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Abstract— Most real-world search and optimization problems
involve multiple conflicting objectives and results in a Pareto-
optimal set. Various multi-objective optimization algorithms
have been proposed for solving such problems with the goals of
finding as many trade-off solutions as possible and maintaining
diversity among them. Since last decade, Evolutionary Multi-
objective Optimization (EMO) algorithms have been applied
successfully to various test and real-world optimization prob-
lems. These population based algorithms provide a diverse set
of non-dominated solutions. The obtained non-dominated set is
close to the true Pareto-optimal front but it’s convergence to the
true Pareto-optimal front is not guaranteed. Hence to ensure
the same, a local search method using classical algorithm can
be applied.

In the present work, SBX based NSGA-II is used as a
population based approach and the sequential quadratic pro-
gramming (SQP) method is used as a local search procedure.
This hybridization of evolutionary and classical algorithms
approach provides a confidence of converging near to the
true Pareto-optimal set with a good diversity. The proposed
procedure is successfully applied to 13 test problems consisting
two, three and five objectives. The obtained results validate our
motivation of hybridizing evolutionary and classical methods.

I. INTRODUCTION

Real-world optimization and test problems deal with si-
multaneous optimization of objectives. The outcome of such
an optimization problem is a set of compromised solutions of
different objectives. These are known as ‘Pareto-optimal’ so-
lutions [1]. Among the different multi-objective algorithms,
it is observed that an elitist non-dominated sorting algorithm
(popularly known as NSGA-II) can converge near to the
true Pareto-optimal front as well as maintain the diversity
of population on the Pareto-optimal front [2], [4]. The
non-dominated solutions obtained from NSGA-II can be
improved by local search technique using classical procedure.

This paper is prepared for the special session devoted to
performance assessment and competition of different multi-
objective algorithms on a set of 13 test problems [6]. In
this paper, we employ a population-based optimization al-
gorithm (NSGA-II) as a global optimizer and the sequential
quadratic programming (SQP) for locally improving the non-
dominated set of solutions. Most of the classical optimization
methods are designed to solve a derived single-objective
optimization problem in order to handle a multi-objective
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optimization problem. The procedure needs to be scalarized
to a single objective problem. In this work, we have used an
ε-constraint procedure [1] to convert multiple objectives to a
single-objective optimization problem.

The test problems consist of various properties in terms
of number of objectives (separability and deception), uni-
modality and multi-modality, convexity and concavity, and
with complex geometry, and others. It is our intuition that
to solve such wide variety of test problems with a reason-
able level of satisfaction, a hybrid approach consisting of
evolutionary and classical algorithms, has to be used. In the
following section, we describe the description of algorithm
and proposed procedure. In Section III and IV, we present
the parameters setting and simulation results in tabular and
graphical forms respectively and the paper is concluded in
section V.

II. DESCRIPTION OF THE PROPOSED PROCEDURE

A. Elitist Non-dominated Sorting Genetic Algorithm

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-
II) uses an elite-preserving strategy as well as an explicit
diversity preserving mechanism [4]. The offspring popu-
lation Qt is first created by using the parent population
Pt. Then, the two population are combined together and a
non-dominated sorting is performed. To preserve diversity,
a density metric called Crowding Distance is used. The
different steps of the algorithm are described below:

Step 1: A random population is initialized.
Step 2: Objective functions for all objectives and constraint

are evaluated.
Step 3: Front ranking of the population is done based on

the dominance criteria.
Step 4: Crowding distance is calculated.
Step 5: Selection is performed using crowded binary tour-

nament selection operator.
Step 6: Crossover and mutation operators are applied to

generate an offspring population.
Step 7: Parent and offspring populations are combined and

a non-dominated sorting is done.
Step 8: The parent population is replaced by the best

members of the combined population.
In Step 3, Each solution is assigned a non-domination rank (a
smaller rank to a better non-dominated front). In Step 4, for
each i-th solution of a particular front, density of solutions
in its surrounding is estimated by taking average distance of
two solutions on its either side along each of the objective[4].
This average distance is called the crowding distance.



