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ABSTRACT

String propagation on a cone with deficit angle 2π(1− 1
N

) is described by constructing

a non-compact orbifold of a plane by a ZN subgroup of rotations. It is modular invariant

and has tachyons in the twisted sectors that are localized to the tip of the cone. A

possible connection with the quantum corrections to the black hole entropy is outlined.

The entropy computed by analytically continuing in N would receive contribution only

from the twisted sectors and be naturally proportional to the area of the event horizon.

Evidence is presented for a new duality for these orbifolds similar to the R → 1
R

duality.
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1. Introduction

In this paper we discuss the propagation of strings on a conical space. The chief

motivation for this work stems from its possible application to computing the entropy of a

black hole in string theory. In field theory, an efficient way to compute the entropy is via

the Euclidean path integral on a cone. The leading contribution to the entropy comes from

field modes near the horizon of the black hole which in Euclidean space corresponds to the

tip of a cone. In order to understand this leading contribution, the details of the geometry

of a specific black hole can be ignored and it is adequate to consider field propagation in

a conical space. We would like to do something similar in string theory. This work should

be regarded as a step in that direction. For special values of the deficit angle of the cone,

it is easy to construct the corresponding string theory as a ZN orbifold of the theory in

flat space. We describe this construction in the next section. These orbifolds can also be

viewed as describing string propagation in the background of a cosmic string. We shall

also see some evidence for duality in a new guise. Moreover, for large N, there are nearly

massless tachyons in the spectrum that are localized to the tip of the cone. These could

be useful for studying the tachyon instability in string theory.

We shall now describe some basic aspects of black-hole entropy that will be important

in the following discussion. There are three distinct notions of the entropy associated with

a black hole. The Bekenstein-Hawking entropy is calculated using thermodynamics and

quantum field theory in a fixed, classical background of a black hole [1,2]. It is given by

SBH =
A

4Gh̄
(1.1)

where A is the area of the event horizon of the black hole and G is the renormalized

Newton’s constant. The Gibbons-Hawking entropy [3], on the other hand, is obtained by

evaluating the full functional integral of quantum gravity around a saddle point which rep-

resents the Euclidean continuation of the Schwarzschild solution. Remarkably, it also gives

the same expression for the entropy as the Bekenstein-Hawking formula with the renormal-

ized Newton’s constant replaced by its bare value. It is natural to ask about the quantum

corrections to the leading semiclassical formula. Susskind and Uglum [4] have argued that



these quantum corrections can all be absorbed into the renormalization of Newton’s con-

stant. Thus the renormalized Gibbons-Hawking entropy equals the Bekenstein-Hawking

entropy.

Both these derivations do not offer any statistical interpretation of the thermodynamic

black hole entropy in terms of counting of states. ’t Hooft [5] has advocated that the entropy

of quantum fluctuations as seen by a Schwarzschild observer should account for the black

hole entropy. In field theory this quantity is ultraviolet divergent. Several authors have

found a similar divergence in Rindler spacetime which approximates the geometry of a

large black hole very near the horizon [4,6,7,8,9,10]. There is a simple description of the

leading divergence. A fiducial observer that is stationed at a fixed radial distance from the

black hole, has to accelerate with respect to the freely falling observer in order not to fall

into the black hole. Very near the horizon, the fiducial observer is like a Rindler observer

in flat Minkowski space. As a result, she sees a thermal bath [11] at a position-dependent

proper temperature T (z) = 1
2πz

where z is the proper distance from the horizon. Using

Planck’s formula for a single massless boson we get the entropy density:

s(z) =
4

3

π2

30
(

1

2πz
)3 . (1.2)

Note that we have been able to define the entropy density because entropy is an extensive

quantity as it should be. However, the dominant contribution comes from the region near

the horizon z = 0 and is not extensive but proportional to the area. If we put a cutoff on

the proper distance at z = ǫ (or alternatively on proper temperature) the total entropy is:

S =

∫ ∞

ǫ

s(z)Adz

=
A

360πǫ2
,

(1.3)

where A is the area in the transverse dimensions. This is in agreement with the result

obtained in [5,4] by other means. Because the thermal bath is obtained by tracing over

states that are not accessible to the observer in the Rindler wedge, this entropy is also the

same as the ‘entropy of entanglement’ [8,6,10,12] or the ‘geometric entropy’ [7,9]. For a

massive field with mass m, there will be corrections to this formula which will be down by

powers of mǫ.



