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ABSTRACT
The game of Tic-tac-toe is one of the most commonly known
games. This game does not allow one to win all the time and
a significant proportion of games played results in a draw.
Thus, the best a player can hope is to not lose the game.
This study is aimed at evolving a number of no-loss strate-
gies using genetic algorithms and comparing them with ex-
isting methodologies. To efficiently evolve no-loss strategies,
we have developed innovative ways of representing and eval-
uating a solution, initializing the GA population, developing
GA operators including an elite preserving scheme. Interest-
ingly, our GA implementation is able to find more than 72
thousands no-loss strategies for playing the game. Moreover,
an analysis of these solutions has given us insights about how
to play the game to not lose it. Based on this experience, we
have developed specialized efficient strategies having a high
win-to-draw ratio. The study and its results are interesting
and can be encouraging for the techniques to be applied to
other board games for finding efficient strategies.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Problem Solving, Con-
trol Methods, and Search

General Terms
Algorithms

Keywords
Tic-tac-toe, evolutionary games, learning strategies.

1. INTRODUCTION
The game of Tic-tac-toe is a commonly-played game. Many

who play the game develop some strategies on their own
which usually do not let the player lose the game. However,
in a significant proportion of the games played, the game
ends with a draw. In the past, researchers have studied
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computing methods to generate efficient strategies for not
having to lose the game even once. Hochmuth [5] demon-
strated how a genetic algorithm (GA) can be used to evolve
a perfect Tic-tac-toe strategy, which never loses a game it
plays. He concluded that there are 827 unique game-states
that are encountered during game play and concentrated on
finding a single no-loss strategy. The study reported a single
no-loss strategy, but did not provide the description of that
strategy to know its properties. Soedarmadji [7] suggested
a decentralized decision-making procedure to find a com-
petent strategy which forces a draw or a win depending on
the proficiency of the opponent player. Although such a goal
should result in a no-loss game-playing strategy, we observed
that the resulting strategy reported in the study loses in at
least three different scenarios (which we have highlighted in
Section 4.5).

In this paper, our goal is to follow an identical analysis
procedure as reported in the literature and revisit the use
of GAs in finding not one but as many no-loss strategies as
possible, so that we can make an attempt to unfold what
causes such a strategy to not lose. For this purpose, we
use a representation scheme similar to that in [5] and design
new ways of evaluating a solution through matrix process-
ing in MATLAB, a new initialization scheme, customized
GA operators with a controlled elite preservation scheme
and a two-tier GA procedure. Interestingly, our study is
able to find as many as 72,657 no-loss strategies for play-
ing the game of Tic-tac-toe, of which only a fraction (827)
were reported earlier. Furthermore, we analyze these no-loss
solutions to arrive at a number of efficient strategies which
produce excellent win-to-draw ratio, a matter which has not
also been paid much attention in the past. Although the
game of Tic-tac-toe does not implicate much in practice, it
is still a popular game and importantly the search of op-
timized strategies involve phenomenally large search space.
The use of GAs as an optimization tool, its need for cus-
tomization and execution of various inter-linked concepts of
optimization used in this study are interesting and should
motivate readers to perform similar studies for other games
and problems.

2. REPRESENTATION OF A STRATEGY FOR
TIC-TAC-TOE

Before discussing how we apply a genetic algorithm to find
good strategies for playing the game of Tic-tac-toe, we first
describe a representation scheme used to define a playing
strategy. The procedure involves a number of definitions,
which we make in the following:
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1. Number of unique game-states: Although it is
possible to fill the nine squares on a Tic-tac-toe board
in 39 or 19,683 ways, we realize that all of these are
not feasible game-states. The conditions for feasibility
of a game-state are as follows:

(a) The number of X in any given state would be ei-
ther one more than or equal to the number of O
placed on the board, as X is assumed to play first.

(b) Either player would not move if the other has won.

Using these conditions, the infeasible game-states are
removed from further consideration. Some such infea-
sible game-states are shown in Figure 1.

Figure 1: Some examples of infeasible game-states.

