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Abstract. A nadir point is constructed by the worst objective values of
the solutions of the entire Pareto-optimal set. Along with the ideal point,
the nadir point provides the range of objective values within which all
Pareto-optimal solutions must lie. Thus, a nadir point is an important
point to researchers and practitioners interested in multi-objective opti-
mization. Besides, if the nadir point can be computed relatively quickly,
it can be used to normalize objectives in many multi-criterion decision
making tasks. Importantly, estimating the nadir point is a challenging
and unsolved computing problem in case of more than two objectives.
In this paper, we revise a previously proposed serial application of an
EMO and a local search method and suggest an integrated approach for
finding the nadir point. A local search procedure based on the solution of
a bi-level achievement scalarizing function is employed to extreme solu-
tions in stabilized populations in an EMO procedure. Simulation results
on a number of problems demonstrate the viability and working of the
proposed procedure.

1 Introduction

A nadir point signifies, in principle, opposite to that meant by an ideal point, in
the context of multi-objective optimization. An ideal point is an M -dimensional
objective vector (where M is the number of objectives) constructed with best
feasible objective values and is a comparatively easy to compute. For minimiza-
tion problems, in principle, this calls for solving M single-objective minimization
problems and collecting each optimal objective values to form the ideal point. On
the other hand, a nadir point is constructed with the worst objective values of
Pareto-optimal solutions. In minimization problems, this task is different from
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simply maximizing M objective functions one at a time. This is because the
search of the worst value of an objective must be restricted within the Pareto-
optimal solutions. This is the reason why the estimation of nadir point has been
found to be a complex task [13, 11] and there does not exist any provable algo-
rithm for the task, even for linear multi-objective optimization problems having
three or more objectives.

With the advent of efficient evolutionary optimization procedures for multi-
objective optimization, some attention has been made in the recent past in devel-
oping procedures for estimating the nadir point. Simplistic ideas, such as finding
a set of Pareto-optimal solutions by an EMO procedure and then choosing the
extreme solutions for estimating the nadir point, to more sophisticated ideas,
such as replacing the focus of EMO to find a wide-spreaded set of solutions on
the entire Pareto-optimal front to find only the critical extreme Pareto-optimal
points [4, 16], are suggested. Most of these EMO methodologies have shown to
find an approximation of the nadir point, rather than to estimate the exact nadir
point. Recent studies [6, 5] suggested a two-step serial procedure of employing a
modified NSGA-II procedure to identify extreme near Pareto-optimal solutions
and then a local search procedure to converge to the true extreme Pareto-optimal
points.

In this study, we suggest and simulate a hybrid integrated approach in which
a local search procedure is used within the modified NSGA-II algorithm spar-
ingly to achieve the nadir point estimation task. The suggested local search
procedure is based on utilizing a reference point based approach, a so-called
achievement scalarizing function [17] which is widely used in the MCDM field.
Using this scalarized function, any point in the objective space can be projected
on the Pareto optimal front and the scalarizing function does not need any arti-
ficial information like weights [14]. In the procedure proposed, the achievement
scalarizing function is used in a bi-level manner to guarantee getting reliable
enough information about extreme values in the Pareto optimal front for esti-
mating the nadir point. Based on a statistical analysis of the performance of
the NSGA-II procedure, the execution of the local search event is decided dy-
namically at every generation. Both NSGA-II and local search procedures are
terminated using statistical performance criteria. Simulation results on a number
of test problems and three engineering problems are presented to demonstrate
the efficacy of the proposed procedure.

2 Nadir Objective Vector

We consider multi-objective optimization problems involving M conflicting ob-
jectives (fi : S → R) as functions of decision variables x:

minimize {f1(x), f2(x), . . . , fM (x)} ,
subject to x ∈ S,

(1)

where S ⊂ Rn denotes the set of feasible solutions. Problem (1) gives rise to a set
of Pareto-optimal solutions or a Pareto-optimal front (P ∗), providing a trade-off
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among the objectives. In the sense of minimization of objectives, Pareto-optimal
solutions can be defined as follows [14]:

Definition 1 A decision vector x∗ ∈ S and the corresponding objective vector

f(x∗) are Pareto-optimal if there does not exist another decision vector x ∈ S
such that fi(x) ≤ fi(x

∗) for all i = 1, 2, . . . , M and fj(x) < fj(x
∗) for at least

one index j.

