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Abstract— Many real-world problems demand a feasible
solution to satisfy physical equilibrium, stability, or certain
properties which require an additional lower level optimization
problem to be solved. Although such bilevel problems are
studied somewhat in the context of a single objective in each
level, there are not many studies in which multiple conflicthg
objectives are considered in each level. Bilevel multi-objctive
optimization problems offer additional complexities, as mt
every lower level Pareto-optimal front has a representatie
solution to the upper level Pareto-optimal front and that only
a tiny fraction of participating lower level fronts make it t o
the upper level front. A couple of recent studies by the authrs
have suggested a viable EMO method. In this paper, we analyze
the difficulties which a bilevel EMO procedure may face in
handling such problems and present a systematic constructh
procedure for bilevel optimization test problems. Based orthe
suggested principles, we propose five test problems which er
scalable in terms of number of variables and objectives, and
which enable researchers to evaluate different phases of alével
problem solving task. The test problem construction procedre
is interesting and may motivate other researchers to extenthe
idea to develop further test problems.

I. INTRODUCTION

numerical algorithm development [2], [16]. However, there
are not much studies involving multiple objectives in each
level of a bilevel optimization problem. In the context of
evolutionary studies on bilevel multi-objective optintine,

a previous study emphasized the importance on launching
such studies [14]. In the recent past [6], [7], authors have
suggested the first EMO-based algorithm for handling bileve
multi-objective optimization problems and demonstratisd i
working on a few test problems, including a couple borrowed
from a previous study which proposed a naive enumerative
scheme [10].

In this paper, we identify problem difficulties associated
with bilevel problem solving and suggest a systematic pro-
cedure for constructing test problems. These problems are
scalable in number of variables and can be extended to higher
objectives. An extension of the principle can be made to de-
velop higher level test problems as well, but we do not pursue
it here. Based on the construction principle, we suggest five
specific test problems and discuss why these problems may
offer difficulties to an optimization algorithm. We then &pp
our previously-proposed BLEMO algorithm to solve all five

Bilevel optimization problems appear often in practice dug, gt oplems. The study demonstrates that the proposed tes

to inherent equilibrium or stability requirements of a phys

cally realizable solution. This requires every feasibleison

problems offer adequate challenges to the existing algarit
and emphasize more research in the development of bilevel

of the optimization problem (we refer as an 'upper Ieve}nulti-objective optimization algorithms.
optimization problem’) becomes an optimal solution with

respect to a different lower level optimization problem grhi
enforces physical conditions involving equilibrium, gtep

or flow and energy balance. Despite the existence of this

so-called bilevel optimization problems in practice, tteg

II. DESCRIPTION OFBILEVEL MULTI-OBJECTIVE

mostly avoided by researchers simply due to the complaxitie OPTIMIZATION PROBLEM
and computational burden associated in solving such prob-

lems. Practitioners often derive approximate or matherahti
optimality conditions (wherever possible) correspondiog

A bilevel multi-objective optimization problem has two

the lower level optimization problem and use the conditionvels of multi-objective optimization problems such thze
as constraints for the upper level optimization problenisTh optimal solution of the lower level problem determines the

converts a truly bilevel problem to a single level optimiaat

feasible space of the upper level optimization problem. In

problem. But there exist many problem scenarios, for whicheneral, the lower level problem is associated with a véiab
such a conversion is difficult or unacceptable and both levgkctor x; and a fixed vectox,. However, the upper level

optimization problems must be handled as they are.

problem usually involves all variables = (x,,x;), but we

In the context of a single objective in each level, theretexisefer herex, exclusively as the upper level variable vector.
studies on mathematical optimality conditions [9] and o\ general bilevel multi-objective optimization problemnca



be described as follows: disallow any approximate optimization algorithm (inclngi

an EA or an EMO) to be used for solving the lower level

mm'(x“’?% i(?a_rg(rfil(x)"{'f'(;(l;wj\i()((})(’x) )| task. But from all practical point of view near-optimal or
o lg(x) < (:bﬁzx) ~ 0} P near-Pareto-optimal solutions are often acceptable aigl it

