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Abstract— Many real-world problems demand a feasible
solution to satisfy physical equilibrium, stability, or certain
properties which require an additional lower level optimization
problem to be solved. Although such bilevel problems are
studied somewhat in the context of a single objective in each
level, there are not many studies in which multiple conflicting
objectives are considered in each level. Bilevel multi-objective
optimization problems offer additional complexities, as not
every lower level Pareto-optimal front has a representative
solution to the upper level Pareto-optimal front and that only
a tiny fraction of participating lower level fronts make it t o
the upper level front. A couple of recent studies by the authors
have suggested a viable EMO method. In this paper, we analyze
the difficulties which a bilevel EMO procedure may face in
handling such problems and present a systematic construction
procedure for bilevel optimization test problems. Based onthe
suggested principles, we propose five test problems which are
scalable in terms of number of variables and objectives, and
which enable researchers to evaluate different phases of a bilevel
problem solving task. The test problem construction procedure
is interesting and may motivate other researchers to extendthe
idea to develop further test problems.

I. I NTRODUCTION

Bilevel optimization problems appear often in practice due
to inherent equilibrium or stability requirements of a physi-
cally realizable solution. This requires every feasible solution
of the optimization problem (we refer as an ’upper level
optimization problem’) becomes an optimal solution with
respect to a different lower level optimization problem which
enforces physical conditions involving equilibrium, stability
or flow and energy balance. Despite the existence of this
so-called bilevel optimization problems in practice, theyare
mostly avoided by researchers simply due to the complexities
and computational burden associated in solving such prob-
lems. Practitioners often derive approximate or mathematical
optimality conditions (wherever possible) correspondingto
the lower level optimization problem and use the conditions
as constraints for the upper level optimization problem. This
converts a truly bilevel problem to a single level optimization
problem. But there exist many problem scenarios, for which
such a conversion is difficult or unacceptable and both level
optimization problems must be handled as they are.

In the context of a single objective in each level, there exist
studies on mathematical optimality conditions [9] and on

numerical algorithm development [2], [16]. However, there
are not much studies involving multiple objectives in each
level of a bilevel optimization problem. In the context of
evolutionary studies on bilevel multi-objective optimization,
a previous study emphasized the importance on launching
such studies [14]. In the recent past [6], [7], authors have
suggested the first EMO-based algorithm for handling bilevel
multi-objective optimization problems and demonstrated its
working on a few test problems, including a couple borrowed
from a previous study which proposed a naive enumerative
scheme [10].

In this paper, we identify problem difficulties associated
with bilevel problem solving and suggest a systematic pro-
cedure for constructing test problems. These problems are
scalable in number of variables and can be extended to higher
objectives. An extension of the principle can be made to de-
velop higher level test problems as well, but we do not pursue
it here. Based on the construction principle, we suggest five
specific test problems and discuss why these problems may
offer difficulties to an optimization algorithm. We then apply
our previously-proposed BLEMO algorithm to solve all five
test problems. The study demonstrates that the proposed test
problems offer adequate challenges to the existing algorithm
and emphasize more research in the development of bilevel
multi-objective optimization algorithms.

II. D ESCRIPTION OFBILEVEL MULTI -OBJECTIVE

OPTIMIZATION PROBLEM

A bilevel multi-objective optimization problem has two
levels of multi-objective optimization problems such thatthe
optimal solution of the lower level problem determines the
feasible space of the upper level optimization problem. In
general, the lower level problem is associated with a variable
vector xl and a fixed vectorxu. However, the upper level
problem usually involves all variablesx = (xu,xl), but we
refer herexu exclusively as the upper level variable vector.
A general bilevel multi-objective optimization problem can



be described as follows:

min.(xu,xl) F(x) = (F1(x), . . . , FM (x)) ,
s.t. xl ∈ argmin(xl)

{

f(x) = (f1(x), . . . , fm(x))
∣

∣

g(x) ≥ 0,h(x) = 0} ,
G(x) ≥ 0,H(x) = 0,

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, . . . , n.