In what follows, we assume that the Pareto-optimal front is bounded. We now
define a nadir objective vector, that is, a nadir point, as follows.

Definition 2 An objective vector znad = (znad
1 , . . . , znad

M )T constructed using

the worst values of objective functions in the complete Pareto-optimal front P ∗

is called a nadir objective vector.

Hence, for minimization problems we have znad
j = maxx∈P∗ fj(x). Estimation

of the nadir objective vector is, in general, a difficult task. Unlike the ideal

objective vector z∗ = (z∗1 , . . . , z∗M )T , which can be found by minimizing each
objective individually over the feasible set S (or, z∗j = minx∈S fj(x)), the nadir
point cannot be formed by maximizing objectives individually over S. To find the
nadir point, Pareto-optimality of solutions used for constructing the nadir point
must be first established. This makes the task of finding the nadir point a difficult
one. To illustrate this aspect, let us consider a bi-objective minimization problem
shown in Figure 1. If we maximize f1 and f2 individually, we obtain points A
and B, respectively. These two points can be used to construct the so-called
worst objective vector, zw. In many problems (even in bi-objective optimization
problems), the nadir objective vector and the worst objective vector are not the
same point, which can also be seen in Figure 1.

Pareto− optimal front

A

B Worst objective vector

Ideal
point

objective space
Feasible

f 1

f2

Nadir objective vector

Fig. 1. The nadir and worst objective
vectors.
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Fig. 2. Payoff table may not produce the
true nadir point.
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3 Existing Methods

3.1 Payoff Table Method

Benayoun et al. [1] introduced the first interactive multi-objective optimization
method for estimating the nadir point by using a payoff table. To be more spe-
cific, each objective function is first minimized individually and then a table is
constructed where the i-th row of the table represents values of all objective
functions calculated at the point where the i-th objective obtained its minimum
value. Thereafter, the maximum value of the j-th column can be considered as
an estimate of the upper bound of the j-th objective in the Pareto-optimal front
and these maximum values together may be used to construct an approximation
of the nadir objective vector. The main difficulty of such an approach is that
solutions are not necessarily unique and thus corresponding to the minimum
solution of an objective there may exist more than one solutions having differ-
ent values of other objectives, in problems having more than two objectives. In
these problems, the payoff table method may not result in an accurate estimation
of the nadir objective vector. To illustrate, consider a three-objective problem
shown in Figure 2. Minimization of the first objective will result in any solution
on the trapezium CBB′F′C′C. If the point marked in a small circle on line CB
is obtained by an optimization algorithm and similarly other two circles on lines
CA and AB are obtained for minimizations of f2 and f3, respectively, a wrong
estimate (z′) of the nadir point (znad) will be made.

3.2 Evolutionary Approaches

The nadir point is associated with Pareto-optimal solutions and, thus, deter-
mining a set of Pareto-optimal solutions will facilitate the estimation of the
nadir point. Since an EMO algorithm is aimed at finding a set of Pareto-optimal
solutions, it may be an ideal way to find the nadir objective vector. Several
approaches are proposed recently.

In the naive approach, first a well-distributed set of Pareto-optimal solutions
can be attempted to find by an EMO [4]. Thereafter, an estimate of the nadir
objective vector can be made by picking the worst values of each objective [16].
In the context of the problem depicted in Figure 2, this means first finding
a well-represented set of solutions on the plane ABC and then estimating the
nadir point from them. Since EMO algorithms are not found to converge well
and maintain a well-diverse set of solutions for more than three objectives [7], the
accuracy of the estimated nadir point using the naive approach is questionable.

Szczepanski and Wierzbicki [16] have simulated the idea of solving multiple
bi-objective optimization problems suggested in [8] using an EMO approach
and construct the nadir point by accumulating all bi-objective Pareto-optimal
fronts together. As discussed in our earlier study [5], such a technique is not
generic and requires additional objective and variable-space niching techniques
to correctly estimate the nadir point. Moreover, the procedure requires

(

M
2

)
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bi-objective optimizations, making it a daunting task particularly for problems
having more than three objectives.