G(x) >0 I:I(x) —0 ’ in this spirit for which EA and EMO may have a great
oWy potential for solving bilevel optimization problems. EA or

o Swiszp, i=1...,n ) EMO has another advantage. Unlike the classical point-by-

In the above formulationFi (x), ..., Fas(x) are the upper point approach, EA/EMO uses a population of points in

their operation. By keeping two interacting populations, a
coevolutionary algorithm can be developed so that instead
of a serial and complete optimization of lower level problem
for every upper level solution, both upper and lower level
optimization tasks can be pursued simultaneously through
iterations. In a couple of recent studies by the authors [6],
[7], for the first time, a viable bilevel evolutionary multi-
bjective optimization (BLEMO) algorithm was suggested.

S . . he algorithm is applied to a couple of problems from the
optimization problem become feasible solutions to the uppe., : . .
; : ichfelder’s [10] study, and successful simulation resalte
level problem. The Pareto-optimal solutions of the upperre orted
level problem are determined by objectid@gnd constraints b '
G, and restricting the search among the lower level Pareto-
optimal solutions.

level objective functions, andz(x) and H(x) are upper
level inequality and equality constraints, respectivdliie
objectives f1(x), ..., fm(x) are the lower level objective
functions, and functiong(x) and h(x) are lower level
inequality and equality constraints, respectively. Itiddde
noted that the lower level optimization problem is optintize
only with respect to the variables and the variable vector
x,, Is kept fixed. The Pareto-optimal solutions of a lower lev

IV. PRINCIPLE OFBILEVEL TESTPROBLEM
DEVELOPMENT

Bilevel multi-objective optimization problems are diféest
from single-level multi-objective optimization problenis

Several studies exist in determining the optimality condithat the Pareto-optimal solutions for the lower level multi
tions for a Pareto-optimal solution to the upper level peoll  objective optimization problems are feasible solutions to
The difficulty arises due to the existence of the lower levehe upper level problem. Thus, while developing a bilevel
optimization problems. Usually the KKT conditions of themulti-objective test problem, we should have ways to test
lower level optimization problems are used as constramts an algorithm’s ability to handle complexities in both lower
formulating the KKT conditions of the upper level problem.and upper level problems independently and collectively. |
As discussed in [9], although KKT optimality conditionsaddition, we would also like to have have a knowledge
can be written mathematically, the presence of many lowef the exact location (and relationships) of Pareto-optima
level Lagrange multipliers and an abstract term involvingpoints of each problem. We summarize in the following some
coderivatives makes the procedure difficult to be applied iproperties which we would like to have in a bilevel multi-
practice. objective test problem:

Fliege and Vicente [11] suggested a mapping concept in 1) Exact Pareto-optimal in both lower and upper level

IIl. EXISTING APPROACHES

which a bilevel single-objective optimization problem can
be converted to an equivalent four-objective optimization

problem with a special cone dominance concept. Although 2)

the idea can be, in principle, extended for bilevel multi-
objective optimization problems, the number of objectives
to be considered is large and moreover handling constraints

seems to introduce additional difficulties in obtaining re- 3)

sulting objectives. In the context of bilevel single-olijee
optimization problems, there exists a number of studies,
including some useful reviews [2], [16], test problem gener

ators [1], and even some evolutionary algorithm (EA) stedie 4)

[15], [13], [18], [12], [17]. However, there does not seem to
be too many studies on bilevel multi-objective optimizatio
A recent study by Eichfelder [10] suggested a refinement
based strategy in which the upper level optimization is
an exhaustive search. This does not make the algorithm
extendible to solving large-dimensional problems.

The greatest challenge in handling bilevel optimization
problems seems to lie in the fact that unless a solution is

optimal for the lower level problem, it cannot be feasible 5)

for the overall problem. This requirement, in some sense

problems are easy to know. This will enable an user
to evaluate the performance of an algorithm easily.
Problems are scalable with respect to number of vari-
ables. This will enable an user to test whether an
algorithms scales well with number of variables in both
lower and upper levels.

