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ABSTRACT: We compute the genus-two chiral partition function of the left-moving heterotic
string for a Zs CHL orbifold. The required twisted determinants can be evaluated explicitly
in terms of the untwisted determinants and theta functions using orbifold techniques. The
dependence on Prym periods cancels neatly once summation over odd charges is properly
taken into account. The resulting partition function is a Siegel modular form of level two
and precisely equals recently proposed dyon partition function for this model. This result
provides an independent weak coupling derivation of the dyon partition function using
the M-theory lift of string webs representing the dyons. We discuss generalization of this
technique to general Zy orbifolds.
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1. Introduction

For certain CHL orbifold compactifications to four dimensions with A/ = 4 supersymmetry,
there exists a proposal for a partition function that counts the exact degeneracies of dyonic
quarter-BPS states [, fl]. The partition function for a Zy orbifold is proportional to the
inverse of a specific Siegel modular form @} of weight k of a subgroup of Sp(2,Z). The
weight k is related to the level N by k = N2—-|4-1 — 2 for N = 1,2,3,5,7. The resulting
dyon degeneracies satisfy a number of nontrivial consistency checks. In particular, they
are integral, duality invariant, and in agreement with Bekenstein-Hawking-Wald entropy
of the corresponding black holes [il, f, B, H].

For partition functions that count the perturbative winding-momentum states or D-
brane bound states, there is a systematic weak coupling derivation using worldsheet or
gauge theory techniques. It would be desirable if the dyon partition function can be
derived in a similar fashion using worldsheet techniques in an appropriate duality frame.
For toroidally compactified heterotic string discussed in [, which corresponds to N = 1,
the dyon partition function equals the inverse of the Siegel modular form ®1y which is the
well-known Igusa cusp form [f, [f]. Using the fact that this is precisely the genus-two chiral
partition function of the left-moving heterotic string, and an M-theory lift of string webs, a
weak coupling interpretation of the dyon partition function in the N = 1 case was proposed
in [[. For the Zy CHL orbifold, it was observed in [§] that the relevant Siegel modular form
Py, of level two has the right factorization properties to be interpreted as a chiral twisted
partition function of the CHL orbifold. Motivated by these results, we explicitly compute



the genus-two partition function of the left-moving twisted bosons in the Zs orbifold and
show that indeed it is precisely proportional to the inverse of the Siegel modular form @
as expected for N = 2. The procedure easily generalizes to Zy orbifolds.!

This paper is organized as follows. In section J] we review the proposal for the dyon
partition function. In section f] we explain using various dualities why the dyon partition
function is expected to be proportional to the genus two chiral partition function of the left-
moving heterotic string on the CHL orbifold. In section [ we treat the Zs case in complete
detail and compute the required twisted determinants to evaluate the partition function in
terms of the partition function of the unorbifolded theory. The partition function depends
on certain additional parameters called Prym periods but this dependence neatly cancels
against the sum over odd momenta. The final answer precisely equals the inverse of @y as
expected. In particular, the weight k = 6 turns out to be correlated with the order of the
orbifold N = 2 in precisely the fashion required for agreement with the black hole entropy.
We discuss generalizations to Zy orbifolds in section [j and conclude in section f| with some
comments.

2. Dyon partition function in CHL orbifolds

Consider heterotic string theory compactified on 7% x S* x S1. In ten dimensions, the gauge
group is Eg x Eg or SO(32) of rank 16 and upon compactification there are additional 12
U(1) gauge bosons arising from the Kaluza-Klein reduction of the metric and the 2-form
field. The resulting theory in four dimensions then has a gauge group of rank 28 with A = 4
supersymmetry. The strong-weak coupling S-duality group of this toroidally compactified
theory is SL(2,7Z).

A CHL compactification that has N' = 4 supersymmetry but a gauge group of reduced
rank r < 28 can be constructed as a Zy orbifold of this toroidal compactification [LJ-[L7].
The generator of the Zy group is €1 where £ is an order N left-moving twist symmetry
of the T° compactified string and T is an order N shift along the circle factor S'. Since
the twist symmetry £ acts nontrivially on the left-moving gauge degrees of freedom, some
of the 28 massless gauge bosons are projected out. Furthermore, because of the order
N shift in the orbifolding action, the twisted states have a 1/N fractional winding along
the circle and hence all twisted states are massive. The resulting orbifolded theory in
four dimensions thus has rank smaller than 28. All N' = 4 supersymmetries are preserved
because &7 acts trivially on the right-moving fermions. The S-duality group of a Z model
is the congruence subgroup I';(N) of SL(2,Z) of matrices

(afl)’ ad—bc=1, ¢=0modN, a=1modN, (2.1)
c

which acts on the electric and magnetic charge vectors as

Qe — aQe + bQp, Qm — Qe + dQp,. (2'2)

!For a complementary and independent weak coupling derivation using 4d-5d lift in Taub-NUT geometry,

see [E, @, E, @7 @7 E]




The restriction on the integers a and ¢ above arises from the fact that in the orbifolded
theory some of the electric charges coming from the twisted winding states are 1/N quan-
tized [[[q-[9, B

CHL orbifolds thus provide a class of reduced rank A/ = 4 compactifications that are
amenable to CFT techniques. At the same time they have physically interesting duality
symmetries. In particular, the spectrum of dyons is required to transform correctly under
the S-duality group I'1 (V) which puts stringent restrictions. The proposed partition func-
tion for the dyons in a Zy CHL orbifold that satisfies this requirement is given in terms
of a specific Siegel modular form [. Let us recall a few facts about the Siegel forms. Let
Qij, (i,7) = 1,2, be a (2 x 2) symmetric matrix with complex entries

Q:(ﬁi) : (2.3)

Im(p) > 0, Im(o) > 0, det (Im(©2)) > 0, (2.4)

satisfying

which parametrizes the ‘Siegel upper half plane’ in the space of (p, o, v). It can be thought
of as the period matrix of a genus two Riemann surface. For a genus-two Riemann surface,
there is a natural symplectic action of the group Sp(2,7Z) on the period matrix. We write
an element g of Sp(2,Z) as a (4 x 4) matrix in the block form

AB
(41) o

where A, B,C, D are all (2 x 2) matrices with integer entries. They satisfy
ABT = BAT, cD” = DCT, ADT —BCT =1, (2.6)

-1
so that g'Jg = J where J = <ff) 0 > is the symplectic form. The action of g on the

period matrix is then given by
Q— (AQ+ B)(CQ+ D)™ L. (2.7)

This connection with the genus-two Riemann surface will be important later in sections [,
and .

