

Three-Dimensional Offline Path Planning for UAVs Using Multiobjective Evolutionary Algorithms

Shashi Mittal

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

Kanpur, PIN 208016, India

mshashi@iitk.ac.in

Kalyanmoy Deb*

Department of Mechanical Engineering

Indian Institute of Technology Kanpur

Kanpur, PIN 208016, India

deb@iitk.ac.in

Abstract

We present a three-dimensional offline path planner for Unmanned Aerial Vehicles (UAVs) using a multiobjective optimization procedure for simultaneous optimization of two conflicting goals: (i) minimization of the length of overall path and (ii) maximization of the margin of safety from ground obstacles. This method is different from

*Contact author: Professor, Mechanical Engineering Department, IIT Kanpur, PIN 208016, India,
deb@iitk.ac.in

existing single-objective optimization methods, because it treats both objectives as they are and does not require any additional problem information for converting the two-objective problem to a single-objective one. The evolutionary optimization procedure adopted here is capable of generating a number of feasible paths with different trade-offs between the objective functions. The procedure has immediate practical importance. The availability of a number of trade-off solutions allows the user to choose a path according to his/her needs easily. The three-dimensional UAV path is represented by using B-Spline space curves. The control points of the B-Spline curve are the variables in the multiobjective evolutionary algorithm. We solve two types of problems, assuming the normal flight envelope restriction: i) path planning for UAV when no restriction on the path and ii) path planning for UAV if the vehicle has to necessarily pass through one or more pre-specified points in the space. In both types of problems, the advantages of using the proposed procedure is amply demonstrated. The procedure is ready to be adopted for real-world UAV path planning problems.

1 Introduction

The main motivation behind this work is to develop an offline path planner for UAVs. Such a path planner can be used for navigation of UAVs over rough terrain, where a traversal otherwise can be difficult and prone to accidents. In planning such a path, often an optimization problem is constructed either for minimizing the length of path or for maximizing a safety margin from ground obstacles, or others [17]. Other techniques such as a fuzzy-logic strategy [11] or a graph-based strategy [1] are also used. However, the path planning problem is truly a multi-objective optimization problem in which conflicting goals of minimizing the length of path and simultaneously maximizing the margin of safety can be simultaneously important. There exists no past studies in which the path planning problem is considered as a truly multi-objective optimization task.

In this paper, it is assumed that the terrain topography is known beforehand. The details

of the terrain can be acquired using satellite data or from surveillance data. The start point and the end point of the flight are known and it is required to find a feasible path connecting these two points. The path should be feasible in the sense that it should be free from ground obstacles and its curvature at any point along the path should not exceed beyond a limit. This restriction is necessary as it is not always possible for an aerial vehicle to traverse a path with large curvatures. To reduce complexity of computing collision avoidance with the ground obstacle, the UAV is assumed to be a point and the ground obstacle boundary is modified with the size of the UAV. In the present study, the path of the UAV is assumed to be a B-spline curve, which is controlled by manipulating a number of control points. The following two problems are mainly tackled:

Type I: UAV navigation using an offline path planner when no restriction on the path. In this case it is assumed that the path of the UAV can take any shape and can pass through any point in the space. The path so obtained is a single B-Spline curve between starting and end points.

Type II: UAV navigation using an offline path planner when the vehicle has to pass through one or more pre-specified points in the space. Such a situation can arise, for example, when the UAV is required for surveillance in a particular part of the terrain, or it has to drop a bomb at a particular point, thereby requiring the UAV to travel through a particular region or point. In this case also, the path planner generates a single B-Spline curve, but enforces that the specified points lies on the generated B-spline curve.

Unlike most path planning strategies, the proposed path planing strategy considers a multiobjective formulation of the path planing task and uses an evolutionary algorithm. The advantage of using such a method is that it generates not just one but many optimal (called as *Pareto-optimal*) solutions (paths), each with a different trade-off among multiple objective functions. This provides the user with more flexibility, since the user now has

a knowledge of different possibilities of travel and can choose a particular path of his/her choice which is best suited for the task.

In the remainder of the paper, we describe the specific multiobjective optimization algorithm used in this study. Thereafter, we present simulation results on a number of case studies illustrating the advantage of using the multiobjective formulation. The solution methodology is generic and can be used for other path generation problems. The procedure is also ready to be used with real terrain and UAV data.

2 Past Studies on Three-Dimensional Path Generation

A number of methods for generating paths in known 2-D or 3-D environment already exist. Neural networks had been extensively used for solving such problems. In recent years, path planning for robots in a 2-D environment using evolutionary algorithms are also studied in great detail [13, 18, 19]. For an UAV navigation, there exist methods for finding optimal paths using Voronoi diagrams [14, 8]. A more recent work in UAV path planning uses a class of single objective genetic algorithms (called *breeder genetic algorithms*) for offline as well as online path planning [17]. This study also uses B-Spline curves for representing paths in 3-D space.

However, all the existing methods for path planning do not take into account the fact that the problem involves a number of conflicting objectives which must be taken into consideration while generating a path. While the time of flight from start to end is one main consideration, distance of the UAV from any ground obstacle (such as a mountain or a structure) or forbidden regions (both in ground or in space) are also important considerations.

In the presence of such multiple conflicting objectives, the existing literature converts the problem into a single objective optimization problem by using one of the two main procedures [16, 3]. In the ϵ -constraint method, only one of the objectives is chosen and rest are used as constraints so that they are restricted to lie within a safe limit. For example,

in such a conversion procedure, the time of flight can be minimized by restricting a safe distance (say, d_{crit}) of all intermediate positions of the UAV from corresponding ground obstacle. In the weighted-sum approach, on the other hand, all objectives are aggregated together to form a combined objective. In this approach, a weighted average of time of flight and distance margin of the UAV from ground obstacles can be minimized. It is intuitive that both these methods involve setting of some artificial parameters (such as limiting value d_{crit} used as constraints in the ϵ -constraint approach or relative weights used to combine multiple objectives in the weighted-sum approach). The optimum solution to the resulting single objective optimization problem largely depends on these chosen parameters. More importantly, a setting of these parameters for an important UAV flight task is not often easy, particularly in the absence of any known solution to the problem. We explain some of these matters in the following paragraphs.

There are at least a couple of implementational issues which we discuss first:

1. The conversion of two objectives into one requires that both objectives are of same type (either both are of minimization type or both are of maximization type). In this case, an optimal UAV path generation will require minimization of time of flight and simultaneous maximization of safe distance margin, thereby requiring one of the objectives to be converted to the other type by using the duality principle [2].
2. Since a weight-vector (for example, a weight-vector $(0.75, 0.25)$ signifies the minimization of time of flight is *three* times more important than the maximization of safe distance margin) is to be used for the conversion procedure, the objectives must also be normalized so that they are of similar magnitudes before a weighted average is computed.