Another notable feature of the Tic-tac-toe board is the
symmetry of the game-states. Any game-state, when
rotated by 90, 180 or 270 degrees, or when reflected
along the horizontal and vertical axes represents game-
states which are equivalent to each other. We called
these game-states as equivalent game-states. An exam-
ple of eight equivalent game-states are shown in Fig-
ure 2. Out of eight equivalent game-states, we select
one as the base-case game-state and suggest an empir-
ical method of identifying it (we describe this method
below).

Figure 2: An example of eight equivalent game-
states.

To reduce the number of overall useful game-states, we
remove the repeated equivalents. By this process, we
end up having a total of 765 unique game-states for
the game of Tic-tac-toe. This number was also arrived
at by using an enumerative method of creating all pos-
sible game-states on a computer and keeping only the
feasible and non-repeating game-states. Other stud-
ies have also confirmed this number [6]. It is not to
be confused with that the total number of solutions of
the game of tic-tac-toe is only 765 and one can do an
exhaustive search to choose the best solution. At ev-
ery move, a player can choose at most 765 game-states,
thereby making an astronomically large number of pos-
sible strategies of playing the game. The exact number

of such feasible strategies is difficult to compute as a
latter move depends on earlier moves.

2. Selection of a base-case from the equivalent game-
states: In this paragraph, we describe a method for
selecting one of the eight equivalent game-states for
our further consideration. For this purpose, we first
assign a weight to each of the nine positions, as shown
in Figure 3. Thereafter, for all game-states in a par-

Figure 3: Weights for different positions on a board.

ticular equivalent class, we calculate four metrics and
use a lexicographic evaluation scheme. The highest
priority is given to a metric which is the sum of the
weights for positions occupied by X. The game-state
with the minimum value of this metric is chosen as the
base-case game-state. In case, there is a tie on the min-
imum metric value among more than one game-states,
we compute the next metric. The next priority is given
to the sum of weights for positions occupied by O. The
next is to the product of weights for positions occu-
pied by X and finally the last priority is given to the
product of weights for positions occupied by O. On the
basis of this hierarchy, the game-state with minimum
metric value is chosen as the base-case game-state. For
example, in the example shown in Figure 2, the first
game state (marked as ‘base-case’) is found to be the
base-case among all eight game-states.

3. Development of a game-base: Next, we develop a
game-base which stores information about all indepen-
dent 765 game-states. For this purpose, we develop a
765 × 10 matrix to store these game-states. We start
our game-base with an empty board of Tic-tac-toe and
start filling it alternately with X and O (henceforth, we
represent them by 1 and 2, respectively) at possible
places. Once a game-state is created, its base-case is
evaluated. If it is not found in the game-base created
so far, this base-case is added to it. The first nine el-
ements of each row in the game-base matrix store the
game-state in terms of 0, 1 and 2 (1 and 2 represent-
ing the respective player’s moves and 0 representing
blanks). The 10th element of each row stores the num-
ber of filled positions (either 1 or 2) in the board. We
call this value as the game-level. A few starting rows
representing a few game-states are illustrated in Fig-
ure 4. For example, the eighth row in the matrix has
two entries at positions 1 and 6, which are reflected
at the first and the sixth column. The 10th column
shows the total number of entries for this game-state
(two in this case).

4. Representing a strategy as a solution: We are
now ready to present a representation scheme of a
strategy which we would use as a solution in our pro-
posed genetic algorithm procedure. For this purpose,
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Figure 4: Starting rows of the game-base matrix.

we define a 765-length vector with the following mean-
ing to its entries:

• The position of an entry in the vector signifies
the row number of the game-base. We give an
example a little later.

• The value of entry is the row number of the game-
base to which the game should move if it encoun-
ters this position during the play.

Let us consider the strategy shown in Figure 5. The

Figure 5: An illustration of a play of a strategy.

first level is always level zero, in which there is an
empty board. This case is represented by row 1 of the

game-base. The overall outcome of the game will de-
pend on whether the computer plays as the ‘first’ or
‘second’ player. Say, the computer is the first player.
The strategy shown in the figure has an entry 4 on the
first position. This means that the computer should
play a move dictated by the fourth row of the game-
base. This move is to put a 1 at position 5, as shown
in the ‘Level 1’ move of the figure. Now, it is the
turn of the opponent. For this case, there are only
two unique base-case moves (each having four equiv-
alent game-states). These two base-case game-states
are represented by rows 15 and 16 in the game-base. If
the opponent chooses the game-state dictated by row
15, the next move of the computer can be found from
the strategy vector at position 15. The figure shows an
entry of 44 at this position. This means that the com-
puter has chosen a game-state dictated by the 44th row
in the game-base. This game-state belongs to ‘Level 3’
and is shown in the figure. On the other hand, if the
opponent chooses game-state 16, the strategy dictates
that the computer should use the game-state 19. This
game-state taken from the game-base is shown as one
of the moves under ‘Level 3’ in the figure. The game
continues in this fashion until a result (win, lose or
draw) is encountered and no further moves are made.

