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Abstract

We present a three-dimensional offline path planner for Unmanned Aerial Vehicles
(UAVSs) using a multiobjective optimization procedure for simultaneous optimization
of two conflicting goals: (i) minimization of the length of overall path and (ii) maxi-

mization of the margin of safety from ground obstacles. This method is different from
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existing single-objective optimization methods, because it treats both objectives as
they are and does not require and additional problem information for converting the
two-objective problem to a single-objective one. The evolutionary optimization pro-
cedure adopted here is capable if generating a number of feasible paths with different
trade-offs between the objective functions. The procedure has immediate practical im-
portance. The availability of a number of trade-off solutions allows the user to choose a
path according to his/her needs easily. The three-dimensional UAV path is represented
by using B-Spline space curves. The control points of the B-Spline curve are the vari-
ables in the multiobjective evolutionary algorithm. We solve two types of problems,
assuming the normal flight envelope restriction: i) path planning for UAV when no
restriction on the path and ii) path planning for UAV if the vehicle has to necessarily
pass through one or more pre-specified points in the space. In both types of problems,
the advantages of using the proposed procedure is amply demonstrated. The procedure

is ready to be adopted for real-world UAV path planning problems.

1 Introduction

The main motivation behind this work is to develop an offline path planner for UAVs. Such
a path planner can be used for navigation of UAVs over rough terrain, where a traversal
otherwise can be difficult and prone to accidents. In planning such a path, often an opti-
mization problem is constructed either for minimizing the length of path or for maximizing
a safety margin from ground obstacles, or others [17]. Other techniques such as a fuzzy-logic
strategy [11] or a graph-based strategy [1] are also used. However, the path planning problem
is truly a multi-objective optimization problem in which conflicting goals of minimizing the
length of path and simultaneously maximizing the margin of safety can be simultaneously
important. There exists no past studies in which the path planning problem is considered
as a truly multi-objective optimization task.

In this paper, it is assumed that the terrain topography is known beforehand. The details



of the terrain can be acquired using satellite data or from surveillance data. The start point
and the end point of the flight are known and it is required to find a feasible path connecting
these two points. The path should be feasible in the sense that it should be free from ground
obstacles and its curvature at any point along the path should not exceed beyond a limit.
This restriction is necessary as it is not always possible for an aerial vehicle to traverse a
path with large curvatures. To reduce complexity of computing collision avoidance with the
ground obstacle, the UAV is assumed to be a point and the ground obstacle boundary is
modified with the size of the UAV. In the present study, the path of the UAV is assumed to
be a B-spline curve, which is controlled by manipulating a number of control points. The

following two problems are mainly tackled:

Type I: UAV navigation using an offline path planner when no restriction on the
path. In this case it is assumed that the path of the UAV can take any shape and can
pass through any point in the space. The path so obtained is a single B-Spline curve

between starting and end points.

Type II: UAV navigation using an offline path planner when the vehicle has to
pass through one or more pre-specified points in the space. Such a situation
can arise, for example, when the UAV is required for surveillance in a particular part
of the terrain, or it has to drop a bomb at a particular point, thereby requiring the
UAV to travel through a particular region or point. In this case also, the path planner
generates a single B-Spline curve, but enforces that the specified points lies on the

generated B-spline curve.

Unlike most path planning strategies, the proposed path planing strategy considers a
multiobjective formulation of the path planing task and uses an evolutionary algorithm.
The advantage of using such a method is that it generates not just one but many optimal
(called as Pareto-optimal) solutions (paths), each with a different trade-off among multiple

objective functions. This provides the user with more flexibility, since the user now has



a knowledge of different possibilities of travel and can choose a particular path of his/her
choice which is best suited for the task.

In the remainder of the paper, we describe the specific multiobjective optimization al-
gorithm used in this study. Thereafter, we present simulation results on a number of case
studies illustrating the advantage of using the multiobjective formulation. The solution
methodology is generic and can be used for other path generation problems. The procedure

is also ready to be used with real terrain and UAV data.

2 Past Studies on Three-Dimensional Path Generation

A number of methods for generating paths in known 2-D or 3-D environment already exist.
Neural networks had been extensively used for solving such problems. In recent years, path
planning for robots in a 2-D environment using evolutionary algorithms are also studied in
great detail [13, 18, 19]. For an UAV navigation, there exist methods for finding optimal
paths using Voronnoi diagrams [14, 8]. A more recent work in UAV path planning uses a
class of single objective genetic algorithms (called breeder genetic algorithms) for offline as
well as online path planning [17]. This study also uses B-Spline curves for representing paths
in 3-D space.