Similar issues exist with other approaches such as the ϵ -constraint approach in terms of fixing limiting values for constraints.

Besides the above implementational issues, there is a deeper problem which we discuss

next. It is important to mention that the fixing of the weight-vector (or ϵ -vector) above must be done before an optimization algorithm is applied and before any optimal solution is obtained. Thus, an user has to entirely guess or rely on his past experience of assigning a relative weight (or ϵ) vector to combine important objectives. This is certainly a difficult task. After obtaining the optimal solution corresponding to the chosen weight vector (say $(0.75, 0.25)$), the user will always wonder what other optimal path would have been generated if he or she had specified a slightly different weight vector, such as $(0.70, 0.30)$, for example! Moreover, a responsible and reliable user would also like to know how the path would change if an entirely different weight vector (such as $(0.25, 0.75)$) is chosen, instead. The corresponding optimal solutions will provide valuable information of solving the task. In the presence of such paths, each trading off the objectives in a different manner, the user will be in a better position to choose a particular path.

In this paper, we suggest a procedure for finding multiple such paths in a single simulation. In Section 5.1, we describe an evolutionary algorithm for this task. But before, we describe the representation scheme for specifying the terrain and a UAV path in our optimization algorithm.

3 Representation of terrain and UAV path

Our work uses several of the models employed in [17]. In particular, the representation of the terrain and the B-Spline curves representation for UAV paths is the same as in [17]. The representation of the terrain is the same as in [17]. For UAV path, as it has been mentioned earlier, B-Spline curves are used. The details of both these are given below.

3.1 Representation of terrain

The terrain is represented as a meshed 3-D surface, produced using a mathematical function of the form:

$$z(x, y) = \sin(y + a) + b \sin(x) + c \cos(d \sqrt{y^2 + x^2}) + e \sin(e \sqrt{y^2 + x^2}) + f \cos(y) \quad (1)$$

where a, b, c, d, e, f are constants experimentally defined in order to produce a surface simulating a rough terrain with valleys and mountains. A sample terrain generated using this function is shown in Figure 1. We may as well use the data of a real terrain, however for our work we have used the terrain generated by the above equation, since it can generate a variety of terrains on which to test our path finding algorithm. Such terrains have also been previously used by other researchers [17].

Note that in the figures, the light areas represent greater height and dark areas represent lower height.

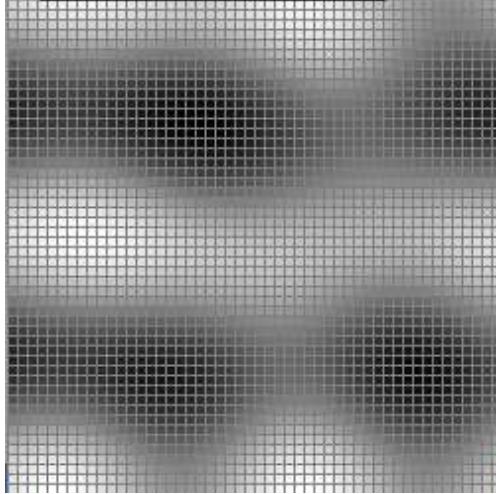


Figure 1: A sample terrain generated using eq. 1. Note that the lighter regions represent greater heights (i.e. hills), whereas the darker regions represent valleys. The same shading convention has been adopted for the B-Spline curves in subsequent figures.

3.2 Representation of UAV path using B-Spline curves

B-Spline curves are used to represent the UAV path. More details on B-Spline curves can be found in [10]. B-Spline curves are well suited for this problem because of the following reasons:

1. B-Spline curves can be defined using only a few points (called *control points*). This makes their encoding in genetic algorithm easier.
2. Very complicated path, if needed, can be easily produced by using a few control points.
3. B-Spline curves guarantee differentiability at least up to the first order. Thus, the curves so obtained are smooth, without any kinks or breaks.
4. Changing the position of one of the control points affects the shape of the curve only in the vicinity of that control point.

The start and the end points of the path are two of the control points of the B-Spline Curve, and rest of the control points (also called *free-to-move control points*) are generated by the path planning algorithm. Using the control points, the curve is generated as a sequence of discrete points, so that the length of the curve and other objective functions can be calculated.

B-Spline curves also provide us an easy model for representing curves to solve Type II tasks, in which the path has to pass through a pre-specified point in the space. The curve representation in this problem is tackled as follows: Suppose that UAV has to pass through the point P , and the control points of the B-Spline curve are P_0, P_1, \dots, P_n . Choose k such that $0 < k < n$ and $P_k = P$. Then, if the distance between P_{k-1} and P_k is identical to that between P_k and P_{k+1} , or $d(P_{k-1}, P_k) = d(P_k, P_{k+1})$ and the control points P_{k-1}, P_k, P_{k+1} are collinear, the B-Spline curve is guaranteed to pass through the point P . Using such a model for the curve, Type II problems can be easily tackled, to force the path to traverse through

one or more points in the 3-D space. We discuss this aspect in Section 5.1.1. A description of the B-Spline curves used in this work has been provided in the appendix.

4 Objective functions and constraints

The optimization problem to be solved is the minimization of two functions subject to three constraints. In this section, we analyze in detail its components.

4.1 Objective functions

We consider two objective functions which are conflicting with each other.

4.1.1 Length of the curve

The first objective function, f_1 , is the length of the overall path (curve), which should be as small as possible. The length of the curve length is calculated by summing over the distances between the successive discrete points of the curve.

4.1.2 Risk factor

The goal of constructing the shortest path clashes with the desire of actually reaching the intended destination. The closer the UAV flies to the terrain, the higher is the risk of crashing. We therefore introduce a second objective function, f_2 , to capture this desired property of the solution. It has the following form

$$f_2 = \sum_{i=1}^{nline} \sum_{j=1}^{nground} 1/(r_{i,j}/r_{safe})^2, \quad (2)$$

where $nline$ is the number of discrete curve points, $nground$ is the number of discrete mesh points of the terrain boundary, $r_{i,j}$ is the distance between the i -th curve points and j -th node point on the terrain boundary, and r_{safe} is the minimum safety distance the UAV

should have above the terrain. This function is henceforth referred to as the risk factor of the curve. It can be observed that smaller the value of this risk factor, larger is the safety.

Thus, we minimize both objective functions for achieving a short-length path having a smaller risk factor.

4.2 Constraints

The optimization problem is subject to the following three constraints

1. The vehicle must not collide with the terrain boundary in the course of its flight.
2. The UAV must not perform abrupt changes of direction. We impose this constraint by requiring that the angle between the two successive discrete segments of the curve (Figure 2) should not be less than a certain cut-off angle.
3. The overall maximum height of any point in the curve should not exceed a specified upper limit.

The last constraint is imposed for several reasons. It is generally taxing for a UAV to traverse at high altitudes, because thrust at higher altitude is low. Moving at a low height also avoids the UAV getting detected by the radars, and is also helpful in carrying out surveillance tasks in a better way.