(1)
In the above formulation,F1(x), . . . , FM (x) are the upper
level objective functions, andG(x) and H(x) are upper
level inequality and equality constraints, respectively.The
objectivesf1(x), . . . , fm(x) are the lower level objective
functions, and functionsg(x) and h(x) are lower level
inequality and equality constraints, respectively. It should be
noted that the lower level optimization problem is optimized
only with respect to the variablesxl and the variable vector
xu is kept fixed. The Pareto-optimal solutions of a lower level
optimization problem become feasible solutions to the upper
level problem. The Pareto-optimal solutions of the upper
level problem are determined by objectivesF and constraints
G, and restricting the search among the lower level Pareto-
optimal solutions.

III. E XISTING APPROACHES

Several studies exist in determining the optimality condi-
tions for a Pareto-optimal solution to the upper level problem.
The difficulty arises due to the existence of the lower level
optimization problems. Usually the KKT conditions of the
lower level optimization problems are used as constraints in
formulating the KKT conditions of the upper level problem.
As discussed in [9], although KKT optimality conditions
can be written mathematically, the presence of many lower
level Lagrange multipliers and an abstract term involving
coderivatives makes the procedure difficult to be applied in
practice.

Fliege and Vicente [11] suggested a mapping concept in
which a bilevel single-objective optimization problem can
be converted to an equivalent four-objective optimization
problem with a special cone dominance concept. Although
the idea can be, in principle, extended for bilevel multi-
objective optimization problems, the number of objectives
to be considered is large and moreover handling constraints
seems to introduce additional difficulties in obtaining re-
sulting objectives. In the context of bilevel single-objective
optimization problems, there exists a number of studies,
including some useful reviews [2], [16], test problem gener-
ators [1], and even some evolutionary algorithm (EA) studies
[15], [13], [18], [12], [17]. However, there does not seem to
be too many studies on bilevel multi-objective optimization.
A recent study by Eichfelder [10] suggested a refinement
based strategy in which the upper level optimization is
an exhaustive search. This does not make the algorithm
extendible to solving large-dimensional problems.

The greatest challenge in handling bilevel optimization
problems seems to lie in the fact that unless a solution is
optimal for the lower level problem, it cannot be feasible
for the overall problem. This requirement, in some sense

disallow any approximate optimization algorithm (including
an EA or an EMO) to be used for solving the lower level
task. But from all practical point of view near-optimal or
near-Pareto-optimal solutions are often acceptable and itis
in this spirit for which EA and EMO may have a great
potential for solving bilevel optimization problems. EA or
EMO has another advantage. Unlike the classical point-by-
point approach, EA/EMO uses a population of points in
their operation. By keeping two interacting populations, a
coevolutionary algorithm can be developed so that instead
of a serial and complete optimization of lower level problem
for every upper level solution, both upper and lower level
optimization tasks can be pursued simultaneously through
iterations. In a couple of recent studies by the authors [6],
[7], for the first time, a viable bilevel evolutionary multi-
objective optimization (BLEMO) algorithm was suggested.
The algorithm is applied to a couple of problems from the
Eichfelder’s [10] study, and successful simulation results are
reported.

IV. PRINCIPLE OFBILEVEL TEST PROBLEM

DEVELOPMENT

Bilevel multi-objective optimization problems are different
from single-level multi-objective optimization problemsin
that the Pareto-optimal solutions for the lower level multi-
objective optimization problems are feasible solutions to
the upper level problem. Thus, while developing a bilevel
multi-objective test problem, we should have ways to test
an algorithm’s ability to handle complexities in both lower
and upper level problems independently and collectively. In
addition, we would also like to have have a knowledge
of the exact location (and relationships) of Pareto-optimal
points of each problem. We summarize in the following some
properties which we would like to have in a bilevel multi-
objective test problem:

1) Exact Pareto-optimal in both lower and upper level
problems are easy to know. This will enable an user
to evaluate the performance of an algorithm easily.

2) Problems are scalable with respect to number of vari-
ables. This will enable an user to test whether an
algorithms scales well with number of variables in both
lower and upper levels.

