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ABSTRACT 
In this paper simulation studies of the ultrasound computerized 
tomography (CT) technique employing time of flight data is 
presented.  An enhanced genetic algorithm based reconstruction 
technique is proposed that is capable of detecting multiple types 
of inclusions in the test specimen to be reconstructed. It is 
assumed that the physical properties of the inclusions are known 
a priori. The preliminary results of our algorithm for a simple 
configuration are found to be better than those reported with 
MART1. In addition to being able to identify inclusions of 
different materials, both the shape and location of the inclusions 
could be reconstructed using the proposed algorithm. The results 
are found to be consistent and satisfactory for a wide range of 
grid sizes and geometries of inclusion(s). Based on the 
regression analysis an empirical relation between the number of 
unknowns and the reconstruction time is found which enables 
one to predict the reconstruction time for higher resolutions.  
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1. INTRODUCTION 
Ultrasonic tomography (UT) has been in use for a long period 
now and offers the most convenient method for flaw detection in 
a material. However other methods have surpassed it in common 
usage owing to the inherent property of an acoustic wave to 
bend in a non-homogenous medium. Still when the material of 
test specimen and inclusions are known to have approximately 
uniform characteristics, UT provides an easy and cost effective 
way of reproducing the shape, size and location of the inclusion. 
Acoustic wave attenuation and time of flight are two 
reconstruction parameters which can be used for this purpose. 

Simulated time of flight data without considering ray bending is 
used in the present work. 

Popular reconstruction methods for projection data obtained 
from UT include transform methods like Convolution back 
projection (CBP) and series expansion methods represented by 
algebraic reconstruction technique (ART) and its variant 
multiplicative algebraic reconstruction technique (MART). The 
main difference between the two being that, in the former the 
distribution is kept continuous until the very end and only the 
final formulas are discretized for computational implementation 
whereas, in the latter the problem is discretized at the very 
beginning by superimposing a grid on the specimen and 
assuming constant physical properties within each pixel of the 
grid. The tomogram obtained using transform methods gives a 
gradation of the physical property being reconstructed over the 
material-inclusion boundary rather than a clear cut edge which 
can be produced by any discrete tomography technique. Further, 
transform methods require complete set of projection data for 
reconstruction which may not be available in a number of 
practical problems. 

Discretization, as one may think, is not always an approximation 
of the problem at hand. In fact there are several cases like when 
the number of atoms in each line of a crystal lattice is to be 
determined, where continuous tomographic techniques cannot 
be used, because the unknown image is binary instead of real-
valued. A lattice cell either contains one or no atom, but it 
certainly will not contain a fraction of an atom. This additional 
constraint transforms the problem from analytic to combinatorial 
and here lies the motivation for using genetic algorithms. 

Genetic algorithms are search and optimization techniques based 
on the dynamics of natural selection and genetics. First proposed 



by John Holland in 1975, genetic algorithms are now being put 
to use in a wide range of applications. Their versatility is due to 
the fact that they can handle continuous as well as discrete 
problems in almost the same way provided we can define a basis 
for establishing the superiority of one member in the search 
space over another. Also since they work with a population 
rather than a single initial point global convergence is most 
certainly ensured. Algebraic reconstruction techniques on the 
other hand, suffer from their inherent possibility of getting 
entrapped in a local optimum. 

Though optimization methods in tomography like entropy 
optimization were suggested as far back as 1983 [1], GAs to our 
knowledge were applied only in the late 90s with Kihm and 
Lyons [2] using them in optical tomography. The accuracy of 
the image however depended on the choice of the elementary 
distribution functions which is known a priori only in certain 
cases. Curtis and Snieder [3] used GAs to reduce the ill 
conditionality of inverse problems in general. The first direct 
approach to tomography using GAs was by Bichkar and Ray [4] 
for the reconstruction of circular and elliptical objects of known 
intensities placed on a known uniform background. Delsanto [5] 
demonstrated the applicability to ultrasound tomography using 
simulated time of flight data. It is this work we intend to extend 
through this paper to the reconstruction of specimens with 
multiple inclusions both in number and the material of 
inclusions. 