5 Proposed Procedure for Path Planning

The path planner employs the following three-step hybrid algorithm for finding multiple optimal paths. In the heart of the algorithm is the non-dominated sorting multiobjective optimization algorithm (NSGA-II) [5]. We provide a brief description of the procedure a little later. The algorithm is capable of finding a number of optimal paths (depending on the chosen population size used in the simulation), trading off two objectives differently.

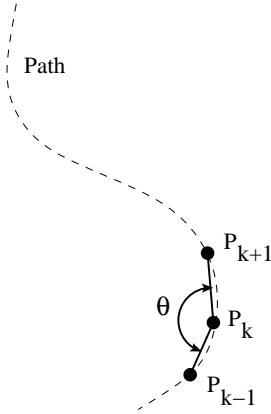


Figure 2: Schematic representation of the curvature angle used in constraint 2.

But for convenience of the users, only about 8-10 well trade-off solutions are selected, and a local search is performed on each of these solutions to improve the optimality property of the obtained paths. The steps of the algorithm are enumerated as follows:

Step 1: An evolutionary multiobjective optimizer is used to obtain a set of Pareto-optimal curves.

Step 2: About 8 to 10 well-dispersed solutions from the Pareto-optimal solution set are selected by using a K-mean clustering algorithm [21, 3], so that selected solutions provide a good trade-off between the objectives.

Step 3: A local search is performed on these solutions to obtain a set of solutions close to the true Pareto-optimal front.

The non-dominated solutions so obtained after the local search are finally displayed using a graphics display system. The NSGA-II evolutionary algorithm and the local search procedure are described below.

5.1 The NSGA-II Algorithm

NSGA-II is a fast and reliable multiobjective evolutionary optimization algorithm which has been successfully applied to solving many multiobjective optimization problems [6, 7, 20, 9]. The procedure not only finds solutions close to the true Pareto-optimal frontier, but also a set of points with a good spread of solutions in a reasonable computational time.

Like in a genetic algorithm (GA), the NSGA-II procedure starts with a number of N solutions (called as a ‘population’ \mathcal{P}) created within the specified lower and upper bound of each variable. A solution in this problem represents the control points specifying the UAV path as a B-Spline curve. The procedure of encoding a path is described in the following subsection.

5.1.1 Genetic encoding of B-Spline Curves

The coordinates of the free-to-move control points (that is, the control points excluding the starting and the end points and the pre-specified points in the case of Type II problems) of the B-Spline curve are the variables used in the genetic algorithm. Each control point in 3-D space is represented using three values, one each along the (X, Y, Z) axis. Thus, if there are n free-to-move control points, then a solution will involve $3n$ real-parameter variables, as a three-tuple for each control point in a successive manner, as shown below:

$$\left(\underbrace{(X_1, Y_1, Z_1)}_{P_1}, \underbrace{(X_2, Y_2, Z_2)}_{P_2}, \dots, \underbrace{(X_n, Y_n, Z_n)}_{P_n} \right)$$

While computing the entire path from start to end, the start and end points are added in the above list at the beginning and at the end, respectively, and the B-Spline formulation (discussed in the appendix) is used to get a mathematical formulation of the entire path for the UAV.

For the Type II problems with one pre-specified point P , the control point ($P_m = (X_m, Y_m, Z_m)$) in the middle of the solution vector ($m = \lceil n \rceil$) is replaced by the pre-specified

point P . To ensure the UAV path passes through the point $P_m = P$, we replace $(m + 1)$ -th control point as follows:

$$P_{m+1} = 2P_m + P_{m-1}. \quad (3)$$

For more than one pre-specified points, a similar fix-up of the GA solution vector can be accomplished.

In the t -th iteration of the NSGA-II procedure, the offspring population \mathcal{Q}_t is created from the parent population \mathcal{P}_t by using a set of genetic operators – reproduction, recombination, and mutation. These operators are described later. In the NSGA-II procedure, both these populations are combined together to form \mathcal{R}_t of size $2N$. Then, a *non-dominated sorting* procedure [3] is applied to classify the population \mathcal{R}_t into a number of hierarchical non-dominated fronts: $(\mathcal{F}_1, \mathcal{F}_2, \dots)$. In this sorted array, the subpopulation \mathcal{F}_1 is the best set, implying that this subpopulation *dominates* the rest of the subpopulations in the array. Similarly, the next subpopulation \mathcal{F}_2 is better than the following subpopulations, but is worse than \mathcal{F}_1 . This sorting procedure requires $O(N \log N)$ computations for two-objective optimization problems [12, 15].

Figure 3 shows a schematic of one iteration of the NSGA-II procedure. After the non-dominated sorting of the set \mathcal{R}_t is over, a new population \mathcal{P}_{t+1} is constructed with sorted subpopulations starting from the top of the array. Since the size of \mathcal{R}_t is $2N$, not all subpopulations are required. This scenario is illustrated in Figure 3. Not all members of the last allowed front (front 3 in the figure) may not be all chosen. Instead of arbitrarily choosing some members from this front, the solutions which makes a *diversity* measure of the selected solutions the largest are chosen. We describe the procedure in the following paragraph.

For each solution of the last subpopulation which can be partially accommodated in the new population, a crowded-distance measure is computed by identifying the two neighboring solutions in the objective space. The crowded-distance metric is large for solutions having distant neighbors. To choose required number of solutions, the subpopulation is sorted in a

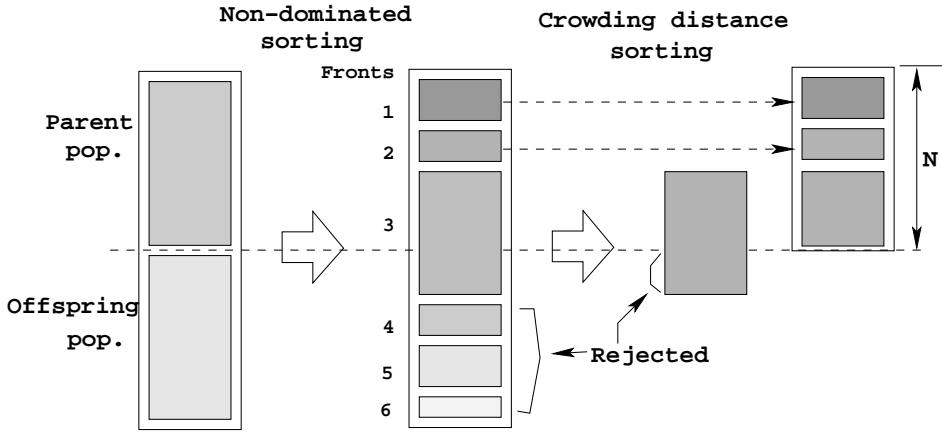


Figure 3: Schematic of the NSGA-II procedure.

list in the decreasing order of crowded-distance value and solutions are selected from the top of the list. For details, readers are encouraged to refer to the original NSGA-II study [5].

