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Abstract— In this paper a new approach to search for
diverse solutions for a multi-objective problem is presented.
Commonly, a search for solutions for a multi-objective
problem, which is aimed at optimization, results in a set of
Pareto optimal solutions. There are cases where more solutions
should be also considered, nonetheless preserving the
optimization inspiration. These solutions should not resemble
the Pareto set, so as to provide diversity within the design
space, and therefore they might not always be found by taking
an epsilon-Pareto approach. With this motivation in mind, an
already established method, which searches for diverse
solutions, which are not all necessarily optimal, is herewith
discussed and its shortages are highlighted. In contrast to the
already established design method, the approach taken in this
paper is to solve the multi-objective problem repeatedly, adding
(automatically or interactively) at each run constraints, which
are constructed, based on the obtained Pareto set. The
motivation for the introduced approach comes from the need to
generate a set of robot paths, which allow a mobile robot
operator, flexibility in complying with different planning
demands and a rapid resp to a developing scenario. The
methodology and the applicability of the approach are
explained and demonstrated by utilizing multi-objective path
planning problems.

I. INTRODUCTION

EARCHING for solutions to Multi Objective Problems
(MOPs), commonly involves a search for the optimal

solutions for the problem. Whenever the objectives of such a
problem are contradicting, the solutions are termed Pareto
optimal solutions, and their performances belong to the
Pareto front [1]. The selecting of a solution out of such a set
of solutions is based on the designers' preferences.

Producing a variety of optimal solutions within the
framework of Evolutionary Computation (EC) is done by
striving to diversity. This is done by applying a pressure
towards such a diversity during the evolution. The diversity
might be aimed at the decision space (e.g., [2]), the objective
space (e.g., [3]), or at both spaces simultaneously (e.g., [4]).

For supporting designers' decisions, it is important not to
flood the designers with an exaggerated number of Pareto-
optimal solutions (e.g., [5]). To dilute the number of
solutions, several clustering approaches have been
suggested. Such a clustering is commonly performed based
on the objective space (e.g., [6]). These approaches allow the
presentation of distinct solutions, each possessing a
distinctiveness, which deviates them one from the other.
Such deviations make the human decision process easier.

In contrast to the above (the problem of overflow of
Pareto-optimal solutions), this paper deals with cases where
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there is a lack of distinct Pareto solutions to present to the
designers/planners. Such a lack has been treated in [2]. The
lack may be avoided by searching for distinct less optimal
solutions. To elucidate the sense in conducting such a
search, refer to Figure 1. In the figure, a MOP's bi-objective
space is depicted. Also depicted are the performances of all
possible solutions of the MOP.

Figure 1: Entire set of solutions' performances for a possible
contradicting bi-objective problem.

Considering a min-min problem, an optimization procedure
would result with just two distinct solutions, which are
designated as blank squares in the figure. Now suppose that
more distinct solutions are needed. One approach that might
be considered is to relax the demand of optimality by taking
an epsilon-dominance approach (e.g., [7]). Such an approach
does not guarantee finding new distinct solutions in the
design space and similar to the Pareto-optimal solutions may
be found (e.g., the doted square).

So, the approach is to look for new distinct solutions,
which are less optimal (i.e., dominated solutions). Good
candidates for such a search, assuming their diversity in the
design space, could be the solutions shown in circles and
then the triangles, which are shown in the figure.

In this paper a formulation of the MOP, which suits such a
search, is provided. Moreover a formulation for a proposed
solution to the problem is also given. In contrast to the
approach of [2] a sequential approach to search for the
solutions to the problem is given. Such a different approach
has advantages over the former as related to computational
time and appropriateness to path-planning problems.

This paper is organized as follows. Section II, gives the
background to the relevant issues of this paper including
MOPs, EMO, diversity-preservation, distinctiveness, EMOs
for dynamic environments and multi-objective path
planning. Section II1, includes a discussion on the drawbacks
of existing approaches and gives the motivation for this
paper approach. Section IV, introduces the methodology,
which includes the relevant formulations, and the EMO
approach. Section V, demonstrates the applicability of the
methodology by utilizing path planning problems.
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Conclusions and future-work are given in section VI.