However, all the existing methods for path planning do not take into account the fact
that the problem involves a number of conflicting objectives which must be taken into con-
sideration while generating a path. While the time of flight from start to end is one main
consideration, distance of the UAV from any ground obstacle (such as a mountain or a struc-
ture) or forbidden regions (both in ground or in space) are also important considerations.

In the presence of such multiple conflicting objectives, the existing literature converts
the problem into a single objective optimization problem by using one of the two main
procedures [16, 3]. In the e-constraint method, only one of the objectives is chosen and rest

are used as constraints so that they are restricted to lie within a safe limit. For example,



in such a conversion procedure, the time of flight can be minimized by restricting a safe
distance (say, dei) of all intermediate positions of the UAV from corresponding ground
obstacle. In the weighted-sum approach, on the other hand, all objectives are aggregated
together to form a combined objective. In this approach, a weighted average of time of flight
and distance margin of the UAV from ground obstacles can be minimized. It is intuitive
that both these methods involve setting of some artificial parameters (such as limiting value
deir used as constraints in the e-constraint approach or relative weights used to combine
multiple objectives in the weighted-sum approach). The optimum solution to the resulting
single objective optimization problem largely depends on these chosen parameters. More
importantly, a setting of these parameters for an important UAV flight task is not often
easy, particularly in the absence of any known solution to the problem. We explain some of
these matters in the following paragraphs.

There are at least a couple of implementational issues which we discuss first:

1. The conversion of two objectives into one requires that both objectives are of same
type (either both are of minimization type or both are of maximization type). In
this case, an optimal UAV path generation will require minimization of time of flight
and simultaneous maximization of safe distance margin, thereby requiring one of the

objectives to be converted to the other type by using the duality principle [2].

2. Since a weight-vector (for example, a weight-vector (0.75,0.25) signifies the minimiza-
tion of time of flight is three times more important than the maximization of safe
distance margin) is to be used for the conversion procedure, the objectives must also
be normalized so that they are of similar magnitudes before a weighted average is

computed.

Similar issues exist with other approaches such as the e-constraint approach in terms of fixing
limiting values for constraints.

Besides the above implementational issues, there is a deeper problem which we discuss



next. It is important to mention that the fixing of the weight-vector (or e-vector) above
must be done before an optimization algorithm is applied and before any optimal solution
is obtained. Thus, an user has to entirely guess or rely on his past experience of assigning
a relative weight (or €) vector to combine important objectives. This is certainly a difficult
task. After obtaining the optimal solution corresponding to the chosen weight vector (say
(0.75,0.25)), the user will always wonder what other optimal path would have been gen-
erated if he or she had specified a slightly different weight vector, such as (0.70,0.30), for
example! Moreover, a responsible and reliable user would also like to know how the path
would change if an entirely different weight vector (such as (0.25,0.75)) is chosen, instead.
The corresponding optimal solutions will provide valuable information of solving the task.
In the presence of such paths, each trading off the objectives in a different manner, the user
will be in a better position to choose a particular path.

In this paper, we suggest a procedure for finding multiple such paths in a single simulation.
In Section 5.1, we describe an evolutionary algorithm for this task. But before, we describe
the representation scheme for specifying the terrain and a UAV path in our optimization

algorithm.

3 Representation of terrain and UAV path

Our work uses several of the models employed in [17]. In particular, the representation of
the terrain and the B-Spline curves representation for UAV paths is the same as in [17]. The
representation of the terrain is the same as in [17]. For UAV path, as it has been mentioned

earlier, B-Spline curves are used. The details of both these are given below.



3.1 Representation of terrain

The terrain is represented as a meshed 3-D surface, produced using a mathematical function

of the form:

2(x,y) = sin(y + a) + bsin(z) + ccos(d/y? + x2) + esin(ey/y? + 22) + f cos(y) (1)

where a, b, c,d, e, f are constants experimentally defined in order to produce a surface sim-
ulating a rough terrain with valleys and mountains. A sample terrain generated using this
function is shown in Figure 1. We may as well use the data of a real terrain, however for
our work we have used the terrain generated by the above equation, since it can generate a
variety of terrains on which to test our path finding algorithm. Such terrains have also been
previously used by other researchers [17].

Note that in the figures, the light areas represent greater height and dark areas represent

lower height.