The process of reconstruction consists of two major steps, the 
first is acquisition of time of flight data and the second is using 
the acquired data to reconstruct the specimen under 
consideration. The following sections convey the adopted 
approach; in section 2 we explain the simulation procedure 
adopted for acquiring time of flight data, in section 3 we discuss 
the GA based reconstruction algorithm developed, in section 4 
we present our results and finally we present the conclusions in 
section 5. 

2. DATA ACQUISITION 
In this work we have simulated the time of flight data required 
for reconstruction following the procedure outlined by 
Delasanto [5]. The specimen under consideration is represented 
as a square matrix grid of certain integer values with each value 
corresponding to one type of material. In our work value 0 
corresponds to base material, and values 1 and 2 correspond to 
two different inclusion materials. Figure 1 shows the internal 
computer representation and its visual display for a 
representative specimen with two types of inclusions. 

 
Figure 1. A representative sample used for simulating the 

time of flight data 

To gather the time of flight data the specimen is assumed to be 
placed on the test bed with a number of ultrasound sources and 
detectors arranged at different locations. In our study we use the 

modified cross-hole geometry [6] configuration and the sources 
and detectors are placed equally distributed on four sides of 
specimen. For practical considerations one pair of a set of 
sources and detectors is used in different configurations to 
ensure that the entire specimen is covered by ultrasound rays. 
Table 1 gives the various placement configurations considered. 

Table 1. Source-detector placement configurations 
Configuration Sources position Detectors position 

LFT-TOP Along left edge Along top edge 

TOP-RGT Along top edge Along right edge 

RGT-BOT Along right edge Along bottom edge 

BOT-LFT Along bottom edge Along left edge 

LFT-RGT Along left edge Along right edge 

TOP-BOT Along top edge Along bottom edge 

For a given configuration from each of the source one ray 
travels to each of the detectors giving us time of flight data equal 
to the product of number of sources and number of detectors. 
Depending on how many of the configurations given in Table 1 
are used total number of simulated times of flight obtained 
equals to the product of number sources, number of detectors 
and the number of configurations. For example with six sources, 
six detectors and six configurations we obtain a total of 216 
times of flight data, which essentially is the input to our 
reconstruction algorithm. The ray coverage for this case is 
illustrated in Figure 2. 

 
Figure 2. Ray coverage for 6 sources, and 6 detectors 

arranged in 6 configurations. 

The simulated time of flight for a ray originating from j-th 
source and terminating at the k-th detector is estimated 
according to the relation, 
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Where, 

M = Number of cells through which the ray passes, 
lm = Length of the ray intercepted by m-th cell, 
vm = Velocity of propagation of ultrasound through the m-th cell 
(depends on the material corresponding to that cell). 

As mentioned at the start of this section a maximum of three 
different materials have been considered, one for representing 



the base material and two for inclusion materials. However the 
same can be extended easily to consider a higher number of 
materials. 

3. RECONSTRUCTION ALGORITHM 
Using the simulated time of flight data we perform the 
reconstruction process. Traditionally the reconstruction process 
is performed either by the inverse Fourier transform approach or 
the iterative techniques that are represented by ART and its 

variants. A third technique not so popularly used is the 
optimization approach. In our work the reconstruction process is 
addressed with a genetic algorithm developed for the purpose. 
Specifically, we are looking for a particular distribution of the 
inclusion(s) which best agrees with the simulated data obtained. 
The flowchart of the algorithm used is shown in Figure 3. In the 
following sections we describe the salient features of the 
algorithm.

 
Figure 3. Flowchart of the GA based reconstruction algorithm 

3.1 Overview 
To begin with, we generate a population of solutions with 
random distributions of some numbers of a required grid-size. 
We use the term ‘grid-size’ to denote number of rows or 
columns of the matrix representing a potential solution to the 
problem in hand. For the final solution the grid-size should 
match with the required resolution. The initial randomly 
generated  distribution  population  has  a  coarse grid-size and is 

 

refined during the reconstruction process. The idea is to proceed 
in steps towards the solution. The best possible solution with a 
relatively coarser initial grid serves as a seed for the next finer 
grid. Thus the core structure of the inclusions is identified in the 
initial steps while the later ones refine their boundaries. The 
initial coarse grid is so chosen that its repeated doubling gives a 
value near, preferably equal to the final resolution required. 