There is a standard embedding of SL(2,Z) into Sp(2,Z) used in []. Using this
embedding one can define a congruence subgroup G1(N) of Sp(2,Z) that contains the
I'1(N) subgroup of the SL(2,Z). A Siegel modular form ®(€2) of weight k and level N is
then defined by its transformation property

B[(AQ + B)(CQ + D)7 = {det (CQ + D)} d,(Q), (é g) €Gi(N).  (2.8)

The index k of the modular form is determined in terms of the level N from physics

considerations,

he -2ty (2.9)



This is necessary so that the degeneracies of the dyonic black holes deduced from the
partition function agree with the macroscopic Bekenstein-Hawking-Wald entropy [B]. In
sections [| and [l we give a microscopic derivation of this relation.

The definition of G1(N) in [B] implies that

C=0modN, detA=1modN, detD = 1lmodAN. (2.10)

One can similarly define a subgroup G (V) that contains a I'g(/V) subgroup of the SL(2,Z).
The matrices in this group satisfy a milder condition

C = 0mod N. (2.11)

For the purposes of physics, it is sufficient to find a modular form that transforms as
in (-§) under G1(N) transformation which ensures that the resulting dyonic degeneracies
transform correctly under the I'y (V) S-duality group contained in the G1(N). In all known
cases, however, the relevant Siegel modular form ®;, in fact transforms as in (R.§) under the
larger symmetry Go(N) D G1(N). We will give an explanation of this accidental enhanced
symmetry in section [f.

A dyonic state is specified by the charge vector @ = (Qe, @y,) which transforms as a
doublet of the S-duality group I'1(N) C SL(2,Z) as in (R.9)and as a vector of the T-duality
group which is a subgroup of O(22,6;Z). There are three T-duality invariant quadratic
combinations @2, Q?,, and Q. - Q,, that one can construct from these charges. The dyon
degeneracies are defined not directly in terms of ®j but rather in terms of ®) which is a
modular form of a subgroup G{(N) of Sp(2,Z) related to Go(N) by conjugation [J]. Let
g(m,n,l) be the Fourier coefficients of 1/®) defined by

c : !
oo 2 emrrTgmn, (2.12)
kAP m>—1/Nn>—1,1

where C is a N-dependent constant
C=—(iVN)™*2 (2.13)

The degeneracies d(Q) of dyonic states of charge @) are then given by
Lo 1
d(Q) =g §Qe, §Qm, Qe : Qm ; (214)

The parameters (p, o, v) in the partition function can thus be thought of as the chemical
potentials for the integers (Qz /2, Q2./2, Q. - Qm) respectively. We will see in sections
and | that the precise choice of the group G{(N) instead of Go(NN), the relation between
k and N, as well the normalization C follows naturally from our analysis.

3. Dyon partition function and genus-two Riemann surfaces

One puzzling feature of the proposed dyon partition function is the appearance of the
discrete group Sp(2,7Z). This group has no direct physical significance because it cannot



be viewed as a subgroup of the U-duality group. Moreover, both Sp(2,Z) and the period
matrix ) are objects that are naturally related to a genus-two Riemann surface. It is
equally puzzling why a genus-two surface should play a role in the counting of dyons. An
explanation for these puzzles can be provided following the reasoning in [ which we review
below.

Let us first consider the toroidally compactified theory. Heterotic on 7% x T2 is dual
to Type-1IB on K3 x T2 The SL(2,7Z) symmetry which is the electric-magnetic S-duality
group in the heterotic description maps to a geometric T-duality group in the IIB descrip-
tion that acts as the mapping class group of the T2 factor. As a result, the A-cycle of the
T? corresponds to electric states and the B-cycle to the magnetic states. Now, Type-1IB
compactified on a small K3 has an effective 1-brane which is a bound state of D5, NS5
branes wrapped on K3, D3 branes wrapped on the 22 2-cycles of the K3 and D1,F1 strings.
A half-BPS state that is purely electric in the heterotic description then corresponds to
the 1-brane wrapping on the A-cycle of the torus in the IIB description. The magnetic
dual of this state corresponds to the same 1-brane wrapping the B-cycle. The 1-brane can
in general carry left-moving oscillations. To count the number of the electric states, for
example, we need to count the number of oscillating configurations of the 1-brane for a
given left-moving oscillation number. As usual, it is easier to introduce a chemical potential
conjugate to the oscillation number and compute the partition function of this 1-brane in
the canonical ensemble with a Euclidean worldsheet and then define the microcanonical
degeneracies in terms of Fourier coefficients.

To compute the partition function, we compactify time on a Euclidean circle with
supersymmetric boundary conditions. Since Type-IIB string on a circle is dual to M-
theory on a T2, we have a compactification of Euclidean M-theory on K3 x T2 x T?. Under
this duality, NS5 and D5 branes of IIB map to the M5-brane and circle-wrapped D3-
branes to M2-branes. Thus the effective 1-brane is represented by an M5-brane wrapping
a K3 with various fluxes turned on representing bound M2-branes wrapping 2-cycles of
K3. A K3-wrapped M5-brane is in fact dual to the fundamental heterotic string when the
K3 is small by the M-theory heterotic duality. In the low energy limit, the CFT living
on the effective 1-brane is thus the same as the one for a fundamental heterotic string
compactified on T* x T2. The electric charges are a vector Q. in the Narain lattice of
signature (22,6). Level matching requires that the left-moving oscillation number equals
Q?/2. The partition function of these half-BPS states is then the genus-one chiral partition
function of the left-moving bosons of the heterotic string given by

Z(r) = 7724#(7) (3.1)
where 7(7) is the Dedekind eta function. Given the Fourier expansion
Z(r) = Z q"c(n), q = exp(2miT), (3.2)
degeneracies d(Q.) are given by
d(Qe) = e(Q2/2)- (3.3)



The modular form n?* is the unique cusp form of weight 12 of SL(2,Z) ~ Sp(1,Z) and is
the inverse of the chiral heterotic partition function on a genus-one surface. The partition
function of electric states in the CHL orbifolds can be similarly determined [1-RJ] and is
given by the chiral partition function of the heterotic string on a genus-one surface with a
branch cut across which the CHL bosons are odd.