Figure 1: A sample terrain generated using eq. 1. Note that the lighter regions represent
greater heights (i.e. hills), where as the darker regions represent valleys. The same shading

convention has been adopted for the B-Spline curves in subsequent figures.



3.2 Representation of UAV path using B-Spline curves

B-Spline curves are used to represent the UAV path. More details on B-Spline curves can
be found in [10]. B-Spline curves are well suited for this problem because of the following

reasons:

1. B-Spline curves can be defined using only a few points (called control points). This

makes their encoding in genetic algorithm easier.
2. Very complicated path, if needed, can be easily produced by using a few control points.

3. B-Spline curves guarantee differentiability at least up to the first order. Thus, the

curves so obtained are smooth, without any kinks or breaks.

4. Changing the position of one of the control points affects the shape of the curve only

in the vicinity of that control point.

The start and the end points of the path are two of the control points of the B-Spline Curve,
and rest of the control points (also called free-to-move control points) are generated by the
path planning algorithm. Using the control points, the curve is generated as a sequence
of discrete points, so that the length of the curve and other objective functions can be
calculated.

B-Spline curves also provide us an easy model for representing curves to solve Type II
tasks, in which the path has to pass through a pre-specified point in the space. The curve
representation in this problem is tackled as follows: Suppose that UAV has to pass through
the point P, and the control points of the B-Spline curve are Py, Py, ... P,. Choose k such
that 0 < k < n and P, = P. Then, if the distance between P,_; and P, is identical to that
between Py and Py, or d(Py_1, Px) = d(Pg, Pr11) and the control points Py_1, Py, Pyy1 are
collinear, the B-Spline curve is guaranteed to pass through the point P. Using such a model

for the curve, Type II problems can be easily tackled, to force the path to traverse through



one or more points in the 3-D space. We discuss this aspect in Section 5.1.1. A description

of the B-Spline curves used in this work has been provided in the appendix.

4 Objective functions and constraints

The optimization problem to be solved is the minimization of two functions subject to three

constraints. In this section, we analyze in detail its components.

4.1 Objective functions

We consider two objective functions which are conflicting with each other.

4.1.1 Length of the curve

The first objective function , fi, is the length of the overall path (curve), which should be as
small as possible. The length of the curve length is calculated by summing over the distances

between the successive discrete points of the curve.

4.1.2 Risk factor

The goal of constructing the shortest path clashes with the desire of actually reaching the
intended destination. The closer the UAV flies to the terrain, the higher is the risk of
crashing. We therefore introduce a second objective function, f5, to capture this desired
property of the solution. It has the following form

nline nground

fzzz Z 1/(rij/Tsage), (2)

where nline is the number of discrete curve points, nground is the number of discrete mesh
points of the terrain boundary, r;; is the distance between the i-th curve points and j-th

node point on the terrain boundary, and rg . is the minimum safety distance the UAV



should have above the terrain. This function is henceforth referred to as the risk factor of
the curve. It can be observed that smaller the value of this risk factor, larger is the safety.
Thus, we minimize both objective functions for achieving a short-length path having a

smaller risk factor.

4.2 Constraints

The optimization problem is subject to the following three constraints
1. The vehicle must not collide with the terrain boundary in the course of its flight.

2. The UAV must not perform abrupt changes of direction. We impose this constraint
by requiring that the angle between the two successive discrete segments of the curve

(Figure 2) should not be less than a certain cut-off angle.

3. The overall maximum height of any point in the curve should not exceed a specified

upper limit.

The last constraint is imposed for several reasons. It is generally taxing for a UAV to traverse
at high altitudes, because thrust at higher altitude is low. Moving at a low height also avoids
the UAV getting detected by the radars, and is also helpful in carrying out surveillance tasks

in a better way.

5 Proposed Procedure for Path Planning

The path planner employs the following three-step hybrid algorithm for finding multiple
optimal paths. In the heart of the algorithm is the non-dominated sorting multiobjective
optimization algorithm (NSGA-II) [5]. We provide a brief description of the procedure a
little later. The algorithm is capable of finding a number of optimal paths (depending on

the chosen population size used in the simulation), trading off two objectives differently.
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Figure 2: Schematic representation of the curvature angle used in constraint 2.

But for convenience of the users, only about 8-10 well trade-off solutions are selected, and
a local search is performed on each of these solutions to improve the optimality property of

the obtained paths. The steps of the algorithm are enumerated as follows:

Step 1: An evolutionary multiobjective optimizer is used to obtain a set of Pareto-optimal

curves.