II. BACKGROUND

Multi-objective search is an important research topic. It
concerns the search for solutions to real world problems,
which many of them are MOPs. In case of contradicting
objectives there is no universally accepted definition of an
'optimum’ as in a single-objective optimization ([8]). In such
a case, there is no single global solution and it is often useful
to determine a set of solutions that fits a predetermined
definition for an optimum and let the decision-maker choose
between them. The predominant concept in defining such a
set is that of Pareto optimality ([1]). By definition, Pareto-
optimal solutions, which belong to the Pareto optimality set,
are considered optimal because there are no other designs
that are superior in all objectives (e.g., [9]). The search for
optimal solutions for a MOP is commonly termed Multi
Objective Optimization (MOO).

A comprehensive survey and comparison between most
multi-objective search techniques and algorithms can be
found in [10].

Evolutionary algorithms possess several characteristics,
which make them suitable for solving MOOPs [11].
According to a recent review by Coello, [12], Evolutionary
Multi-objective  Optimization, (EMO), has reached a
matured stage, and its development has consistently been
followed by applications in engineering, product
development, management, and science. The development of
Pareto-based evolutionary algorithms has been initiated by
the procedure suggested by Goldberg, [13]. Surveys and
descriptions of such algorithms can be found in several
references (e.g., [14]).

In EMO the algorithms should find all the trade-offs
among the conflicting objectives. Therefore, ensuring
diversity along the front is a must for any successful Multi-
Objective Evolutionary Algorithm (MOEA). A recent
review, which has been conducted in [11], classifies existing
methods for diversity preservation according to the three
categories of statistical density estimation including: kernel
methods, nearest neighbor, and histogram techniques.
Fitness sharing, which is a popular technique for diversity
preservation in MOEA, falls into the first category (e.g.,
[15]). MOEAs commonly use sharing as a mean to equally
distribute the vectors, which approximate the Pareto front.
Preserving diversity within the design space has also been
treated (e.g., [16]. Different variants of preserving diversity
have been employed, as reviewed in [8], with both genotypic
and phenotypic distance measures.

The above classified approaches are associated with the
implanting of diversity preservation mechanisms within the
evolutionary search. Such implanting may be viewed as a-
priory diversity preservation approaches. This is due to the
fact that the rules of what is different are embedded within
the search algorithm.

Posteriori diversity approaches may also be found. Such
approaches may be classified under the clustering paradigm.
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In multi-criteria optimization, data clustering can be a
useful exploratory technique in knowledge discovery. Since
it groups similar solutions together, it allows the decision-
maker to identify potentially meaningful trade-offs among
the solutions contained in the Pareto-optimal set without
requiring the decision-maker to explicitly define objective
function weights or utility functions ([5]).

Cluster analysis is a multivariate analysis technique that is
defined as the process of organizing objects in a database
into clusters/groups such that objects within the same cluster
have a high degree of similarity, while objects belonging to
different clusters have a high degree of dissimilarity (e.g.,
[5]). The most popular nonhierarchical clustering method is
probably the k-means clustering algorithm. The A-means
algorithm is well known for its efficiency in clustering data
sets. The grouping is done by calculating the centroid for
each group, and assigning each observation to the group
with the closest centroid. More elaborated approaches,
which utilize EMO also exist (e.g., [17]).

Another posteriori approach within the framework of
EMO has been suggested by Deb (e.g., [6]). In this approach
a learning algorithm is applied to identify distinct designs.
Such learning may give an insight as for the relation
between the design space and the objective space, thus
supporting decision making.

Often, algorithms provide solutions that may not be Pareto
optimal, but may satisfy other criteria, making them
significant for practical applications. In such a case solving a
MOP problem is not equivalent to solving the MOOP, which
may also be defined for that problem. For example Parmee
([18]), introduced Cluster Oriented Genetic Algorithm
(COGA), where the result of the MOP search is a set of
solutions that are related to 'interesting regions'. Another
approach is the goal attainment approach ([19]) that focuses
on finding a solution (s) around a target (goal) in the
objective space.