For purely electric states, this long chain of dualities is of course not necessary. We
know directly that the half-BPS electric states correspond to the left-moving oscillations
of a fundamental heterotic string [24, P§| which are counted by the genus-one partition
function (B.J]) with appropriate orbifold projections. This chain of dualities is however
useful for generalizing the counting to quarter-BPS dyons. A quarter-BPS dyon is a bound
state of electric and magnetic charges associated with different U(1) gauge fields. In the
Type-1IB theory, this bound state is described as a string web wrapping the torus [, @]
The web has two vertices and at each vertex there is three-string junction as shown in
figure fl. At the three string junction, a 1-brane carrying charge Q. (shown in red) combines
with the other carrying charge @, (shown in blue) to form a 1-brane with charge Q.+ Q.
(shown in green). The simplest such example to keep in mind is to take in the IIB picture
Q. to be a K3-wrapped D5-brane, @, to be the K3-wrapped NS5-brane so that Q.+ @, is
a K3-wrapped (1,1) 5-brane. In M-theory all 5-branes are represented by a single M5-brane
wrapping K3. The topology of the quarter-BPS web of the effective 1-brane wrapping a
2-torus with two vertices is that of a genus two Riemann surface after adding the Euclidean
time circle. In the dual M-theory, the 1-brane wrapped on the torus is dual to an M5 brane
wrapping K3 and a holomorphic curve in the 7% and the string junctions are smooth in
this description. Thus the low-energy description of a quarter-BPS brane is a Euclidean
Mb5-brane wrapping K3 x ¥y embedded in K3 x T4. This embedding is achieved by the
natural holomorphic embedding of a genus two Riemann surface into a 7% given by the
Abel map which maps a complex curve into its Jacobian. The dyonic partition function
is then given by the sum over all ‘left-moving’ fluctuations of this worldvolume. Since
K3-wrapped Mb-brane is the heterotic string we are thus led to computing the genus-two
partition function of the left-moving fluctuations of the heterotic string.?

Consistent with this picture it is known that the Igusa cusp form &1y that appears in
the dyon partition function in this case with N =1 is precisely the left-moving genus-two
partition function of the toroidally compactified heterotic string 2§, 9. Note that at genus
two, the ghost determinants and the light-cone directions do not quite cancel out. Thus,
the fact that one obtains a Siegel form of weight 10 depends nontrivially on the ghosts and
the light-cone directions and does not follow merely from the 24 transverse directions.®> The

same conclusion can be reached by a slightly different reasoning in a single duality step

20n higher genus Euclidean surfaces there is no isometry to define left and right. We define the ‘left-
moving partition function’ as usual by holomorphic factorization taking the holomorphic square root of the
genus two partition function of the bosonic string.

3Note that this reasoning gives us a description of quarter BPS dyons in terms of fluctuations of string
webs and heterotic world sheets in static gauge. The computation of fluctuation determinants is most
conveniently performed in covariant gauge. We are implicitly assuming the equivalence between covariant
and static gauge.



Figure 1: A dyon can be represented as a string web on a torus which in M-theory looks like a
genus two Riemann surface.

within the heterotic description. For computing a partition function, we take time to be a
Euclidean circle with supersymmetric boundary conditions. Both the fundamental string
and the NS5-brane component extend along the euclidean time. We now have effectively,
heterotic string on T which has a larger U-duality group O(8,24;7Z) that combines together
the T-duality group O(7,23;Z) and the SL(2,Z) S-duality group [BQ]. The chain of dualities
described above can be condensed into a single U-duality transformation that sends the
Fuclidean NS5-branes wrapped along time to Euclidean fundamental strings that do not
wrap the time circle, while at the same time leaving the fundamental strings wrapped along
time unchanged. As a result, the partition function of quarter-BPS dyons is mapped to the
partition function of a heterotic string worldsheet. The worldsheet has a component that
wraps around time and one spatial direction, and another that wraps around the other two
spatial directions, so that it wraps effectively a genus two curve.

Using this picture it is also easy to see why p, ¢ and v are the chemical potentials
associated with Q2/2, Q2,/2 , and Q. - Q,, respectively. The genus-two momentum sum
takes the form ([£§) with (p?,p%) taking values in I'*>6 Narain lattice in the new heterotic
frame. The momenta (p}, pk) are identified with Q. of the original heterotic frame whereas
the momenta (p?,p%) are identified with @,,. Integrating along 0 < Re(p) < 1, 0 <
Re(o) <1, 0 < Re(v) <1 as in [] means  is real along the integration contour. From
these facts it follows from the form of ({.§) that p, o and v are the chemical potentials
associated with Q2/2, Q2,/2 , and Q. - Q,, respectively.

So far we have been discussing the toroidally compactified case with N = 1. For CHL
orbifolds for other values of IV, the genus-two worldsheet would have a branch cut of order
N along one of the cycles. This can be seen most easily in the string web picture. The
CHL orbifold action combines an order IV shift T" along one of the circles with an order N
left-moving twist £ of the internal CFT. This implies that to construct a state wrapping
a compact T? from the string web, two ends of the web in the fundamental cell of the 72
along one of the cycles (shown in blue for example in figure [l) are joined after an order N
twist £. Using M-theory lift and heterotic dual as above, the resulting genus-two worldsheet
then has a branch cut across which some of the left-moving fields undergo a Zy twist. This
will be explained more concretely for the Zs case in the next section. Computation of the
genus-two partition function will then reveal the correct Siegel modular form consistent



with this picture.