Problems are scalable with respect to number of ob-
jectives in both lower and upper level problems. This
will enable an user to evaluate an algorithm’s scalable
performance with number of objectives.

Lower level problems are difficult to solve to Pareto-
optimality. If lower level Pareto-optimal fronts are not
found exactly, upper level solutions are not feasible.
Therefore, these problems will test an algorithm’s
ability to converge to the correct Pareto-optimal front
(we can borrow ideas here from single level EMO test
problems). The shape (convex, non-convex, disjointed-
ness) of the Pareto-optimal front plays an important
role in this respect.

There is a conflict between lower and upper level
problem solving tasks. In these problems, dominated



lower level solutions may be allowed to dominateoptimal front (AB) in the fi-f> space is mapped to a
upper level Pareto-optimal points. These problems witomplete circle (AB’) in the Fi-F; space. Different lower
test an algorithm’s ability to converge to the lower levelevel Pareto-optimal fronts are mapped and placed at difter
Pareto-optimal fronts, despite not enough emphasis tgcations on the upper level front by using a parametéihe
the upper level problem to do so. figure shows some such mappings at a few locations with
6) Desirably, problems are scalable to multiple levels (atircles. Many simple ideas for the mapping are possible and
most up to three). On the other hand, it will be ideathe figure demonstrates one such simple mapping.
to have the problems which degenerate to single level Next, we choose a parameterized, trade-off relationship
test problems as well. between two terms:; and us as a function ofv in the
7) Different lower level problems contribute differently upper level objective space, such that,v;) corresponds
to the upper level front. These test problems will testo the non-dominated relationship among and us. Many
an algorithm’s coordinating ability between upper andlifferent values ofv are possible and for eveny, the lower
lower levels in finding the correct upper level Paretolevel Pareto-optimal front igf1(t(v)), f2(t(v))) for ¢ €
optimal front. [tmin(v), tmax (v)]. These lower level solutions get mapped
Various difference principles are possible to construst teusing @., : (f1, f2) — (u1,u2)) on a circle to the upper
problems following above guidelines. Here, we suggest lgvel objective space having the point(on u;-uy curve)
simple procedure for two-objective optimization probleims as the center with a pre-specified radius. Another mapping
both lower and upper levels. Our approach is a bottom-up: is used to map the parametetto ¢'. The following is
approach, in which both lower and upper level problems agommutative diagram of both mappings:

designed starting with a pre-specified Pareto-optimaltfron t(v) (f5, £3) ()
We begin the construction process from the lower level e
problem. @l l@u

We choose a standard bi-objective test problem [19], [8] ,
as a parameterized lower level problem here, which results () —— (F1, F2)(v)
in a parametric representation of the Pareto-optimal frorthe final upper level Pareto-optimal front can then be derive
(ff(t), f5(t)) for t € [tmin,tmax)- FOr example, if ZDT1 with the non-dominated solutions from all circles in the-
is chosen, the Pareto-optimal front is given Wy (t) = I, space, or mathematically
t, f3(t) = 1 —¢2) for t € [0,1]. Thus, the bi-objective
front is always a one-parameter curve in the case of a bi- (F7,F3)=ND Uveargmir}w(uhuz)(FlaFQ)(U)} -
objective problem. Since all these solutions are feasibte f

the upper level problem and since only a subset (or none) OfF|gure 1 depicts one such scenario, In which the lower
level front is convex. The mappind,, is such that the lower

these solutions may qualify as the upper level Pareto-@pti X . i .
solutions, we can now map these solutions to another Onr:lgyel Paret_o-optlrr)al p0|lnts (Ato B) ifi-f> space is mapped
0 a full circle (A to B’) on the F}-F; space. Thus only

dimensional non-dominated front in the upper level proble X . .
portion of the lower level Pareto-optimal points are non-

We illustrate this aspect in Figure 1. The lower level Paretd PO . o
dominated in the upper level. The mappibgis chosen to be

linear here (linearly mapping AB to to’B’), but any other
f2 ®: A->A', B->B', C=>C', D->D’ mapping can also be chosen to vary the density of points on

A the non-dominated part of the front in the upper level. The
upper level trade-off information omis non-convex (marked
asui-us relationship) in the example problem. It is now clear
that every upper level Pareto-optimal front comes from a
differentv and is a different point in the corresponding lower
level Pareto-optimal front. Interestingly, some non-doatéd
v values (in the range XY) do not lead to upper level Pareto-
optimal front.