With respect to this paper focus, a most important study has
been conducted in [2]. In [2] the Clustering Pareto
Evolutionary Algorithm (CPEA) has been suggested. In the
same manner that niching preserves diversity of multi-modal
functions' solutions within a single objective problem, the
CPEA searches for diverse solutions within MOPs including
solutions that are not Pareto optimal. The authors of [2],
aimed at finding several /ocal Pareto-optimal sets. They
referred local to decision variable space — technology type
and operating conditions. According to [2], the advantage of
multimodal optimization is that the engineer is able to
choose from a set of local optima a solution that is perhaps
not the global optimum of the system defined by the system
model and objectives, but which may be the best solution of
the real system when other, difficult to quantify
considerations are taken into account. Such an approach
implies on multiple Pareto optimal sets in objective space,
that may overlap, or where one local set may be entirely
dominated by another, which represents different niches in
the decision space. According to the CPEA procedure, an
initial population is randomly generated and the objectives
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for each individual are evaluated. Thereafter the solutions
are clustered, and the individuals in each cluster are given a
rank based on how many other individuals in the cluster
dominate or are dominated by the point. In the next step
each cluster is given the chance to produce a predefined
number of children. This is done through a real variable
crossover mechanism. The following steps are associated
with the insertion of the children to the population and the
"cleaning" of the population from less successful results
from each cluster. The result of the CPEA are clustered sets
of solutions, each representing a distinct design, having its
performances on the Pareto front or on a local front.

Apart from the above approach another set of approaches,
which are associated with dynamic multi-objective
problems, is of interest to this paper study. Dynamic multi-
objective problems are multi-objective problems with time
depended objective landscape, time depended solution
landscape or a combination of them (see [20] for a detailed
classification). According to [21], the existing EC
approaches to solve a dynamic MOP may be classified into
two main categories. The first category deals with the
control of the two basic functions of the algorithm’s
population in a dynamic environment: converging on the
current global optimum and exploring the design space for
the optimum’s next location or for new optima as soon as the
objective landscape changes. These two functions usually
compete against each other and this competition can be
viewed as a balance between convergence and diversity. An
example to an approach within this category is the Self-
Organizing Scouts by Branke et al [22], which separate the
population into groups with specific functions of either
tracking an optimum or exploring for new solutions. The
second broad category of approaches is concerned with
exploiting past information (past fit solutions) which might
again become useful as the problem evolves. An example for
such exploitation of past information has been demonstrated
by Branke et al. [23] in their discussion of changing
environments.

When considering the use of the approaches used to solve
dynamic MOPs, it is important to note that the nature of the
time-changing environment is an important aspect (e.g.,
[21]). Two basic categorizations of dynamic environments
are the frequency and the severity of change (e.g., [23])).

Although path planning problems should be investigated
within the framework of a multi-objective problem,
searching for Pareto solutions for path planning problems is
a new research area. Such investigations include [24], [25]
and [16]). In [16], the ideas presented in [2] were
implemented leading to finding both optimal and non-
optimal paths. Non-optimal paths were also considered in
[21], where human preferences towards conceptual paths
influenced the search. Nonetheless the approach taken in this
paper is totally different and addresses other aspects of the
planning. Moreover it possesses a different motivation for
the search as explained in the following.
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III. MOTIVATION

Observing the reviewed studies as surveyed in the
background, it may be acknowledged that in the CPEA there
is an inherent a-priory conviction that there is a lack of
solutions and therefore the entire space should be searched.
This means that all possible designs (as the number of
predefined clusters) are all to be found. As noted in [2] such
a-priory determination of the number of clusters is related to
a computationally expensive procedure. Moreover in the
CPEA, no priority is given during the search to more optimal
clusters. This means that if the number of allowed clusters is
high enough, it might happen that also "very bad" solutions
would evolve.