However, the idea of concentrating on a preferred region on the Pareto-
optimal front, instead of finding the entire Pareto-optimal front, can be pushed
further. An emphasis can be placed in an EMO approach to find only the critical
extreme points of the Pareto-optimal front. Our earlier study [4] suggested two
approaches in the crowding distance operator of the NSGA-II procedure and con-
cluded in favor of the extremized crowding distance approach. In the extremized-
crowded NSGA-II approach [4], we emphasized in concentrating on the best and
worst solutions of each objective. In this approach, solutions on a particular

nondominated front are first sorted from minimum (with rank R
(m)
i = 1) to

maximum (with rank = Nf ) based on each objective. The rank of solution i for

the m-th objective R
(m)
i is assigned as max{R

(m)
i , Nf −R

(m)
i +1}. Two extreme

solutions for every objective get a rank equal to Nf (number of solutions in the
nondominated front), the solutions next to these extreme solutions get a rank
(Nf − 1), and so on. After a rank is assigned to a solution by each objective, the
maximum value of the assigned ranks is declared as the crowding distance.

Like other evolutionary optimization studies, the proposed extremized crowded
NSGA-II approach did not ensure converging to the true extreme solutions ex-
actly, as evolutionary algorithms are expected to find a near-optimal solution,
rather than a true optimal solution in a finite number of solution evaluations.
However, in the pursuit of estimating the nadir point for the purpose of normal-
izing objectives for executing different multi-objective optimization algorithms
or for knowing the true range of Pareto-optimal solutions for decision-making,
it is important to find the true extreme Pareto-optimal points, so that the nadir
point can be estimated accurately.

In a recent study [6], the extremized crowded NSGA-II approach is ended
with a bi-level local search operation on all extreme solutions to take them
arbitrary closer to the true extreme solutions, so that the nadir point can be
estimated more accurately. In this paper, we re-address the issue of the serial
application of NSGA-II and the local search procedure and suggest a hybrid
integrated approach for an accurate estimation of the nadir point.

4 Proposed Integrated Approach

Instead of applying the local search on the extreme solutions obtained by the ex-
tremized crowded hybrid NSGA-II procedure, we propose an integrated NSGA-II
approach in which at every generation the extreme solutions of the best non-
dominated front are modified by the local search procedure to push them towards
their true values. Although the task increases the number of solution evaluations
of each generation, we believe that the attained accuracy of the integrated proce-
dure is better and has a smaller chance of getting stuck to intermediate solutions,
which may not lead to an accurate estimation of the nadir point. In the following,
we outline an iteration of the proposed integrated NSGA-II procedure in which
the population Pt is the current parent population of size N . Every member (i)
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of Pt is already ranked based on its non-domination level (NDi) and its crowd-
ing distance (CDi) within the population members of its own non-domination
level.

Step 1: Population Pt is used to create an offspring population Qt by using
binary tournament selection, recombination and mutation operators. Two
solutions are chosen at random from Pt and a hierarchical selection based on
ND followed by CD is used to complete the tournament selection operation.
Thereafter, two such selected solutions are recombined using the simulated
binary crossover operator [3, 2] to create two offspring solutions, each of
which is then mutated by using the polynomial mutation operator [2]. These
operators involve the following parameters: recombination probability pc,
SBX index ηc, mutation probability pm, and mutation index ηm.

Step 2: Populations Pt and Qt are combined together and ranked into different
levels of non-domination: Pt ∪ Qt = {F1,F2, . . .}. The set F1 contains non-
dominated solutions of level one, and so on.

Step 3: Depending on a check on whether to perform the local search or not
(which we describe a little later), in the set F1, we identify the worst solution
(x(j)) with respect to each objective j, and modify it by using a local search
procedure. The modified solution (y(j)) replaces the worst population mem-
ber. For M objectives, there are M such local search operations performed in
each iteration of the proposed procedure. The estimated nadir point (zest) at
generation t is then formed from the extreme solutions obtained by the local
searches. All members of the set F1 are then assigned a non-domination rank
(ND) value equal to one (being the first-ranked solutions) and a crowding
distance (CD) value based on the extremized crowded ranking procedure
described earlier [6]. For members of other non-domination levels (l ≥ 2),
we do not perform the local search, but assign a non-domination rank (ND)
equal to l and crowding distance (CD) value computed as above.