3. A CUSTOMIZED GENETIC ALGORITHM
The first task in GA is to create a set of random initial

population of solutions or strategies. Next, GA operators
(selection, recombination and mutation) are to be designed
for handling the game playing problem. It is also important
to realize that the GA developed here is far from being a
naive one, as to solve a problem having an astronomically
large search space, problem information must have to be
used in initialization and GA operator design. Since an effi-
cient and problem specific representation mechanism is used
here, it allows us to choose a simplistic recombination op-
erator. But to maintain diversity in the GA population for
creating better solutions, we also use an innovative niching
mechanism (we called a controlled elite preserving operator).
We also use a two-tier GA approach. We describe them in
the following paragraphs.

3.1 Creation of Random Initial Population
Each entry in a strategy cannot take any arbitrary inte-

ger between 1 and 765. The entries should be such that
a hierarchy of increasing level is maintained. Recall that
the first position of a strategy vector corresponds to row 1
in the game-base. We substitute a 1 (as this would be the
first player’s move) in place of a 0 on the entries of the first
row of the game-base and collect all resulting game-states.
Then, we find all base-cases corresponding to these game-
states and observe that there are three distinct base-cases
(marked by rows 2, 3 and 4 in the game-base). We sim-
ply choose one at random as the first entry of the strategy.
Next, we play the above procedure for the second row of the
game-base. After substituting 2 (as this belongs to level 1
and would be the second player’s move) in place of 0 one by
one in the entries of second row in the game-base and finding
the base-cases covering all such game-states, we observe that
only rows 5 to 9 can be achieved. Thus, we choose a number
randomly between 5 to 9 to fill the second position of the
strategy. For the third entry in the strategy, we replace all
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0 entries by 2 in row 3 of the game-base and determine the
base-cases. They turn out to be the rows 10 to 14 in the
game-base. The strategy shown in Figure 5 has chosen 12
as an entry. Similarly, for the fourth entry, a row out of 15
and 16 can only be chosen. Now all moves of the strategy
from level 1 to level 2 have been defined. Next, we define
moves from level 2 to level 3. We shall start from changing
0 entries of row 5 to 1 (as it is now the turn of player 1) and
find base-cases where a move is possible. Thereafter, one of
these base-cases can be chosen at random.

Since this procedure has to continue for all 765 entries
of the strategy, after a while moves may not be possible
to be made, simply because that the outcome of the game
is already determined by the previous moves. In such a
case, we simply assign a dummy value higher than 765 as
an indication to abort the game.

3.2 Fitness Evaluation
Our objective is to evolve several Tic-tac-toe strategies

which never lose (meaning a draw or a win by the com-
puter). This makes the problem to have a single objective
of minimizing the number of losses. The evaluation of fitness
of any strategy is done by first allowing it to play all possible
games it could play, both as a first player and as a second
player. For example, note from Figure 5 that there are two
possible ways a game can move for the first player from
level 1 to level 2, depending on whether the opponent made
the left or the right side move indicated in the figure. Our
evaluation procedure considers all such intermediate possi-
bilities an opponent can have and count the total number of
possible games resulting in wins, draws and losses. This is
continued for the above strategy to be played as the second
player. The total number of games lost in both cases as a
first player and a second player is calculated. The fitness
function is then defined as the fraction of games lost out of
the total number of games played (both as a first and as a
second player):

Fitness =
Number of games lost

Number of games played
(1)

It is clear that a strategy with fitness value equal to zero
would be a perfect no-loss strategy.