It is not clear how this divergent quantity can equal the black hole entropy which is

finite. There are other difficulties with identifying this entropy of entanglement with the

Bekenstein-Hawking entropy. For expample, the entropy of entanglement has no classsical

contribution and starts at one loop whereas the black hole entropy is inversely proportional

to the coupling constant. Furthermore, the entropy of entanglement depends on the species

and couplings of various particles in the theory whereas the black hole entropy does not.

’t Hooft has argued that it is necessary to understand the ultraviolet structure of the

theory in order to address these issues. He has conjectured that these difficulties will

be resolved once the correct short distance structure is known. He has further suggested

that this divergence of entropy in field theory is intimately related to the puzzle of loss of

information in black hole evaporation. If the entropy does have a statistical interpretation

in terms of counting of states then its divergence would suggest an infinite number of states

associated with a finite mass black hole. As long as the black hole has an event horizon, it

can apparently store an arbitrary amount of information in terms of correlations between

the outgoing radiation and the high energy modes near the horizon. When the horizon

eventually disappears, the information in these correlations is irretrievably lost.

It is almost impossible to test these ideas within field theory, especially when one

is dealing with a nonrenormalizable theory such as quantum gravity. Fortunately, string

theory offers a suitable framework for addressing this question. It is a perturbatively

finite theory of quantum gravity and comes with a well-defined matter content. Moreover,

Susskind [13,14] has argued that string theory may also possess some of the properties

required for describing black hole evaporation without information loss. It is therefore of

great interest to know how the ultraviolet behavior of the entropy is controlled in string

theory. One can hope that string theory will illuminate this question in important ways.

In field theory, there is a general method of computing the entropy of entanglement

using Euclidean path integral over a conical space. As we shall see in section three, the

analogous formula in string theory for the entropy at G loop is

SG =
d(N AG)

dN
|N=1 . (1.4)

where AG is the vacuum amplitude at G loop in string perturbation theory on a conical

space with deficit angle δ = 2π(1− 1
N

). A major obstacle in using this formula is that the



conical background in general does not satisfy the equations of motion because there is a

curvature singularity at the tip of the cone. Luckily, in string theory, for special values of

the deficit angle δ = 2π(1− 1
N

) with integer N , the theory manages to be on-shell at least at

tree level. We would like to use this fact to obtain the entropy by analytically continuing in

N . Similar suggestion has been made also in [9]. We do not yet have a complete expression

for the entropy and we wish to return to it in a subsequent publication [15]. However, the

entropy computed this way already appears to have several desirable features. Moreover,

a number of technical issues arise in the construction of the orbifold that are interesting

in their own right. With this objective in mind, in the next section, we describe the

propagation of strings on a cone for integer N . In section three, we discuss its relation to

the computation of entropy.

2. Strings on a Cone

We first construct the bosonic orbifold from the uncompactified string theory in

twenty-six dimensions. Our spacetime will be M24 × KN where M24 is flat spacetime

and KN is a cone with deficit angle 2π(1 − 1
N

). We can further compactify some of the

dimensions of the M24 if we so desire. The details of compactification will not be im-

portant. For non-integer N, this background is not a solution to the string equations of

motion because when a string encounters the curvature singularity at the tip of the cone,

it would develop a kink. For integer N, however, we can have consistent propagation of

strings despite the curvature singularity.

In this case, we can tile the entire plane with N copies of the cone. The configurations

on the plane that are symmetric under ZN rotations define consistent string configurations

on the cone [see fig. 1]. We can then regard KN as an orbifold of the plane R2/ZN [16,17].

Notice that unlike the orbifolds considered in string compactification we are interested in

an orbifold of a non-compact space. If instead of R2 we consider a compact space like a

torus [18], then we cannot take N to be arbitrary and the allowed orbifold groups are very

limited. Moreover, in that case, there are more than one points with a conical singularity

and the orbifold only locally looks like a cone.



Fig. 1: Configurations on the plane that define consistent string configurations on

the cone with deficit angle 4π

3
. The solid and the dashed lines indicate strings with

zero and nonzero winding number around the tip of the cone respectively.