To solve the above problem to upper level Pareto-
optimality, an algorithm must first find the exact lower
level Pareto-optimal front for every value of the upper leve
variablev. The upper level optimization then must sort out
and locate all possible which contribute to the upper level
Pareto-optimal front. Not only does the algorithm find all
suchv values, for each such value it should also preserve
a well distributed set of lower level Pareto-optimal points
which are essential to span the upper level Pareto-optimal
Fig. 1. The construction principle of bilevel test problems front. In the example of the figure, only one solution comes

from each lower level front, but a different mappithg may

F2




cause a set of solutions from some lower level fronts to lie
on the upper level Pareto-optimal front.

To make each level problem somewhat difficult, additional
terms as a function of additional independent variablesbean
added in each level. The optimization algorithm must now
find minimum values of the additional terms to be on the

15
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/ Lower Level Front |
N

2 o1r g
Pareto-optimal front. The approaches to such fronts can be -
made difficult by choosing suitable functional forms, thmre N
making the problem more difficult to solve. o5l . \ |
\
V. PROPOSEDTEST SUITE Upper Level Front ;‘
In this section, we propose five test problems based on 0 05 Fll 15

the above principle of bilevel test problem constructionoT
objectives at each level are proposed here, but they can be
extended to higher objectives with some more consideration

Fig. 2. Pareto-optimal front for problem 1.

For the following test problems we refer the variable vector 2
x; asx and the variable vectax,, asy. \
‘ Lower Level Front
A. Problem 1 L5 o 1
We start with a problem having linear Pareto-optimal \ .
fronts in both levels. Problem 1 hds + L + 1 variables, e e 4
which are all real-valued. \ N
AN
. N\
minimize F = SN
(e,y) = ) 05 N 7
(1—2)(1+ 30, 23)m St
(L+ 350,23 ’ RN
1 j=2 %5 )1 Upper Level Froﬁt\ NN
. . / . ‘
subject to (x) € argminy, 05 o5 1 s

b = [ )L e ‘
z1(1+ Zf;KL-H 13)1/1

F1

g1(x) = (1 —xz1)y1 + %I1y1 —1> 0} 7 Fig. 3. Pareto-optimal front for problem 2.

-1<2 <1, 1<y <2,

—(K+L)<z; <(K+L), fori=2,...,(K+1L).

2) B. Problem 2

For a fixedy;, the lower level Pareto-optimal front cor- 1 NiS problem is similar to problem 1 except that the upper
responds to the lingy + f» = v1, as shown in Figure 2. level Pareto-optimal front is constr_ucted from multiplerge
The front is restricted at one end by the constraint and at t©m & few lower level Pareto-optimal front. There dte+
other end by the x-axis. The constraint boundary does nbt+ 1 real-valued variables in this problem.
allow the lower lower level front to continue further which minimize F(x,y) =
otherwise would have extended uqtll it intercepts the ysaxi (1—z)(1+ ZI'(:Q xf)yl }
At the lower level frontz; =0fori=K +1,..., K + L 1 K 5 ;
andz; € [0,2(1 — -1)], the upper bound depends on the :C_l( + 25 Tn ,
intersection point of the lower level front and the constrai SUPJECt 1o (x) € argminy, ol
boundary. £(x) = (1- x1)(1K+ LZJ;KH 3y ‘