3.3 Selection Operator
First, we employ the usual binary tournament selection

operator, but it turns out to be already too greedy to pro-
ceed towards no-loss strategies. Due to the presence of a
huge search space and existence of a few useful solutions
in the search space, the population was found to lose its
diversity very quickly and converge to a futile sub-optimal
solution within a few generations. Instead of using a proba-
bilistic tournament selection operator [4], which demands a
probability parameter, next we decide to use the stochastic
uniform selection (SUS) operator [3] along with a parameter-
less niching concept to maintain diversity of solutions in a
GA population and to have a low selection pressure of cur-
rent best solutions. Since, SUS inherently maximizes, we
convert the above fitness function to the following form:

Fitness =
1

m

„
1 − Number of games lost

Number of games played

«
, (2)

where m is the number of population members having the
same proportion of losses to game played. The effect of

dividing by m provides a niching effect and help maintain
multiple niches around good solutions in the population.

3.4 Crossover Operator
This study provides an excellent example in which the

effort of designing a useful recombination operator can be
reduced by choosing an innovative representation scheme.
As every strategy encoded with the procedure described in
Section 2 has meaningful entries in respective positions, a
standard multi-point crossover operator can be applied to
the selected individuals to create meaningful child solutions.
A schematic diagram of the crossover operator is shown in
Figure 6. The number of cross-sites is fixed at 50 (out of

Figure 6: A schematic diagram of the crossover op-
erator.

764 possible locations) to ensure the generation of diverse
solutions. The crossover probability pc (fraction of popu-
lation members undergoing crossover) is chosen to be one,
thereby making all population members to participate in the
crossover operator.

3.5 Mutation Operator
Once again, due to the use of an innovative representation

scheme, a standard mutation operator can be implemented
with a caution. Every entry to be mutated can only be
changed to a valid row number indicating the game-state in
which it is allowed to move. We have discussed this mat-
ter while describing the creation of the initial population in
Section 3. We link the mutation probability at a generation
with the minimum fitness (as in equation 1) of the popula-
tion directly. This way, a population having worse solutions
has a larger mutation probability and vice versa. Specifi-
cally, we use pm to be exactly the minimum of the fitness
values (equation 1) of all population members. The number
of entries (nm) mutated in a strategy is defined as follows:

nm = �250pm + 10�. (3)

To implement, nm entries out of 765 positions are chosen at
random and mutated to an allowable value at each position.

3.6 Controlled Elite Preservation
The normal method of elite preservation selects the best N

individuals out of the parents and offspring and sends them
to the next generation. This method was found ineffective
in maintaining diversity in the population whether we used
SUS or tournament selection. Therefore, we developed a
new way of selecting individuals from the combined popu-
lation: We combine three intermediate populations of size
N each: (i) population before selection, (ii) population af-
ter crossover operation, and (iii) population after mutation
operation. The combined population of size 3N is sorted
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in worse values of fitness and select N solutions which are
distributed according to arithmetic progression in the differ-
ence between two consecutive solutions. The solutions with
sorted index of j defined below are chosen:

j(i) = i + 2N
(i − 1)(i − 2)

(N − 1)(N − 2)
, i = 1, 2 . . . , N. (4)

This procedures always includes the first and 3N-th entry
and (N−2) other entries with increasing differences between
two consecutive solutions. A little calculation will show that
the above will ensure around 50% solutions from the best N
of 3N combined members. The restoration of remaining
50% of solutions from the other two-third of the combined
population helps maintain diversity in the population.

4. SIMULATION RESULTS
The code for implementing the above-mentioned genetic

algorithm is written in MATLAB (version 7.0.1) and run on
machines with AMD 64-bit processor and 512 Mb RAM. We
used MATLAB because we defined all our data structures
(including the game-base) as matrices.

4.1 Initial Studies
First, we tried using the binary tournament selection with

a single-best preserving strategy, which led to quick loss in
diversity and resulted in a convergence to a sub-optimal so-
lution. Thereafter, we used SUS with a single-best elite
preservation scheme. This strategy maintained diversity for
a substantially longer amount of time, but the elite preser-
vation was found to force it to converge to a sub-optimal
solution as well. Both the above trials did not succeed in
finding a single no-loss strategy. Figure 7 shows the varia-
tion of the population-best fitness with generation counter
with the SUS operator. The GA parameters used in this
study are as follows: population size = 100, maximum num-
ber of generations = 200. The figure shows that a no-loss
solution is not found till 200 generations by this procedure
(zero fitness value is not found!) and after about 40 gener-
ations, the population-best fitness did not change. We ran

Figure 7: Population-best fitness with SUS and
single-elite preservation strategy.

the above GA till 500 generations and no improvement was
observed.