4. Computation of the twisted chiral partition function

We would like to confirm the picture in the previous section with a computation of the
genus-two partition function for CHL orbifolds for other values of N > 1. We focus in this
section on the Zs CHL model where our computations can be carried through completely
and where closed form expressions for ®4 are available in terms of ®1¢ and theta functions.
This will allow for an explicit comparison of our computation with the proposed partition
function. These considerations naturally generalize to other values of N.

To construct the Zy CHL orbifold, one starts with a toroidally compactified Eg x FEg
string which admits a Zs left-moving symmetry generated by the element £ that flips the
two FEg factors. In the bosonic representation of the Fg x Fg current algebra, the first and
the second Fg factors can be represented by left-moving bosons X! and Y respectively
each living on the Eg root lattice with I = 1,...8. The combination (X! +Y7)//2 is then
even under ¢ and (X! — Y7!)/v/2 is odd. The CHL orbifolding action then combines this
with a half-shift T along S'. We are interested in the genus-two chiral partition function
of the left-moving bosons. The genus two worldsheet for the twisted sectors has a branch
cut across which the fields (X! — Y1) /v/2 flip sign.

To evaluate the partition function of bosons on a genus g Riemann surface with branch
cuts, we closely follow the discussion in [BI]. The partition function in this case can be
written as a product of a classical piece and a quantum piece. The classical piece comes
from a sum over instanton sectors of classical maps that have nontrivial windings around
the target space and gives rise to a theta function over the Narain lattice. The quantum
piece, which is usually the more difficult piece to evaluate, is determined in terms of the
fluctuation determinants of the scalars as well as the ghosts. The bosonic determinants in
general have complicated expressions and it is not easy to extract them in a useful form
that can be compared with the Siegel modular forms. To circumvent this difficulty, we
express the twisted partition function in terms of the untwisted partition function and
theta functions. Since the total untwisted partition function is given as the inverse of the
Igusa cusp form ®19, we can then extract a closed form expression for the total twisted
partition function. Our strategy will be to treat the quantum and classical pieces separately.
We first evaluate the quantum piece and will later treat the classical piece that gives the
lattice sum over charges. The two pieces individually have a dependence on Prym periods
which cancels out from the final answer.

The quantum piece of the twisted theory can be obtained from the quantum piece of
the untwisted theory by replacing eight untwisted bosonic determinants by eight twisted
determinants,

qu qu Au 8
thisted = Zuntwisted E . (41)

Here A, and A; are the determinants over nonzero modes of the d operator on a genus two
surface with untwisted and twisted boundary conditions across the branch cut respectively.



To evaluate the ratio of determinants, it is sufficient to consider a single scalar field
o compactified on a circle of radius R on a genus two Riemann surface . We choose a
canonical homology basis (4;, B;), ¢ = 1,2 for the surface ¥, normalized with respect to

the intersection product
#(Ai, Aj) = #(Bi, Bj) = 0;  #(Ai, Bj) = #(Bi, Aj) = 0y (4.2)

Note that linear relabeling of the homology cycles that leaves the intersection product
invariant generates precisely the Sp(2,7Z) group of matrices defined in (B.5).

Let us first consider the unorbifolded theory of a scalar ¢ on a circle, so that the
Riemann surface 3 has no branch cuts. The partition function is then given by the product
of the classical and the quantum piece

Zcircle(R) = ZCl (R)un (43)

circle circle *

The entire R dependence is in the classical piece. Explicit form of the quantum part Z9*
will not be needed for our purpose. The classical part is given by the partition sum over
classical solutions 0¢® = 0 with winding numbers around various cycles. The nontrivial
classical solutions can be written in terms of the integrals of the holomorphic one-forms
w; = wi(z)dz and their complex conjugates w; = w;(2)dz, i = 1,2. The holomorphic
one-form are normalized with respect to the A; cycles and define the period matrix Q by

% w]' = 6ij f w]' = QZ] (44)
Ai Bi

The winding numbers of (I;,m;) the classical solution are defined by the periods

7{ dyp = 27 Rm;, 7{ dyp® = 27 RI;. (4.5)
A; B;

1 K3

A solution with given winding numbers can be written as

o (2) = —%m‘R(l —Qm) - (ImQ)~* - /zw +c.c, (4.6)

20
with classical action
1 _
S[p?] = §7TR2(m — Q) - (ImQ) L - (m — Q). (4.7)
Partition sum over these winding sectors then gives
ZYR) = Z exp[mi(pr - Q-pr — pr- Q- pr)l, (4.8)
(P, .PR)
after Poisson resummation. The lattice sum can be interpreted as the sum over the left and

right-moving momenta {piL,p’}é} flowing through each B; cycle. For each i, the momenta
take values in self-dual Lorentzian Narain lattice I'"! spanned by

. nt  w'R
L= —=+ . 4.9
PR L (R 2 > (4.9)




We use the standard CFT conventions throughout so o/ = 2, the self-dual radius is R = /2,
and the free field OPE are normalized ¢(z)¢(w) ~ —In(z — w).

In the orbifolded theory, the partition function is obtained by a functional integral
over fields ¢ which can be double-valued on . These field configurations can be even
or odd going around the four cycles (4;, B;) and fall into 2% distinct topological sectors
corresponding to elements of Hy(X,Zsy) labeled by the half-characteristics

€ €1 €2 1 .
= 0 =0, = f =1,2]). 4.1
[5] [51 52] , <ez,5z 0,2 or 1 ) > (4.10)

The orbifold partition function is then a sum over all sectors of the genus two surface,

1
Zowbitold () = o3 > Zes(R), (4.11)
€,0

where Z, ;5(R) is a partition sum over field configuration that are double valued across a
branch cut along the cycle ), 2(6;4; + €;B;). As before, in each sector the partition sum
is a product of a quantum piece and a classical piece.