The above observations call for a more persistent search.
Initially, it should be checked if there are enough Pareto
solutions. If the answer is that there are not enough such
solutions, only then further solutions should be searched for,
maintaining the optimality and diversity motivations.
Moreover, observing the evolved Pareto front and its related
Pareto set, may give more insight with relation to the
missing solutions.

To further elucidate the above, refer to Figures 2a and 2b.
Each of the figures depicts the performances of all possible
distinct solutions within a bi-objective space belonging to
different problems. Solutions from different levels of non-
dominance are designated by different symbols in both
figures. Suppose that 10 different solutions (associated with
design space clusters) are searched for by CPEA, in each of
the figures. The resulting performances of the found
solutions are designated by blackened symbols. In the first
case (Figure 2a) it is evident that the Pareto solutions span
the objective space and there is no obvious need for more
solutions than those, which are designated by squares. If
such a need arises the circles and triangle related solutions
are good candidates. Nometheless the diamond related
solutions would have also been found by CPEA, although
they possess profoundly worse performances than the Pareto
front.

Objective 2
Dbjective 2

Objective 1 Objective 1
Figure 2a and 2b: Two cases of performances in a bi-objective

space. Squares designate the Pareto front while circles, triangles
and diamonds designate lower levels of non-dominance.

In the second case (Figure 2b) it seems that finding the
four circle related solutions, which span solutions with good
performances in objective 1, is somewhat a waste of
computational resources. It would have been wiser to search
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for solutions with good performances with respect to
objective 2, as they are scarce.

When considering dynamic EC approaches to attend the
above problem, it is noted that according to [21]: "if the
severity of change is especially large, one instance of the
problem will be completely unrelated to the next and it can
be argued that a complete re-start of the algorithm is as
efficient as any dynamic optimization methodology." It
seems that the dynamic changes associated with the
problems attended by the current paper, involve such severe
cases. A shift from one map setting to another is a discrete
jump, which seems to be hard to follow by a dynamic
approach. Moreover the purpose of dynamic MOP solving
approaches is to track the changing environment, whereas
here, the motivation is finding diverse solutions. It is further
noted that the human interactivity within the search process
of dynamic MOPs solving approaches does not exist. Here
such interactivity is of a major interest.

From this discussion it may be realized that a stepwise
approach should be adopted. That is, to develop one front at
a time, while inserting constraints to direct the search to find
more solutions associated with observed lacks. Such an
approach is developed in the next section.

Observing the existing studies, which are related to path
planning within the framework of EMOs, it is realized that
robustness, from any kind, has been scarcely treated. This
means that neither robustness to changes in the objective
functions, nor robustness to uncertainties associated with
environmental parameters, has been fully explored. Such
robustness consideration may affect the location of the
frontier. In other words solutions that are not Pareto-optimal
may be considered for selection as they are more adequate
than the Pareto-optimal set (see e.g., [26]), e.g., when
robustness is thought. Such a situation is most relevant to the
current motivation, which is focused on searching for
solutions that are not just from the Pareto-optimal set.

In this paper one kind of robustness is considered and used
as a motivation to search for other solutions than the Pareto-
optimal paths.

IV. METHODOLOGY

A. The robust planning MOP

The robustness in the current investigation is associated
with the robustness of the planning to changes in the
problem conditions. Such changes are dependent on a
possible developing scenario or on designers imposed
conditions. To elucidate the problem, refer to Figure 3. The
figure depicts a path planning map with a start and target
points as well as some obstacles. The MOP of the related
planning task is to minimize both the travel distance of a
mobile robot that is to move from the start to the target, as
well as to minimize its maneuvers (the sum of angle
changes). It is clear that the strait path between the start and
the target is the optimal path as it is the shortest and is
associated with a travel with no maneuvers. This path is the
one, which would have been found by an optimization
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procedure. Now suppose that within the map there is a
dynamic opponent, which may exist down to the doted
horizontal line, and having a width of the gap between the
upper left most and the upper middle obstacles. If the
opponent blocks the gap, alternative travels should be
searched for, barring in mind the optimization objectives.
Good candidates are the paths which are designated by dots
(left side and right side) and the path that is designated by a
line-dot designation.