Selection is done based on the front rank of an individual
and for solutions having same front rank, selection is done
on the basis of their crowding distances (larger, the better).
To create new offspring, simulated binary crossover (SBX)
operator [3] and polynomial mutation operator [5] are used.
In Step 8, initially solutions of better fronts replace the
parent population. When it is not possible to accommodate all
solutions of a particular front, that front is sorted on the basis
of crowding distance and as many individuals are selected
on the basis of higher crowding distance, which makes the
population size of the new population same as the previous
population.

Inspiration of using the SBX operator arrives from the
property of creating offsprings in proportion to the distance
between two parent solutions. The SBX operator biases
solutions near each parent more favorably than solutions
away from the parents [3]. In the present work, NSGA-II is
used as a population based algorithm which helps in finding
a non-dominated set of solutions with a good diversity.

B. Sequential Quadratic Programming

Sequential Quadratic programming (SQP) method uses
a quadratic model for the objective function and a linear
model for constraint(s) [7]. A nonlinear program in which
the objective function is quadratic and constraints are linear
is called a quadratic program (QP). SQP method solves an
approximated QP at each iteration. The gradients are numer-
ically calculated using forward finite difference technique. In
this study, the ε-constraint method is used to convert multiple
objectives to a single-objective optimization problem, follow-
ing which SQP is applied to the single-objective problem.
Here the SQP is employed as a local search procedure. Steps
of the proposed algorithm are described below:

1) Random population is initialized.
2) NSGA-II is applied to the initial population.
3) After finding a diverse set of non-dominated solutions

of NSGA-II, the SQP is employed on these solutions.
4) Solutions obtained from SQP, are again given to

NSGA-II to ensure non-domination and for achieving
any further improvement in terms of diversity among
them in the final iteration.

Test problems with M = 2 and M = 3 objectives are
solved with the above procedure. For M = 5 objectives,
the obtained SQP solutions are supplied to NSGA-II and
then, an archive of non-dominated solutions is created during
the final three iterations of NSGA-II to make sure that an
adequate number of non-dominated solutions are obtained,
as demanded in [6].

III. PARAMETERS SETTING

A. Test Suite

The performance of the hybrid algorithm is tested on
a set of 19 benchmark problems [6], which include seven
two-objective test problems, six three-objective and six five-
objective test problems.

B. PC Configuration

• System: Mandrake Linux 10.1
• CPU: P-IV 2.8 GHz
• RAM: 1 GB
• Language: ANSI-C
• Compiler Used: GCC version-3.2.2

C. Parameters Setting for NSGA-II

1) For M = 2 objective problems: Population size (N) =
100; Probability of crossover (Pc) = 0.9; Probability
of mutation (Pm) = 0.033; Distribution index for
crossover (ηc) = 5; Distribution index for mutation
(ηm) = 15.

2) For M = 3 objective problems: Population size (N) =
150; Probability of crossover (Pc) = 0.9; Probability
of mutation (Pm) = 0.033; Distribution index for
crossover (ηc) = 15; Distribution index for mutation
(ηm) = 10.

3) For M = 5 objective problems: Population size (N) =
300; Probability of crossover (Pc) = 0.9; Probability
of mutation (Pm) = 0.033; Distribution index for
crossover (ηc) = 15; Distribution index for mutation
ηm = 15.

D. Parameters Setting and Termination Criteria of SQP

1) Norm of descent direction: ‖ d ‖≤ ε; where ε = 10−9

or
2) Maximum number of iterations allowed (τ ): 50, 50

and 20 for two, three and five objective problems
respectively.

As soon as, any of the above criteria of SQP is satisfied, it
terminates and the solutions are supplied back to NSGA-II.
Terminating criteria of hybrid algorithm is based on the total
number of function evaluations taken by NSGA-II including
its final iteration(s) and by SQP method. It should be less
or equal to the maximum FES allowed (5(105)) [6]. We
calculate the number of FES required by SQP approximately
as follows. For n number of variables, SQP requires on
an average (n + 2) number of function evaluations in each
iteration to calculate gradient and objective function values.
Since a maximum of τ iterations are allowed, it will take
τ × (n + 2) number of FES for each solution and for N
non-dominated points, total SQP function evaluations are
τ ×N(n + 2). Thus, the function evaluations left to NSGA-
II is (5(105) − τ × N(n + 2)). On the basis of above
calculations, the number of generations allowed by NSGA-II
is (5(105) − τ × N(n + 2))/N . For example, for S ZDT1
problem with n = 30, N = 100, and τ = 50, the number
of generations allowed for NSGA-II procedure is 3, 400. It
is clear that the results shown at 5(105) FES used SQP
procedure.

