approach with Swing-by

In flyby or swing-by assisted missions, a spacecraft first have to go to one or more
flyby planets and then to the destination planet. This way there may exist a conflict
between the energy requirement and the time to complete for the mission. Here, we
formulate the above-mentioned problem into a multi-objective optimization problem
and solve using the NSGA-I1 procedure [7]. The objective function considered here are
(i) minimization of launch velocity and (ii) minimization of the total time of travel. Both
the objectives have their own importance. The launch velocity is directly associated with
the fuel (energy) requirement, which in turn effects the cost and technical aspects. By
minimizing time of flight, one can achieve missions to complete quickly. Also in cases
where we need to send a spacecraft for a rescue mission to another planet we want to
reach to the planet at the earliest possible time.

The trajectory optimization problem involves a number of decision variables and
constraints, a description of which requires us to first understand the transfer of space-
craft from one planet to another.

The standard orbital mechanics [5] uses parameters like state vectors and velocity
maneuvers for fixing a trajectory. For computing a transfer from one planet to another,
a patched conic model [5] is usually employed. In this model, the motion takes place
along a plane. In practice, the transfer can involve swing-by planets or can be a direct
one. Thus, when a swing-by is to be considered, the spacecraft may have to go through
a plane change from one pair of planet transfer to the other. This requires the spacecraft
to spend some energy for making a change in its motion from one plane to another. To
take care of this additional energy, we add it in the computation of the initial launch
velocity.

3.1 Direct Transfer

Let us now explain how to compute the motion between a pair of planets. Say, the
spacecraft moves from first planet to the second planet. This involves knowing the lo-
cation of both planets at the start and at the end when the spacecraft reaches the second
planet. Moreover, assume that we fix a transfer time ¢ for reaching second planet from
the first one and investigate if such a transfer is possible from the location information
of both planets. The Lambert’s approach [8] helps us determine the velocity vectors
required at the first (v) and second (v2) planet in order to materialize such a transfer
time. Lambert’s approach involves an iterative procedure of adjusting the velocities so
that the desired transfer time ¢ is achieved. Thus, for a direct transfer, the departure date
and transfer time are the two variables of the optimization problem.

3.2 Swing-by Transfer

Let us now discuss the swing-by case, involving at least one swing-by planet. It is clear
that for S’ swing-by planets, there are (S + 1) pairs of transfer needed. For a transfer
time ¢; for the i-th transfer, Lambert’s approach can be used to find velocity vectors of
the spacecraft v;" , (+ mean outgoing from the planet) and v;” (— means incoming to
the planet) near (i — 1)-th and i-th planets, respectively. Thus, for a transfer time ¢;,



the Lambert’s approach computes a pair of velocity vectors of the spacecraft near the
participating planets. Now, for the i-th swing-by planet, we have an incoming velocity
v; computed from the -th transfer (with i-th planet as the second planet) and outgoing
velocity v;” computed from the (i + 1)-th transfer (with i-th planet as the first planet).
The difference between these two velocity vectors introduce a change in plane from
one transfer to the other. This requires that the spacecraft generates some thrust so that
the required change of plane is achieved. This energy will be taken into account by
adding it to the launch energy objective. Thus, the departure date, .S swing-by planets,
and (S + 1) transfer times are the variables for an optimization problem.

For the swing-by case, the feasibility of an overall transfer from launch till final
arrival planet needs to be checked. It is mentioned above that by Lambert’s approach
the incoming and outgoing velocity vectors of each swing-by planet can be computed
for a given set transfer time values of each pair of successive planets. In order to have
the overall transfer feasible, the difference between the incoming and outgoing speed
(Jv;"| and |v;"|) of every swing-by planet must be as small as possible. In practice, we
construct one equality constraint for each swing-by planet:

o | =l [ =0, i=12...,85. @

Since the above two velocities are computed from two consecutive transfer times (¢;—1
and t;), these transfer times can be adjusted so that the above equality constraint is
met. Thus, for S swing-by planets, we shall have .S such equality constraints involving
(S + 1) speed values. This gives us some flexibility of choosing the speed values for a
feasible overall transfer. However, there is a difficulty with this approach.