3) Problems are scalable with respect to number of ob-
jectives in both lower and upper level problems. This
will enable an user to evaluate an algorithm’s scalable
performance with number of objectives.

4) Lower level problems are difficult to solve to Pareto-
optimality. If lower level Pareto-optimal fronts are not
found exactly, upper level solutions are not feasible.
Therefore, these problems will test an algorithm’s
ability to converge to the correct Pareto-optimal front
(we can borrow ideas here from single level EMO test
problems). The shape (convex, non-convex, disjointed-
ness) of the Pareto-optimal front plays an important
role in this respect.

5) There is a conflict between lower and upper level
problem solving tasks. In these problems, dominated



lower level solutions may be allowed to dominate
upper level Pareto-optimal points. These problems will
test an algorithm’s ability to converge to the lower level
Pareto-optimal fronts, despite not enough emphasis by
the upper level problem to do so.

6) Desirably, problems are scalable to multiple levels (at
most up to three). On the other hand, it will be ideal
to have the problems which degenerate to single level
test problems as well.

7) Different lower level problems contribute differently
to the upper level front. These test problems will test
an algorithm’s coordinating ability between upper and
lower levels in finding the correct upper level Pareto-
optimal front.

Various difference principles are possible to construct test
problems following above guidelines. Here, we suggest a
simple procedure for two-objective optimization problemsin
both lower and upper levels. Our approach is a bottom-up
approach, in which both lower and upper level problems are
designed starting with a pre-specified Pareto-optimal front.
We begin the construction process from the lower level
problem.

We choose a standard bi-objective test problem [19], [8]
as a parameterized lower level problem here, which results
in a parametric representation of the Pareto-optimal front
(f∗

1 (t), f∗

2 (t)) for t ∈ [tmin, tmax]. For example, if ZDT1
is chosen, the Pareto-optimal front is given by:(f∗

1 (t) =
t, f∗

2 (t) = 1 − t2) for t ∈ [0, 1]. Thus, the bi-objective
front is always a one-parameter curve in the case of a bi-
objective problem. Since all these solutions are feasible for
the upper level problem and since only a subset (or none) of
these solutions may qualify as the upper level Pareto-optimal
solutions, we can now map these solutions to another one-
dimensional non-dominated front in the upper level problem.
We illustrate this aspect in Figure 1. The lower level Pareto-
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Fig. 1. The construction principle of bilevel test problems.

optimal front (AB) in the f1-f2 space is mapped to a
complete circle (A′B′) in the F1-F2 space. Different lower
level Pareto-optimal fronts are mapped and placed at different
locations on the upper level front by using a parameterv. The
figure shows some such mappings at a few locations with
circles. Many simple ideas for the mapping are possible and
the figure demonstrates one such simple mapping.

Next, we choose a parameterized, trade-off relationship
between two termsu1 and u2 as a function ofv in the
upper level objective space, such that(u∗

1, u
∗

2) corresponds
to the non-dominated relationship amongu1 and u2. Many
different values ofv are possible and for everyv, the lower
level Pareto-optimal front is(f1(t(v)), f2(t(v))) for t ∈
[tmin(v), tmax(v)]. These lower level solutions get mapped
using (Φu : (f1, f2) → (u1, u2)) on a circle to the upper
level objective space having the pointv (on u1-u2 curve)
as the center with a pre-specified radius. Another mapping
Φt is used to map the parametert to t′. The following is
commutative diagram of both mappings:

t(v) −−−−→ (f∗

1 , f∗

2 )(v)

Φt





y





y
Φu

t′(v) −−−−→ (F1, F2)(v)

The final upper level Pareto-optimal front can then be derived
with the non-dominated solutions from all circles in theF1-
F2 space, or mathematically

(F ∗

1 , F ∗

2 ) = ND
[

∪
v∈argmin

(v)
(u1,u2)

(F1, F2)(v)
]

.