3.2 Fitness Evaluation 
Each population member is now evaluated for its fitness. Fitness 
is defined here as the sum of absolute differences between the 
simulated time-of-flight (TOF) data for the test specimen and 
the population member under consideration. The following 
definition of misfit (fitness function) is used which is to be 
minimized. As we are using simulated data, the term 
‘experimental_tof’ in the definition shown in the flowchart 
(Figure 3) is replaced with the term ‘simulated_tof’ here. 
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Where,      ( )iΦ  = Misfit of i-th population member 
                    S      = Number of Sources 
                    D     = Number of Detectors 

3.3 Selection 
Using the fitness evaluated as above, selection operation is 
performed to emphasize good population members in mating 
pool from which a child population is created. Selection 
operation is accomplished following tournament selection 
procedure [7]. Pairs of population members are picked randomly 
and the best population member in terms of fitness is put in the 
mating pool.  

3.4 Crossover 
The selection process performed does not create new solutions 
but only ensures that good solutions are emphasized. To create 
new solutions, crossover operation is performed on the 
population members in the mating pool created by selection 
operation. New solutions (children) are created by interchanging 
or swapping corresponding portions of the grid between two 
mating pool members (parents) which are selected randomly. 
The mating pool members as well as the location and size of 
portions to be swapped are picked randomly. The normal 
crossover operation of GA is modified to suit the two-
dimensional nature of the population members in the problem at 
hand. Instead of creating a single random number as the 
crossover site, four random numbers are created (two for each 
corner of sub-matrix). These sub-matrices are exchanged in the 
subsequent ‘block-crossover’ operation. An example of this is 
shown in Figure 4. 

0 1 1 0
1 2 2 1
1 1 1 1
0 0 0 0

   

0 0 0 0
1 1 1 1
1 1 2 2
0 0 2 2

 

(a) Parents 

0 1 0 0
1 2 1 1
1 1 2 2
0 0 0 0

   

0 0 1 0
1 1 2 1
1 1 1 1
0 0 2 2

 

(b) Resulting Children 

Figure 4. Illustration of block-crossover operation 

3.5 Mutation 
Two different types of mutations have been incorporated into 
the reconstruction algorithm. The first is the more obvious 
‘bitwise-mutation’, where cells of the member eligible for 
mutation are randomly assigned values 0 or 1 or 2 other than the 
present value in the selected cell. The second termed ‘block-
mutation’, finds the value that appears most number of times in 
the selected cell itself and its eight surrounding cells and mutates 
the values in all nine cells to this new value. Bitwise and block 
mutations are illustrated in Figure 5. During simulation runs it 
was found that bitwise mutations lose their efficacy for grid 
sizes greater than 30x30. Similarly block mutations are 
ineffective for lower grid sizes. 
 

 

0 0 1 1
1 1 0 0
1 1 2 0
0 1 1 1

      

0 0 1 1
1 1 0 0
1 1 0 0
0 1 1 1

       

0 0 1 1
1 1 1 1
1 1 1 1
0 1 1 1

 

            (a)                             (b)                             (c) 
 

Figure 5. (a) Population member before mutation, (b) Result 
of bitwise-mutation, and (c) Result of block-mutation 

 

3.6 Elite Preservation 
In this step termed elite preservation, the child population 
obtained after mutation operation and the initial population are 
combined and the best of these equal to the initial population 
size, are picked as elites. This ensures that good solutions 
propagate to subsequent generations. After this the initial 
population is reset with elites and the GA steps discussed are 
repeated for a certain number of generations. The best 
population member from the elites obtained after desired 
number of generations is complete, is reported as the 
reconstructed solution. 
 

3.7 Refining Coarse Solutions 
The resulting solution with a coarse grid is now used to generate 
a new initial population with a higher grid size, say double the 
current grid-size. For this, each cell of the coarse grid is divided 
into four and given the same value as in the parent cell. Thus, 
each time a grid is refined the parameter ‘grid-size’ doubles in 
value.  

The next step is to freeze those cells of the refined grid which 
correspond to the core structure of the inclusion. To identify 
such cells, the value in each cell is compared with those in the 
surrounding eight cells. If they all match, the cell under 
consideration is frozen. To implement this programmatically, 
frozen cells are assigned 10, 11, and 12 corresponding to values 
0, 1, and 2 in the unfrozen state. Thus a cell with value 2 
surrounded by cells with same value would be frozen by 
assigning a value 12.  Values of cells that do not meet these 
criteria are unaltered. 