Step 4: A new population Pt+1 is then created by copying solutions from the
best non-domination level F1 onwards one at a time till we have N pop-
ulation members. When we reach a non-domination level which cannot be
entirely accepted (to not increase the size of Pt+1 over N), we use the crowd-
ing distance (CD) values of the set to determine which solutions should be
accepted. We simply sort the members of the set according to their CD value
from highest to lowest and choose as many we need to fill up the population
from the top of the sorted list.

This procedure is similar to the original NSGA-II procedure, except that the
crowding distance computation is different suiting the need for emphasizing ex-
treme solutions for the task of estimating the nadir point and that a local search
procedure is used to update the extreme objective-wise solutions to make sure
that the nadir point can be estimated with a desired accuracy.

We now describe the local search procedure here. The best (fmin
j ) and worst

(fmax
j ) values of each objective j of the set F1 are first noted. We apply a bi-

level local search procedure from each worst solution (solution x(j) for which



7

the j-th objective has the worst value in F1) to find the corresponding optimal
solution y(j) using the following bi-level optimization procedure. The upper-level
optimization (described in (2)) uses an objective vector (z, referred here as a
reference point) as a variable vector and maximizes the j-th objective value of the
optimal solution obtained by solving the corresponding augmented achievement
scalarizing problem [14] (we refer to this task as the lower-level optimization
task, described in (3)):

maximize(z) f∗
j (z),

subject to zi ≥ f
(j)
i EA − 0.5(fmax

i − fmin
i ), i = 1, 2, . . . , M,

zi ≤ f
(j)
i EA + 1.5(fmax

i − fmin
i ), i = 1, 2, . . . , M.

(2)

The term f∗
j (z) is the optimal value of the j-th objective function of the optimal

solution to the following lower-level optimization problem for which z is kept
fixed [17]:

minimize(y) maxM
i=1

(

fi(y)−zi

fmax

i
−fmin

i

)

+ ρ
∑M

k=1

(

fk(y)−zk

fmax

k
−fmin

k

)

,

subject to y ∈ S,
(3)

Figure 3 illustrates this local search procedure.

f*
2(A’)

for B

2(C)

for A
Search space for reference point

Search space for reference point

f*

f*
1(B’)

Q

B

AD

C
A’

P

f2

f1

B’

Fig. 3. Each arrow corresponds to a lower-level
search for a specified reference point (C, A’ or
B’). The upper-level search finds a reference
point having optimal worst objective (such as
A’ or B’).

In the lower-level optimiza-
tion problem, the search is
performed on the original de-
cision variable space. The so-
lution y∗(j)(z) to this lower-
level optimization problem
determines the optimal objec-
tive vector f∗ from which we
extract the j-th component
and use it in the upper-level
optimization problem. Thus,
for every reference point z (a
solution for the upper-level
problem), the corresponding
optimal augmented achieve-
ment scalarizing function is
found in the lower-level loop.
The upper-level optimization
is initialized with the NSGA-
II solution z(0) = f(x(j)) and
the lower-level optimization is
initialized with the NSGA-II
solution y(0) = x(j).

We now discuss the termi-
nation criterion of each opti-
mization procedure. For terminating the overall NSGA-II procedure, we compute
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a normalized distance (ND) metric as follows:

D =

√

√

√

√

1

M

M
∑

i=1

(

zest
i − z∗i
zw

i − z∗i

)2

. (4)

Here, the vectors z∗ and zw are the ideal and worst objective vectors of the op-
timization problem, respectively. These quantities can be computed once before
the NSGA-II procedure by solving 2M different single-objective optimizations
of minimizing and maximizing each objective at a time.