Figure 1 depicts one such scenario, in which the lower
level front is convex. The mappingΦu is such that the lower
level Pareto-optimal points (A to B) inf1-f2 space is mapped
to a full circle (A′ to B′) on the F1-F2 space. Thus only
a portion of the lower level Pareto-optimal points are non-
dominated in the upper level. The mappingΦt is chosen to be
linear here (linearly mapping AB to to A′B′), but any other
mapping can also be chosen to vary the density of points on
the non-dominated part of the front in the upper level. The
upper level trade-off information onv is non-convex (marked
asu1-u2 relationship) in the example problem. It is now clear
that every upper level Pareto-optimal front comes from a
differentv and is a different point in the corresponding lower
level Pareto-optimal front. Interestingly, some non-dominated
v values (in the range XY) do not lead to upper level Pareto-
optimal front.

To solve the above problem to upper level Pareto-
optimality, an algorithm must first find the exact lower
level Pareto-optimal front for every value of the upper level
variablev. The upper level optimization then must sort out
and locate all possiblev which contribute to the upper level
Pareto-optimal front. Not only does the algorithm find all
such v values, for each such value it should also preserve
a well distributed set of lower level Pareto-optimal points
which are essential to span the upper level Pareto-optimal
front. In the example of the figure, only one solution comes
from each lower level front, but a different mappingΦu may



cause a set of solutions from some lower level fronts to lie
on the upper level Pareto-optimal front.

To make each level problem somewhat difficult, additional
terms as a function of additional independent variables canbe
added in each level. The optimization algorithm must now
find minimum values of the additional terms to be on the
Pareto-optimal front. The approaches to such fronts can be
made difficult by choosing suitable functional forms, thereby
making the problem more difficult to solve.

V. PROPOSEDTEST SUITE

In this section, we propose five test problems based on
the above principle of bilevel test problem construction. Two
objectives at each level are proposed here, but they can be
extended to higher objectives with some more consideration.
For the following test problems we refer the variable vector
xl asx and the variable vectorxu asy.

A. Problem 1

We start with a problem having linear Pareto-optimal
fronts in both levels. Problem 1 hasK + L + 1 variables,
which are all real-valued.

minimize F(x,y) =
{

(1 − x1)(1 +
∑K

j=2 x2
j)y1

x1(1 +
∑K

j=2 x2
j )y1

}

,

subject to (x) ∈ argmin(x)
{

f(x) =

(

(1 − x1)(1 +
∑K+L

j=K+1 x2
j )y1

x1(1 +
∑K+L

j=K+1 x2
j )y1

)

∣

∣

∣

∣

g1(x) = (1 − x1)y1 + 1
2x1y1 − 1 ≥ 0

}

,
−1 ≤ x1 ≤ 1, 1 ≤ y1 ≤ 2,
−(K + L) ≤ xi ≤ (K + L), for i = 2, . . . , (K + L).

(2)
For a fixedy1, the lower level Pareto-optimal front cor-

responds to the linef1 + f2 = y1, as shown in Figure 2.
The front is restricted at one end by the constraint and at the
other end by the x-axis. The constraint boundary does not
allow the lower lower level front to continue further which
otherwise would have extended until it intercepts the y-axis.
At the lower level front,xi = 0 for i = K + 1, . . . , K + L
and x1 ∈ [0, 2(1 − 1

y1
)], the upper bound depends on the

intersection point of the lower level front and the constraint
boundary.

The functional relationship for the upper level front is
F1 + 1

2F2 = 1, which is the constraint boundary. For the
upper level frontxi = 0 for i = 2, . . . , K, every Pareto-
optimal point corresponds to a differenty1 value in [1, 2]
and a differentx1 value in [0, 1]. By increasingK, the
number of variables can be increased at the upper level and
by increasingL the number of variables can be increased at
the lower level. Thus, the complexity at each level can be
increased independently by varyingK and L. For this test
problem we have takenK = 3 and L = 2 (6-variable test
problem).

Upper Level Front
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Fig. 2. Pareto-optimal front for problem 1.
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Fig. 3. Pareto-optimal front for problem 2.

