GENERAL | ARTICLE

Very Long Instruction Word Processors

S Balakrishnan is
currently a research
scientist at Philips
Research, Eindhoven,
The Netherlands. His
research interests include
design and performance
evaluation of processors,
compiler optimization,
and operating systems.

S Balakrishnan

Explicitly Parallel Instruction Computing (EPIC) is an
instruction processing paradigm that has been in the spot-
light due to its adoption by the next generation of Intel
Processors starting with the IA-64. The EPIC processing
paradigm is an evolution of the Very Long Instruction
Word (VLIW) paradigm. This article gives an overview of
VLIW processor architecture.

Introduction

Increase in speeds at which processors are clocked have led to
higher performance benefits — applications now run faster; it is
now possible to run realistic graphics, interactive games and
simulators. This is primarily because of improvements in
semiconductor technology in terms of both speed and circuit
density. However, advances in chip fabrication technology
alone do not account for the performance gains achieved by
modern day processors. In addition to higher clock speeds, to
achieve faster execution of conventional programs written for
sequential machines, commercial processors like the Intel
Pentium Processor have modified the processor architecture to
exploit parallelism in a program. These processors seek out
independent operations/instructions in a sequential program
and execute them in parallel to exploit what is commonly called
instruction level parallelism (ILP).

Before we attempt to understand what ILP is all about, let us
consider the central processing unit (CPU) of a computer. In
general, the CPU consists of two main subsystems — the data-
manipulating subsystem and the control subsystem. The data-
manipulating subsystem consists of basic arithmetic and logical
units (ALUs) like the adders, multipliers, comparators, logic
operation units, etc. The data-manipulating units are generally

RESONANCE | December

2001

~W\-~ ;

GENERAL | ARTICLE

Processor
hardware detects
dependencies
between
operations and
schedules them for
simultaneous
execution to exploit
Instruction Level
Parallelism.

referred to as functional units. The control subsystem on the
other hand steers computations through the data-manipulating
subsystem after interpreting the instructions in a computer
program. The complete data-manipulating subsystem includ-
ing the interconnections and functional units is called the data
path and the complete control subsystem is called the control
path. In addition to the data and control subsystems the proces-
sor also consists of the system clock that synchronizes activities
in the processor.

In the previous paragraph we had mentioned that the control
subsystem interprets the instructions in a computer program.
Elaborating further, the instructions that constitute a program
can in general be encoded in a compact manner to specify the
operation to be performed. To understand how this is done,
suppose that the data path includes functional units to perform
exactly four operations such as addition, subtraction, multipli-
cation, and division. An instruction can select one operation
and turn off the rest. A compact encoding of this can be achie-
ved by setting aside two binary digits (bits) to specify each
operation uniquely. The four possible values (00, 01, 10 11)
represented using two bits can then be decoded using a circuit
called the two-to-four decoder to activate one of its four output
lines to select the appropriate functional unit.

Instruction Level Parallel Processors

With this background, we can now attempt to explore the world
of ILP processors and understand what makes them tick. Box 1
describes with an example the nature of instruction level paral-
lelism. This also gives an idea of what processors look for when
they attempt to exploit ILP. One approach is to delegate the job
of detecting and exploiting ILP entirely to the control sub-
system of the processor. The program is usually not expected to
convey any explicit information regarding parallelism. The
underlying hardware detects dependencies between operations
and schedules them for simultaneous execution to exploit ILP.
The number of instructions that can be examined simulta-

62

‘\I\/\/\/\/\’ RESONANCE | December 2001

GENERAL | ARTICLE

Box 1. What is Instruction Level Parallelism?