After refinement and freezing, we obtain what we call the base-
population member that serves as a seed for creating new initial 
population members of larger grid size. The new initial 



population is created by randomly assigning values to the 
unfrozen cells in the base-population leaving the values in 
frozen cell unaltered. The base-population itself could be made a 
member of this new population. The GA operations are now 
performed on this population and the procedure is repeated till 
the required resolution is obtained. 

3.8 Termination Criteria 
The termination criteria used in our study is the number of 
generations per step. However, as we do not know final grid size 
desired by the user, we check the quality of solutions obtained 
with two successive grid sizes and terminate the GA if these two 
are similar. For larger resolutions if the above criteria are not 
met we continue till the projected reconstruction times as shown 
in Table 3 and stop.  
 

4. RESULTS AND DISCUSSIONS 
4.1 Comparison with MART 
MART1 was used [8] to reconstruct a constant impulse field as 
shown in Figure 6 (a). The results show that though MART is 
capable of locating the inclusion’s approximate position, it is not 
consistent when the shape of the inclusion is of major concern. 
Also this algorithm is highly dependent on the relaxation 
parameter λ and a proper tuning of this parameter is required for 
achieving good results. The same data when provided to our 
algorithm gave definite results, Figure 6 shows this distinction. 
MART algorithm required eleven transducers per edge to obtain 
the image in Figure 6 (b), while a better image was produced as 
shown in Figure 6 (c) with only 3 transducers per edge with our 
algorithm. This was the case with most reconstructions which 
shows the suitability of this new approach to limited data 
tomography. 

 
(a) Specimen used to obtain simulated time of flight data [8] 

 

 

(b) Reconstructed image using MART1 [8] with λ  = 0.01 

 
(c) Reconstructed image using proposed algorithm 

Figure 6. Comparison of MART and GA reconstructed 
images 

4.2 Reconstructed Images 
In order to establish the robustness of the algorithm more than 
250 simulations with combinations of different types of 
inclusions in terms of material, shape, size, and location of the 
inclusions were performed. Also the samples were reconstructed 
considering various resolutions required from 6x6 grids to 
64x64 grids. Reconstruction results are observed to be fairly 
consistent for a majority of the cases analyzed. Some 
representative results of successful reconstructions are illustrated 
in Figure 7. In each of the figures shown, the left part is the 
visual display of the specimen to be reconstructed (used for 
simulating the time of flight data) while the right part is the 
reconstructed image. Base material is displayed in white, 
whereas green and red colors denote inclusions of two different 
materials. Figure 7(a) shows the reconstruction results for a 
specimen without any inclusions whereas Figures 7(b) – 7(g) 
show the results with different configurations considered. For 
each of these the sample size (SS), resolution required (RR), 
starting grid size (SGS), number of sources (SRC), number of 
detectors (DET), and number of generations per step (GEN) 
used are indicated. 

 
(a) SS=20, RR=20, SGS=10, SRC=7, DET=7, GEN=1000 

 
 

(b) SS=10, RR=20, SGS=10, SRC=7, DET=7, GEN=1000 



 
(c) SS=10, RR=36, SGS=9, SRC=12, DET=12, GEN=1000 

 
(d) SS=10, RR=40, SGS=10, SRC=13, DET=13, GEN=1000 

 
(e) SS=10, RR=40, SGS=10, SRC=13, DET=13, GEN=1000 

 
(f) SS=10, RR=60, SGS=15, SRC=19, DET=19, GEN=1000 

 
(g) SS=10, RR=60, SGS=15, SRC=19, DET=19, GEN=1000 

Figure 7. Few successful reconstruction results 

From our studies based on the simulation results, some of which 
we show in Figure 7, following parameter settings were found to 
yield consistent results: crossover probability of 0.8, mutation 
probability of 0.2, number of generations for each step equal to 
1000, and a population size equal to three times the resolution 
required. The minimum number of sources and detectors 
required is such that simulated time of flight data is roughly 55 
to 65 % of number of cells in final grid resolution required. 
Although reconstructing coarser grids required much smaller 
number of generations and smaller population size the goal is to 

estimate a common set of GA parameters that is able to perform 
equally well for any desired resolution. 