The Hilbert space of the orbifold is obtained by first considering the theory on the

plane which is conformal and modular invariant and then projecting onto ZN invariant

states. As is well known, we also have to include the twisted string states because the

winding number on the plane around the tip of the cone is conserved only modulo N

[fig. 1]. It is convenient to combine the co-ordinates of the plane into a complex boson

X = X1+iX2√
2

and X̄ = X1−iX2√
2

. The orbifold group then acts on X by multiplication by a

phase e
2πik

N . In the untwisted sector this field has the standard mode expansion:

X = x+ pτ +
i

2

∑

n6=0

αn

n
e−2in(τ−σ) +

i

2

∑

n6=0

α̃n

n
e−2in(τ+σ). (2.1)

and the ground states are labelled by the momenta in the plane |p, p̄〉. The spectrum

before projection is the same as the twenty-six dimensional string and consists of states

with some number of creation operators acting on the ground states. For states with

nonzero p and p̄, the projection onto ZN invariant states reduces the spectrum by a factor

of N . For example, for N = 3, the states α−n|p, p̄〉 are projected onto 1
3 (α−n|p, p̄〉 +

e
2πi
3 α−n|e−

2πi
3 p, e

2πi
3 p̄〉 + e

4πi
3 α−n|e−

4πi
3 p, e

4πi
3 p̄〉). Thus, on a ZN cone, we still have the

same set of particles in the untwisted sector as in flat space, except that the allowed

combinations of momenta are reduced N-fold. The zero momentum states, however, need

to be treated differently. In this case, only those combinations of creation operators that



are invariant under ZN rotations are allowed. For example, α−n|0, 0〉 is projected out but

α−n
¯̃α−m|0, 0〉 is allowed. As we shall see, it is the zero momentum sector that mixes with

the twisted sectors under modular transformations. In the twisted sectors, the boson is

subject to the boundary condition X(σ + π, τ) = e
2πik

N X(σ, τ), k=0,. . . , N-1. The mode

expansion and the commutation relations are given by:

X =
i

2

∑

n

αn+ k
N

n+ k
N

e−2i(n+ k
N

)(τ−σ) +
i

2

∑

n

α̃n− k
N

n− k
N

e−2i(n− k
N

)(τ+σ) ,

[αm+ k
N
, ᾱn− k

N
] = (m+

k

N

)δm+n , [α̃m+ k
N
, ¯̃αn− k

N
] = (m+

k

N

)δm+n .

(2.2)

The zero point energy for the k
N

moded (complex) boson is given by 1
2

k
N

(1− k
N

)− 1
12 . The

22 untwisted bosons contribute −11
12

. Consequently, we have N − 1 tachyons, one in each

twisted sector with mass-squared 4k
N

(1− k
N

)−8 . Note that there are no zero modes in the

expansion (2.2). As a result, these tachyons are localized to the tip of the cone but can

have momenta in the remaining 24 dimensions.

The vacuum amplitude for the cone is not very different from the one in flat space.

For the bosonic string in flat space, the G-loop amplitude is given by (see [19] [20] [21] )

AG ∼ g2G−2L26

∫

MG

d(WP )

vol(kerP1)

(

2π2det′∆g
∫

d2z
√
g

)−13

det′(P †
1P1) (2.3)

Here d(WP ) is the Weil-Petersson measure over the genus-G moduli space MG, ∆g is the

scalar Laplacian − 1√
g
∂a

√
ggab∂b and P1 is the operator that maps vectors into symmetric

traceless two-tensors: (P1v)ab = ▽a vb + ▽b va − gab ▽ v . The volume factor L26 comes

from the zero modes of the scalar Laplacian, one power for each real boson. det′ is the

determinant only over nonzero modes. In the orbifold theory, one inverse power of the

determinant in (2.3) coming from one complex free boson and two powers of L coming

from the zero modes, get replaced by the orbifold partition function Z(N) for the field X ,

at genus G.

It is easy to write down the one-loop partition function explicitly. The world-sheet at

one loop is a torus. The metric for a torus in a given conformal class is parametrized by

a complex modular parameter τ : ds2 = |dσ1 + τdσ2|2 with 0 ≤ σ1 , σ2 < 1. The partition

function is given by the orbifold sum

Z(N) =
∑

k,l

Zk,l(N) . (2.4)



Each term Zk,l represents the path integral of a complex boson on a torus with twisted

boundary conditions. The path integral gives one inverse power of a determinant

Det
[

a
b

]

(∆g) of the scalar Laplacian on a torus subject to the boundary conditions

X(σ1 + 1 , σ2) = e
2πik

N X(σ1 , σ2) , X(σ1 , σ2 + 1) = e
2πil

N X(σ1 , σ2) . (2.5)