The above NSGA-II procedure finds a well-distributed set of solutions close to the true Pareto-optimal solution set due to the following properties:

1. The preference to non-dominated solutions allows the procedure to move towards the true Pareto-optimal solution set. As long as the Pareto-optimal solutions are not found, the procedure emphasizes improvement towards the Pareto-optimal front. Once all population members are members of the Pareto-optimal set, further improvement towards the front ceases and the effort is placed in finding a well-dispersed set of optimal solutions.
2. The preference to solutions having large crowded-distance value allows a well-distributed set of solutions to be found.
3. The preference to better solutions of both parent and offspring populations does not allow the NSGA-II procedure to degrade its performance from one iteration to the next. The performance (a combined convergence to the Pareto-optimal front and diversity among solutions) can only get better or remain the same.

The above iterative procedure is continued till a termination criterion is met. Usually, the NSGA-II procedure is continued for a predefined number of iterations (T_{\max}). We now briefly describe the NSGA-II operators.

5.1.2 Reproduction Operator

The reproduction operator uses a *constrained tournament* selection method in which two solutions from the population are compared and the winner is declared based on the following three conditions:

1. When both solutions are feasible, the one residing on a better non-dominated front, or the one having a larger crowding-distance value wins.
2. When both solutions are infeasible, the one having a smaller overall constraint violation wins.
3. When one solution is feasible and other is infeasible, the feasible solution wins.

It is interesting to note that the above operator takes care of constraints (linear or nonlinear and equality or inequality) without requiring any additional parameter, such as penalty parameter.

5.1.3 Recombination Operator

The NSGA-II procedure uses the simulated binary crossover (SBX) operator [3], in which two real-parameter solution vectors are recombined to obtain two new real-parameter offspring solutions. In this operator, two real-parameter values (X, Y, Z values of two parent solutions) one from each parent solution for each variable is blended together to obtain two new values. A bi-modal probability distribution is used for this purpose. For details, readers may refer to the original study [4]. To control the extent of blending, a parameter η_c can be set by the user. In many problems, $\eta_c = 10$ is found to provide better performance, however,

a large value has an effect of reducing the extent of blending. To reduce the destruction probability of already-obtained good solutions (or partial solutions), we do not allow all N population members to participate in this recombination operation. We use a crossover probability p_c for this purpose. If a probability of 0.8 is used, on an average, 80% of the population members participate in the recombination operation.

5.1.4 Mutation Operator

The mutation operator perturbs an offspring solution obtained after the recombination operator locally to create a new solution. This event is performed with a mutation probability p_m . In this operator, the probability of creating a solution closer to the parent is more than the probability of creating away from it, and also the perturbation caused by the mutation operator decreases with an increase in iteration counter. The mathematical formulation of the operator is as follows:

$$y = x + \eta(x_U - x_L)(1 - r^{(1-t/T_{max})^b}), \quad (4)$$

where y is a member in the offspring solution vector, x is the corresponding member in the parent solution vector, r is a random number in the range $[0, 1]$, η takes a Boolean value ($\{-1, 1\}$), each chosen with a probability of 0.5. The parameter T_{max} is the maximum number of allowed iterations, while b is a user-defined parameter, generally set to 1.0. x_U and x_L are the upper and the lower limits for the variable, respectively. The details about this operator can be found in [3].

5.2 Clustering

If run for an adequate number of iterations, the NSGA-II procedure is likely to find N non-dominated solutions, having trade-off between the objectives. Since usually a population is sized with $N = 100$ to 500 solutions, so many non-dominated solutions are inconvenient for the user of the UAV path generation task to consider, particularly when only one solution

has to be chosen from the whole set of N solutions. In this paper, we suggest a clustering technique in which only a handful (say, 8 to 10 solutions) of them are chosen in a manner so that they are well-dispersed from each other on the objective space. Here, we follow a K-mean clustering algorithm for this purpose.

In the K-mean clustering method applied to N solutions, each solution is assumed to belong to a separate cluster. Thereafter, inter-cluster distances (in the objective space) are computed for each pair of clusters and the two clusters with the smallest distance are merged together to reduce the total count of clusters by one. The procedure is continued till the required number of 8 or 10 clusters are left. Finally, only one representative solution from each cluster is retained and the rest are ignored. For the boundary clusters, a suitable extreme solution is retained and for an intermediate cluster a solution in the middle of the cluster is retained.

5.3 Local Search Procedure

After the NSGA-II procedure finds N non-dominated solutions and the clustering procedure filters out eight to ten solutions, a local search is applied from each of the clustered solutions for any possibility of further improvement. For each solution, a suitable composite criterion is assigned based on its location on the objective space, as shown in Figure 4. The procedure is similar to the weighted-sum approach ($F(\mathbf{x}) = \sum_{j=1}^2 w_j f_j(\mathbf{x})$), but the weight vector is assigned based on how close the solution (S) is located compared to the optimum of an individual objective:

$$w_j = \frac{(f_j^{\max} - f_j(S))/(f_j^{\max} - f_j^{\min})}{\sum_{k=1}^2 (f_k^{\max} - f_k(S))/(f_k^{\max} - f_k^{\min})}, \quad (5)$$

where f_j^{\min} and f_j^{\max} are the minimum and maximum function values of the j -th objective, respectively.

The local search operation starts with a clustered solution and works by perturbing (or mutating) the solution. If the perturbed solution is better in terms of the assigned composite

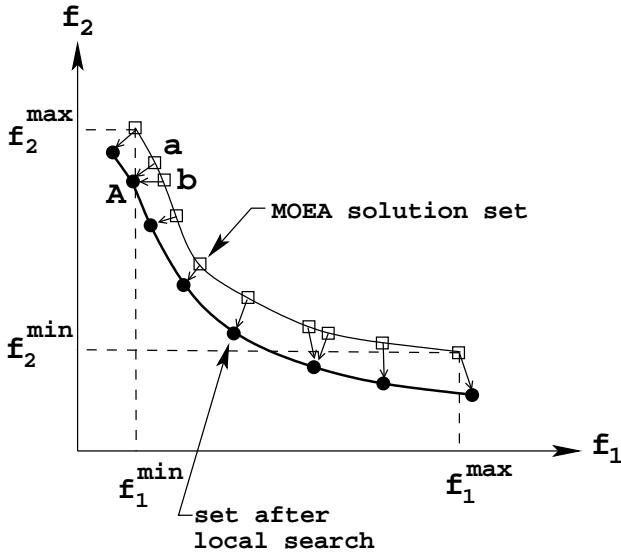


Figure 4: For each clustered solution, a combined search direction is computed from the location of the solutions in the objective space.

objective, the clustered solution is replaced by the perturbed solution. This procedure is continued until no improvement is found in $H = 10,000$ consecutive perturbations. The local search procedure, in general, produces a better non-dominated front from the front found by the NSGA-II and clustering procedure. It is interesting to note that since the local vicinity of each non-dominated solution is checked by the local search, the resulting solution can be considered to be close to an exact Pareto-optimal solution.