Step 2: About 8 to 10 well-dispersed solutions from the Pareto-optimal solution set are
selected by using a K-mean clustering algorithm [21, 3], so that selected solutions

provide a good trade-off between the objectives.

Step 3: A local search is performed on these solutions to obtain a set of solutions close to

the true Pareto-optimal front.

The non-dominated solutions so obtained after the local search are finally displayed using a
graphics display system. The NSGA-II evolutionary algorithm and the local search procedure

are described below.
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5.1 The NSGA-II Algorithm

NSGA-II is a fast and reliable multiobjective evolutionary optimization algorithm which has
been successfully applied to solving many multiobjective optimization problems [6, 7, 20, 9].
The procedure not only finds solutions close to the true Pareto-optimal frontier, but also a
set of points with a good spread of solutions in a reasonable computational time.

Like in a genetic algorithm (GA), the NSGA-II procedure starts with a number of N
solutions (called as a ‘population’ P) created within the specified lower and upper bound of
each variable. A solution in this problem represents the control points specifying the UAV
path as a B-Spline curve. The procedure of encoding a path is described in the following

subsection.

5.1.1 Genetic encoding of B-Spline Curves

The coordinates of the free-to-move control points (that is, the control points excluding the
starting and the end points and the pre-specified points in the case of Type II problems) of
the B-Spline curve are the variables used in the genetic algorithm. Each control point in 3-D
space is represented using three values, one each along the (XY, 7) axis. Thus, if there are
n free-to-move control points, then a solution will involve 3n real-parameter variables, as a
three-tuple for each control point in a successive manner, as shown below:

(X1, Y1, 21), (X5, Y3, Zs), .., (X, Vi, Z3))

-~

Py Py Py,

While computing the entire path from start to end, the start and end points are added in
the above list at the beginning and at the end, respectively, and the B-Spline formulation
(discussed in the appendix) is used to get a mathematical formulation of the entire path for
the UAV.

For the Type II problems with one pre-specified point P, the control point (P, =

(Xm, Ym, Zm)) in the middle of the solution vector (m = [n]) is replaced by the pre-specified

12



point P. To ensure the UAV path passes through the point P,, = P, we replace (m + 1)-th
control point as follows:

Pm+1:2pm+Pm_1. (3)

For more than one pre-specified points, a similar fix-up of the GA solution vector can be
accomplished.

In the t-th iteration of the NSGA-II procedure, the offspring population Q; is created from
the parent population P, by using a set of genetic operators — reproduction, recombination,
and mutation. These operators are described later. In the NSGA-II procedure, both these
populations are combined together to form R, of size 2N. Then, a non-dominated sorting
procedure [3] is applied to classify the population R; into a number of hierarchical non-
dominated fronts: (Fi, F, ...). In this sorted array, the subpopulation F; is the best set,
implying that this subpopulation dominates the rest of the subpopulations in the array.
Similarly, the next subpopulation F5 is better than the following subpopulations, but is
worse than F;. This sorting procedure requires O(N log N) computations for two-objective
optimization problems [12, 15].

Figure 3 shows a schematic of one iteration of the NSGA-II procedure. After the non-
dominated sorting of the set R; is over, a new population P, is constructed with sorted
subpopulations starting from the top of the array. Since the size of R; is 2V, not all
subpopulations are required. This scenario is illustrated in Figure 3. Not all members of
the last allowed front (front 3 in the figure) may not be all chosen. Instead of arbitrarily
choosing some members from this front, the solutions which makes a diversity measure of
the selected solutions the largest are chosen. We describe the procedure in the following
paragraph.

For each solution of the last subpopulation which can be partially accommodated in the
new population, a crowded-distance measure is computed by identifying the two neighboring
solutions in the objective space. The crowded-distance metric is large for solutions having

distant neighbors. To choose required number of solutions, the subpopulation is sorted in a

13



Non-dominated Crowding distance
sorting

Front sorting e
ronts ——
Parent 1 [::::]A 77777777777777 "[::::J
pop. o |- | |,
3 [
Off i
“hop. | N _
5 |:| ——Rejected
e [

Figure 3: Schematic of the NSGA-II procedure.

list in the decreasing order of crowded-distance value and solutions are selected from the top
of the list. For details, readers are encouraged to refer to the original NSGA-II study [5].
The above NSGA-II procedure finds a well-distributed set of solutions close to the true

Pareto-optimal solution set due to the following properties:

1. The preference to non-dominated solutions allows the procedure to move towards the
true Pareto-optimal solution set. As long as the Pareto-optimal solutions are not
found, the procedure emphasizes improvement towards the Pareto-optimal front. Once
all population members are members of the Pareto-optimal set, further improvement
towards the front ceases and the effort is placed in finding a well-dispersed set of

optimal solutions.