Some simulations with arbitrarily shaped inclusions of multiple 
types and at many locations were performed to check the 
robustness of the algorithm. It is observed that while most of the 
inclusions were easily detected, the algorithm failed to capture 
the exact image in some cases with the parameter settings 
described above. In Figure 8 we present a few cases of these. In 
particular it is observed that this occurs when wave-propagation 
velocities through the materials considered are similar. For such 
situations the fitness functions values for each of the population 
members is very close and the algorithm cannot make definite 
decisions in picking up the best population members. One 
solution to this could be an appropriate scaling of the fitness 
function values before selection operation. However even for 
these cases our algorithm shows a trend towards the correct 
solution with an increase in the number of generations. Figure 9 
shows the improved reconstruction results with an increase in 
the number of generations, for the corresponding results shown 
in Figure 8. 

 
(a) SS=10, RR=20, SGS=10, SRC=7, DET=7, GEN=1000 

 

(b) SS=10, RR=40, SGS=10, SRC=13, DET=13, GEN=1000 

 
(c)  SS=10, RR=60, SGS=15, SRC=19, DET=19, GEN=1000 

Figure 8. Few unsuccessful reconstruction results 

 
(a) SS=10, RR=20, SGS=10, SRC=7, DET=7, GEN=1500 



 
(b) SS=10, RR=40, SGS=10, SRC=13, DET=13, GEN=1500 

 
(c) SS=10, RR=60, SGS=15, SRC=19, DET=19, GEN=2500 

Figure 9. Improvement in reconstruction results of Figure 8 
with increase in number of generations. 

4.3 Fitness History 
Figure 10 shows how the fitness and mean fitness values of a 
population vary with increase in the GA generations. 

 
Figure 10. Fitness history for the reconstructed image in 

Figure 7 (c) 
It can be observed that for each of the grid sizes both the fitness 
function and mean fitness values reach a peak and decrease 
rapidly followed by an almost asymptotic decrease in these 
values. The logic behind starting with a coarse grid initially and 
then refining it after a specified number of generations is well 
supported by these plots. If we were to use a single fine grid 
initially to obtain the solution, it would have taken much larger 
number of generations to achieve the desired solution or the 
solution would get stuck at a local optima with fewer 
generations. Observe that the rate at which the fitness decreases 
is very slow after the rapid decrease initially. We also observe 
that it is the refining of the grid and the creation of a new 
population of solutions by retaining the core of the solution 

already obtained, which drives the algorithm towards the desired 
solution quickly. 

4.4 Reconstruction Times 
All reconstructions were performed on a SUN E250 machine 
with 400 MHz dual processor and 1GB RAM using MATLAB7 
software. In Table 2 we present the average reconstruction times 
recorded for reconstructing specimens with required resolutions 
varying from 6x6 to 64x64. The values given are averages of ten 
similar runs with a single inclusion of square shape covering 
roughly 9-10 % of the specimen area and located in the centre of 
the specimen. In each of the runs, a population size equal to 
three times the resolution required is used. Number of 
generations for each of the steps is specified as 1000. The 
crossover and mutation probabilities used are 0.8 and 0.2 
respectively. 

Table 2. Simulation times for various resolutions required 

Final Grid Size 
(Resolution) 

Number of 
Unknowns 

Average 
Reconstruction 
Time (seconds) 

6x6 36 9 

9x9 81 22 

12x12 144 41 

14x14 196 201 

16x16 256 169 

18x18 324 244 

20x20 400 413 

22x22 484 649 

24x24 576 639 

26x26 676 1367 

28x28 784 1844 

32x32 1024 2878 

36x36 1296 3491 

40x40 1600 4594 

44x44 1936 7810 

48x48 2304 9815 

52x52 2704 16345 

56x56 3136 21452 

60x60 3600 22266 

64x64 4096 33258 

A logarithmic plot of number of unknowns versus reconstruction 
times and the least squares straight line fitted through the data is 
shown in Figure 11.  