As an initial parameter study, we have chosen 4 different
values of ηc (range: 2–20) and ηm (range: 5–50) and three
different values of τ (range: 20–50). A parametric study
on nine of 19 test problems was performed to find good
combinations of ηc, ηm and τ parameters. We have chosen



three test problems with 2, 3 and 5-objective test problems.
A total of (4 × 4 × 3 × 9) or 432 runs were executed with
5(105) function evaluations (FES) for each run. Hence, a
maximum of 2.16(108) FES were performed for tuning the
parameters.

IV. SIMULATION RESULTS

A. R, Hypervolume and Covered Sets Indicators

First, we show the R-indicator values, which computes
difference between the maximum values of the augmented
Tchebycheff utility function of the supplied reference set and
our obtained solutions. A negative R-indicator means a better
obtained utility function value than that of the reference
set. A value close to zero means almost similar utility
function value between reference and obtained solutions. The
results obtained are presented in Tables I, II, III, IV, V, VI
and VII. 25 runs are performed for each test problem and
the best, median and worst results of R and IH indicators
are presented along with these mean and standard deviation
values.

First three tables show the values of R indicator at 5(103),
5(104) and 5(105) FES. Tables I, II and III indicate that
the algorithm converges at 5(104) FES and SQP helps in
improving the solution locally. In case of S ZDT1, S ZDT2
and S ZDT4, good improvement in R-indicator values can
be observed after the local search. It is also observed that 11
out of 19 problems, a negative R-indicator value is obtained
after 5(105) FES, meaning that a better utility function value
than the supplied reference set is found by our procedure. In
the other eight problems, the R-indicator is very close to
zero, meaning that a similar utility function value to that of
the reference set is found. On the basis of R-indicator values,
the proposed algorithm has performed well for the given test
suite.

Tables V to VII show hypervolume indicator IH at 5(103),
5(104) and 5(105) FES. A lower value of IH indicator
corresponds to a better approximated set. IH indicators show
better hypervolume values of our hybrid algorithm than the
supplied reference set in nine out of 19 problems after 5(105)
FES. Except both three and five-objective WFG1 problems,
in eight other problems, the IH indicator value is close to
zero.

Table IV shows the covered set indicator values for the
SYMPART test problem only. Best, median, worst, mean and
standard deviation values at 5(103), 5(104) and 5(105) FES
are presented.

B. Attainment Surface Plots

Attainment surface signifies a combination of both con-
vergence and diversity of obtained solutions. Figures 1, 2, 3
and 4 show 0%, 50% and 100% attainment surfaces after
5(105) FES along with Pareto front. Figures 5, 6 and 7 show
the 50% attainment surface after 5(105) FES. It can be ob-
served from the plots that for all two objectives test problems
except R ZDT4 and S ZDT6, the proposed procedure shows
excellent convergence and spread. Good attainment surfaces

for the shifted DTLZ problems are also obtained, whereas
performances on rotated DTLZ and WFG1 problems are
not quite satisfactory. In the case of S DTLZ3, WFG8 and
WFG9 problems, the attainment surface plots depict a partial
convergence and diversity. When the range for each objective
is fixed between [1, 2.5] for S DTLZ3 problem, the 50%
attainment surface plot shows a clear Pareto-optimal front,
indicating that the proposed procedure finds an adequate set
of solutions.

Figure 8 shows pair-wise interaction among five-objective
problems for WFG8 (above diagonal) and WFG9 (lower
diagonal) problems. The function values are normalized in
the range [1, 2] using lower and upper bounds given in the
reference data set [6]. Median approximation set with respect
to R-indicator at 5(105) is used for plotting the same. Definite
structures between objective pairs are visible from the plots.

C. Algorithm Complexity

Table VIII shows the complexity of the algorithm. T1 =
(
∑N

i=1 t1i)/N , where t1i is the computing time for 10,000
function evaluations for problem i and N is the total number
of test problems. Here N = 19.