4.2 SUS with Controlled Elite Preservation
Next, we used SUS with the controlled elite preservation

technique described above. With a population size of 100,
the GA is run for 500 generations. Figure 8 shows a simu-
lation run in which a no-loss strategy was finally discovered
at 322nd generation. Thus, the controlled elite preservation
seems to be an improvement, the number of generations re-
quired to find a no-loss strategy is large. We now suggest
a two-tier strategy which used further problem information
and is more efficient than this procedure. In handling large

Figure 8: Population-best fitness with SUS and con-
trolled elite preservation strategy.

and difficult optimization problems, such inclusion of prob-
lem information through initialization and operator design
becomes an important task [2].

4.3 Two-Tier GAs: Independent Simulations
as First and Second Player

It is somewhat intuitive that the outcome of the game of
Tic-tac-toe depends on whether a player plays as a first or
as a second player. There is a greater chance of winning
the game by the first player (with a ratio of about 1.68:1).
In the course of our study, we also notice that strategies as
first and second player are mutually exclusive to each other.
The moves made as a first player will never be made when
it plays as a second player and vice versa. Therefore, we
decide to use this knowledge in developing a strategy in our
next study. The GA is run separately for evolving solu-
tions for the first and the second player. This decreases the
computational time considerably. Other than that, no-loss
strategies start appearing in lesser number of generations in
both cases.

To find more than one no-loss strategy, if exists, by our
GA, we use the following procedure by maintaining an archive
of no-loss strategies. As soon as a no-loss strategy is evolved,
we move it from the population and save it in the archive.
We use 100 population members and run our GA for 500
generations for each case (as a first player and as a second
player). We run both the cases 11 times from different ini-
tial populations and tabulate in Table 1 the number of gen-
erations (best, median and worst) needed to find a single
no-loss strategy. It is interesting to note that for developing
a strategy for the first player, as few as four generations are
enough. However, for developing a no-loss strategy for the
second player more generations (minimum of 46) are needed.
As mentioned above, the game of Tic-tac-toe is biased for
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the first player and our simulation results agree with this
fact.

Table 1: Number of generations required for first
no-loss strategy to evolve in 11 independent runs.

Number of generations
Best Median Worst

First player 4 7 10
Second player 46 278 432

Figures 9 and 10 show typical variations of population-
best fitness with generation counter for both the cases. In

Figure 9: Population-best fitness for the game in
which strategies are evolved for the first player.

Figure 10: Population-best fitness for the game in
which strategies are evolved for the second player.

all 11 runs, we found a no-loss strategy for the first player
within a maximum of 10 generations. However, in 8 out of 11
times our GA finds a no-loss strategy for the second player
in a maximum of 432 generations and in the remaining 3
runs, our GA was not able to find a no-loss strategy in 500
generations.

At the end of both runs, we have two groups of mutu-
ally exclusive solutions: one, which would never lose as a
first player and the other as the never-losing second player.

The solutions from these groups are then blended together
taking the moves of respective players from their individ-
ual solutions. There are a few repeated solutions which we
remove and arrive at 117 solutions for the first player and
621 for the second player. Therefore, we have a total of
117 × 621 = 72, 657 different no-loss strategies1 as first and
second player when played against an opponent. To choose
one particular solution from this set is a decision-making
task which requires a further analysis.