The functional relationship for the upper level front is x1(1 +Zj:+1<+1 x?)yl
Fi + %FQ = 1, which is the constraint boundary. For the
upper level frontz; = 0 for ¢ = 2,..., K, every Pareto-
optimal point corresponds to a differept value in [1, 2]
and a differentz; value in [0,1]. By increasingK, the fori=2,...,(K+1L).
number of variables can be increased at the upper level and 3)
by increasingL the number of variables can be increased akthis test problem is similar to the test problem 1 except
the lower level. Thus, the complexity at each level can bthe constraint at the lower level. The lower level constrain
increased independently by varyirg and L. For this test in this test problem is a discontinuous step function which
problem we have take’X = 3 and L = 2 (6-variable test allows multiple points from each lower level front to enter
problem). the upper level front. In this problem also the lower level

g1(x) = (1 —z1)y1 + 32151 — 2+ £ [5(1 — z1);

+0.2] > 0},[-] denotes greatest integer functjon
1< <1, 1<y <2,
—(K+ L)<z < (K+1L),



front is given by f; + fo = yi. At the lower level front T
zi=0fori=K+1,...,K+ L andz; € [0,a], where \ problem .

a € {0.2,0.4,0.6,0.8,1}. The upper bounda) of z; is 1.4} yl=2 4
determined by the intersection point of the lower level fron y\f=2
and the constraint boundary. 1.2

The functional relationship for the upper level front is 1k T, e 8w [T v
Fi + 3F, = 2 — $[F1 +0.2] which is the constraint ’ problem
boundary. For the upper level front;; = 0 for i = o 0.8F LS
2,...,K and every Pareto-optimal point corresponds to 0.6
y1 € {0,0.2,0.4,0.6,0.8} and a differentr; value in[0,1] '
(Figure 3). For this test problem we have takEn= 3 and 0.4r 0
L = 2 (6-variable test problem).
0.2 "Upper Iev/eI{
C. Problem 3 o PO front=—" S L5 >
The next problem ha8K variables with K real-valued 0 0.2040.60.8 1Bl.2 1.4
variables each fox andy: F1
minimize F(x,y) = _ ‘
(1 +r— Cos(omyl)) + ZJKZQ(% o %)2 Fig. 4. Pareto-optimal front for problem 3.
+7 K (i — i) = rcos (gi—:)
- K o u 2 )
(1 +7 —sin(amy)) + 555y — 57) For example, for = 2, y1 € [1,1.25] U [2,2.25] U [3, 3.25]
+7 Zf;(xi — ;)2 —rsin (% %) will correspond to the upper level Pareto-optimal front.
subjectto (x) € argmiqx) An interesting scenario happens whes- —1 is set. Now,
2 K — )2 if any x is not Pareto-optimal to a lower level problem, some
21+ Do — vi)
+ZiK:_2 10(1 — cos(4(z; — y1))) positive amou_nt is qleducted i_n the upper level object_ives,
f(x) = ZK (s — yi)? » thereby allowing points to exist below the Pareto-optimal
g=1\"1 g

K . curve of the upper level problem. These points are infeasibl
Kk <p <K +%lr':i2:101| Sm(MK(xi — i)l to the upper level due to t_heir non-optima_l pr.operty at the
1< <14— 7—K < ’K o fo,r . _ o K lower I_evel p_roblems and if allowed to exist |n_the upper
=0h=% =Yi= J i @) level will dominate the true upper level Pareto-optimalisi
Thus, this problem will be difficult to solve than the problem

with 7 = 1, as the upper level problem does not motivate the
solutions to become Pareto-optimal at the lower level ard th
overall procedure will end up finding infeasible solutions.