Zes(R) = 225 Z5(R) (4.12)

The untwisted partition function Zyo(R) is the partition function Zgce(R) of the circle
theory that we have already evaluated above. For a nonzero characteristics, we can choose

€ 00
-[20] »

which corresponds to choosing the branch cut around the new As cycle. This branch cut

a new homology basis so that

defines a double cover 7 : ¥ — X obtained by cutting the Riemann surface along the cycle
Ao and then pasting it with an identical copy which corresponds to the second Riemann
sheet. The covering Riemann surface Y is of genus three which is uniquely determined by
the choice of the branch cut given a . The double cover 3 admits a conformal involution
i3 — ﬁ], satisfying 7 o ¢ = w, which basically interchanges the two Riemann sheets.

A convenient choice for the homology basis on S is the one that projects on the
homology basis of . So it is given by Ay, By; As,2B5;4(A1),4(B1). Given this double
cover, one can define the Prym differential v = v(2)dZ that is odd under the defining
involution v(i(2)) = —r(2). They are normalized with respect to the A-cycles and defines
the Prym period 7 by,

j{yz—?é v=1; ?él/:—j{ v="T (4.14)
A i(Ay) B i(By)

The Prym differential has no periods around Ay and 2Bs,. 1t is clear from the definition
that the projection of the Prym differential on ¥ is a double valued holomorphic one-
form which is antiperiodic around Bs. More generally, for a genus g Riemann surface 3,
the double cover 3 is a Riemann surface of genus (2¢g — 1) and there are (g — 1) Prym

,10,



Figure 2: A double cover of a genus-two Riemann surface is a genus-three surface that admits an
involution %.

differentials. Basically, the (2g — 1) holomorphic forms on the covering surface 3 can be
split into even and odd under the automorphism. The g even ones project down to the
holomorphic differentials on ¥, the (¢ — 1) odd ones are the Prym differentials. The Prym
periods in this case are a (g—1) x (g— 1) matrix. For further details in this context see [BI].

The twisted sector partition function on ¥ with the twist characteristic (e,0) is then
given by a functional integral over field configurations ¢ on the double cover ¥ that are odd
under the involution, ¢(i(2)) = —3(2) mod 27 R. Because of the doubled area of 3, the
action is halved compared to the standard normalization. The instanton configurations
on the worldsheet ¥ that contribute to the classical piece of the partition function are

analogous to the untwisted ones and have the form

©(z) = —%ﬂ'iR(l — 7m)(Im7) ™! / v+ c.c. (4.15)
i(2)

The twisted partition function in (f£13) then takes the form

Zes(R) = Z%5 Y explmi(pL, - Tes - PL — PR~ Tes - PR)]; (4.16)
(pL,PR)

where the sum is over a single copy of the Narain lattice I'l! (E£9) and 7. is the Prym
period corresponding to the characteristic (e, d).

Computing the quantum piece Z;ﬂg is much harder but it will suffice for our purposes
to know the ratio of the quantum piecés for the twisted and untwisted bosons. This can be
computed using the following trick that exploits the extra SU(2) symmetry available for
a free boson at the self-dual radius. The three SU(2) currents (J,Jy, J,) at R = /2 are
given by (cos v/2X,sin v/2X, %OX ). The Zs orbifold action X — —X is a Weyl reflection
that acts as a rotation through 7 around the x axis. This flips the sign of both J, and
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J, but leaves J, unchanged. This is clearly equivalent by SU(2) conjugation to a rotation
around the z axis, which flips the sign of both J, and J, but leaves J, unchanged. Such
a flip is achieved by a half shift on the circle X — X 4 7v/2. An orbifold by a half shift
results in a circle conformal field theory at half the radius. Hence we have the equality
between the orbifold CFT and the circle CFT as follows

1

Zorbifold(R - \/5) - Zcircle <R - %) . (417)

To use this equality effectively, it is convenient to write the non-holomorphic lattice
sums in (f£§) and (fE16) as sums over holomorphically factorized chiral blocks. For this
purpose, recall that a genus g theta constants with characteristics are defined by

9 [O‘] (@) = > explin(n+a) Q- (n+a) + 2mi(n +a) - 4, (4.18)
nezs

where the characteristics «, (3 are in general g-dimensional vectors and 2 is a (g x g) period
matrix. When the radius R?/2 is a rational number p/q, the momentum lattices appearing
in (.§) and (£.10) can be built up from a finite number of square sublattices. As a result,
one can express the classical sum in ([.§) for example as

ZUR) = > v 20+ BJ” (2pqQ)9 26+ (2pqQ) (4.19)
a8y
=272 a+ﬂ (2pq9)79 [a;ﬂ] (%pqﬁ), (4.20)
a,B,y

g g
where the summation is over o € <%Zp> , B € <%Zq> , Y E (%(ZQ)Q. Applying this formula

to our cases of interest, we have

Z4(V2) = Z

«

2
9 [‘;] (27..5) (4.21)

for the orbifold classical sum in (.1]) which depends on a genus-one Prym period 7 5 and

1
Z° circle = 22 Z

a,Byy

2

a+2’y

(20) (4.22)

for the circle classical sum which depends on the genus-two period matrix £2. The equal-

ity (f.17) then reads
] 27c5)

qu
22 Z Z
A term by term comparison of the chiral blocks following the arguments in [BI]] then leads

2
—22223% e

€,0,7

(20) (4.23)

€,0,7

to the desired expression for the twisted determinant in terms of the untwisted determinant
€
c
1)
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with

97| (27)
00 0
c oL T T (4.25)
1y [” ?] (20)
03
a b a
For comparison with literature we use the notation Jgpeq = 9 | 2 2 | and Jgp =0 | 7 |.
2 2 2
There are useful doubling identities for theta functions,
920(7) = 2000(27)010(27),
950(F) = P00(27)* + ¥10(27)%,
031 (7) = 950(27) — 970(27), (4.26)

and similarly for the genus-two theta functions. Squaring or multiplying the two expres-
sions for ¢ in (f.2§) and rearranging them using doubling identities, we get other useful

expressions
2 “] (7)
? [8 ?] = ’ : (4.27)
2 a0 a0
ﬁ[ﬁo @95 1] @

that are available in [B1]. Note that the left hand side is independent of the characteristics
«a and (. Equality of the right hand side for different choices of o and (3 is the statement
of the Schottky relations [B1]. Using different values of o and 3 we obtain

2 050 (7) _ 03, (7) _ 030(7) . (4.28)
0001 90000 (2)90001 ()~ Do010(2)P0011(2) — P1000(2) P 1001 (Q)

Using these three equations we can write

I D5000(2 )793001(9) 0010(9)793011( ) (4.29)
cBoot V50 (7)05,(7) ,

I D300 (22 )790001(9) 000 () P00 () (4.30)
oot V5o (7)0 10(7:) ,

1 9300(Q )79%001(9)193010(9)790011( )
g = Do ()0 (7) | .