6 Simulation results

The above hybrid NSGA-II cum local search procedure is applied to a number of problems having terrains of varying shapes. The algorithm is successful in finding feasible optimal paths in almost all cases. Here, the results of the simulation runs on a few of the problems are presented.

6.1 Type I: No Intermediate Restriction

The following parameters are used for solving Type I problems:

- Population size, $N = 100$
- Maximum number of iterations, $T_{\max} = 150$
- Crossover probability, $p_c = 0.8$
- Distribution index of SBX, $\eta_c = xx$
- Mutation probability (p_m) is fixed as the reciprocal of the number of variables.
- Degree of B-Spline curve $K = 5$
- Minimum allowed angle between two successive discrete segments of the B-Spline curve
 $= 150^\circ$
- Critical safe distance (in eq. 2), $r_{\text{safe}} = 1.0$

The above parameters were fixed after trial and error, so as to get the optimum performance from the path finding algorithm. The algorithm takes about 3 to 4 minutes to generate the final set of eight to ten different paths when run on a Pentium IV (2.4 GHz) PC. There is no significant variance in the results between different runs of the algorithm starting from different initial populations. This implies that the algorithm presented here is also a robust one.

Results for four sample problems are shown here. For both types of problems, a terrain with a 50×50 mesh is used.

6.1.1 Problem 1

In the first problem, the UAV is required to traverse over a hill which is surrounded by valleys on two sides. For this problem, seven control points (two fixed and five free-to-move

control points) are used. Step 1 of the proposed hybrid algorithm finds 30 different trade-off solutions, as shown with shaded circles in Figure 5. The minimum length of curve is 277.54 units and minimum risk factor is 18.53. The trade-off among these solutions is clear from the figure. If any two solutions are compared from this set, one is better in one objective, but is worse in the other objective.

Step 2 chooses a few well-dispersed solutions from this set using a K-mean clustering method mentioned earlier. Ten well-dispersed (marked with boxes) are chosen from the set obtained by NSGA-II. Thereafter, in Step 3, the local search method improves each of these 10 solutions and finds eight non-dominated solutions which are marked using triangles in Figure 5. The figure shows the improvement of each solution by using an arrow. The two extreme solutions are improved to two dominated solutions, thereby leaving eight final trade-off solutions. It is clear from the figure that the final eight solutions (joined with dashed lines) constitute a better non-dominated front than that by NSGA-II alone, meaning that the obtained solutions together are better in terms of both objectives. The final set contains solutions with curve-length varying in the range [276, 337] units and risk factor in the range [12.8, 19.6]. A local search coupled with the evolutionary algorithm is found to be a better approach than using an evolutionary or a local search method alone.

The path planner generated eight non-dominated solutions of which three are further investigated. The path with the smallest curve-length (solution A) is shown in Figure 6. As expected, the path is nearly a straight line (causing smallest distance between start to end), and passes over the hill to reach the destination point. A more safe path (solution B) is shown in Figure 7. In this figure the path avoids the peak of the hill and tends to go along the valleys. In the final figure shown in Figure 8 which has the minimum risk factor (solution C), the path completely avoids the hill and goes almost exclusively through the valley. The trend in the change of the shape of the curve clearly demonstrates that the algorithm is capable in obtaining paths with different trade-offs in the objective function values.

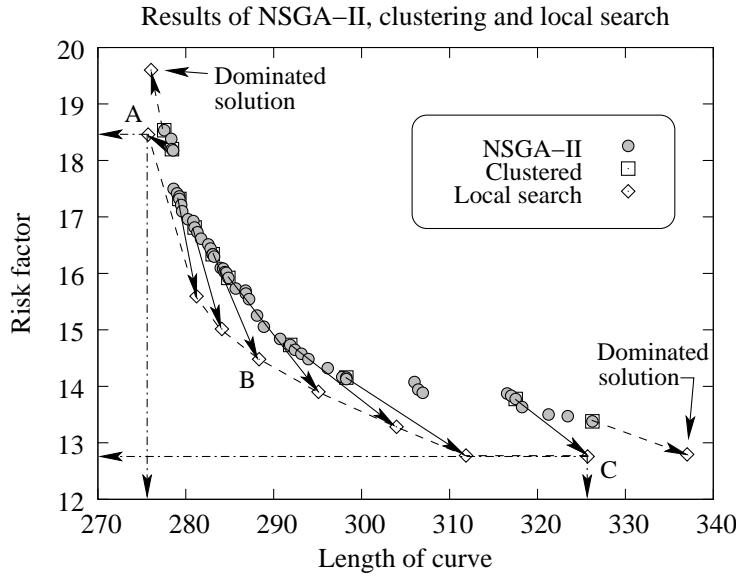


Figure 5: The plot of the non-dominated front obtained using NSGA-II and after clustering and local search for Problem 1.

Interestingly, these three solutions and five other such trade-off solutions are obtained by a single simulation of an evolutionary multi-objective optimizer (NSGA-II). The availability of such trade-off solutions provides different possibilities of achieving the task and helps a user to compare them and choose one for a particular application. In these and many other real-world multi-objective optimization problems, it is difficult to find the exact global Pareto-optimal solutions. However, the use of the local search method along with an EMO procedure provides a great deal of confidence about the near-optimality of the obtained solutions.

6.1.2 Problem 2

For the second problem, a wider terrain with more than one hill is chosen. In this case, nine control points (two fixed and seven free-to-move control points) are chosen. Figure 9 shows the NSGA-II solutions and the final modified solutions after the local search procedure. Once again, the local search procedure is able to find a much wider and better-converged set of

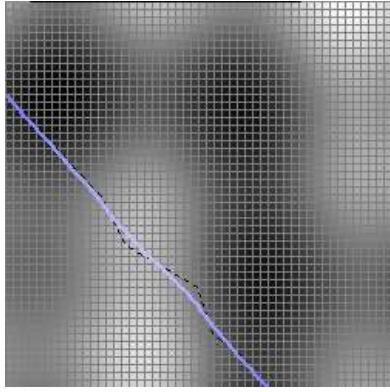


Figure 6: Path of minimum curve-length (solution A) for Problem 1. However this path is quite risky as it goes near the peak of the hill.

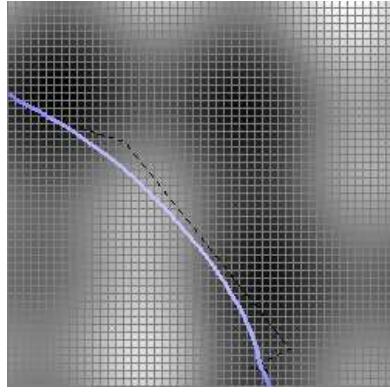


Figure 7: A safer path (solution B) for Problem 1. The path tends to avoid the hill and goes more through the valley.