Recall that in the Lambert’s approach, the velocity and location of spacecraft at two
participating planets are the outcome and the departure date and transfer time are input
parameters. Thus, by adjusting (S + 1) transfer time values and using the Lambert’s
approach S times (one for each transfer), we can try to come up with a set of (S + 1)
velocity vectors which would satisfy all .S equality constraints mentioned above. To
convert the above problem into a root-finding problem, we introduce another equality
constraint involving the altitude (h;) of the spacecraft at the first swing-by planet. For
the first swing-by planet, we introduce the following equality constraint:

hi —hd =0, 2

where h{ is the desired altitude of the first swing-by planet. For all other swing-by plan-
ets, ideally we should ensure that the altitude is positive, but in this study we consider
negative altitude solutions as well by assuming them to be ‘powered swing-bys’. We
add an equivalent energy component in the launch velocity to take into account of not
colliding with the swing-by planet.

For a given solution during optimization involving departure time and (S+1) trans-
fer times with known swing-by planets, we first attempt to investigate if the solution
constitutes a feasible trajectory from departure planet to the destination planet through
swing-by planets. If yes, we compute the overall transfer time and the required launch
velocity as two objective values. In this case, all the above constraints are satisfied.
Otherwise (when one or more of the above constraints are not satisfied), we attempt
to repair the given solution by solving the root-finding problem using Newton-Raphson



method involving (S'+ 1) variables (transfer times) and equations. The obtained transfer
times will be, in general, different from what they were on the original solution. Then,
we replace the original transfer time values with the calculated transfer time values
which will make the solution feasible. If the calculated transfer time values are within
the given lower and upper bounds of transfer time values, we accept the solution and
compute the objective values, otherwise we declare the solution infeasible.

3.3 Handling Using NSGA-II

First, we discuss the representation scheme for the decision variables within the NSGA-
11 framework [7]. We fix a maximum of three swing-by planets, thereby leaving us with
four options: (i) direct flight (no swing-by), (ii) one planet swing-by, (iii) two planet
swing-by and (iv) three planet swing-by. We use a two-bit substring for representing
these four options with 00, 01, 10 and 11, respectively. Thereafter, we have three
substrings of three bits each. Each three-bit substring represents a swing-by planet (one
of the first eight planets of the solar system coded as 000 : Mercury, 001 : Venus, 010 :
Earth, etc. Depending on the first two-bit substring dictating the number of swing-by
planets we pick the corresponding planets from the string. These 2 + 3 x 3 or 11-bit
strings give us information about which and how many planets are used in the trajectory
determination.

The next set of 4 variables are coded as real-valued variables and represent transfer
times between departure planet to first swing-by planet, first to second swing-by planet,
second to third swing-by planet and third swing-by to arrival planet. Here again, de-
pending on the number of swing-by planets (S) dictated by the first two-bit substring,
we consider only the first (S + 1) transfer times. A typical NSGA-I1I solution may look
like the following:

10 000 100 101 16/6/2005 124 205 580 425

The solution signifies that there are two swing-by planets and they are the first planet
(Mercury) and fifth planet (Jupiter) between departure and arrival planets (need not be
represented in NSGA-II, as they are fixed for all feasible solutions). Thus, we ignore
the third swing-by planet mentioned in the solution. The next decision variable is the

departure date (16 June 2005). This date is actually represented using the Julian day

(which is an integer value). The next four real-valued values are transfer times and we

only pick the first three values as the transfer time between the departure and the first
swing-by planet and so on. Once again, the transfer time of 425 is a useless parameter

for this solution, since only two swing-bys are considered dictated by the first two-bit
substring 10.

In the case of direct transfers, only two variables (the departure date and the first
real-parameter value indicating the transfer time) are used in the evaluation procedure.
Thus for a single-planet swing-by six, for a two-planet swing-by eight and for three-
planet swing-by all ten variables are to be considered.

Staring with the departure date and transfer time values in a NSGA-II string, in-
coming and outgoing speed values are calculated using Lambert’s approach for each
transfer. The transfer time values and the altitude of the first swing-by planet are ad-
justed by using the Newton-Raphson method till the equality constraints are satisfied



Table 1. Earth-Venus-Mercury trajectories using GOSpel and exhaustive search.