T2 = (
∑N

i=1 t2i)/N , where t2i is the computing time for
the algorithm with 10,000 function evaluations for problem
i. Time complexity of the hybrid algorithm is 2.9295 which
depicts fast convergence capability.

V. CONCLUSIONS

In this paper, we have presented a hybrid approach con-
sisting of evolutionary and classical algorithms. A state-
of-the-art evolutionary multi-objective algorithm (NSGA-
II) and a local search procedure (SQP) have been put
together. The performance of the algorithm has been tested
on 19 test problems and assessment of performance has
been done on the basis of R-indicator, IH -indicator, covered
sets indicators, and the attainment surface plots. The pro-
posed hybrid procedure has shown a good performance for
problems OKA2, SYMPART, S ZDT1, S ZDT2, S ZDT4,
S DTLZ2 and S DTLZ3. For test problems S ZDT6, WFG8
and WFG9, the procedure has exhibited a fair performance,
whereas for problems WFG1, R ZDT4 and R DTLZ2 the
performance has been reasonably well. Even in case of higher
number of objectives, the proposed procedure has shown
a good convergence and diversity. The time complexity
estimate has revealed a fast convergence property of the
proposed procedure. In this paper, we have introduced a fast
and efficient hybrid multi-objective optimization procedure
which has solved a wide variety of problems with a rea-
sonable satisfaction. We are pursuing further investigation
on problems the proposed procedure did not perform to our
satisfaction.
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TABLE I

THE RESULTS FOR R-INDICATOR ON TEST PROBLEMS 1-7 FOR TWO-OBJECTIVE PROBLEMS.

FES 1.OKA2 2. SYMPART 3. S ZDT1 4. S ZDT2 5. S ZDT4 6. R ZDT4 7. S ZDT6
Best -0.1059e-2 0.8908e-3 0.1077e-1 0.3019e-1 0.3419e-1 0.5902e-2 0.1038e-1

Median -0.3735e-3 0.1538e-2 0.1343e-1 0.4382e-1 0.4147e-1 0.9405e-2 0.1118e-1
5 × 10

3 Worst 0.1854e-1 0.2244e-2 0.1870e-1 0.7153e-1 0.5387e-1 0.1724e-1 0.1180e-1
Mean 0.8095e-3 0.1543e-2 0.1349e-1 0.4809e-1 0.4164e-1 0.1034e-1 0.1111e-1
Std 0.3947e-2 0.3519e-3 0.2097e-2 0.1090e-1 0.4301e-2 0.3229e-2 0.4161e-2
Best -0.1065e-2 0.8419e-4 0.7988e-4 -0.3617e-4 0.3230e-3 0.7503e-3 0.2002e-1

Median -0.1064e-2 0.1380e-3 0.1096e-3 0.3548e-4 0.8402e-3 0.3062e-2 0.2561e-1
5 × 10

4 Worst -0.1063e-2 0.2035e-3 0.1727e-3 0.1752e-3 0.1650e-2 0.5635e-2 0.2942e-1
Mean -0.1064e-2 0.1449e-3 0.1143e-3 0.4377e-4 0.8775e-3 0.2947e-2 0.2522e-1
Std 0.3121e-6 0.3010e-4 0.2319e-4 0.4200e-4 0.3112e-3 0.1453e-2 0.1923e-2
Best -0.1065e-2 0.1408e-4 -0.4727e-7 -0.2062e-3 -0.1410e-8 0.3253e-3 0.8514e-2

Median -0.1065e-2 0.1902e-4 0.1967e-6 -0.2061e-3 0.2866e-7 0.1908e-2 0.1191e-1
5(10

5) Worst -0.1065e-2 0.2923e-4 0.7923e-6 -0.2057e-3 0.1134e-6 0.5039e-2 0.1417e-1
Mean -0.1065e-2 0.2024e-4 0.2092e-6 -0.2061e-3 0.3036e-7 0.2126e-2 0.1191e-1
Std 0.0 0.4737e-5 0.2172e-6 0.1227e-6 0.2400e-7 0.1304e-2 0.1670e-2