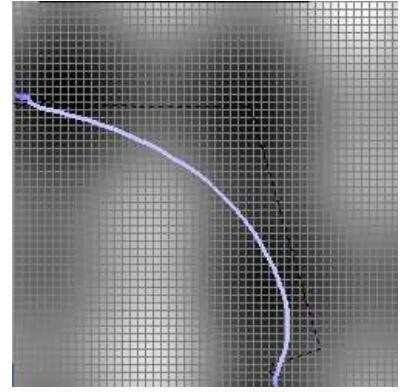


Figure 8: Safest path (solution C) for Problem 1. The path completely avoids the hill and goes almost exclusively through the valley.

solutions.

As expected, the shortest path generated, as shown in Figure 10, is nearly a straight line. But this curve has a high risk factor, as it passes very close to the terrain boundary. The path shown in Figure 11 is a safer path (though a longer one) as it goes more through the valleys. Finally the path shown in Figure 12 is the longest one, though it is the safest as it is at a safe distance from the terrain boundaries, as visible from the figure.

6.2 Type II: Path Needs to Pass Through a Specified Point

The parameters chosen for this problem are the same as in the previous case. Results for two sample problems are presented here. The point through which the UAV has to pass is shown with a black dot in the figures.

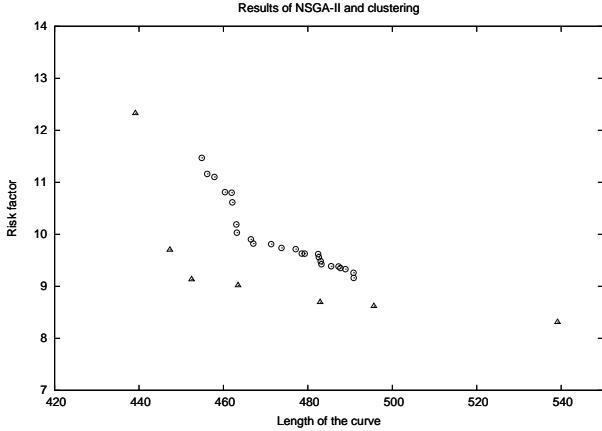


Figure 9: The plot of the non-dominated front obtained using NSGA-II (shown using circles) and after clustering and local search (shown using triangles) for Problem 2.

6.2.1 Problem 3

Nine control points are used for defining the B-Spline curves. Out of these nine control points, two were the starting and the end point, one was the point through which the UAV has to compulsorily pass, and three other control points are there in the two segments of the B-Spline curve. Figure 13 shows 10 clustered trade-off solutions obtained using NSGA-II. The trade-off between the two objectives is clear from this figure. In this problem, a local search from these clustered solutions did not produce any better solution. Fixing a point along the path imposes a strict constraint on the shape of the path. As a result, a simple mutation-based local search method is not able to find any better overall solution to this problem.

The shortest path is shown in Figure 14. In this path, the two segments (from the starting point to the fixed point, and from the fixed point to the destination point) are almost straight lines, as expected. Notice how the proposed procedure is able to locate the three consecutive control points ($m - 1$, m , and $m + 1$) very close to each other so that the overall path appears as almost two straight lines. Although this minimum-length solution seems to have a sharp turn at the specified point, the curvature at this point is well within

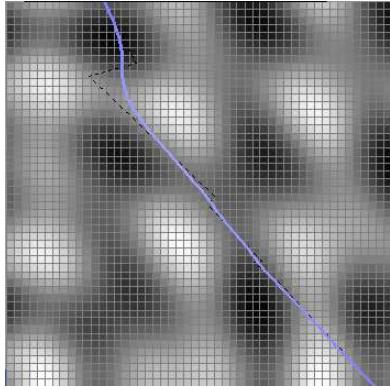


Figure 10: Path of minimum length for Problem 2. This is a risky path as it goes quite close to the terrain boundaries.

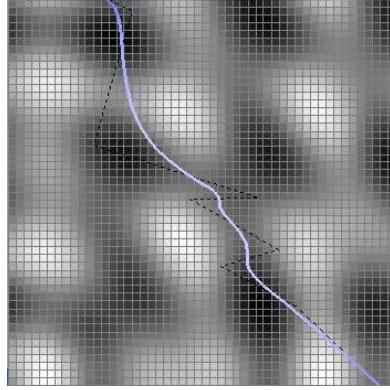


Figure 11: A safer path for Problem 2. A relatively safer path as it avoids the hills.

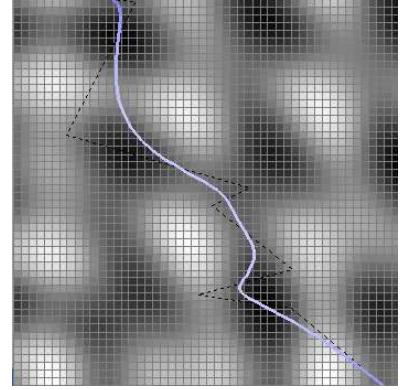


Figure 12: The safest path for Problem 2. The path totally avoids the hills and goes through the valleys.

the specified minimum curvature. However, the paths in Figure 15 and Figure 16 tend to go round the hills in the terrain and are therefore safer paths as compared to the previous short path. In these solutions, the three control points are places sufficiently away so as to have a smoother transition through the pre-specified point.

6.3 Problem 4

The next problem also uses nine control points for describing the B-Spline curve, however a large number of hills and valleys are introduced to make the problem more difficult. Figure 17 shows nine trade-off solutions. Since a small value of the upper height limit is imposed on the path, the shortest length path does not consist of two straight line segments, but has two segments which are more curved going round the hill. Three paths, illustrating the minimum-length solution, minimum-risk-factor solution and a compromised solution, are shown in Figures 18, 19 and 20, respectively.

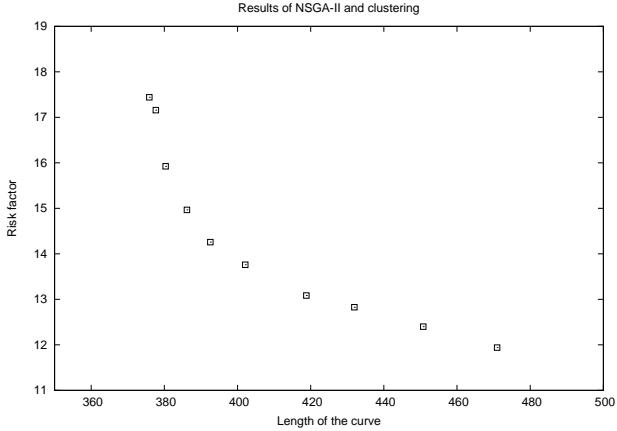


Figure 13: The plot of the non-dominated front obtained after NSGA-II and clustering for Problem 3.