2. The preference to solutions having large crowded-distance value allows a well-distributed

set of solutions to be found.

3. The preference to better solutions of both parent and offspring populations does not
allow the NSGA-II procedure to degrade its performance from one iteration to the next.
The performance (a combined convergence to the Pareto-optimal front and diversity

among solutions) can only get better or remain the same.
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The above iterative procedure is continued till a termination criterion is met. Usually, the
NSGA-II procedure is continued for a predefined number of iterations (Tjnax). We now briefly

describe the NSGA-II operators.

5.1.2 Reproduction Operator

The reproduction operator uses a constrained tournament selection method in which two
solutions from the population are compared and the winner is declared based on the following

three conditions:

1. When both solutions are feasible, the one residing on a better non-dominated front, or

the one having a larger crowding-distance value wins.

2. When both solutions are infeasible, the one having a smaller overall constraint violation

wins.
3. When one solution is feasible and other is infeasible, the feasible solution wins.

It is interesting to note that the above operator takes care of constraints (linear or nonlinear
and equality or inequality) without requiring any additional parameter, such as penalty

parameter.

5.1.3 Recombination Operator

The NSGA-II procedure uses the simulated binary crossover (SBX) operator [3], in which
two real-parameter solution vectors are recombined to obtain two new real-parameter off-
spring solutions. In this operator, two real-parameter values (X, Y, Z values of two parent
solutions) one from each parent solution for each variable is blended together to obtain two
new values. A bi-modal probability distribution is used for this purpose. For details, readers
may refer to the original study [4]. To control the extent of blending, a parameter 7. can be

set by the user. In many problems, 1. = 10 is found to provide better performance, however,
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a large value has an effect of reducing the extent of blending. To reduce the destruction
probability of already-obtained good solutions (or partial solutions), we do not allow all
N population members to participate in this recombination operation. We use a crossover
probability p. for this purpose. If a probability of 0.8 is used, on an average, 80% of the

population members participate in the recombination operation.

5.1.4 Mutation Operator

The mutation operator perturbs an offspring solution obtained after the recombination op-
erator locally to create a new solution. This event is performed with a mutation probability
pm- In this operator, the probability of creating a solution closer to the parent is more than
the probability of creating away from it, and also the perturbation caused by the mutation
operator decreases with an increase in iteration counter. The mathematical formulation of

the operator is as follows:
y =@ +ney —ag)(1 - 0T, (4)

where y is a member in the offspring solution vector, z is the corresponding member in
the parent solution vector, r is a random number in the range [0, 1], n takes a Boolean
value ({—1,1}), each chosen with a probability of 0.5. The parameter T},,, is the maximum
number of allowed iterations, while b is a user-defined parameter, generally set to 1.0. xy
and x;, are the upper and the lower limits for the variable, respectively. The details about

this operator can be found in [3].

5.2 Clustering

If run for an adequate number of iterations, the NSGA-II procedure is likely to find N non-
dominated solutions, having trade-off between the objectives. Since usually a population is
sized with NV = 100 to 500 solutions, so many non-dominated solutions are inconvenient for

the user of the UAV path generation task to consider, particularly when only one solution
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has to be chosen from the whole set of N solutions. In this paper, we suggest a clustering
technique in which only a handful (say, 8 to 10 solutions) of them are chosen in a manner
so that they are well-dispersed from each other on the objective space. Here, we follow a
K-mean clustering algorithm for this purpose.

In the K-mean clustering method applied to N solutions, each solution is assumed to
belong to a separate cluster. Thereafter, inter-cluster distances (in the objective space)
are computed for each pair of clusters and the two clusters with the smallest distance are
merged together to reduce the total count of clusters by one. The procedure is continued
till the required number of 8 or 10 clusters are left. Finally, only one representative solution
from each cluster is retained and the rest are ignored. For the boundary clusters, a suitable
extreme solution is retained and for an intermediate cluster a solution in the middle of the

cluster is retained.