Exhaustive Search| GOSpel
Earth Departure Date |(mm/dd/yy) 08/05/02 08/05/02
Venus Swing-By Date|(mm/dd/yy) 12/05/02 12/05/02
Mercury Arrival Date [(mm/dd/yy) 02/13/03 02/07/03

Altitude at Venus (km) -938.9 -978.84
Total Time (Days) 192 186
Launch Velocity (kmfs) 2.79 2.78

using a small e value. Thereafter, the original transfer time values are replaced with
the ones computed using the Newton-Raphson method. Objective values are then com-
puted for the solution. Variable bounds on transfer times are checked and any violation
is assigned as the “‘constraint violation’ of the solution and the solution is declared in-
feasible.

With the above evaluation scheme, the NSGA-I1I procedure considers a population
of solutions and emphasizes feasible over infeasible solutions, non-dominated solutions
over dominated solutions and less-crowded solutions over crowded solutions. For de-
tails of NSGA-II procedure, readers are encouraged to refer [7].

We combine the evaluation scheme with NSGA-I1 and develop a user-friendly soft-
ware for practice. The GA Optimized Spacecraft Launcher (GOSpel) software is capa-
ble of handling the following features:

— An option of direct or one to three swing-bys individually,

— An option of simultaneous consideration of direct or to a maximum of three planet
swing-bys.

— A true optimization varying departure date over a large launch window as a real-
valued parameter (and not with a finite step of one full day, as used in many com-
mercial softwares)

— An option of flyby out of arrival planet or orbital around the arrival planet

— With an interactive and GUI-based window system of providing various options
about departure planet, swing-by planets (if desired) and arrival planets, NSGA-II
parameter update window and altitude constraint update window.

4 Proof-of-Principle Results

To demonstrate the correctness of our implementation of the trajectory optimization
procedure and evaluation of solutions, we first apply our developed code to a number
of known missions, taken from the web and literature. The comparison of our obtained
solutions with those computed by other means is then performed.

4.1 Earth-Venus-Mercury Mission



First, we consider a Earth-to-
Mercury mission with a possible 300 |
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swing-by from Venus. This prob- Svg;gﬂ&
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the launch possibility and corre-
sponding launch velocity needed
for the mission to Mercury via
Venus was calculated with a step
size of one day for departure.
The best solution found is shown !
in Table 1. To validate our pro- 0 5 10 15 20 25
cedure, we use GOSpel during Launch Vel ocity (kmis)
this two-year departure window

to find Pareto-optimal solution for

the minimization of launch veloc- Fig.1. Trade-off solutions for the Earth-Venus-
ity and time of flight. We use the Mercury mission using GOSpel.

option for using one or no swing-by and the option of an orbital motion to the destina-
tion planet. A population of size 200 and a maximum generation of 200 are fixed. The
GOSpel software uses the SBX operator with p. = 0.9 and n. = 10 and the polyno-
mial mutation operator with p,,, = 1/n and n,, = 20. Figure 1 shows the corresponding
frontier. It is interesting to note that there are two disconnected fronts: (i) trajectories
with swing-by and (ii) trajectories with direct transfer. For minimum launch velocity
trajectories, it is recommended to use the swing-by from Venus and for minimum time
trajectories it is better to go straight to Mercury from Earth. Table 1 shows a closest so-
lution to the exhaustively searched solution for the minimum launch velocity objective.
The GOSpel solution is closer to the previously-reported solution. In fact, since no fi-
nite step is used in GOSpel, a better launch-velocity solution than the exhaustive search
method (with a step size of one day) is found. The best launch velocity solution de-
mands a slightly smaller value than the exhaustive search solution. The matching of our
results with the exhaustive search solution by an independent study provides confidence
to our developed software.

Before we leave this proof-of-principle study, we also plot the departure, swing-
by, and arrival dates of all obtained solutions by GOSpel. Figure 1 marks the Julian
dates of these trajectories (values marked on the right axis). The following features of
trajectories are gathered:
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1. All Pareto-optimal missions must start at the same date: 5 October 2002, irrespec-
tive of whether the mission involves a swing-by or not.

2. With an increase in launch velocity requirement, the arrival becomes quicker. It
seems that if departed from Earth on 5 October 2002, there exist a number of plau-
sible missions trading-off launch velocity and travel time.

The use of an evolutionary multi-objective optimization algorithm to find a set of Pareto-
optimal solutions allows one to look for such important information about the solutions.



Before executing this study, it would be difficult to predict that on a two-year long span
of plausible departure dates, there exist one particular day (5 October 2002) which
opens up enormous and optimal opportunities of several launching.