These expressions are now in a convenient form to compare with the known expressions

for @6 B2, BJ

L 03000 (2)V5001 (2)95010(2) 95011 () (4.32)
$6(92) ®10(02) ’ '
L 95000 () 98001 (2) 97000 (2) 97001 ()
@) B 10(%) | (433)
1 92000 (92001 () I5010 (5011 ()
HQ) B10(%) | (34
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Here ®g, @y, O are various images of ®g under an SL(2,Z) subgroup of the Sp(2,Z) mod-
ular transformations. There are only three images because ®¢ is invariant under the sub-
group I'g(2) of index 3 in SL(2,Z).

To compare with (f.32), for example, one can multiply the expression ([£.29) with the
inverse power of ®145(2). We therefore conclude that the quantum piece of the twisted
chiral partition function of the left-moving heterotic string with the Zs branch cut along
the Ay cycle is given by

ABpo(Q) 1 1 1 1

Ao () 210()  oon 210() 0 (7) 05 () P()’ (4.35)

with similar expressions in terms of ®j and ®f. This is promising but still not quite right
because there is an unwanted factor in the denominator involving theta functions over
the Prym periods. As we will see below, these factors are eliminated once the classical
contribution from the momentum sum is properly taken into account.

In the orbifolded theory, there are no gauge fields that couple to the odd Eg charges.
Nevertheless, states with these charges still run across the B; cycle of the genus two surface
in figure P that has no branch cut. Although we want to fix the momenta running along
the two handles of the Riemann surface in terms of the electric and magnetic charges of
the dyon, we still have to sum over the appropriate lattice of odd charges. The sum over
the odd charges will give a theta function of the Prym period. We will show that it exactly
cancels the theta function appearing in the denominator in ({.39).

The numerator for genus-two twisted partition function for the Zs orbifold of the
FEg x Fg lattice is a combination of expressions like (.§) for the even momentum lattice
and ([.16) for the odd momentum lattice. The lattice sum is best understood in terms of
the covering genus-three surface 3. In the basis of cycles chosen earlier, it follows from
the definition that the genus-three period matrix can be expressed in terms of genus-two
quantities as

ol
Il
<
[\
S
<

(4.36)
3p=7) v 3(p+7)

Upon projection to X, the period matrix gives rise to the genus-two period matrix and the

Prym period. The genus-three momentum sum over the Eg x Fg lattice A is

Z exp [mi(p - Q- p)]. (4.37)
peA?

Given the form ({.36) of the period matrix, this expression can be reorganized in terms of
genus-two objects as explained in appendix A to obtain ,

. . 1 . .
Os(29. 20, 200030 (10 7) + 15O 5200 ) o (P

1 +1 . N
——Ogg (pT’ 20, U) 951 (F) 010 (7).
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Combining this classical piece with the quantum twisted determinants that we have cal-
culated earlier, we see that the dependence on Prym periods cancels completely. The full
twisted partition function is then

7 _ @E8(2P7 20, 2?}) i@Eg(g,QU,U) _ i@Eg(%l,QU,v)
pisted 7T 96(0) 16 Q) 16 2Y(Q)

(4.38)

Here we have suppressed the uninteresting momentum sum coming from the toroidal com-
pactification.

Recall that the proposal of [] gives the dyon partition function for a specific class of
states, which carry half-integral units of winding along the CHL circle. Comparison with
the genus one partition function for electric states computed for example in [23] shows
that the states that carry half a unit of winding on the CHL circle are associated with
the even Fg charges contained in ©gg(p/2,2p,v). Hence we reproduce the result that the
corresponding degeneracies are the Fourier coefficients of —1/16®(£2). Comparing the
expression for C' in (R.13) for N = 1 and N = 2, we see that we also correctly reproduce
the normalization relative to the N = 1 case.

This concludes the main part of the derivation. The Igusa cusp form ® is proportional
to the product of all ten genus-two theta functions with even spin structure,

(07

5| @ (4.39)

@) =2"" J[ ¥
a,f

4o-B=even

This allows us to express ®¢ using ([1.33) as a product of six particular even theta functions

P = 272(9o1009011091000910019110001111)?, (4.40)

Our results can thus be viewed as a CF'T derivation of the level 2 Siegel modular form g
in terms of theta functions that was obtained by Ibukiyama from a very different starting
point (B2, BJ.

A few comments are in order. First, let us make the modular properties of ®¢(2) under
Go(2) more manifest. The theta function in the numerator, © gg(22) is clearly modular
under Go(2). Note that Gy(2) consists of matrices of the form (R.5) with C' = 2C” for some
integral C’. Defining B’ = 2B we see that under Gy(2) transformation the theta function

AQ+ B A2Q + B’
@Eg(zm—>9m<2 + >:@E8<7+> (4.41)

transforms as

cQ+D Cc2Q+ D

Since O g () is modular under SP(2,7Z), it follows that O g, (é?QQT";L%) can be reexpressed in
terms of © g, (2€2). We then conclude that © g, (2€2) is modular under Gy(2). Now, the sum
of the partition functions for all twisted sectors is modular invariant under Sp(2, Z). The
theta function O gg(2€2) will appear in several sectors, as Zygo1 or Zoo10, etc. By inspection,
one can also see that it always appears accompanied by ®g(€2) in the denominator. The sum
of all partition functions will then be a sum of various modular images of © gg(2p, 20, 2v)

over ®g as in ([.3§). For this to be invariant under Sp(2, Z), and since the theta function in
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the numerator is modular under G¢(2), the denominators must be Gp(2) modular forms as
well. Hence ®¢(2) must a modular form for G(2). This derivation also makes clear why
the larger Go(2) appears even though the subgroup G1(2) is adequate for accommodating
the S-duality group I';(2).