5.3 Local Search Procedure

After the NSGA-II procedure finds N non-dominated solutions and the clustering procedure
filters out eight to ten solutions, a local search is applied from each of the clustered solutions
for any possibility of further improvement. For each solution, a suitable composite criterion
is assigned based on its location on the objective space, as shown in Figure 4. The procedure
is similar to the weighted-sum approach (F(x) = 232':1 w; f;(x)), but the weight vector is
assigned based on how close the solution (5) is located compared to the optimum of an

individual objective:

U BN/ —
LS (e — f(S) ) (frer — frm)]

where fjmin and f;"** are the minimum and maximum function values of the j-th objective,

()

respectively.
The local search operation starts with a clustered solution and works by perturbing (or

mutating) the solution. If the perturbed solution is better in terms of the assigned composite
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Figure 4: For each clustered solution, a combined search direction is computed from the

location of the solutions in the objective space.

objective, the clustered solution is replaced by the perturbed solution. This procedure is
continued until no improvement is found in H = 10,000 consecutive perturbations. The
local search procedure, in general, produces a better non-dominated front from the front
found by the NSGA-II and clustering procedure. It is interesting to note that since the local
vicinity of each non-dominated solution is checked by the local search, the resulting solution

can be considered to be close to an exact Pareto-optimal solution.

6 Simulation results

The above hybrid NSGA-IT cum local search procedure is applied to a number of problems
having terrains of varying shapes. The algorithm is successful in finding feasible optimal
paths in almost all cases. Here, the results of the simulation runs on a few of the problems

are presented.
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6.1 Type I: No Intermediate Restriction
The following parameters are used for solving Type I problems:
e Population size, N = 100
e Maximum number of iterations, T, = 150
e Crossover probability, p. = 0.8
e Distribution index of SBX, 7, = xx
e Mutation probability (p,,) is fixed as the reciprocal of the number of variables.
e Degree of B-Spline curve K =5

e Minimum allowed angle between two successive discrete segments of the B-Spline curve

= 150°
e Critical safe distance (in eq. 2), 7gpe = 1.0

The above parameters were fixed after trial and error, so as to get the optimum performance
from the path finding algorithm. The algorithm takes about 3 to 4 minutes to generate the
final set of eight to ten different paths when run on a Pentium IV (2.4 GHz) PC. There is
no significant variance in the results between different runs of the algorithm starting from
different initial populations. This implies that the algorithm presented here is also a robust
one.

Results for four sample problems are shown here. For both types of problems, a terrain

with a 50 x 50 mesh is used.

6.1.1 Problem 1

In the first problem, the UAV is required to traverse over a hill which is surrounded by

valleys on two sides. For this problem, seven control points (two fixed and five free-to-move
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control points) are used. Step 1 of the proposed hybrid algorithm finds 30 different trade-off
solutions, as shown with shaded circles in Figure 5. The minimum length of curve is 277.54
units and minimum risk factor is 18.53. The trade-off among these solutions is clear from
the figure. If any two solutions are compared from this set, one is better in one objective,
but is worse in the other objective.

Step 2 chooses a few well-dispersed solutions from this set using a K-mean clustering
method mentioned earlier. Ten well-dispersed (marked with boxes) are chosen from the set
obtained by NSGA-II. Thereafter, in Step 3, the local search method improves each of these
10 solutions and finds eight non-dominated solutions which are marked using triangles in
Figure 5. The figure shows the improvement of each solution by using an arrow. The two
extreme solutions are improved to two dominated solutions, thereby leaving eight final trade-
off solutions. It is clear from the figure that the final eight solutions (joined with dashed
lines) constitute a better non-dominated front than that by NSGA-IT alone, meaning that
the obtained solutions together are better in terms of both objectives. The final set contains
solutions with curve-length varying in the range [276, 337] units and risk factor in the range
[12.8, 19.6]. A local search coupled with the evolutionary algorithm is found to be a better
approach than using an evolutionary or a local search method alone.

The path planner generated eight non-dominated solutions of which three are further
investigated. The path with the smallest curve-length (solution A) is shown in Figure 6.
As expected, the path is nearly a straight line (causing smallest distance between start to
end), and passes over the hill to reach the destination point. A more safe path (solution B)
is shown in Figure 7. In this figure the path avoids the peak of the hill and tends to go
along the valleys. In the final figure shown in Figure 8 which has the minimum risk factor
(solution C), the path completely avoids the hill and goes almost exclusively through the
valley. The trend in the change of the shape of the curve clearly demonstrates that the
algorithm is capable in obtaining paths with different trade-offs in the objective function

values.
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Results of NSGA-II, clustering and local search

20 T T T T T T
<i ~=— Dominated

19F A solution 7

18 f@% NSGA-Il ©
! Clustered O
= Local search <

Risk factor

Dominated

solution— _|
Q0 z

SO

270 280 290 300 310 320 330 340
Length of curve

Figure 5: The plot of the non-dominated front obtained using NSGA-II and after clustering

and local search for Problem 1.