The lower level Pareto-optimal front for a given vector
corresponds ta; = y; fori = 2,..., K andx; € [0,91].
The objectives are related as followg = (\/ff — 1)
Let us first consider = 1. The upper level Pareto-optimal
front corresponds tg; = (j — 1)/2 for j = 2,..., K. The
parametric functional relationshipis = 1+r — cos(any1)
andus = 1 +r — sin(ary;). This is a circle of radius one D. Problem 4

and center at(1 + r), (1 + r)) in the Fy-F, space. Thus,

the non-dominated portion is the third quadrant of thisleirc  The next problem consists &K real-valued variables,
and this happens fay; € (2p + [0,0.5])/a, wherep is an  but the upper level Pareto-optimal front corresponds toa fe
integer including zero. Forr = 1 and forl < y; < 4, values ofy;:

this happens fog; € [2,2.5] andy; = 4. Accumulating the

no?—dolminatedhporti?Qs of aII”circIes (I)f raldliatztsatt everty Iminimize F(x,y) =

optimal y;, we have the overall upper level Pareto-optima K T o .

front defined as a circle of radiys +) and center af(1 + ur(y) + 2050 [y 4+ 10(1 — cos(4my;))]

r), (1 +r)), as shown in Figure 4. —TCOos 2”%)

For this test problem, we ug€ = 3 (6-variable problem), us(y1) + S5y [y2 +10(1 — cos(dmyy))] [
r = 0.1, and @ = 1. By increasing K the number of rsin Q%E)
variables can be increased without affecting the Pareto- &

optimal frontier. The effect of is not that significant for a subjectto (x) €

real-valued variableg;;. However, if a discrete; is chosen, . £ x? + Zfig(:ﬁi —yi)?
. . . argminy, { f(x) = K . 2 J
an increase in will have a range of lower level Pareto- i iz — yi)
optimal solutions to qualify as upper level Pareto-optimal —K < g, <K, fori=1,...,K,
solutions. Also, an increase in causes multi-modal; 0001 <y <K, -K<y, <K, forj=2,... K,
solutions to appear on the upper level Pareto-optimal front (5)



where E. Problem 5

The next problem has a discrete variable and other
variables are all real-valued:

minimize F(x,y) =

c0s(0.2m)y; + sin(0.27)/]0.02 sin(5ry1)], 1+ Yis(y; — 3/2)° = R(yr) cos(4 tan™! §ﬁ) }

ul(yl) - for 0 < U1 < 17 K . : 2 . —1
. 2 R 1 4tall
1 (1 —(()8(0.27 ))a ! >1 Y2 2.7*3(‘7;3 ']/ ) (yl)SI (

— sin(0.27)y1 + cos(0.27)\/[0.02sm(Bryy )], | Sublectto (x) € argm}'{ﬁx)
uz(y1) = for0 <y <1, f(x) = T+ ZzK::;(x% —yi)?
0.1(yy — 1) — sin(0.27), for y; > 1. To+ Yooz —yi)?

Y2—x2
Yr1—x1

© (%) = (@1 —y1)* + (w2 — o) < r?},
For everyy vector, the lower level front occurs far; = y; Gly)=y2—(1—92) >0
for i = 2,...,K and z; € [0,y;] and the functional —K<x;—<K fori—1. . K

relationship is f5 = f& — y1)2. Although a number , -
of different valu2es of(y\l/;rrespénd to a non-dominated (y)lgisygfnﬁt’ipéoéfjo_ll"“’K’
trade-off with respect tquy,us), the upper level Pareto- (7)
optimal front corresponds to only six discrete valuesypf Here we suggest a periodically changing radiigy;) =
(=0.001, 0.2, 0.4, 0.6, 0.8 and 1). Here we suggest usimgl +0.15|sin(27(y; —0.1)| andr = 0.2. The corresponding
r = 0.25. In this problem, a lower level front is mappedpareto-optimal solutions for the lower level problem are
to a circle which is centered dtui(y1),u2(y1)) and has given as follows:
a radius of 0.25. The resulting Pareto-optimal front with K ) ) )
six circular arcs are shown in Figure 5. It is clear that the {(0) e R™[(z1 = 91)" + (22 - Y2)® =17, (8)
upper level Pareto-optimal front is constructed only from T1 S Y1, @2 < Yo, T = i, Vi 2 3}
different non-dominated regions from each of the §ix For the upper level Pareto-optimal points,= j/2 for j <
values. Interestingly, despitg taking any real value within 3. The variableg; andy, take values satisfying constraint
[0.001, K], no othery; value contributes to the upper level G(y) = 0. For each such combination, variables and z
Pareto-optimal frontier. take values according to satisfying equation 8 and on the
third quadrant of the circle in thé}-F> space. Notice in
Figure 6 how lower level Pareto-optimal solutions far=
0.1 and 0.2 mapped to corresponding circles in the upper