~
* '. w
.o‘ ., . \
’0

*

START

Figure 3: An example demonstrating the motivation for
the current approach

Each has its advantages. The right-located doted path is
the shortest (not considering the strait optimal path, which is
now constraint) nevertheless it is associated with two
profound maneuvers. The left-located doted path is longer
than the former but has fewer maneuvers. The line-dot path
is longer than the other two but it is associated with the least
harsh maneuvers. This means that there are three Pareto-
optimal solutions in a problem that excludes the straight
path. Now suppose that it is possible that there may be more
than one opponent. This may lead to a need to consider the
zigzagged path, which is longer and is associated with more
intensive maneuvers than all former found paths.

It is noted that path planning may be involved with many
different robustness related cases which may call for the
need to find not just the optimal set. Some different cases,
which may be treated by the approach introduced in this
paper, are given in the following section.

A-priory planning of different path plans, which takes into
account the robustness as explained above, will permit a
rapid decision making and execution of different optimal
paths by moving between pre-planned optimality-based
paths.

B. Possible robustness related constraints
It is suggested here, that the search of solutions, which are
not part of the Pareto-optimal front may be directed by three
different constraints. Each of these constraints is associated
with a different robustness related problem. These different
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cases are listed and explained in the following.

1. A4 distinct path (solution) is searched for. The extent of
the difference between such a solution and previously found
ones (in the design space) may be controlled. A search for

paths x, xe XcScR" is subject to: (x—x®)<3$,

where X is the feasible decision space, x®is a previously

found solutions and & is the permitted difference between
the searched paths and previous found ones (in the design
space).

An example for this case is when it is desired to send
equipment from the start point to the target, each time
altering the path, thus avoiding detection by avoiding
repetition. Such a case is elaborated in section V.

2. Uncertainty as related to the location of dynamic

obstacles. In such a case the constraint, h'(x) =0 limits the

search space to exclude "dangerous" regions. It is noted that
such constraints are added to the problem definition
posteriori to finding the Pareto set. The prime assigned to h
denotes its being an added constraint. An example for this
case has been given in subsection IV.A, with relation to
figure 3.

3. Lack of solutions within a region of the objective space.

Constraining the objective space by F (x)<0limits the

search of solutions to those with performances that belong to
unconstraint sub-spaces of the feasible objective space. The
prime assigned to F denotes its being an added constraint.
Such constraints are added to the problem definition
posteriori to finding the Pareto-optimal set. This may be
done following human inspection of the obtained Pareto-
optimal front or automatically by a computer search.

An example for such a case may be understood with a
context to the example in section III with relation to Figure
2b.

It is noted again that the mandatory motivation is
optimality and therefore Pareto related paths are searched
initially. The non-optimal paths are therefore found later but
preserving the optimality inspiration.

C. Problem definition
The problem of finding distinct solutions is defined by a
sequence of problems, each with new constraints imposed
based on the solution for the former solved problem (but the
first one).

1. Find x" which solves the problem: minF(x) s. t.

xe XcScR" and h(x)=0.

2. Foralli=2, ..., n find x¥ which solves the problem:
minF(x) s.t. xe XcScR", g(x)<0 ,h(x)=0 and/or

i1 , .
Ux=x9)>8 and/or h'(x )=0 and/or (F(x ))<0 .
s=1

Where n is the number of times the problem has to be solved

before sufficient solutions are obtained and &is the

permitted difference between design variables. F(x) is
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F(x) =[F(x,),....F(x¢ )] and K is the number of the problem

objectives.

The above problem definition suggests that the problem of
finding diversified solutions based on optimization is
decomposed into a sequence of optimization problems. The
initial optimization problem (step 1 above) is associated with
the minimization of objective functions (minF(x))
subjected to constraints of the paths. These initial constraints
limit the paths search space (xe X cScR") to feasible
paths and constrain the paths not to go through obstacles
(h(x)=0). The following problems (step 2 above) are defined
such the initial problem is solved but with added constraints.
These constraints include the constraints which are described
in section IV.B.