Since the exact final value of the D metric is not known a priori on an ar-
bitrary problem, we record the change in D for the past τ (= 50 used here)
generations. Say, Dmax, Dmin, and Davg, are the maximum, minimum, and av-
erage D values for the past consecutive τ generations. If the change ∆D =
(Dmax −Dmin)/Davg is smaller than a threshold ∆ (= 1(10−4) is used here), the
NSGA-II procedure is terminated.

We use the same normalized distance metric to decide whether the local
search needs to be performed in a particular generation of NSGA-II. At a gen-
eration, the change ∆lD in normalized distance over the past τl (= 20 used
here) generations is recorded. If ∆lD ≤ δ (= 0.005 used here), the local search
is performed. This reduces the number of local searches performed from not so
good solutions. When the best non-dominated front has stabilized somewhat,
the extreme solutions of the set are modified using the local search procedure.

Both upper and lower-level optimization tasks in the local search operation
uses a point-by-point search approach which is terminated based on the chosen
optimization algorithm and code used for the purpose. In all our simulations,
we have used KNITRO for the lower-level optimization task in which we have
set a termination condition on the KKT error value (≤ 10−6) or a maximum of
100 iterations whichever happens first. For the upper-level optimization task, we
have used KNITRO’s SQP solver. The upper-level task is terminated if the norm
of the Newton’s direction is less than of equal to 0.001 or a maximum iteration
of 100 is elapsed.

After the NSGA-II run is terminated, we construct the nadir point from the
worst objective values of the final non-dominated set F1.

5 Simulation Results

In this section, we present simulation results on eight problems having three or
more objectives. In most of these problems, the nadir point was difficult to obtain
using the pay-off table. In all problems, we use a population of size max(60, 20n)
(n is the number of variables), crossover and mutation probabilities of 0.9 and
1/n , crossover and mutation indices of 10 and 50, respectively, and ρ = 10−4.
In each case, we make 10 different runs from different initial populations, but
every time the procedure is found to converge near a particular set of extreme
points, thereby leading to finding a similar nadir point every time.
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5.1 Problem KM

The first problem KM, adapted from [12], is the following:

minimize







−x1 − x2 + 5
1
5 (x2

1 − 10x1 + x2
2 − 4x2 + 11)

(5 − x1)(x2 − 11)







,

subject to 3x1 + x2 − 12 ≤ 0, 2x1 + x2 − 9 ≤ 0, x1 + 2x2 − 12 ≤ 0,
0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 6.

(5)

The true nadir point of this problem is reported to be znad = (5, 4.6,−14.25)T

[9]. Table 1 shows the three extreme solutions (x∗) found by our proposed ap-
proach. It is clear that when the worst objective values are collected together,
we obtain an identical point (up to two decimal points) as that in the true
nadir point. Figure 4 shows that the normalized distance value gets stabilized at

Table 1. Extreme points found by the pro-
posed approach on problem KM.

x∗ Estimated znad

0.000 0.000 5.000 2.200 -55.000
0.000 6.000 -1.000 4.600 -25.001
3.500 1.501 0.000 -3.100 -14.251

Terminated at gen. 87

D stabilized for 50 gen.
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Fig. 4. Variation of D with generation on
KM.

around 40 generation and since ∆D = 50 is used, it took another 50 generations
to terminate the hybrid procedure. Interestingly, the D value reaches the final
stabilized value very quickly, thereby indicating the efficiency of the proposed
procedure.

5.2 Problem SW1

The second problem SW1 is as follows [16]:

minimize







f1(x) = −(100 − 7x1 − 20x2 − 9x3)
f2(x) = −(4x1 + 5x2 + 3x3)
f3(x) = −x3







,

subject to 1 1
2x1 + x2 + 1 3

5x3 ≤ 9, x1 + 2x2 + x3 ≤ 10,
xi ≥ 0, i = 1, 2, 3.

(6)
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The previous study [16] reported the true nadir point to be znad = (−3.6364, 0, 0)T .
Table 2 shows two extreme solutions (x∗) (hence, the true nadir point) found by
our proposed approach. Figure 5 shows the progress of the proposed approach.

Table 2. Extreme points found by the proposed
approach on problem SW1.

x∗ Estimated znad

0.0000 3.1818 3.6364 -3.6364 -26.8182 -3.6364
0.0000 0.0000 0.0000 -100.0000 0.0000 0.0000

Stabilized for 50 gen.