Consider the following statement written in a high level language like C.
p=q*r—s/t+u*v —wx;

The operator % is the modulus operator in C. Here it yields the remainder of the division of w by x. the
*, — and the + operators are the multiply, subtract and addition operators, respectively. The expression
on the right hand side can be represented by the following tree (expression tree as compiler writers would
call it).

p

The goal of parallel processing is to execute multiple operations simultaneously on independent hardware
units to reduce the overall execution time of a program. Instruction level parallel processing is a
combination of software and hardware techniques to reduce the overall program execution time by
identifying and executing simultaneously independent instructions from a stream of sequential instruc-
tions. In the figure, observe that the four operations at the top level of the tree can be carried out in parallel
provided there are multiple arithmetic units. The results of these operations are inputs for operations that
can again be performed in parallel. However, the number of independent operations here are two. Current
day processors indeed have multiple arithmetic units to support this kind of parallelism. Because this kind

of parallelism exists at the level of instructions, it is called instruction level parallelism (ILP). Compiler

technology also is advanced enough to perceive this parallelism and schedule instructions for parallel

execution on the multiple functional units available in hardware.

RESONANCE | December 2001 A/\/\/\/\/\f

63

GENERAL | ARTICLE

VLIW processors,
relies exclusively
on the compiler's

ability to detect
independence
between
instructions and
schedule
operations
accordingly.

neously — this is called the window of instructions, for ILP is
hence limited by the complexity of the hardware and the real-
time nature of the problem. This is the approach taken by
superscalar processors. The other approach — which is the one
taken by VLIW processors, relies exclusively on the compiler’s
ability to detect independence between instructions and sched-
ule operations accordingly. As there are many more indepen-
dent operations than dependent operations in a program, it is
impractical to explicitly specify all independent operations.
Instead, a small subset of the independent operations is speci-
fied and packaged as a single VLIW instruction. Note that in
contrast to the limited size of the window of instructions in a
superscalar processor, the compiler for a VLIW processor can
potentially examine the entire program to detect and schedule
independent instructions. Box 2 gives an example of the in-
struction encoding of a VLIW processor.

In essence, ILP processors differ in the proportion of the area of
a silicon chip dedicated to the data and control paths. On one
hand we could have a processor with a large and complex control
path and a relatively small data path while on the other hand we
could have a processor with a large data path and an extremely
simple control path. The former approach is the one taken by
superscalar processors while VLIW processors take the latter
approach. VLIW processors with its relatively simple control
subsystem are much easier to build and have been used success-
fully in digital signal processors. Parallelism in signal process-
ing applications in contrast to general purpose applications are
easy to detect at compile time. Again, the relatively simple
control logic makes it convenient to support large amounts of
hardware parallelism. On the other hand, parallelism in general
purpose applications are hard to detect at compile time. The
superscalar processor’s hardware (control subsystem) for detect-
ing parallelism and dynamically scheduling operations allows
runtime detection and exploitation of parallelism in applica-
tions where parallelism is hard to detect at compile time. The
Intel Pentium processor is an example of a processor that uses a

64

‘\I\/\/\/\/\’ RESONANCE | December 2001

GENERAL | ARTICLE

Box 2. The IA 64 Instruction Encoding.

for a total of 41 bits to specify an operation.

The IA-64 (named [tanium by Intel) is a VLIW processor. Ithas 128 general purpose and the same number
of floating point registers. An operation encoding hence uses 7 bits each to specify the two source
operands and another 7 bits to specify the destination operand. The type of operation itself is encoded
using 14 bits. Many operations also use a predicate argument that takes up another 6 bits since there are
64 predicate registers. The predicate registers store a bit, depending on whose truth value the processor

decides to either execute the concerned operation or skip its execution (execute a noop). This accounts

Op Register 1 Register 2 Register 3 Predicate

« >« >« >« >«
14 bits 7 bits 7 bits 7 bits

IA-64 Operation encoding

>

6 bits

Instruction 2 | Instruction 1 | Instruction 0 | Template

< >4 > < >«
41 bits 41 bits 41 bits 5 bits

IA-64 VLIW instruction encoding

>

Each VLIW instruction (bundle in IA-64 terminology) consists of 128 bits. This means that each VLIW
instruction can accommodate three 41 bit operations leaving five bits of the instruction encoding free.
These five bits are used for the template which assists in decoding and routing the instructions and also

the location of stops that mark the end of a group of instructions that can execute in parallel.

superscalar instruction execution engine at its core. Examples
of VLIW processors include the Philips Trimedia processor
used for media processing and the Texas Instruments’ C6X
processors for digital signal processing applications. Box 3
discusses the microarchitecture of a generic VLIW processor.