4.4 Analyzing the obtained solution set
In the above optimization task, we have considered a fit-

ness function which only considers the fraction of losses
among total possible games. All 72,657 combined strate-
gies to be played as a first and a second player will never
lose in all possible games played against any opponent. But
we may be interested in knowing the proportion of wins and
draws for all these no-loss strategies. For this purpose, we
record the number of wins and draws which these strate-
gies make against all opponents and plot them in Figure 11.
We observe that the number of wins vary from 89 to 156
and number of draws varies from 38 to 110. Clearly we
are interested in strategies with more wins and less draws.
The number of points appearing on the plot are conspicu-
ously less than 72,657, which implies that there are multiple
strategies to achieve an identical number of wins and draws.
In fact, we find that there are only 2,263 independent com-
binations of wins and draws available in our data set. To
make the situation more clear, we plot a contour graph of
the above plot with the frequency of number of solutions
at a point. From now on, we will refer to strategies with
same number of total wins and draws as similar strategies.
The granular gray region is the background where no so-
lution was found. The strategies with at least 25 similar
strategies are shown in white. As we move inwards, the
darkness of the color increases with increasing frequency of
similar strategies. The small black regions in the most inner
parts of the plot are strategies with more than 150 simi-
lar solutions in our data set. The figure gives us an idea
about the effectiveness of our fitness function and the na-
ture of search of our GA. Obviously, strategies with lesser
number of draws and higher number of wins would be con-
sidered as the final desired strategies with no-loss being a
constraint for all of them. Therefore, the strategies in the
upper left region of our plot are more important than the
others. A non-dominated set of our data has been shown by
a connected line in Figure 11. As shown in the Figure 12,
these strategies are very few in number. On the contrary,
the mode of the data lies somewhere in the middle of the
plot. The darker regions in the center are those where a
GA search with only minimizing the proportion of loss will
be directed. Thus, we realize that in addition to using the
no-loss constraint, we need to perform a two-objective opti-
mization [1] of proportion of wins and draws. We defer this
study for another time and discuss some properties of the
obtained high-performing solutions.

The first glance at these solutions reveals that many of

1Even though all 72,657 strategies are different from each
other, during game-play, many of them lead to the same
game-states and all may not turn out to be distinct in actual
game simulations. This happens because the state in which
they are different is never reached during actual game-play.
However, strategy-wise they are all different from each other.
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Figure 11: Solution set in terms of wins and draws.

Figure 12: Contour plot of win-draw set by the fre-
quency of solutions.

them differ from others by not more than 20 moves. Hence,
we select a subset of these solutions for further analysis. For
the first player, we find solutions which differ from each other
in at least 80 positions in GA strings. There are 13 such
solutions out of 117 total strategies found by minimizing
the proportion of loss for the first player. Similarly, for the
second player we find 27 solutions out of 621 which differ
from each other in at least 90 positions. The combination
of these solutions leads us to have 351 widely varying no-
loss strategies. These 351 strategies are compared with each
other on the basis of their moves and their state-trees. Some
commonly-observed moves are listed below:

1. If the opponent is one short of a win, block it.

2. Occupy the center if it is empty.

3. If center is filled, occupy the corner and edge-center in
that order.

Those who are used to playing the game of Tic-tac-toe will
recognize these rules as good moves for not losing a game. It
is interesting that we rediscover these basic moves through
an analysis of computer-generated set of no-loss strategies.

Another observation is that the solutions strive to counter
the opponent’s moves rather than ensuring their own win.

This is because we minimized the number of losses and did
not explicitly maximize the number of wins.

4.5 Creating Efficient Solutions
We choose the set of strategies with the maximum number

of similar solutions occurring among 72,657 solutions found
by our GAs. This set (we call the mode-set) of similar solu-
tions is likely to be picked by a GA as a no-loss strategy, but
may not result in most possible wins. Table 2 shows that one
of these mode-set strategies result in 41 wins and 5 draws as
first player and 75 wins and 68 draws as second player out
of 189 total possible games, providing a win-to-draw ratio
of 1.59 for this strategy.

Table 2: Good Strategies for playing the game of
Tic-tac-toe.

Strategy As first player As second player Win/
Wins Draws Wins Draws Draw

Mode 41 5 75 68 1.59
Mode-move 44 8 88 61 1.91
Best W-t-D 42 3 98 35 3.68

Mod. heuristic 18 1 68 21 3.91

Next, we create a strategy move-wise by finding the maxi-
mally occurring moves from going from one level to the other
among all 72,657 solutions found by our GA. Table 2 shows
that this resulting ‘mode-move’ strategy is better than the
mode-set strategies discussed above and has a better win-
to-draw ratio.

To select an efficient strategy directly from the set of
72,657 solutions found by our GAs, we choose the strategies
having the highest win-to-draw ratio. We find that there
are two such strategies (having identical win-to-draw ratio)
which are marked in Figure 11 by ‘A’. The table shows that
the win-to-draw ratio for this solution (marked as ‘Best W-
t-D’) is 3.684, which is much better than the above two
solutions.