Terminated at gen. 87
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Fig. 5. Variation of D with gener-
ation on SW1.

5.3 Problem SW2

The third problem SW2 originates from [16]:

minimize















9x1 + 19.5x2 + 7.5x3

7x1 + 20x2 + 9x3

−(4x1 + 5x2 + 3x3)
−(x3)















,

subject to 1.5x1 − x2 + 1.6x3 ≤ 9, x1 + 2x2 + x3 ≤ 10,
xi ≥ 0, i = 1, 2, 3.

(7)

The true nadir point for this problem is reported to be znad = (94.5, 96.3636, 0, 0)T

[16]. The original study [16] found a close point (94.4998, 95.8747, 0, 0)T using
multiple, bi-objective optimization simulation using an EMO procedure. The
outcome is not identical to the true nadir point. Table 3 shows the three ex-
treme solutions found by our proposed approach. We obtain the true nadir point.

Table 3. Extreme points found by the proposed approach on problem SW2.

x∗ Estimated znad

4.0000 3.0000 0.0000 94.5000 88.0000 -31.0000 0.0000
0.0000 3.1818 3.6363 89.3182 96.3636 -26.8182 -3.6363
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



11

Due to an identical behavior of D variation with generation number on this and
subsequent problems, we do not show the figures here.

5.4 Problem KSS1

The linear KSS1 problem [13] was found to be difficult for estimating the nadir
point:

maximize







11x2 + 11x3 + 12x4 + 9x5 + 9x6 − 9x7

11x1 + 11x3 + 9x4 + 12x5 + 9x6 − 9x7

11x1 + 11x2 + 9x4 + 9x5 + 12x6 + 12x7







,

subject to
∑7

i=1 xi = 1,
xi ≥ 0, i = 1, 2, . . . , 7.

(8)

The true nadir point is reported to be znadir = (0, 0, 0)T [13]. Table 4 shows the
three extreme solutions found by our proposed approach. Our approach finds a

Table 4. Extreme points found by the proposed approach on problem KSS1.

x∗ Estimated znad

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.000 11.000
0.000 0.994 0.000 0.000 0.000 0.001 0.004 10.910 -0.026 11.006
0.000 0.000 1.000 0.000 0.000 0.000 0.000 11.000 11.000 0.000

near nadir point with a slight error in the second objective value (as shown in
Figure 6 the error is not visually detectable). This problem is a difficult one to
solve for estimating the exact nadir point, because of the slow slope leading to
each of the three extreme points, as shown by a set of representative solutions
obtained through a clustered NSGA-II, in which NSGA-II’s crowding distance
method is replaced by the k-mean clustering method [2]. In this problem, it is
easy to get stuck to a non-dominated point close to one or more extreme points.
Our approach seems to have found the exact extreme values for first and third
objectives and managed to get to a near-by point around the extreme of the
second objective.

5.5 Problem KSS2

Next, we consider another linear problem KSS2 [13]:

maximize (x1, x2, x3),
subject to x1 + 2x2 + 2x3 ≤ 8, 2x1 + 2x2 + x3 ≤ 8, 3x1 − 2x2 + 4x3 ≤ 12,

xi ≥ 0, i = 1, 2, 3.
(9)
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Table 5. Extreme points found by the proposed approach on problem KSS2.

x∗ Estimated znad

0.000 3.818 0.166 0.000 3.818 0.166
3.344 0.000 0.432 3.344 0.000 0.433
3.253 0.628 0.000 3.253 0.628 0.000

The nadir point is reported to be znad = (0, 0, 0)T . Table 5 presents the ex-
treme solutions obtained by our approach. The true nadir point is found by our
approach in this problem.

Now we consider three more problems, borrowed from engineering fields. On
each of these problems, the exact nadir point is not known, but wherever possible
we explain the accuracy of the nadir point obtained by our approach.