7 Conclusions

This work has attempted to solve two problems concerning UAV path planning: (i) the first one is finding a suitable path between two points in the space over a rough terrain when no other constraints are specified, and (ii) the second one in which the UAV has to necessarily pass through a particular point in the space. We have attempted to solve both these problems using a hybrid multiobjective evolutionary algorithm and a local search method, a paradigm that has not been previously explored for path planning of UAVs.

The strategy presented here attempts to overcome the limitations of the existing path planning procedures involving optimizing a single objective. The objective functions are optimized simultaneously by using the NSGA-II algorithm to generate a set of Pareto-optimal paths. Then about eight to ten well-dispersed solutions are selected from the NSGA-II solutions and a local optimization is performed to get solutions as close to the true Pareto-optimal front as possible. Thus the combined algorithm presents the user with several options for choosing a suitable path for the UAV. If the user is more concerned about the time of flight and confident that the UAV can evade the obstacles, then he or she can go for the path with the shortest length. If, on the other hand, the user is more concerned about the safety

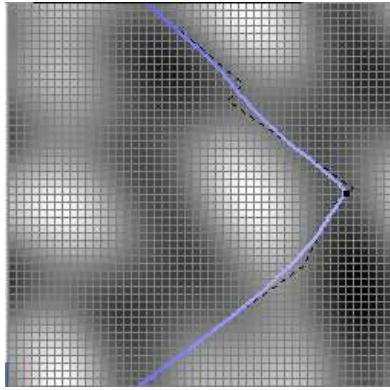


Figure 14: Path of minimum length for Problem 3. The point through which the UAV has to compulsorily pass is shown with a black dot.

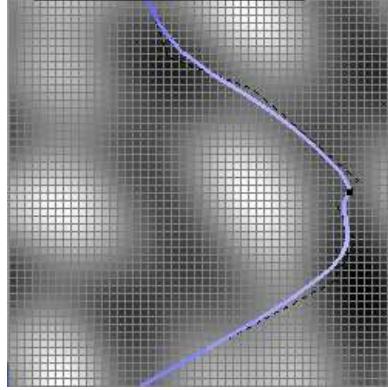


Figure 15: A longer but a relatively safer path for Problem 3.

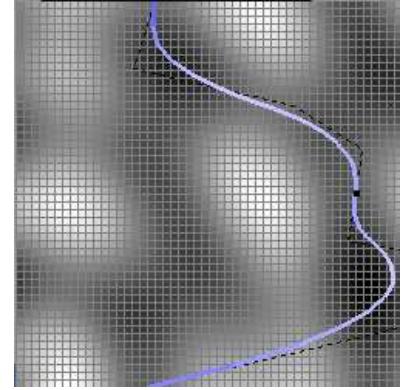


Figure 16: Safest path for Problem 3. Note how this path avoids the hills and goes through the valleys.

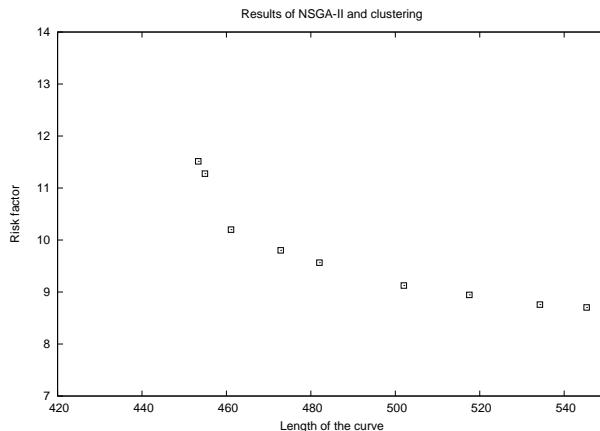


Figure 17: The plot of the non-dominated front obtained after NSGA-II and clustering for Problem 4.

of the vehicle, he or she can choose the path with a lower risk factor. Also, there exist a number of other intermediate solutions having a trade-off between the two objectives. This provides a great flexibility to the user to choose the best path for a task.

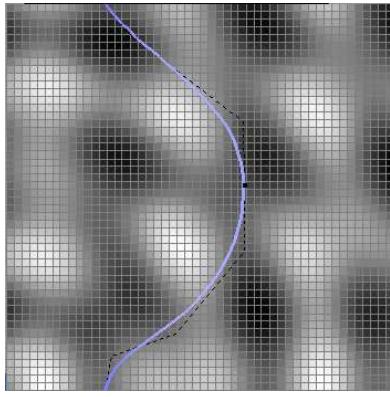


Figure 18: Path of minimum length for Problem 4.

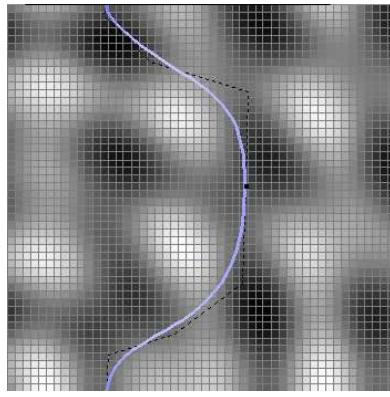


Figure 19: A relatively safer path for Problem 4.

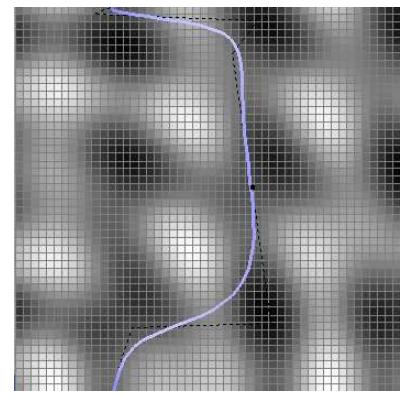


Figure 20: Safest but comparatively longer path for Problem 4.

The results presented here show how the algorithm works to find the optimal paths for the UAV. Though we have presented results for a few cases only, the algorithm should work for terrains with different topographies as well.

Modeling the UAV path as a B-Spline curve provides a reasonable way for encoding the path in the evolutionary algorithm and in the mutation-based local search procedure. This is because B-spline curves need only a few points to describe a complex curve path. Also, using a B-Spline curve gives an easy way to solve the Type II problem by imposing a certain restriction on the control points of the B-Spline curve.

The multiobjective paradigm of path planning for UAVs is therefore, a more flexible and pragmatic one as compared to the existing methods, and should find more use in path planning technology.

Acknowledgement

The authors would like to thank Dr. Vittorio Castelli of IBM T.J. Watson Research Center, New York for his useful comments on an initial draft of the paper.