B. Problem 2

This problem is similar to problem 1 except that the upper
level Pareto-optimal front is constructed from multiple points
from a few lower level Pareto-optimal front. There areK +
L + 1 real-valued variables in this problem.

minimize F(x,y) =
{

(1 − x1)(1 +
∑K

j=2 x2
j )y1

x1(1 +
∑K

j=2 x2
j )y1

}

,

subject to (x) ∈ argmin(x)
{

f (x) =

(

(1 − x1)(1 +
∑K+L

j=K+1 x2
j )y1

x1(1 +
∑K+L

j=K+1 x2
j )y1

)

∣

∣

∣

∣

g1(x) = (1 − x1)y1 + 1
2x1y1 − 2 + 1

5 [5(1 − x1)y1

+0.2] ≥ 0} , [·] denotes greatest integer function,
−1 ≤ x1 ≤ 1, 1 ≤ y1 ≤ 2,
−(K + L) ≤ xi ≤ (K + L), for i = 2, . . . , (K + L).

(3)
This test problem is similar to the test problem 1 except
the constraint at the lower level. The lower level constraint
in this test problem is a discontinuous step function which
allows multiple points from each lower level front to enter
the upper level front. In this problem also the lower level



front is given byf1 + f2 = y1. At the lower level front
xi = 0 for i = K + 1, . . . , K + L and x1 ∈ [0, a], where
a ∈ {0.2, 0.4, 0.6, 0.8, 1}. The upper bound (a) of x1 is
determined by the intersection point of the lower level front
and the constraint boundary.

The functional relationship for the upper level front is
F1 + 1

2F2 = 2 − 1
5 [F1 + 0.2] which is the constraint

boundary. For the upper level front,xi = 0 for i =
2, . . . , K and every Pareto-optimal point corresponds to
y1 ∈ {0, 0.2, 0.4, 0.6, 0.8} and a differentx1 value in [0, 1]
(Figure 3). For this test problem we have takenK = 3 and
L = 2 (6-variable test problem).

C. Problem 3

The next problem has2K variables withK real-valued
variables each forx andy:

minimize F(x,y) =






















(1 + r − cos(απy1)) +
∑K

j=2(yj −
j−1
2 )2

+τ
∑K

i=2(xi − yi)
2 − r cos

(

π
2

x1

y1

)

(1 + r − sin(απy1)) +
∑K

j=2(yj −
j−1
2 )2

+τ
∑K

i=2(xi − yi)
2 − r sin

(

π
2

x1

y1

)























,

subject to (x) ∈ argmin(x)


















f(x) =











x2
1 +

∑K

i=2(xi − yi)
2

+
∑K

i=2 10(1 − cos(4π(xi − yi)))
∑K

i=1(xi − yi)
2

+
∑K

i=2 10| sin(4π(xi − yi)|





























,

−K ≤ xi ≤ K, for i = 1, . . . , K,
1 ≤ y1 ≤ 4, −K ≤ yj ≤ K, for j = 2, . . . , K.

(4)
The lower level Pareto-optimal front for a giveny vector
corresponds toxi = yi for i = 2, . . . , K and x1 ∈ [0, y1].
The objectives are related as follows:f∗

2 = (
√

f∗

1 − y1)
2.

Let us first considerτ = 1. The upper level Pareto-optimal
front corresponds toyi = (j − 1)/2 for j = 2, . . . , K. The
parametric functional relationship isu1 = 1+r−cos(απy1)
andu2 = 1 + r − sin(απy1). This is a circle of radius one
and center at((1 + r), (1 + r)) in the F1-F2 space. Thus,
the non-dominated portion is the third quadrant of this circle
and this happens fory1 ∈ (2p + [0, 0.5])/α, wherep is an
integer including zero. Forα = 1 and for 1 ≤ y1 ≤ 4,
this happens fory1 ∈ [2, 2.5] andy1 = 4. Accumulating the
non-dominated portions of all circles of radiusr at every
optimal y1, we have the overall upper level Pareto-optimal
front defined as a circle of radius(1+ r) and center at((1+
r), (1 + r)), as shown in Figure 4.