5.6 Problem WELD

The WELD problem has four variables and three objectives, and is formulated
in [6]. Our previous study [6] introduced the WELD problem which has four
variables and three objectives. The nadir point was estimated to be znad =
(36.4209, 0.0158, 30000)T . Table 6 presents two extreme points found by our pro-
posed approach of this paper. The extreme points for the second and third objec-
tives are found to be identical in this problem, indicating that although the prob-
lem has three objective functions, the Pareto-optimal front is two-dimensional,
as is also confirmed by the original NSGA-II points in Figure 7. The nadir point
estimated by our approach is (36.4221, 0.0158, 30000.1284)T , which is close to
that obtained by the earlier study [6].
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Table 6. Extreme points found by the proposed approach on problem WELD.

x∗ Estimated znad

1.7356 0.4788 10.0000 5.0000 36.4221 0.000439 1008.0000
0.2444 6.2175 8.2915 0.2444 2.3810 0.015759 30000.1284

5.7 Problem CAR

The seven-variable, three-objective CAR problem is described in [10].

points
NSGA−II

approach (2 pts.)
Proposed 

point
Nadir

 44
 3.7

 3.8
 3.9

 4

 10.8

 11.2

 11.6

 12

 12.4

f1
f2

f3

 24
 28

 32
 36

 40
 3.6

Fig. 8. Extreme objective vectors covers
the entire Pareto-optimal front for prob-
lem CAR.

No previous study exists on this prob-
lem for finding the nadir point. In
Table 7, we present two extreme
points obtained by our procedure.
Thus, the nadir point estimated by
our approach for this problem is
znad = (42.767, 4.000, 12.521)T . Fig-
ure 8 shows the complete Pareto-
optimal front with a set of represen-
tative clustered NSGA-II solutions. It
is clear from the plot that the above
two extreme points are adequate to
cover the extreme objective values of
the Pareto-optimal front and is able
to locate the nadir point of the prob-
lem.

Table 7. Extreme points found by the proposed approach on problem CAR.

x∗ Estimated znad

1.500 1.350 1.500 1.500 2.625 1.200 1.200 42.767 3.585 10.611
0.500 1.226 0.500 1.208 0.875 0.884 0.400 23.589 4.000 12.521

5.8 Problem WATER

Finally, we consider the WATER problem [15], which is also described in [2].
For this problem, the exact nadir point is not known. However, since there are
three variables and five objectives, some redundancy in the objectives is expected
for the Pareto-optimal solutions. An application of NSGA-II to this problem [2]
(page 388) was found to indicate some correlations among the obtained represen-
tative solutions. Table 8 presents the extreme points obtained for this problem
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Table 8. Extreme points found by the proposed approach on problem WATER.

x∗ Estimated znad

0.010 0.100 0.100 1.038 0.020 0.949 0.075 5.649
0.450 0.098 0.010 0.916 0.900 0.936 0.033 0.002
0.114 0.100 0.010 0.918 0.228 0.951 0.031 0.285
0.098 0.010 0.100 0.918 0.197 0.095 2.671 5.713

by our approach. We observe that the extreme points for objectives f4 and f5

come from an identical solution. The estimated nadir point using our procedure
is znad = (1.038, 0.900, 0.951, 2.671, 5.713)T.

6 Conclusions

In this paper, we have extended our previous study on a serial implementation of
an EMO procedure followed by an MCDM based local search approach to find
extreme points accurately for estimating the nadir point of a multi-objective
optimization problem. The nadir point in multi-objective optimization is used
in normalizing objectives which is necessary for different multi-criterion opti-
mization algorithms. Besides, the task of estimating the nadir point for three or
more objectives is a open research task in multi-criterion optimization literature.
Nadir points can only be estimated accurately if (i) objective-wise extremes and
(ii) Pareto-optimal solutions are found. Due to this two-pronged requirements,
we have suggested a bi-level local search task. The local search is employed
with extreme non-dominated solutions only when the best non-dominated front
has stabilized somewhat, thereby making the overall method computationally
tractable. On a set of five test problems and three engineering design problems,
the proposed integrated procedure has able to find the exact nadir point quite
accurately.

This work is also important from another point of view. This work demon-
strates how a local search approach can be integrated with an evolutionary
population-based approach and used sparingly for a complex optimization to
ensure accurate convergence.
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