References

- [1] W. T. Cerven, F. Bullo, and V. L. Coverstone. Vehicle motion planning with time-varying constraints. *AIAA Journal on Guidance, Control and Dynamics*, 27(3):506–509, 2004.
- [2] K. Deb. *Optimization for Engineering Design: Algorithms and Examples*. New Delhi: Prentice-Hall, 1995.
- [3] K. Deb. *Multi-objective optimization using evolutionary algorithms*. Chichester, UK: Wiley, 2001.
- [4] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space. *Complex Systems*, 9(2):115–148, 1995.
- [5] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multi-objective genetic algorithm: NSGA-II. *IEEE Transactions on Evolutionary Computation*, 6(2):182–197, 2002.
- [6] K. Deb and S. Jain. Multi-speed gearbox design using multi-objective evolutionary algorithms. *ASME Transactions on Mechanical Design*, 125(3):609–619, 2003.
- [7] K. Deb, K. Mitra, R. Dewri, and S. Majumdar. Towards a better understanding of the epoxy polymerization process using multi-objective evolutionary computation. *Chemical Engineering Science*, 59(20):4261–4277, 2004.
- [8] A. Dogan. Probabilistic path planning for uavs. *American Institute of Aeronautics and Astronautics*, 2003.
- [9] C. Fonseca, P. Fleming, E. Zitzler, K. Deb, and L. Thiele. *Proceedings of the Second Evolutionary Multi-Criterion Optimization (EMO-03) Conference (Lecture Notes in Computer Science (LNCS) 2632)*. Heidelberg: Springer, 2003.

- [10] D. Hearn and M. P. Baker. *Computer Graphics*. Pearson Education, 2003.
- [11] M. Innocenti, L. Polloni, and D. Turra. Guidance of unmanned air vehicles based on fuzzy sets and fixed waypoints. *AIAA Journal on Guidance, Control and Dynamics*, 27(4):715–720, 2004.
- [12] M. T. Jensen. Reducing the run-time complexity of multiobjective EAs. *IEEE Transactions on Evolutionary Computation*, 7(5):503–515, 2003.
- [13] Xiao Jing, Z. Michalewicz, Zhang Lixin, and K. Trojanowski. Adaptive evolutionary planner/navigator for mobile robots. *IEEE Transactions on Evolutionary Computation*, 1:18–28, 1997.
- [14] M. Jun and R. D’Andrea. *Cooperative Control: Models, Applications and Algorithms*. Kluwer.
- [15] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors. *Journal of the Association for Computing Machinery*, 22(4):469–476, 1975.
- [16] K. Miettinen. *Nonlinear Multiobjective Optimization*. Kluwer, Boston, 1999.
- [17] I. K. Nikolos, K. P. Valvanis, N. C. Tsourveloudis, and A. N. Kostaras. Evolutionary algorithm based offline/online path planner for uav navigation. *IEEE Transactions on Man, Systems and Cybernetics - Part B: Cybernetics*, 33:898–911, 2003.
- [18] D. Pratihar, K. Deb, and A. Ghosh. Fuzzy-genetic algorithms and time-optimal obstacle-free path generation for mobile robots. *Engineering Optimization*, 32:117–142, 1999.
- [19] D. K. Pratihar, K. Deb, and A. Ghosh. Optimal path and gait generations simultaneously of a six-legged robot using a ga-fuzzy approach. *Robotics and Autonomous Systems*, 41:1–21, 2002.

[20] E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne. *Proceedings of the First Evolutionary Multi-Criterion Optimization (EMO-01) Conference (Lecture Notes in Computer Science (LNCS) 1993)*. Heidelberg: Springer, 2001.

[21] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. *IEEE Transactions on Evolutionary Computation*, 3(4):257–271, 1999.

Appendix

A Computing B-Spline Curves from Control Points

B-Spline curves are parametric curves, and their construction are based on blending functions [10]. Suppose the number of control points of the curve is $(n + 1)$, the coordinates being $(x_0, y_0, z_0), \dots, (x_n, y_n, z_n)$, then the coordinates of the B-Spline curves are given by

$$X(t) = \sum_{i=0}^n x_i B_{i,k}(t), \quad (6)$$

$$Y(t) = \sum_{i=0}^n y_i B_{i,k}(t), \quad (7)$$

$$Z(t) = \sum_{i=0}^n z_i B_{i,k}(t), \quad (8)$$

where $B_{i,K}(t)$ is a blending function of the curve and K is the order of the curve. Higher the order of the curve, smoother the curve. For example, see Figure 21, Figure 22 and Figure 23, shown for different order K of the curve. The parameter t varies between zero and $(n - K + 2)$ with a constant step, providing the discrete points of the B-spline curve.

For our problem, the blending functions have been defined recursively in terms of a set

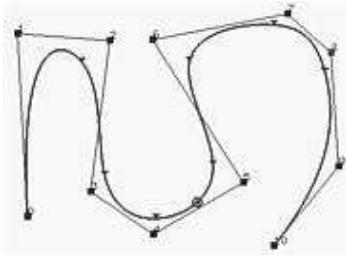


Figure 21: B-Spline curves with 11 control points and order 3

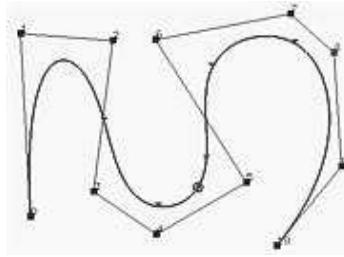


Figure 22: B-Spline curves with the same set of 11 control points and order 5

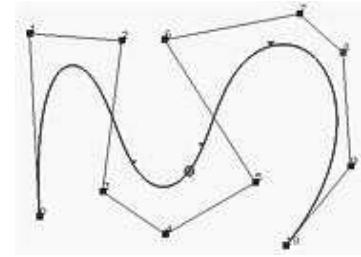


Figure 23: B-Spline curves with the same set of 11 control points and order 7

of *Knot* values, which in this case is a *uniform non-periodic* one, defined as:

$$Knot(i) = \begin{cases} 0, & \text{if } i < K \\ i - K + 1, & \text{if } K \leq i \leq n \\ n - K + 2, & \text{if } n < i \end{cases} \quad (9)$$

The blending function $B_{i,K}$ is defined recursively, using the *Knot* values given above:

$$B_{i,1}(t) = \begin{cases} 1, & \text{if } Knot(i) \leq t < Knot(i+1) \\ 1, & \text{if } \begin{cases} Knot(i) \leq t \leq Knot(i+1) \\ \text{and} \\ t = n - K + 2 \end{cases} \\ 0, & \text{otherwise} \end{cases} \quad (10)$$

$$B_{i,K}(t) = \frac{(t - Knot(i)) \times B_{i,K-1}(t)}{Knot(i+K-1) - Knot(i)} + \frac{(Knot(i+K) - t) \times B_{i+1,K-1}(t)}{Knot(i+K) - Knot(i+1)} \quad (11)$$

If the denominator of either of the fractions is zero, that fraction is defined to be zero.