Interestingly, these three solutions and five other such trade-off solutions are obtained by
a single simulation of an evolutionary multi-objective optimizer (NSGA-II). The availability
of such trade-off solutions provides different possibilities of achieving the task and helps
a user to compare them and choose one for a particular application. In these and many
other real-world multi-objective optimization problems, it is difficult to find the exact global
Pareto-optimal solutions. However, the use of the local search method along with an EMO
procedure provides a great deal of confidence about the near-optimality of the obtained

solutions.

6.1.2 Problem 2

For the second problem, a wider terrain with more than one hill is chosen. In this case, nine
control points (two fixed and seven free-to-move control points) are chosen. Figure 9 shows
the NSGA-II solutions and the final modified solutions after the local search procedure. Once

again, the local search procedure is able to find a much wider and better-converged set of
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Figure 6: Path of minimum

curve-length (solution A) for
Problem 1. However this
path is quite risky as it goes

near the peak of the hill.

solutions.

Figure 7: A safer path (solu-
tion B) for Problem 1. The
path tends to avoid the hill
and goes more through the

valley.

0

05 B
NN

Figure 8: Safest path (solu-
tion C) for Problem 1. The
path completely avoids the
hill and goes almost exclu-

sively through the valley.

As expected, the shortest path generated, as shown in Figure 10, is nearly a straight line.

But this curve has a high risk factor, as it passes very close to the terrain boundary. The

path shown in Figure 11 is a safer path (though a longer one) as it goes more through the

valleys. Finally the path shown in Figure 12 is the longest one, though it is the safest as it

is at a safe distance from the terrain boundaries, as visible from the figure.

6.2 Type II: Path Needs to Pass Through a Specified Point

The parameters chosen for this problem are the same as in the previous case. Results for

two sample problems are presented here. The point through which the UAV has to pass is

shown with a black dot in the figures.
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Results of NSGA-II and clustering
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Figure 9: The plot of the non-dominated front obtained using NSGA-II (shown using circles)

and after clustering and local search (shown using triangles) for Problem 2.

6.2.1 Problem 3

Nine control points are used for defining the B-Spline curves. Out of these nine control
points, two were the starting and the end point, one was the point through which the UAV
has to compulsorily pass, and three other control points are there in the two segments of the
B-Spline curve. Figure 13 shows 10 clustered trade-off solutions obtained using NSGA-II.
The trade-off between the two objectives is clear from this figure. In this problem, a local
search from these clustered solutions did not produce any better solution. Fixing a point
along the path imposes a strict constraint on the shape of the path. As a result, a simple
mutation-based local search method is not able to find any better overall solution to this
problem.

The shortest path is shown in Figure 14. In this path, the two segments (from the
starting point to the fixed point, and from the fixed point to the destination point) are
almost straight lines, as expected. Notice how the proposed procedure is able to locate the
three consecutive control points (m — 1, m, and m + 1) very close to each other so that the
overall path appears as almost two straight lines. Although this minimum-length solution

seems to have a sharp turn at the specified point, the curvature at this point is well within
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Figure 10: Path of minimum

length for Problem 2. This is
a risky path as it goes quite

close to the terrain bound-

(i

Figure 11: A safer path for
Problem 2. A relatively safer

path as it avoids the hills.

Figure 12: The safest path

for Problem 2. The path
totally avoids the hills and

goes through the valleys.

aries.

the specified minimum curvature. However, the paths in Figure 15 and Figure 16 tend to
go round the hills in the terrain and are therefore safer paths as compared to the previous
short path. In these solutions, the three control points are places sufficiently away so as to

have a smoother transition through the pre-specified point.

6.3 Problem 4

The next problem also uses nine control points for describing the B-Spline curve, however a
large number of hills and valleys are introduced to make the problem more difficult. Figure 17
shows nine trade-off solutions. Since a small value of the upper height limit is imposed on
the path, the shortest length path does not consist of two straight line segments, but has
two segments which are more curved going round the hill. Three paths, illustrating the
minimum-length solution, minimum-risk-factor solution and a compromised solution, are

shown in Figures 18, 19 and 20, respectively.
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Results of NSGA-II and clustering
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Figure 13: The plot of the non-dominated front obtained after NSGA-II and clustering for
Problem 3.