4.2 Earth-Mars-Venus-Mercury Mission

Table 2. Earth-Mars-Venus-Mercury trajectories.
Next, we apply GOSpel and pates are in mm/dd/yy.
compare its results with another

study performed by a commer- VSSC | GOSpel
cial software, Swing-by Calcula- Earth Departure Date 08/14/05[08/14/05
tor (SC) [3] on a mission involv- Mars swing-by Date 10/26/05|10/26/05
ing two planet swing-bys: Mars Mars: voo incoming (km/s) |15.9737|15.9465
and Venus. The destination planet Mars: Voo outgoing (km/s) |15.7722|15.9465

Venus swing-by Date 02/01/06(01/31/06

is Mercury and the departure win-

dow is kept within 1 Jan 2005 for \Venus: vse incoming (km/s)| 8.7439 | 8.9958

\Venus: v outgoing (km/s) | 8.9459 | 8.9958

a year. Table 2 shows the obtained Mercury Arrival 03/31/06|03/31/06
SC result obtained for minimum Flight Time (Days) 229 |228.326
time of flight. The dates of arrival Launch Velocity (km/s) 11.176 | 11.145

at Mars and Venus and the corre-
sponding arrival and departure velocities are also shown in the table. The GOSpel solu-
tions are shown in Figure 2 for both objectives. In this case, we allow only two-planet
swing-by trajectories to be considered. Thus, direct or one-planet swing-by option is
not considered. All solutions found involve two swing-bys, but providing a trade-off be-
tween time of flight and energy requirement. The solution on the Pareto-optimal front
closest to the SC solution is tabulated in Table 2. The comparison of both solutions
again indicates the accuracy of GOSpel procedure.
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Fig.2. Trade-off solutions for the Earth-

Mars-Venus-Mercury mission using GOSpel. Fig.3. Trajectory for the specific Earth-

Mars-Venus-Mercury mission shown in the
table.

Interestingly, the SC solution does not seem to be the minimum-time solution. The
figure shows that there exists a solution with a smaller time of flight. Figure 3 shows



the trajectory of the two-planet swing-by solution of the solution shown in the table.
The travel from earth to Mars (outward) and then back to Venus (inward) and finally to
Mercury is interesting.

4.3 Direct Transfer

Next, we consider a direct transfer scenario from Earth to Mars. For this purpose, we use
solutions from two softwares Numerit and SC. The departure dates within 1 June 2013
to 1 June 2014 are considered.
This scenario is an exam-
ple test problem reported in
users’ manual of the NU-

Table 3. Earth-Mars direct transfer trajectories.

MERIT software. Both Nu- NUMERIT| SC GOSpel

merit and SC softwares use Min. Vel.|Min. Time

a grid search strategy in |Departure Date 01/10/14 |12/05/13|12/06/13 | 03/20/14

which solutions at a step of |Arrival Date 08/19/14 |09/26/14|09/27/14 | 05/10/14
- : Flight Time (Days)| 221.29 | 295 |295.132| 50

one day is considered one at

a time);nd the solution hav- Launch Vel. (km/s) 7.65 6.2436 | 6.244 | 41.7006

ing the minimum launch velocity is found.
The table shows that SC solution is better than the Numerit solution. Next, we apply
GOSpel with a population size of 100 and run till 300 generations. The two extreme
solutions are shown in table. It is interesting to note that the minimum launch velocity
solution obtained by GOSpel is almost similar to that obtained by SC. Both Numerit
and SC do not allow to find a solution corresponding to minimum time of flight. The
minimum time solution obtained by GOSpel takes only 50 days to reach Mars from
Earth, by requiring about seven times more launch velocity.

Y — 2570406 Figure 4 shows the Pareto-optimal fron-
f rece-off ot | e tier obtained by GOSpel. The arrival and
5 1 5 assg0405 departure times for each of these solutions
1 assaseros are also shown in the same figure. In this
case, the departure date gradually increases
= pusersercs towards the upper limit for a quicker time of
1y assrescs flight. Missions starting in January of 2014
[ results in smaller energy requirements but
Tt | e at the expense of flight time and missions
ol o e, | . inFebruary/March of 2014 requires smaller
PR vy " time of flight but at the expense of larger
energy requirement. Such is a trade-off of-
ten occurs in interplanetary missions and the
Fig. 4. Trade-off solutions for the Earth-  studies of this paper amply demonstrates the
Mars direct mission using GOSpel. ability of GOSpel in finding a number of
them. It then becomes a matter of higher-
level decision-making task to choose one solution for implementation, which we do
not discuss in this paper.
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4.4 Cassini Mission

Next, we a mission hav-
ing three swing-by plan-
ets. We found that the

Table 4. Earth-Venus-Venus-Earth-Jupiter transfer (part of
Cassini mission) using SC and GOSpel.