D. Problem Solution

The solution to the problem is n sets of Pareto-optimal
solutions with a corresponding Pareto-optimal front for each.
Each of the Pareto-optimal sets is optimal with respect to the
solved problem and therefore all are optimal solution within
the context of the problem solved. Naturally, in the overall
problem there is just one Pareto-optimal set and front (the
result of the first time the problem is solved). To prevent
confusion between the different Pareto-optimal sets a
different terminology will be used for each. The terms i-
Pareto set and i-Pareto-optimal front correspond to Pareto-
optimal sets and fronts, where i denotes the problem number,
i=1,...n.

The solution to the problem is therefore optimal sets
0" and sets of Pareto-optimal fronts OF"

o' = Lnjx(i)

i=l1

where x® -|=3x e X F(x)<F(xD)}

n .
OF =Jy®

i=1
where {y<i) € Y‘y(i) :F(X(i)) xWe 0"}

The formulations suggest in fact that the solution to the
problem is sets of Pareto-optimal solutions, where each set
solves a problem, which has its own constraints.

E. Solution Approach
The procedure of searching the solutions is outlined in the
following:

1. Run an EMO algorithm to find the Pareto-optimal
set for the problem.

2. Cluster the paths according to any preferred
distance in the design space to find a set of distinct
optimal paths.

3. Constrain the optimal set/front by any of the
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constraints described in section IV.B.
4. While insufficient solutions are found go to 1.

The approach to repeat the evolution until enough solutions
are sort, as realized by this algorithm, highlights again the
view of the current paper that: The global optimal set has to
be found first, followed by sequential searches for local
Pareto-optimal sets, based on robustness related needs.

V. EXAMPLE

The following example demonstrates the methodology,
which is given in section IV.

The problem, which serves for the example, is depicted in
Figure 4 and is associated with a travel of a mobile robot
from a start point (see point (5, 0)) to the target (see point (5,
10)) within a 10 by 10 grid map. The objectives of the path
planning problem are to minimize the travel distance while
minimizing visibility to an opponent located at the target.
The area covered by the site of the opponent is gray colored.
It is assumed by the planners, that after one use of a path it
may be detected by the opponent and therefore the path
should not be repeated more than delta percent. This means
the planning should provide robustness in the sense that
there are several optimality-based "safe" alternative paths to
use.

Target
10 T T T
9 fecemeefpncencd
I
-
2 —
e H
0 i X
0 1 2 3 4 5 6 7 8 9 10
Start

Figure 4: The multi-objective path planning problem

The steps of the algorithm, which has been introduced in
section IV.D were followed to solve the problem. The paths
have been coded by using three 8 bit binary strings for each
path, each designating a point along the path. In the current
program (used also for other applications) the 'y’ points'
locations are limited to be on the grid. The population
contained 20 individuals which were run using the NSGA-II
EMO algorithm, [27], for 150 generations using a two point
crossover (50% rate) and mutation (3% rate). At the end of
the first run (see step 1 in section IV.D), the paths were
clustered to gain the Pareto-optimal set, which is depicted in
Figure 5a. In the current problem the clustering needed, has
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been minor as the elite population converged to several
distinct path solutions. Clustering in the current problem has
been practiced by integrating the area between the paths.
Paths close by, should have low values of the integral no
matter where the decoded path points are. Two paths with an
integral values of less than 1 in between, where considered
as the same path with the best (according to non-dominance
level and crowding) representing them. The 1-Pareto-
optimal front of the problem is designated by circles in
Figure 6.

Following the motivation not to repeat paths to a certain
extent, a repetition boundary has been designated around
each Pareto-optimal set path. These boundaries are
designated by gray thick lines around the Pareto-optimal
paths, in Figure 5b. In the next run, paths that existed within
these boundaries for more than &=7% were penalized
(assigning them with the lowest non-dominance level of the
generation).