7 Conclusions

This work has attempted to solve two problems concerning UAV path planning: (i) he first
one is finding a suitable path between two points in the space over a rough terrain when no
other constraints are specified, and (ii) the second one in which the UAV has to necessarily
pass through a particular point in the space. We have attempted to solve both these problems
using a hybrid multiobjective evolutionary algorithm and a local search method, a paradigm
that has not been previously explored for path planning of UAVs.

The strategy presented here attempts to overcome the limitations of the existing path
planning procedures involving optimizing a single objective. The objective functions are
optimized simultaneously by using the NSGA-IT algorithm to generate a set of Pareto-optimal
paths. Then about eight to ten well-dispersed solutions are selected from the NSGA-II
solutions and a local optimization is performed to get solutions as close to the true Pareto-
optimal front as possible. Thus the combined algorithm presents the user with several options
for choosing a suitable path for the UAV. If the user is more concerned about the time of
flight and confident that the UAV can evade the obstacles, then he or she can go for the path

with the shortest length. If, on the other hand, the user is more concerned about the safety
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Figure 14: Path of min-
imum length for Problem
3. The point through which
the UAV has to compulsorily
pass is shown with a black

dot.

14

Figure 15: A longer but

a relatively safer path for

Problem 3.

Results of NSGA-II and clustering

EEEEY

Figure 16: Safest path for
Problem 3. Note how this
path avoids the hills and

goes through the valleys.
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L
540

Figure 17: The plot of the non-dominated front obtained after NSGA-II and clustering for

Problem 4.

of the vehicle, he or she can choose the path with a lower risk factor. Also, there exist a

number of other intermediate solutions having a trade-off between the two objectives. This

provides a great flexibility to the user to choose the best path for a task.
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Figure 18: Path of minimum  Figure 19: A relatively safer  Figure 20: Safest but com-
length for Problem 4. path for Problem 4. paratively longer path for
Problem 4.

The results presented here show how the algorithm works to find the optimal paths for
the UAV. Though we have presented results for a few cases only, the algorithm should work
for terrains with different topographies as well.

Modeling the UAV path as a B-Spline curve provides a reasonable way for encoding the
path in the evolutionary algorithm and in the mutation-based local search procedure. This
is because B-spline curves need only a few points to describe a complex curve path. Also,
using a B-Spline curve gives an easy way to solve the Type II problem by imposing a certain
restriction on the control points of the B-Spline curve.

The multiobjective paradigm of path planning for UAVs is therefore, a more flexible
and pragmatic one as compared to the existing methods, and should find more use in path

planning technology.
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Appendix

A Computing B-Spline Curves from Control Points

B-Spline curves are parametric curves, and their construction are based on blending functions
[10]. Suppose the number of control points of the curve is (n + 1), the coordinates being

(20, Y0,20), - - - » (Tn, Yn, Zn), then the coordinates of the B-Spline curves are given by
X(t) = Z x; B (1), (6)
i=0
Y(t) = Z YiBix(t), (7)
i=0

Z(t) = Z 2B k() (8)

where B; i (t) is a blending function of the curve and K is the order of the curve. Higher

the order of the curve, smoother the curve. For example, see Figure 21, Figure 22 and
Figure 23, shown for different order K of the curve. The parameter ¢ varies between zero
and (n — K + 2) with a constant step, providing the discrete points of the B-spline curve.

For our problem, the blending functions have been defined recursively in terms of a set
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Figure 21: B-Spline curves
with 11 control points and

order 3

Figure 22: B-Spline curves

with the same set of 11 con-

trol points and order 5

of Knot values, which in this case is a uniform non-periodic one, defined as:

0,
Knot(i) = ¢ i— K +1,
n— K+ 2,

The blending function B; g is defined recursively, using the Knot values given above:

(

Bi1(t) = 1, if< and

0, otherwise
\

ifi< K
K <i<n

ifn<i

1, if Knot(i) <t < Knot(i+ 1)
Knot(i) <t < Knot(i + 1)

t=n—K+2

(t — Knot(i)) X B; g_1(t)

Knot(i + K — 1) — Knot(7)

(Knot(i+ K) —t) X Biy1,x-1(t)

Knot(i + K) — Knot(i + 1)

trol points and order 7

Figure 23: B-Spline curves

with the same set of 11 con-

(10)

(11)

If the denominator of either of the fractions is zero, that fraction is defined to be zero.
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