Cassini-Huygens mission Web [1] [GOSpel | SC
has four swing-bys [1]. Departure Date 10/15/97|10/15/97|10/29/97
But since our software Venus Date 04/26/98|05/19/98|05/11/98
is limited to a maximum Earth-to-Venus Time (Days) |193 216.318| 194
of three swing-by plan- Venus Date 06/24/99|06/22/99|06/26/99
ets, we has the first three Venus-to-Venus Time (Days) (424 399 411
of four swing-by planets Earth Date _ 08/18/99|08/17/99(08/18/99
in this study. The mis- Ven_us-to-E_arth Time (Days) |55 55.940 53
Jupiter Arrival Date 12/30/00|12/22/00|02/02/01

:I'OS t);pe 1S tsetthto dbet.a Earth-to-Jupiter Time (Days)|500 493.46 534
yoy type at the destl- e Fiight Time (Days)  [1172 [ 1164.72| 1192

nation planet. Thus, the |} 5nch vel. (kmis) NA 6.805 | 4.46
complete mission for the

case is departure from Earth, swing-by from Venus, another swing-by from Venus, third
swing-by from Earth and the final arrival to Jupiter. A typical trajectory (taken from [1]),
GOSpel and SC solutions are compared in Table 4. From the table, it can be observed
that solution found by GOSpel and SC are non-dominated GOSpel solution but time
taken are more close to actual mission dates.

5 Earth-Mercury Mission

Here, we consider three different optimization studies: (i) direct (ii) swing-by from
Venus and (iii) optional direct or Venus swing-by. The departure time window consid-
ered here is 21/9/2002 till 22/9/2002 (just a day). 200 population members are used for
200 generations.
Figure 5 shows the Pareto-optimal front ob- T B
tained by a direct transfer. The reason for a 140 i  oie .
break in the continuity in the Pareto-optimal

front is due to the availability of two different
opportunity windows for an optimal mission.
Next, we apply GOSpel on the same depar-
ture date window and obtain solutions with

130 -

2or Direct

110 -

Total Flight Time (Days)

I
90 Direct  © [

forced swing-bys. Figure 5 also shows the Suinaby 3
Pareto-optimal solutions for this case. Due or Direct &, |
to the swing-by option, the required launch 0% s 1 12z 12 15 1
velocity is much smaller than that obtained Launch Velocity (km’s)

with the direct transfer.

Finally, we consider both options (direct .
and swing-by) in GOSpel and obtain a com- Fig.5. Comparison of three transfer
bined Pareto-optimal front. Interestingly, this  ¢ases for Earth-Venus-Mercury mis-
front is found to be identical to a combined S'ON
non-dominated front of the two fronts obtained earlier. The Pareto front is divided into



two discrete parts. One part belong to flyby cases where swing-by planet is Venus. The
other part shows direct transfer. From Figure 5, it can be said that there exists a clear
conflict, whether to take a swing-by or not. If swing-by is taken then, smaller launch
velocity is required, whereas with direct transfer the flight time is less. The figure shows
that a saving of about 3 km/s launch velocity occurs between the two type of transfers
with a mission of 130 days.

6 Conclusions

In this paper, we have discussed the development of a multi-objective optimization soft-
ware (GOSpel) for finding optimal interplanetary trajectories between any two planets
for a dual minimization of travel time and launch velocity which is directly related
to the fuel consumption. The software is capable of considering a maximum of three
swing-by of intermediate planets to assist in reducing the fuel consumption. The use
Pareto-optimality concept and genetic algorithms has demonstrated that the proposed
approach can be used to find a set of trade-off solutions which match with the existing
solutions of known missions. Thereafter, the developed code is applied to a number
of complex case studies and interesting solutions have been obtained. This paper has
amply shown the usefulness and flexibility of such a code for real-time application of
EMO for interplanetary trajectory optimization.
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