AN

o %
e

-
5 6 7 8 ¢ 1 » o123 4

"1 2 3 4 % 6 T 8 & 1 [T N - I ]

Figure 5c: 2-Pareto-optimal set Figure 5d: 3-Pareto-solution

The resulting paths and the resulting 2-Pareto-optimal front
are depicted in Figure 5c and as squares in Figure 6
respectively. Repeating the procedure once more, (the
penalized area is shown by gray in Figure 5d, results in one
optimal path, which is depicted in that same figure. The
performances of the solution belong to the 3-Pareto-optimal
front, which is depicted as a triangle in Figure 6. The three
sequential runs produced 7 different paths, organized in
three Pareto-optimal fronts. It is noted that these solutions
diverse one from the other in both the path planning space
(design space) as well as in the objective space. It is noted
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that the aimed diversity is within the design space and not in
the objective space, although such dual diversity is
welcomed. Each front is a result of an optimization
procedure for a different setting associated with the same
problem. The 7 paths may now be considered by the
planners. When Pareto-optimal optimality is considered,
there are three optimal paths and any of them could be used.
Executing one of the 1-Pareto-optimal related paths does not
mean that the next selected path should be chosen from that
1-Pareto-optimal set. For example if the lowest circle related
solution is chosen to be executed first, then the next
execution might be the path which is associated with the
lowest square (belonging to the 2-Pareto). Such a decision
may be taken as a result of the planners preferring low
visibility paths over global Pareto-optimal paths.
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Travel distance (Objective 1)
Figure 6: The three Pareto-optimal fronts obtained by three sequential runs.
Circles designate the 1-Pareto-optimal, squares the 2-Pareto-optimal and a
triangle for the 3-Pareto-optimal solution.

In any case the planners are exposed to a set of diverse
paths, allowing them flexibility in overcoming unexpected
hazards (obstacles) and a fast response to a developing
scenario.

VI. DISCUSSION AND FUTURE WORK

Dealing with robustness in a multi-objective path planning
problem setting is scarcely treated by EMO approaches. This
paper introduced several MOPs, which highlight the need for
robust path planning. Here the robustness is not associated
with the robustness of one path solution or the other, but
rather with the robustness of the planning process.
Robustness of the planning means that the search for paths
results in optimality-based diverse solutions, which allow
flexibility in responding to changes in the path planning map
settings. To allow such robustness it is important to search
the path-plan space for solutions, which are diverse in both
the objective space as well as within the design space. Such
diversity may be at the expense of optimality but by that,
should provide robustness in solutions. The diversity within
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the objective space allows the planners to choose different
performance related paths as a reaction to changes and
developing scenarios. The diversity within the design space
allows rapid action to overcome dynamic changes of the
map.

In this paper a straightforward approach to evolve such
diversity-based path plans has been suggested. The
suggestion included the formulation of the problem in hand
and the formulation of the solution approach, which are
realized through the implementation of an EMO algorithm.

In the proposed solution approach, the diverse path plans
are obtained by solving a sequence of sub-problems, each
constrained by its former. Considering the constraints, the
paper suggests three possible kinds of robustness that might
be treated by the suggested approach.

The result of running the algorithm according to the
suggested approach enables us to find diverse sets of paths,
where each set is associated with a different Pareto-optimal
front and a different Pareto-optimal set.

It is the authors' view, that all the paths should be
embedded with a robot-navigation software, allowing a shift
from one path to another based on the robot operator’s real
time decisions.

Observing the hereby presented paper, it may be depicted
that "path plans," "solutions" and "designs" are alternatively
used for the same purpose. These multiple notions for the
same concept may imply on the generic nature of the
approach introduced in this paper. Therefore, as future work,
the approach should be tested with relation to engineering
design, although the motivation for considering non-optimal
solutions is expected to be different. Moreover the approach
may be used to test the aptitude of suggested EMOs to
evolve diverse solutions in a single run. This means that this
paper’s approach may be utilized to find the diverse
solutions sequentially, setting the test cases for simultaneous
approaches.

Another investigation that should be considered as future
work, concerns a comparison between this paper’s approach
and approaches suggested within the framework of dynamic
multi-objective optimization and with the CPEA algorithm.
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