TABLE II

THE RESULTS FOR R-INDICATOR ON TEST PROBLEMS 8-13 FOR THREE-OBJECTIVE PROBLEMS.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9
Best 0.4213e-4 0.3726e-3 0.1931e-3 0.7293e-1 0.1323e-2 -0.8088e-2

Median 0.6445e-4 0.4535e-3 0.2320e-3 0.7428e-1 0.3666e-2 -0.6207e-2
5 × 10

3 Worst 0.8864e-4 0.5499e-3 0.2641e-3 0.7659e-1 0.6047e-2 0.1104e-2
Mean 0.6528e-4 0.4522e-3 0.2320e-3 0.7457e-1 0.3667e-2 -0.5182e-2
Std 0.1152e-4 0.4624e-4 0.1457e-4 0.1003e-2 0.1225e-2 0.2689e-2
Best 0.6797e-4 0.1148e-3 0.1062e-4 0.5026e-1 -0.8896e-2 -0.1291e-1

Median 0.9662e-4 0.1466e-3 0.1744e-4 0.5434e-1 -0.7800e-2 -0.9202e-2
5 × 10

4 Worst 0.1246e-3 0.1710e-3 0.2644e-4 0.5735e-1 -0.5940e-2 -0.9090e-2
Mean 0.9901e-4 0.1422e-3 0.1775e-4 0.5364e-1 -0.7643e-2 -0.9790e-2
Std 0.1563e-4 0.1639e-4 0.4404e-5 0.2865e-2 0.7587e-3 0.1260e-2
Best 0.7081e-4 0.1348e-4 0.1354e-7 0.1543e-1 -0.1280e-1 -0.1420e-1

Median 0.1014e-3 0.2127e-4 0.5996e-7 0.2326e-1 -0.1249e-1 -0.9279e-2
5(10

5) Worst 0.1194e-3 0.3077e-4 0.1483e-6 0.2957e-1 -0.1176e-1 -0.9242e-2
Mean 0.9541e-4 0.2137e-4 0.6402e-7 0.2254e-1 -0.1238e-1 -0.1021e-1
Std 0.1481e-4 0.4241e-5 0.3266e-7 0.3607e-2 0.2853e-3 0.1899e-2

TABLE III

THE RESULTS FOR R-INDICATOR ON TEST PROBLEMS 8-13 FOR FIVE-OBJECTIVE PROBLEMS.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9
Best -0.9778e-5 0.1183e-4 -0.1391e-7 0.6185e-1 -0.3134e-3 -0.2922e-4

Median -0.7284e-5 0.1985e-4 0.2956e-5 0.6423e-1 0.2893e-2 0.1677e-2
5 × 10

3 Worst 0.5061e-4 0.3300e-4 0.1777e-4 0.6591e-1 0.4856e-2 0.5751e-2
Mean 0.2352e-5 0.2134e-4 0.5304e-5 0.6398e-1 0.2796e-2 0.1964e-2
Std 0.1779e-4 0.6508e-5 0.5494e-5 0.1096e-2 0.1178e-2 0.1213e-2
Best -0.9820e-5 -0.1162e-4 -0.1473e-7 0.4820e-1 -0.9025e-2 -0.2232e-2

Median -0.9820e-5 -0.9776e-5 -0.1470e-7 0.4971e-1 -0.7763e-2 -0.2084e-2
5 × 10

4 Worst -0.3798e-5 0.4056e-4 -0.1182e-7 0.5066e-1 -0.7142e-2 -0.1870e-2
Mean -0.9508e-5 -0.5551e-5 -0.1432e-7 0.4955e-1 -0.7838e-2 -0.2089e-2
Std 0.1200e-6 0.1165e-4 0.7007e-9 0.6795e-3 0.4335e-3 0.7862e-4
Best -0.9820e-5 -0.1186e-4 -0.1473e-7 0.3408e-1 -0.1239e-1 -0.2337e-2

Median 0.3086e-5 -0.1186e-4 -0.1473e-7 0.3727e-1 -0.1168e-1 -0.2320e-2
5(10

5) Worst 0.2175e-4 -0.1135e-4 -0.1473e-7 0.3980e-1 -0.1117e-1 -0.2253e-2
Mean 0.2811e-5 -0.1183e-4 -0.1473e-7 0.3694e-1 -0.1181e-1 -0.2253e-2
Std 0.1273e-4 0.1097e-6 0.0 0.1727e-2 0.3587e-3 0.1895e-4

TABLE IV

THE RESULTS FOR COVERED SETS FOR TEST PROBLEM SYMPART.