T T T T T . . level problem get dominated by that fgi = 0 and 0.3.
0.4r et el PG i T Every lower level front has an unequal contribution to the
0.2 [ upper level Pareto-optimal front.
' 1200001
0, 14 !IIIIIIIIIIIIII
N -0.2 12+ i
-0.4 | Upper leve ir =Y |
P-O f - -
o6l O fro o= 0.8 :
, N LR
o8l . w 0.6 :
0.4 UYpperleve
-1 = ‘ : ‘ ‘ ‘ ‘ PO front
-02 0 02040608 1 1.2 0.2 !
F1 1
O
Fig. 5. Pareto-optimal front for problem 4. -0.2 x L
0 020406808 1 121
F1
Like in Problem 3, we can add the termeLQ (i —yi)? Fig. 6. Pareto-optimal front for problem 5.
on bothF; andF, with 7 = —1 in order to make the problem

more difficult. Like before, we can add the termeig)(a:i —y,)? (with



7 = —1) on both objectived’; and F; to make the problem upper level front, which the algorithm was able to figure out
more difficult. It is interesting to note that although lowerefficiently. This test problem tests the ability of the aigfum
level dominated solutions may lie below the upper levelo do a search over and locate the correct lower level fronts
Pareto-optimal front those solutions may still satisfy thevhich correspond to the upper level frontier..
upper level constraint/(). Thus, a negative value of will
test an algorithm’s ability to converge to the Pareto-optim
front of a lower level problem, despite the apparent emghasi ,
of dominated solutions of the lower level problem by the |¥
upper level problem. 15
V1. PROPOSEDPROCEDURE(BLEMO) 1
The proposed method uses the elitist non-dominated sort- |
ing GA or NSGA-II [5] in both levels. The upper level
population (of sizeV,,) uses NSGA-II operations fdr,, gen- 0
erations with upper level objectiveF) and constraints()
in determining non-dominated rank and crowding distance
values of each population member. However, the evaluatidig- 7.  Obtained Pareto-optimafig. 8.  Obtained Pareto-optimal
of a population member calls a lower level NSGA-I| Simu_front for problem 1 (6-variable).  front for problem 2 (6-variable).
lation with a population size oiN; for T; generations. The
upper level population has, = N, /N; subpopulations of C. pProblem 3
size IV, eagh. Each s.ubpopulauon has the sarpevariable This test problem was solved fdk = 3 (6-variables)
vector. This mechanism helps to coordinate the upper an

; . . . ! d K = 4 (8-variables) witht = 1. Figure 9 shows the
lower level simulations in an easier way. The solutions in, . . . .
. . .Obtained Pareto-optimal front for the 6-variable problem a
the best non-dominated upper level are saved in an archi

hich in t ficinate i i i . b \ﬁgure 10 shows the Pareto-optimal front for the 8-variable
Weéir;?o#gn _Fﬁé 'gg;.g'gfggfé&%Opfgségnrse'z:: bsee?ouerf) oblem. The algorithm was able to solve the problem for
9 lons. ' P u YR — 3 butits performance deteriorated when run for= 4.

n anothgr study by the authors [7]. OVe“."‘" co_mputatlona;,he algorithm also faced problems when this test problem
complexity of the proposed BLEMO algorithm is boundedWas run forr = —1. It failed for this problem when the

by Nu(2T + 1)(Ti + 1). non-optimal lower level solutions were made to dominate the
VIl. RESULTS upper level solutions by using a negative valuerofThis is

an important test criteria to check the performance of the

existing algorithms and evaluates their ability to cooadn

the upper and the lower level tasks.