ILP techniques have been hugely popular because an applica-
tion programmer need not be aware of these techniques i.e., the
programmer need not explicitly specify the parallel portions of
acode to exploit ILP. This allows code written for a processor to
be carried over to the next generation of its implementation
without any modification. A key advantage of superscalar

RESONANCE | December 2001 A/\/\/\/\/V

GENERAL | ARTICLE

The schematic diagram depicts the various stages of a VLIW
processor pipeline. The pipeline consists of a fetch unit, the
issue stage, the register read stage, the execute stage and the
memory stage. The fetch stage fetches instructions from the
cache. In this stage, current day processors (like the IA-64) also
incorporate a branch prediction unit. The branch prediction unit
predicts the direction of branch instructions and speculatively
fetches instructions from the predicted path. This is necessary
to keep the processor pipeline active in the presence of branches
in the code. The compiler can still provide hints to the hardware
for determining the direction of a branch (taken or not-taken).
Notably absent from the processor pipeline is the decode stage
because of the extremely simple hardware to dispatch instruc-
tions to the functional units. The register read stage reads the
contents of the source operands of the instruction from the large
register file. The execute stage of the pipeline then executes the
operation on the functional units and the memory stage reads/

writes the results from/to the memory subsystem.

Box 3. VLIW Processor Organization

Instruction Fetch

222212

Issue

YYvYvy

Register Read

YYvVYvy

ALU |eee load
store

YYvYVvy

Memory

Providing object
code compatibility
is important
because users
would want to
upgrade hardware
while running
applications that
are not easily
recompiled for a
new machine.

processors is that they provide object code compatibility over
generations of a processor architecture. Object code compatibil-
ity allows object binaries compiled for previous generations of
an architecture to run on new machines without modification.
Providing object code compatibility is important because users
would want to upgrade hardware while running applications
that are not easily recompiled for a new machine. While a
superscalar processor, by its very design, implicitly addresses
binary compatibility across generations of a processor architec-
ture, in a VLIW processor the run-time environment or the
operating system should provide support to explicitly provide
binary code compatibility over generations of a processor archi-
tecture. In addition, the aggressive compiler techniques used
for code scheduling tend to bloat up the size of an object code
compared to that of a superscalar processor. In the following
sections we will discuss the important issue of binary compat-

66

-

RESONANCE | December 2001

GENERAL | ARTICLE

ibility that has to be expressly addressed before delivering a
VLIW processor.
commercial success of VLIW processors.

Such a compatibility is essential for the

Binary Compatibility

As mentioned earlier, in a VLIW processor, the entire responsi-
bility of scheduling correctly the instructions of a program lies
with the compiler. The techniques used for scheduling instruc-
tions require the compiler to be aware of the functional unit
latencies (The number of clock cycles between the initiation of
an operation and its completion). Problems hence arise with
binary compatibility between generations of the same architec-
ture. Various techniques have been suggested to solve this
problem. Techniques like spliz-issue, which are hardware-based
solution have been mostly restricted to research studies. We will
not delve into this technique due to limitations of space. Simi-
larly, problems arise if different generations of the same archi-
tecture have different hardware parallelism. This has not been
considered as a problem since new generations have a tendency
of having greater hardware parallelism.