FES 5 × 10
3

5 × 10
4

5(10
5)

Best 1.0000e-0 1.0000e-0 1.0000e-0
Median 1.0000e-0 1.0000e-0 1.0000e-0
Worst 1.0000e-0 1.0000e-0 1.0000e-0
Mean 1.0000e-0 1.0000e-0 1.0000e-0
Std 0.0 0.0 0.0



TABLE V

THE RESULTS FOR HYPERVOLUME INDICATOR I
H

ON TEST PROBLEMS 1-7 FOR TWO-OBJECTIVE PROBLEMS.

FES 1.OKA2 2. SYMPART 3. S ZDT1 4. S ZDT2 5. S ZDT4 6. R ZDT4 7. S ZDT6
Best -0.9124e-3 0.2593e-2 0.4323e-1 0.6483e-1 0.1011e-0 0.1771e-1 0.2533e-0

Median 0.1217e-2 0.4457e-2 0.4790e-1 0.9467e-1 0.1241e-0 0.2824e-1 0.2763e-0
5 × 10

3 Worst 0.2625e-1 0.6491e-2 0.6285e-1 0.1453e-0 0.1605e-0 0.5292e-1 0.2916e-0
Mean 0.1968e-2 0.4473e-2 0.4983e-1 0.9915e-1 0.1244e-0 0.3192e-1 0.2741e-0
Std 0.5235e-2 0.1015e-2 0.5287e-2 0.1957e-1 0.1278e-1 0.9994e-2 0.1119e-1
Best -0.1085e-2 0.2503e-3 0.5984e-3 -0.1169e-1 0.8615e-3 0.2377e-2 0.4467e-1

Median -0.1048e-2 0.4089e-3 0.7706e-3 -0.1156e-1 0.2281e-2 0.9371e-2 0.5772e-1
5 × 10

4 Worst -0.9996e-3 0.6012e-3 0.9585e-3 -0.1130e-1 0.4755e-2 0.1698e-1 0.6655e-1
Mean -0.1047e-2 0.4291e-3 0.7811e-3 -0.1156e-1 0.2391e-2 0.9266e-2 0.5677e-1
Std 0.2104e-4 0.8844e-4 0.8364e-4 0.8540e-4 0.9101e-3 0.4095e-2 0.4493e-2
Best -0.1090e-2 0.4457e-4 0.2743e-3 -0.1214e-1 0.1233e-5 0.1471e-2 0.1839e-1

Median -0.1052e-2 0.5944e-4 0.3063e-3 -0.1211e-1 0.1520e-5 0.5727e-2 0.2625e-1
5(10

5) Worst -0.9906e-3 0.9000e-4 0.3748e-3 -0.1207e-1 0.2027e-5 0.1502e-1 0.3121e-1
Mean -0.1047e-2 0.6302e-4 0.3104e-3 -0.1211e-1 0.1507e-5 0.6521e-2 0.2618e-1
Std 0.2217e-4 0.1422e-4 0.2567e-4 0.1430e-4 0.1602e-6 0.3829e-2 0.3618e-2

TABLE VI

THE RESULTS FOR HYPERVOLUME INDICATOR I
H

ON TEST PROBLEMS 8-13 FOR THREE-OBJECTIVE PROBLEMS.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9
Best 0.7192e-3 0.6519e-2 0.2351e-2 0.6476e-0 -0.2597e-0 -0.4135e-1

Median 0.8781e-3 0.1019e-1 0.3618e-2 0.6595e-0 -0.2235e-0 -0.2463e-1
5 × 10

3 Worst 0.1213e-2 0.1457e-1 0.4960e-2 0.6773e-0 -0.1951e-0 0.1555e-1
Mean 0.8817e-3 0.1058e-1 0.3565e-2 0.6603e-0 -0.2238e-0 -0.2242e-1
Std 0.1194e-3 0.2526e-2 0.6222e-3 0.8864e-2 0.1556e-1 0.1687e-1
Best 0.4969e-3 0.3230e-3 0.5142e-6 0.5273e-0 -0.3792e-0 -0.5860e-1