Second, the precise cancelations of the Prym parameters that made this result possible
appear mysterious at first sight. However this is not an accident but rather a consequence
of the equivalence of the Eg x Eg and of the (Eg x Eg)/Zy CFTs. This fact suggests another
way to derive the required Siegel modular forms which will be outlined in appendix Bl

5. Generalization to Zx orbifolds

For higher Zy orbifolds, the explicit CFT computations are more complicated. For in-
stance, the left-moving twist symmetry & is more involved for general N. However, using
our experience with the Zy orbifold, we can streamline our derivation and point out some
of the essential ingredients in the general Zy case.

The dyon partition function of a Zy CHL orbifold is given in terms of the Siegel
modular form ®;. These forms are defined by their modular properties and behavior
at the boundary of moduli space. No expression in terms of theta functions is available
but a CFT derivation along the lines outlined here will result in such an expression. For
now, one proceed indirectly and argue that the genus two chiral partition function for the
CHL orbifold involves a modular form with the same modular properties and value at the
boundary of moduli space as ®. There is no uniqueness theorem proven for these forms
however it is likely that they are unique. Note that the form ®, is obtained by an additive
lift of the form fi.(1) = n**2(7)n**2(N7) which is known to be the unique cusp form of
' (N). We will also argue that ®; have a nice expression in terms of theta functions.

Let us recall some facts about a Zx CHL orbifold. The orbifold is defined in terms of
a Zy action on N groups of [ left-moving bosons. If we diagonalize the Zy action then
it is clear that [ bosons are left invariant and the remaining {(N — 1) bosons transform
nontrivially. As a result, [(N —1) left-moving gauge fields are projected out and the rank is
reduced by m = [(N — 1) units. Starting with rank 28 for the toroidally compactified case,
we thus obtain a model with a reduced rank r = 28 — [(N — 1). From the list of known
CHL models for N = 2,3,5,7 to four dimensions that have r = 20,16, 12,10 we conclude
that [ = 8,6,4,3. We would now like to see how the weight k of the relevant Siegel modular
form can be derived from this data using the underlying picture of genus-two worldsheet.

To implement such a Zy symmetry, one would have to start with a self-dual Narain
lattice A of the form D'UN:IV=16) which contains a sublattice Ag of the form TGN =16) fixed
by the Zy action and an orthogonal left-moving complement A; of the form I'¢(V—1).0)
that is rotated by the left-moving Zy action. Such a choice reduces the rank by I[(N — 1)
because gauge fields associated with the A lattice are eliminated. The lattice A; is strongly
constrained by the requirement of modular invariance and Zy action.

The computation of the twisted partition function proceeds as in the Zo case. The
quantum piece of the Zy orbifold twisted determinant can be computed from properties
of SU(N) WZW model at level one by using the fact that Zx orbifold symmetry can be
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N 1 k T m AO A1 A
218|620 8 | DGO | pBO) | (160
316|416/ 12| 062 | 0020 | p(s2)
514212116 | 04 | 0A60) | 1(20,4)
713(1(10 18| G5 | 0080 | 1215

Table 1: List of parameters for available CHL Orbifolds

viewed as a Weyl symmetry of the SU(/V). Thus, by SU(NN) conjugation, an order N twist
can again be viewed as an order N shift along the lattice. Using this trick, the ratio between
twisted and untwisted determinants can be written again in terms of theta functions at
genus one. At genus two it can be written in N different ways as a ratio between a twisted
SU(N) theta function of the modular matrix and a SU(N) theta function of the Prym
period.

Now, we have seen that the dependence on the Prym period cancels out in the Zs case
in an apparently magical fashion from the final expression for the partition function. This
cancelation was essential to obtain a nice Siegel modular form in the final answer and was
not an accident. In the Zo case, it is a consequence of the fact that orbifolding by £ alone
without accompanying it with the shift 7" along the circle leads back to the original theory
leading to the identity (B.2) and its generalization to higher genera. We expect this to be
true even in the Zy. Otherwise, it would lead to an undesirable dependence on the Prym
periods. Such a computation would provide a useful representation of these forms @ in
terms of theta functions.

With this information we can deduce the weight of the relevant Siegel modular form
quite easily. Basically, the point is that the twisted sector partition function is short
of a lattice sum over A; in the numerator. A momentum sum over the m dimensional
lattice would have led to a theta function with modular weight m/2 which would now be
missing. To compensate for this, the twisted determinants in the denominator should also
have a correspondingly smaller weight. Putting all factors together we get the modular
form ®9 of weight 10 in the denominator of the untwisted partition sum. Hence we
expect that the modular form in the denominator in the twisted sector will have weight
k = (10 — m/2). Substituting {(N + 1) = 24 and m = (N — 1), we obtain k = ([ — 2)
or k=24/(N + 1) — 2 precisely in agreement with the proposed relation (B.9). Note that
in [B], the relation between k and N was put in by hand to obtain agreement with the
subleading terms in the Bekenstein-Hawking-Wald entropy. Here we are able to derive it
from general considerations of the genus-two partition function of the orbifold. We have
summarized various parameters of the orbifolds in the table (R.9).

Note that the Z7 orbifold is qualitatively different since it requires a (21,5) lattice and
thus one does not a fully factorized K3 x T2 that was necessary to use the string web
picture. It is possible therefore that this case requires a slightly different treatment.
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6. Comments

We conclude with a brief comment on the fermionic zero modes. We have not dealt with
the right-moving superstring carefully. Effectively, our prescription was to evaluate the
genus two partition function of the bosonic string and then use holomorphic factorization
to read off the left-moving part. It should be possible to define an intrinsically super-
string amplitude. For example, in the Green-Schwarz formalism, the full partition function
vanishes because of the fermion zero modes but an insertion of an appropriate number of
fermionic currents can soak up the right-moving fermion zero modes. The nonzero modes
of the Green-Schwarz fermions and the light-cone bosons are expected to cancel in pairs in
the right-moving partition function leaving behind only the left-moving partition function.
This would correspond to an appropriate index-like quantity such as a helicity supertrace.
Such a prescription surely works at genus-one to correctly obtain the helicity supertrace
that counts the heterotic half-BPS states. At genus two, the Green-Schwarz superstring
is more subtle but it would be desirable to have an appropriate definition of index-like
quantity that is non-vanishing after soaking up the zero modes and counts the left-moving
fluctuations.