25 21

We use the following parameter settingé, = 400, 7., =
100, N; = 40, andT; = 40 for problems 1 and 2V,, = 400,
T, = 200, N; = 40, andT; = 40 for problems 3, 4 and 5.
The other NSGA-II parameters are set as follows: for SBX ,,
crossoverp. = 0.9, n. = 15 [4] and for polynomial mutation
operator,p,,, = 0.1, andn,, = 20 [3].

1.2

-0 -

B 1

08F % E 08F %

A. Problem 1

For this problem we are usingd = 3 and L = 2
which makes it a 6-variable problem. The algorithm is able *“[
to converge to the Pareto-front as shown in Figure 7. Theozr
algorithm did not have any problem in finding the end point | 0
of each lower level front which corresponds to the upperlleve ~ °© ©°2 o4 05 o8 1 1
Pareto-optimal front. This test problem poses a challenge f
the existing algorithms to find a particular point from thq:ig. 9. Obtained Pareto-optimafig. 10.  Obtained Pareto-optimal
lower level which corresponds to the upper level solutiorfront for problem 3 (6-variable).  front for problem 3 (8-variable).
If the algorithm is able to solve the lower level problem
completely but is unable to find the point corresponding to

Q 06

I
F2

0.6

q 0.4

T 0.2

the upper level front then the lower level run turns out to bQ' Problem 4

of no use. This test problem was solved fak' = 2 (4-variables)
and K = 3 (6-variables). Figure 11 shows the obtained

B. Problem 2 Pareto-optimal front for the 4-variable problem and Figle

For this problem we are usinff = 3 and L = 2 which  shows the Pareto-optimal front for the 6-variable problem.
makes it a 6-variable problem. The algorithm was able t®he algorithm was able to get close to the frontfor= 2 but
converge to the Pareto-front as shown in Figure 8. Thithe performance sharply deteriorated when tried Aoe= 3.
problem required to find particulay; values to form the This test problem provides local fronts at the upper level



which can misguide the algorithm to a local convergencalgorithms for solving bilevel multi-objective optimizan

The number of local fronts at the upper level increasgsroblems. The construction procedure has been used to
exponentially with the increase in the number of variablesuggest five test problems which are scalable in number of
It evaluates an algorithm'’s ability to do an extensive searcobjectives and variables. Each test problem offers differe
before converging to a front. For this problem too (as testspects of complexity which a bilevel optimization problem
problem 2), the Pareto-optimal front corresponds to finitenay possess. An application of our previously proposed
values of y so it also checks the competence of an algorithBLEMO algorithm to these test problems has shown that
in doing a thorough and radical search oyer these problems are too difficult to be solved for more than
four or six variables. In this respect, the suggested test
problems seem to be challenging and this study emphasizes
an urgent need of more studies in the development of
BLEMO algorithms.

ACKNOWLEDGMENTS

Authors wish to thank Academy of Finland and Founda-
tion of Helsinki School of Economics for their support of

Fig. 11. Obtained Pareto-optimdfig. 12.  Obtained Pareto-optimal [1]

front for problem 4 (4-variable).  front for problem 4 (6-variable).

[2]
E. Problem 5 3]

This problem was solved foX = 3 (6-variables) and
K =5 (10-variables). Figure 13 shows the obtained Paretol’!
optimal front for the 6-variable problem and Figure 14 showsis)
the Pareto-optimal front for the 10-variable problem. The
algorithm was able to converge to the front for both the case
though a degradation in the performance can be observed for
higher number of variables. This test problem uses a discree
variable which would make the task tough for the classical[

.
approaches to handle this problem. ]
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Fig. 13. Obtained Pareto-optimdfig. 14. Obtained pareto-optimal
front for problem 5 (6-variable).  front for problem 5 (10-variable).

[13]

VIII. CONCLUSIONS
[14]

Optimization researchers and practitioners have so far
shown a lukewarm interest in solving bilevel multi-objeeti
optimization problems, which have a considerable imp0|[15]
tance in practice. In the hope of revamping a research and ap-
plication interest in this area, in this paper, we have sstgge
a systematic procedure of constructing test problems f!)lre]
adequately evaluating the efficiency of possible optinirat

this study.
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