Median 0.1134e-2 0.5792e-3 0.1985e-5 0.5371e-0 -0.3370e-0 -0.4609e-1
5 × 10

4 Worst 0.2286e-2 0.9148e-3 0.8502e-5 0.5464e-0 -0.3075e-0 -0.3337e-1
Mean 0.1116e-2 0.6018e-3 0.2800e-5 0.5360e-0 -0.3405e-0 -0.4615e-1
Std 0.3593e-3 0.1597e-3 0.2169e-5 0.6005e-2 0.1847e-1 0.7021e-2
Best 0.4857e-3 0.2223e-5 0.5884e-11 0.3213e-0 -0.4246e-0 -0.7746e-1

Median 0.1335e-2 0.6243e-5 0.1207e-8 0.4249e-0 -0.3911e-0 -0.4877e-1
5(10

5) Worst 0.1976e-2 0.2564e-4 0.5189e-8 0.4622e-0 -0.3742e-0 -0.3631e-1
Mean 0.1294e-2 0.7885e-5 0.1475e-8 0.4231e-0 -0.3991e-0 -0.5158e-1
Std 0.3796e-3 0.5197e-5 0.1183e-8 0.2736e-1 0.1756e-1 0.1134e-1

TABLE VII

THE RESULTS FOR HYPERVOLUME INDICATOR I
H

ON TEST PROBLEMS 8-13 FOR FIVE-OBJECTIVE PROBLEMS.

FES 8. S DTLZ2 9. R DTLZ2 10. S DTLZ3 11. WFG1 12. WFG8 13. WFG9
Best -0.6328e-5 0.1104e-3 0.1024e-7 0.6818e-0 -0.2454e-0 -0.1845e-0

Median 0.7930e-5 0.1703e-3 0.1459e-4 0.7050e-0 -0.2107e-0 -0.1611e-0
5 × 10

3 Worst 0.1737e-3 0.2991e-3 0.8320e-4 0.7207e-0 -0.1750e-0 -0.1095e-0
Mean 0.3752e-4 0.1878e-3 0.2507e-4 0.7025e-0 -0.2120e-0 -0.1573e-0
Std 0.5447e-4 0.6238e-4 0.2618e-5 0.1054e-1 0.1524e-1 0.1573e-1
Best -0.6815e-5 -0.1805e-3 -0.1776e-14 0.5498e-0 -0.3780e-0 -0.2144e-0

Median -0.6815e-5 -0.1722e-3 0.1998e-14 0.5644e-0 -0.3563e-0 -0.2124e-0
5 × 10

4 Worst -0.5044e-6 -0.1682e-4 0.1464e-8 0.5753e-0 -0.3011e-0 -0.2079e-0
Mean -0.6518e-5 -0.1557e-3 0.5859e-10 0.5629e-0 -0.3498e-0 -0.2124e-0
Std 0.1260e-5 0.3828e-4 0.2928e-9 0.7024e-2 0.1988e-1 0.1375e-2
Best -0.6815e-5 -0.1830e-3 -0.1110e-14 0.4115e-0 -0.4302e-0 -0.2160e-0

Median -0.3104e-6 -0.1830e-3 0.0 0.4415e-0 -0.4209e-0 -0.2153e-0
5(10

5) Worst 0.3992e-4 -0.1829e-3 0.1998e-14 0.4621e-0 -0.3870e-0 -0.2139e-0
Mean 0.5535e-5 -0.1830e-3 0.2042e-15 0.4381e-0 -0.4165e-0 -0.2154e-0
Std 0.1428e-4 0.1363e-7 0.9108e-15 0.1510e-1 0.1375e-1 0.4374e-3

TABLE VIII

COMPUTATIONAL COMPLEXITY.

T1 T2 (T2 − T1)/T1
0.240s 0.9431s 2.9295
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Fig. 8. Upper diagonal plots for WFG8 (M = 5) and lower diagonal plots are for WFG9 (M = 5) with respect to the median approximation set of
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