The genus-two picture outlined here is easily amenable to generalizations to other more
general orbifolds [B4, B§]. These generalizations and an elaboration of the computation
outlined in appendix ([B) will be explored elsewhere. The genus two picture also raises the
question of possible contributions of higher genus surfaces. This question will be addressed
in the forthcoming publication [H].
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A. Computation of the classical piece of the partition function

The classical piece coming from the sum over momenta involving the period matrix 2 and
the Prym period 7 is best understood in terms of the period matrix of the covering space
3 of genus-three. The genus-three theta function for an Eg factor (K.37) involves a sum
over momenta p = (p1, p2, p3) where each momentum p; takes values in the Eg root lattice
A with length-squared two. Using the specific form of the period matrix for S in (E36) we
can write it in terms of genus-two objects as

pl\J/rf ’ pl\J/r? : b1 — D3 b1 — D3

. 2 2 . - ~ -

exp |mi Q- < ) X exp [m ST . Al
2 [ <\/§p2> N ] V2 V2 (A1)

P1,p2,P3EA

The vector v/2ps lies in the “level two” lattice A[2] which is a lattice with twice as large
length-squared compared to A. The vectors (p1 + p3)/v/2 are in a copy of A[2] shifted by
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some element P in the coset A[2]*/A[2], (p1 — p3)/v/2 in another copy of A[2] shifted by
the same P. In the specific example of A being the lattice of Eg, there are 256 values of
P, collected into orbits of the Weyl group of the fundamental weight of the trivial, adjoint,
and 3875 representations, of lengths 1, 120, and 135, respectively [29]. This allows one to
reorganize the expression above as

S | Y e [m(ql)-ﬁ-((ﬂ)]x S explrigs 73] | (A.2)

q2 q2
A q1 €A[2] ceA2]+P
Pelk q261A[2]+P g3 EA[2]+

The momentum sum involving the Prym period can be readily performed. It is useful to
introduce Eg theta functions with characteristics:

~ TiF(A—1P)?
O (o), p(T) = Z P (A3 (A.3)
A€FEg(1)

The theta series are thus the numerators of affine characters of Eg at level 2, and can
be computed explicitly using free fermion representations or by inspection in the bosonic

representation [RJ]:

- . 1
O py(2,1(7) = Opy)(27) = E(ﬂ%ﬂ% — 93005 + 169391)
N 1 5 1
O g [2),248(T) = B (6365 + 6563) (27) = E(ﬂ%ﬂ% + 9403) (A.4)
- - 1
9E8[2],3875(7') = 9§9§(27) = E(ﬂéﬂ% - 193793)

Note that the combination ﬁgﬁi appears only in ©pggp) 1 corresponding to P = 0.
Hence the coefficient of 9391 is just

Y exp [m’ <Z;> Q- (Z;)] = Ops(2p, 20, 20). (A.5)

q1€A[2]
a2€A[2]

Similarly, the combination 94195 appears for all three classes of P in (A4) with the same
coefficient. Thus, in ([A.1]) we now have the sum over g9 taking values in A[2] + P with an
unrestricted sum over P. We can thus replace these two sum by a single sum over g2 that
takes values in A*. As a result, the coefficient of 1931193‘ is simply

% > exp [m‘(i) Q- (Z;)} = %@Egg(gﬂa, v>. (A.6)

q1€A[2]
g2 €A[2]*

By a similar reasoning, the coefficient of 9413 is

_1_16 S (D)% exp [m' <Z;> Q. (Z;)] = —%@Eg (’OTH,QU, v). (A7)

q1€A[2]
g2 €A[2]*
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Here the term (—1)q% accounts for the fact that the 248 representation has relative minus
sign with respect to the other two representations for the coefficient of ¥j93 in (A.4).
Putting it together we see that the momentum sum (f.37) equals

. . 1 . .
© s (2p, 20, 20)95 (7)95, () + E@E8(P/2, 20, 0) 980 (F)910(7)

1 +1 - -
~g50ms( 5 200 ). (A9

B. An outline of an alternative derivation

It is well-known that if we take the orbifold generator to be £ alone without the half-shift T’
along the circle, then the resulting orbifold gives back the same theory. The twisted sectors
have integral conformal dimensions, and neatly take the place of the odd Eg currents that
are removed by the orbifolding projection. This equivalence suggests another way to derive
the expression for ®4 in terms of ®1y and theta function.

For simplicity, let us first consider the genus-one case. The above equivalence implies
in particular the equality of the torus partition function of the two theories

0%s(1)  10%4(r)  10ps(27)  10ms(3)  10ms(TF)

(
o "2 e T2 2 (B.1)

By some simple 1} identities this can be rewritten as a useful theta function equality

T T+ 1
O%s(r) = 015 (21)0hn(1) P10 (r) + O (5 ) Oh(r)0ho(r) - O ( T3 ) o))
(B.2)
This identify implies
2
Oks(r) _ _Oms(1) (B.3)

n?4(r)  nd(r)nd(27)

Note that n?* is the genus-one analog of ®1q whereas 7%(7)n®(27) is the genus-one
analog of ®g associated with the counting of electric states. We therefore expect a similar
identity for the genus two partition function which follows from the above equivalence of
orbifolded and unorbifolded theory. It should read

O%:(2) = OEs(22)T5000 (V5001 (2) V5010 (2)P5011 () + - -- (B.4)

— 4. (B.5)

This expression has to coincide with the sum of all the twisted partition functions Z,p.q. It
clearly does not involve any explicit dependence on the Prym parameters, and indicates that
the dependence should drop off the single Z,;.q as well. It also motivates more directly the
expression of @g in terms of theta functions. We expect that these ideas can be generalized
to the general Zy orbifolds.
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