For this test problem, we useK = 3 (6-variable problem),
r = 0.1, and α = 1. By increasingK the number of
variables can be increased without affecting the Pareto-
optimal frontier. The effect ofr is not that significant for a
real-valued variabley1. However, if a discretey1 is chosen,
an increase inr will have a range of lower level Pareto-
optimal solutions to qualify as upper level Pareto-optimal
solutions. Also, an increase inα causes multi-modaly1

solutions to appear on the upper level Pareto-optimal front.
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Fig. 4. Pareto-optimal front for problem 3.

For example, forα = 2, y1 ∈ [1, 1.25] ∪ [2, 2.25] ∪ [3, 3.25]
will correspond to the upper level Pareto-optimal front.

An interesting scenario happens whenτ = −1 is set. Now,
if any x is not Pareto-optimal to a lower level problem, some
positive amount is deducted in the upper level objectives,
thereby allowing points to exist below the Pareto-optimal
curve of the upper level problem. These points are infeasible
to the upper level due to their non-optimal property at the
lower level problems and if allowed to exist in the upper
level will dominate the true upper level Pareto-optimal points.
Thus, this problem will be difficult to solve than the problem
with τ = 1, as the upper level problem does not motivate the
solutions to become Pareto-optimal at the lower level and the
overall procedure will end up finding infeasible solutions.

D. Problem 4

The next problem consists of2K real-valued variables,
but the upper level Pareto-optimal front corresponds to a few
values ofy1:

minimize F(x,y) =






















u1(y1) +
∑K

j=2

[

y2
j + 10(1 − cos(4πyi))

]

−r cos
(

2π x1

y1

)

u2(y1) +
∑K

j=2

[

y2
j + 10(1 − cos(4πyi))

]

−r sin
(

2π x1

y1

)























,

subject to (x) ∈

argmin(x)

{

f (x) =

(

x2
1 +

∑K

i=2(xi − yi)
2

∑K

i=1 i(xi − yi)
2

)}

,

−K ≤ xi ≤ K, for i = 1, . . . , K,
0.001 ≤ y1 ≤ K, −K ≤ yj ≤ K, for j = 2, . . . , K,

(5)



where

u1(y1) =







cos(0.2π)y1 + sin(0.2π)
√

|0.02 sin(5πy1)|,
for 0 ≤ y1 ≤ 1,

y1 − (1 − cos(0.2π)), y1 > 1

u2(y1) =







− sin(0.2π)y1 + cos(0.2π)
√

|0.02 sin(5πy1)|,
for 0 ≤ y1 ≤ 1,

0.1(y1 − 1) − sin(0.2π), for y1 > 1.
(6)

For everyy vector, the lower level front occurs forxi = yi

for i = 2, . . . , K and x1 ∈ [0, y1] and the functional
relationship isf∗

2 = (
√

f∗

1 − y1)
2. Although a number

of different values ofy1 correspond to a non-dominated
trade-off with respect to(u1, u2), the upper level Pareto-
optimal front corresponds to only six discrete values ofy1

(=0.001, 0.2, 0.4, 0.6, 0.8 and 1). Here we suggest using
r = 0.25. In this problem, a lower level front is mapped
to a circle which is centered at(u1(y1), u2(y1)) and has
a radius of 0.25. The resulting Pareto-optimal front with
six circular arcs are shown in Figure 5. It is clear that the
upper level Pareto-optimal front is constructed only from
different non-dominated regions from each of the sixy1

values. Interestingly, despitey1 taking any real value within
[0.001, K], no othery1 value contributes to the upper level
Pareto-optimal frontier.

P−O  front
Upper level

Lower level P−O front
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Fig. 5. Pareto-optimal front for problem 4.

Like in Problem 3, we can add the termτ
∑K

i=2(xi −yi)
2

on bothF1 andF2 with τ = −1 in order to make the problem
more difficult.