Binary Translation: This is another technique applicable to the
problem of binary compatibility but has been used in the con-
text of designing simple architectures with low power consump-
tion and execute x86 binaries (see Box 4). This technique uses
software to translate an existing binary into a binary that can be
executed on a new target architecture (A VLIW processor in the
Crusoe processor). Translation can be either static or dynamic.
Static translators translate program offline (when the program is
not running) using the execution profiles of programs. Dy-
namic translators have runtime overheads but are more attrac-
tive since it can adapt to the runtime behavior of the program by
caching pieces of translated code that are executed frequently.
Moreover, the cached pieces of translated code can be subject to
optimizations that would have been otherwise impossible be-
cause of the lack of information about the runtime behavior of
the program.

Suggested Reading

[1] T M Conte, Superscalar
and VLIW Processors, in
Handbook of Parallel and
Distributed Computing, (A
Y Zomaya, ed.), McGraw-
Hill, New York, 1995.

V Rajaraman and C Siva
Ram Murthy, Parallel Com-
puters — Architecture and

2

—

Programming, (Chapter 3 -
Instruction Level Parallel
Processing), Prentice Hall
of India, New Delhi, 2000.

[3] Harsh Sharangpani and Ken
Arora, Itanium Processor
Architecture, IEEE Micro,
pPp- 24-43, Sept.-Oct. 2000.

[4] Linda Geppert and Tekla S
Perry, Transmeta’s Magic
Show,IEEE Spectrum,Vol.
37, No. 5, May 2000.

[5] Jerry Huck and others, In-
troducing the IA-64 Archi-
tecture, IEEE Micro,
pp- 12-22, Sept.-Oct. 2000.

-

RESONANCE | December 2001

67

GENERAL | ARTICLE

Box 4. The TRANSMETA Crusoe VLIW Processor

The TRANSMETA Crusoe processor can run software that runs on IBM PC compatible personal
computers which use a Pentium processor even though the architecture of a Crusoe processor nowhere
resembles that of an Intel Pentium processor. The Crusoe processor is a VLIW processor with special
hardware to support x86 emulation. This is in contrast with the core of an Intel Pentium processor which

is a superscalar execution engine.

One of the primary design goal of the Crusoe processor is low power consumption. This would enable
the use of these processors in mobile systems like laptop personal computers allowing many hours of
operation times between battery recharges. A conventional Pentium processor’s superscalar core has
hardware to detect dependencies between operations, schedule and retire operations. This greatly
complicates the design of the system, increasing clock rate, adding costs and increasing the power
consumption. The simplicity of a VLIW processor on the other hand ameliorates these problems

significantly.

To achieve binary compatibility with an x86 programs, the Crusoe processor relies on a software technique
called dynamic binary translation. An x86 program is dynamically translated to execute on the TRANSMETA
VLIW processor. This translation scheme has been dubbed code morphing by TRANSMETA. In this
scheme, the software (also called the virtual machine manager since it presents a x86 virtual machine to

an x86 program) uses a combination of interpretation and translation to speed up program execution.

Conclusion

Microprocessor vendors and computer manufacturers are now
targeting processors using the VLIW paradigm for their next
generation products. For example, COMPAQ, a company that
already has processors like the Alpha 21264 and 21364 RISC
processors in their computers have recently announced that
after 2003 all their servers are going to be Itanium (IA64)
processor based. This can be considered a wise move on the part

of COMPAQ. This is because the ‘bells-and-whistles’ that go

Address for Correspondence into a current day superscalar processor to support runtime

S Balakrishnan
Philips Research The
Netherlands (Natlab) ing returns for high instruction issue rates (more than eight

Prof.Holstlaan 4 (WDC-3.10) instructions per clock cycle). It is highly likely that VLIW
5656 AA Eindhoven
The Netherlands.

Email: balki@c4.com

detection and exploitation of ILP reaches a point of diminish-

processors might be resurrected precisely for the reason why
RISC computers were first advocated — control simplicity.

68 ‘\’\/\/\/\/\" RESONANCE | December 2001