The regression equation between the number of unknowns(x) 
and the reconstruction times (y) is estimated to be 

y = 0.009(x) 1.8057 
This turns out to be near quadratic and using the regression 
relation, we present in Table 3 the projected times for 
reconstruction of the samples considering larger resolutions. The 
projected reconstruction times can be used as termination 



criteria for the algorithm when we are dealing with a given 
resolution.  

 

 
Figure 11. Log – Log plot of number of unknowns 

(resolution required) versus time taken for reconstruction. 
 

Table 3. Projected reconstruction times 

Grid Size 
(Resolution) 

Number of 
Unknowns 

Projected Average 
Reconstruction 
Time (seconds) 

70x70 4900 41460 

90x90 8100 102753 

100x100 10000 150328 

128x128 16834 385007 
 

5. CONCLUSIONS 
An established method for reconstruction of projected data from 
ultrasonic tomography using genetic algorithms is modified to 
work for multiple inclusions. The developed algorithm is tested 
over a wide range of grid-sizes and yielded satisfactory results in 
numerous simulation runs performed with different inclusion 
configurations. The procedure competes with long used methods 
like ART and MART and even surpasses MART when only a 
limited amount of data is available. 

The effects of population sizes and number of generations were 
studied and suitable values for both were arrived at. It is found 
that for a majority of cases, a population size three times that of 
the final required grid size and 1000 generations were sufficient 
for capturing any type of arbitrarily shaped inclusions up to 
resolutions of 64x64. A study of the simulation times revealed 

logarithmically linear variation enabling us to estimate the 
reconstruction times for larger grid sizes. 

A preliminary study on the effect of crossover and mutation 
probabilities showed no consistent patterns. However further 
investigation into the role of these operators is encouraged. One 
variation of the mutation operator namely, block mutation, 
greatly enhanced the algorithm’s performance for grid sizes 
greater than 30x30. An explanation for this could be the 
ineffectiveness of mutating only a few bits in a large grid of 
30x30 or more. 

As can be realized from Table 3, the simulation times increase 
greatly with the increase in required resolution and hence 
parallelization of the code becomes necessary in such cases. The 
authors would like to emphasize that, for the algorithm to be of 
more practical relevance ray bending and diffraction effects 
must be taken into consideration. Further progress in these 
directions is the authors’ future objective. Currently we are 
working on validating the proposed algorithm for real world 
experimental data. 

6. REFERENCES 
[1] Yair Censor, “Finite Series-Expansion Reconstruction 

Methods”, Proceedings of the IEEE, Vol. 71, No. 3 (1983). 
[2] Ken D. Kihm and Donald P. Lyons, “Optical Tomography 

using a Genetic Algorithm”, Optical Society of America, 
Optics Letters, Vol. 21, No. 17 (1996). 

[3] Andrew Curtis and Roel Snieder, “Reconditioning Inverse 
problems using the Genetic Algorithm and Revised 
Parameterization”, Society of Exploration Geophysicists, 
Geophysics, Vol. 62, No. 4, pp. 1524-1532 (1997). 

[4] R. S. Bichkar and A. K. Ray, “Tomographic 
Reconstruction of Circular and Elliptical Objects using 
Genetic Algorithm”, IEEE, IEEE Signal Processing Letters, 
Vol. 5, No. 10 (1998). 

[5] P. P. Delsanto, A. Romano, M. Scalerandi and F.     
Moldoveanu, “Application of Genetic Algorithms to 
Ultrasonic Tomography”, J. Acoustical Society of America, 
Vol. 104, No. 3, Pt. 1 (1998). 

[6] A.C. Kak and Malcolm Slaney, Principles of Computerized 
Tomographic Imaging, IEEE Press (1998). 

[7] Kalyanmoy Deb, Optimization for Engineering Design: 
Algorithms and Examples”, Prentice-Hall of India Pvt. Ltd. 
(2005). 

[8] Saurabh Khare, Mayuri Razdan, Prabhat Munshi, B. V.   
Soma Sekhar and K. Balasubramaniam, “Defect Detection 
in Carbon-Fiber Composites using Lamb-Wave 
Tomographic Methods”, American Society for 
Nondestructive Testing, Research in Nondestructive 
Evaluation, Vol. 18, Issue 2, pp. 101-119 (2007).

 