E. Problem 5

The next problem has a discrete variabley1 and other
variables are all real-valued:

minimize F(x,y) =






y1 +
∑K

j=3(yj − j/2)2 − R(y1) cos(4 tan−1
(

y2−x2

y1−x1

)

y2 +
∑K

j=3(yj − j/2)2 − R(y1) sin(4 tan−1
(

y2−x2

y1−x1

)







,

subject to (x) ∈ argmin(x)
{

f (x) =

(

x1 +
∑K

i=3(xi − yi)
2

x2 +
∑K

i=3(xi − yi)
2

)

∣

∣

∣

∣

g1(x) = (x1 − y1)
2 + (x2 − y2)

2 ≤ r2
}

,
G(y) = y2 − (1 − y2

1) ≥ 0,
−K ≤ xi ≤ K, for i = 1, . . . , K,
0 ≤ yj ≤ K, for j = 1, . . . , K,
y1 is a multiple of 0.1.

(7)
Here we suggest a periodically changing radius:R(y1) =
0.1+0.15| sin(2π(y1−0.1)| andr = 0.2. The corresponding
Pareto-optimal solutions for the lower level problem are
given as follows:

{(x) ∈ R
K |(x1 − y1)

2 + (x2 − y2)
2 = r2,

x1 ≤ y1, x2 ≤ y2, xi = yi, ∀i ≥ 3}.
(8)

For the upper level Pareto-optimal points,yi = j/2 for j ≤
3. The variablesy1 andy2 take values satisfying constraint
G(y) = 0. For each such combination, variablesx1 andx2

take values according to satisfying equation 8 and on the
third quadrant of the circle in theF1-F2 space. Notice in
Figure 6 how lower level Pareto-optimal solutions fory1 =
0.1 and 0.2 mapped to corresponding circles in the upper
level problem get dominated by that fory1 = 0 and 0.3.
Every lower level front has an unequal contribution to the
upper level Pareto-optimal front.
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Fig. 6. Pareto-optimal front for problem 5.

Like before, we can add the termτ
∑K

i=3(xi − yi)
2 (with



τ = −1) on both objectivesF1 andF2 to make the problem
more difficult. It is interesting to note that although lower
level dominated solutions may lie below the upper level
Pareto-optimal front those solutions may still satisfy the
upper level constraintG(). Thus, a negative value ofτ will
test an algorithm’s ability to converge to the Pareto-optimal
front of a lower level problem, despite the apparent emphasis
of dominated solutions of the lower level problem by the
upper level problem.

VI. PROPOSEDPROCEDURE(BLEMO)

The proposed method uses the elitist non-dominated sort-
ing GA or NSGA-II [5] in both levels. The upper level
population (of sizeNu) uses NSGA-II operations forTu gen-
erations with upper level objectives (F) and constraints (G)
in determining non-dominated rank and crowding distance
values of each population member. However, the evaluation
of a population member calls a lower level NSGA-II simu-
lation with a population size ofNl for Tl generations. The
upper level population hasns = Nu/Nl subpopulations of
sizeNl each. Each subpopulation has the samexu variable
vector. This mechanism helps to coordinate the upper and
lower level simulations in an easier way. The solutions in
the best non-dominated upper level are saved in an archive,
which in turn participate in genetic operations in subsequent
generations. The details of BLEMO procedure can be found
in another study by the authors [7]. Overall computational
complexity of the proposed BLEMO algorithm is bounded
by Nu(2Tu + 1)(Tl + 1).

VII. R ESULTS

We use the following parameter settings:Nu = 400, Tu =
100, Nl = 40, andTl = 40 for problems 1 and 2.Nu = 400,
Tu = 200, Nl = 40, andTl = 40 for problems 3, 4 and 5.
The other NSGA-II parameters are set as follows: for SBX
crossover,pc = 0.9, ηc = 15 [4] and for polynomial mutation
operator,pm = 0.1, andηm = 20 [3].

A. Problem 1

For this problem we are usingK = 3 and L = 2
which makes it a 6-variable problem. The algorithm is able
to converge to the Pareto-front as shown in Figure 7. The
algorithm did not have any problem in finding the end point
of each lower level front which corresponds to the upper level
Pareto-optimal front. This test problem poses a challenge for
the existing algorithms to find a particular point from the
lower level which corresponds to the upper level solution.
If the algorithm is able to solve the lower level problem
completely but is unable to find the point corresponding to
the upper level front then the lower level run turns out to be
of no use.