Soedarmadji [7] reported a heuristic solution which we
have implemented in our code and found that it actually
loses in at least three scenarios. These game-states in which
the heuristic solution loses the game are shown in Figure 13.
In the figure, X is played by the heuristic solution. In the first
case, X should have been played in any of the edge-centers.

Figure 13: Three cases in which Soedarmadji’s
heuristic solution loses the game. X is played by
the heuristic solution.
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Since the heuristic solution played the top-right corner, O has
played it towards completing a win. The second case is more
obvious, as X should have blocked the bottom edge-center to
stop the opponent from winning. Similarly, the win of the
opponent could have been avoided by playing at position 6.
Based on the insights obtained by analyzing 72,657 solutions
found by our GAs, we modify this heuristic solution man-
ually to fix these problems and create a modified heuristic
solution. The modified strategy as a first player is shown in
Figure 14. Out of 19 cases, this strategy wins in 18 of them,
as shown in the figure. This solution has a win-to-draw ra-
tio of 3.91, which is better than all other strategies found
above.

Figure 14: The strategy as a first player of the mod-
ified heuristic solution.

5. CONCLUSIONS
In this paper, we have applied a genetic algorithm for

evolving no-loss strategies for the game of Tic-tac-toe. First,

we have described a scheme for representing a strategy in a
GA and discussed the initialization scheme and GA opera-
tors for the minimization of proportion of losses in all pos-
sible game scenarios. By carefully designing the GA proce-
dure, we have been able to find not only one, but as many
as 72,657 different strategies which will never lose a game.
This is a remarkable result for the game of Tic-tac-toe. Fur-
ther, we have analyzed these solutions and come up with
four different specific no-loss strategies which also cause a
large win-to-draw ratio. An analysis of these solutions has
also resulted in a number of basic principles of playing the
game of Tic-tac-toe for never losing the game. There are a
number of other conclusions which we make from the study:

• Considering symmetry, all possible game-states in Tic-
tac-toe are 765, as opposed to 827 mentioned in the
literature [5]. This is also supported by another study
[6].

• Since the moves made by the first and second player
belong to disjoint sets, therefore their corresponding
strategies are mutually exclusive.

• A GA can be successfully applied to evolve several no-
loss strategies using above problem-specific informa-
tion. Increase in population size above 100 has not
shown any appreciable effect on the results. Tourna-
ment selection is found to be not effective as it loses
diversity very fast. A similar observation has been
made for a single-best elite preservation operator as
well.

• The chance of obtaining a no-loss strategy for first
player is high, which agrees with the fact that the first
player has an advantage in this game.

The study can be extended by treating the optimization task
as a bi-objective one of maximizing the number of wins and
minimizing the number of losses subject to a no-loss con-
straint. Nevertheless, this study has revealed a number of
interesting aspects of evolving no-loss strategies for play-
ing the game of Tic-tac-toe, which may motivate other re-
searchers to try similar studies for other games.

6. REFERENCES
[1] K. Deb. Multi-objective optimization using evolutionary

algorithms. Chichester, UK: Wiley, 2001.
[2] K. Deb, A. R. Reddy, and G. Singh. Optimal scheduling of

casting sequence using genetic algorithms. Journal of
Materials and Manufacturing Processes, 18(3):409–432,
2003.

[3] D. E. Goldberg. Genetic Algorithms for Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley, 1989.

[4] D. E. Goldberg and K. Deb. A comparison of selection
schemes used in genetic algorithms. In Foundations of
Genetic Algorithms 1 (FOGA-1), pages 69–93, 1991.

[5] G. Hochmuth. On the genetic evolution of a perfect
Tic-tac-toe strategy, pages 75–82. Stanford University Book
Store http://www.genetic-
programming.org/studentpapers2003.html, 2003.

[6] Mathrec contributors. Mathematical recreations, repository
for mathematical diversions,
http://www.mathrec.org/old/2002jan/solutions.htm, 2002.

[7] E. Soedarmadji. Decentralized decision making in the game
of tic-tac-toe. In Proceedings of the 2006 IEEE Symposium
on Computational Intelligence and Games, pages 34–38,
2005.

896



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