B. Problem 2

For this problem we are usingK = 3 and L = 2 which
makes it a 6-variable problem. The algorithm was able to
converge to the Pareto-front as shown in Figure 8. This
problem required to find particulary1 values to form the

upper level front, which the algorithm was able to figure out
efficiently. This test problem tests the ability of the algorithm
to do a search overy and locate the correct lower level fronts
which correspond to the upper level frontier..
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Fig. 7. Obtained Pareto-optimal
front for problem 1 (6-variable).
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Fig. 8. Obtained Pareto-optimal
front for problem 2 (6-variable).

C. Problem 3

This test problem was solved forK = 3 (6-variables)
and K = 4 (8-variables) withτ = 1. Figure 9 shows the
obtained Pareto-optimal front for the 6-variable problem and
Figure 10 shows the Pareto-optimal front for the 8-variable
problem. The algorithm was able to solve the problem for
K = 3 but its performance deteriorated when run forK = 4.
The algorithm also faced problems when this test problem
was run forτ = −1. It failed for this problem when the
non-optimal lower level solutions were made to dominate the
upper level solutions by using a negative value ofτ . This is
an important test criteria to check the performance of the
existing algorithms and evaluates their ability to coordinate
the upper and the lower level tasks.
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Fig. 9. Obtained Pareto-optimal
front for problem 3 (6-variable).
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Fig. 10. Obtained Pareto-optimal
front for problem 3 (8-variable).

D. Problem 4

This test problem was solved forK = 2 (4-variables)
and K = 3 (6-variables). Figure 11 shows the obtained
Pareto-optimal front for the 4-variable problem and Figure12
shows the Pareto-optimal front for the 6-variable problem.
The algorithm was able to get close to the front forK = 2 but
the performance sharply deteriorated when tried forK = 3.
This test problem provides local fronts at the upper level



which can misguide the algorithm to a local convergence.
The number of local fronts at the upper level increases
exponentially with the increase in the number of variables.
It evaluates an algorithm’s ability to do an extensive search
before converging to a front. For this problem too (as test
problem 2), the Pareto-optimal front corresponds to finite
values of y so it also checks the competence of an algorithm
in doing a thorough and radical search overy.
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Fig. 11. Obtained Pareto-optimal
front for problem 4 (4-variable).
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Fig. 12. Obtained Pareto-optimal
front for problem 4 (6-variable).

E. Problem 5

This problem was solved forK = 3 (6-variables) and
K = 5 (10-variables). Figure 13 shows the obtained Pareto-
optimal front for the 6-variable problem and Figure 14 shows
the Pareto-optimal front for the 10-variable problem. The
algorithm was able to converge to the front for both the cases,
though a degradation in the performance can be observed for
higher number of variables. This test problem uses a discreet
variable which would make the task tough for the classical
approaches to handle this problem.
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Fig. 13. Obtained Pareto-optimal
front for problem 5 (6-variable).
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Fig. 14. Obtained pareto-optimal
front for problem 5 (10-variable).

VIII. C ONCLUSIONS

Optimization researchers and practitioners have so far
shown a lukewarm interest in solving bilevel multi-objective
optimization problems, which have a considerable impor-
tance in practice. In the hope of revamping a research and ap-
plication interest in this area, in this paper, we have suggested
a systematic procedure of constructing test problems for
adequately evaluating the efficiency of possible optimization

algorithms for solving bilevel multi-objective optimization
problems. The construction procedure has been used to
suggest five test problems which are scalable in number of
objectives and variables. Each test problem offers different
aspects of complexity which a bilevel optimization problem
may possess. An application of our previously proposed
BLEMO algorithm to these test problems has shown that
these problems are too difficult to be solved for more than
four or six variables. In this respect, the suggested test
problems seem to be challenging and this study emphasizes
an urgent need of more studies in the development of
BLEMO algorithms.
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