Instead of evaluating the bosonic determinant we shall evaluate a related quantity,

Det
[

a
b

]

(▽z
− 1

2

) which is the determinant of a chiral Dirac operator. This will also be

useful later when we discuss the superstring. It can be regarded as a path integral of a

complex chiral fermion with boundary condition ψ(σ1 + 1 , σ2) = −e2πiaψ(σ1 , σ2), and

ψ(σ1 , σ2 +1) = −e2πibψ(σ1 , σ2). It is straightforward to evaluate this determinant in the

operator formalism [22]. Writing q = e2πiτ , and using the standard relation between the

path integral and the operator formalism, it is equal to the trace Tr
H

(hb q
Ha). Ha is the

Hamiltonian of a chiral, twisted fermion:

Ha =

∞
∑

n=1

(n− 1

2
+ a)d†ndn + (n− 1

2
− a)d̄†nd̄n +

a2

2
− 1

24
(2.6)

The fermionic oscillators satisfy the canonical anticommutation relations {d†n, dm} = δmn

and {d̄†n, d̄m} = δmn, and H is the usual Fock space representation of these commutations.

The group ZN acts on this Fock space through hdh−1 = −e−2πibd , hd̄h−1 = −e2πibd̄. The

trace equals (up to an arbitrary phase)

e2πiabq
a2

2
− 1

24

∞
∏

n=1

(1 + qn− 1

2
+ae2πib) (1 + qn− 1

2
−ae−2πib) . (2.7)

Using the product representation of the theta function ϑ
[

a
b

]

(τ) with characteristics [23] ,

we see that

Det
[a

b

]

(▽z
− 1

2

) = Tr
H

(hb q
Ha) =

ϑ
[

a
b

]

(0|τ)
η(τ)

, (2.8)

where η(τ) is the Dedekind η function.

Now we return to the problem at hand. Up to zero modes, the chiral boson determi-

nant is the inverse of the chiral fermion determinant. The orbifold sum (2.4) becomes

Z(N) =
N−1
∑

k,l=0

∣

∣

∣

∣

∣

η(τ)

ϑ
[ k

N
+ 1

2

l
N

+ 1

2

]

∣

∣

∣

∣

∣

2

(2.9)



The bosonic zero modes can give a divergence for some of these terms such as Z0,0, and

should be treated more carefully. For the moment, we shall continue to treat them in a

somewhat cavalier manner.

The Weil-Petersson measure for the torus is d2τ
(Im τ)2 and vol(kerP1) = Imτ . Using the

standard expressions for the other determinants [21] we obtain

A1(N) ∼ Area

∫

M1

d2τ

(Im τ)2
|η2(τ)η̄2(τ̄)Imτ |−11 1

N
Z(N) (2.10)

The factor of 1
N

in this formula comes from the fact that the operator that projects onto

ZN invariant states is 1
N

(1 + h + h2 + . . . + hN−1). The area here refers to the volume

L24 of the transverse dimensions. The integration is over the genus-one moduli space M1

which is the fundamental domain of the modular group

|τ | > 1 , −1

2
< Reτ <

1

2
, Imτ > 0 . (2.11)

The modular group SL(2,ZZ)/Z2 for the torus is the group of disconnected diffeomorphisms.

The co-ordinate transformations (σ1 , σ2) → (dσ1 + bσ2 , cσ2 + aσ1) with a, b, c, d integers

and ad− bc = 1, transform the metric into a conformally inequivalent metric parametrized

by a new modular parameter

τ → aτ + b

cτ + d
,

(

a b
c d

)

ǫ SL(2,ZZ). (2.12)

We have to divide the SL(2,ZZ) by Z2 because the elements {1I,−1I} leave τ unchanged. In

order that the theory does not suffer from global diffeomorphism anomaly, it is necessary

that the integrand in the amplitude (2.10) be invariant under the action of the modular

group. The modular group is generated by the elements T : τ → τ + 1 and S : τ → − 1
τ

.

Under these transformations the theta functions transform as

T : ϑ

[

a

b

]

(τ) → e−πia2−πiaϑ

[

a

a+ b+ 1
2

]

(τ)

S : ϑ

[

a

b

]

(τ) → (−iτ) 1

2 e2πiabϑ

[−b
a

]

(τ)

. (2.13)

Moreover,

ϑ
[a+m

b+ n

]

(τ) = e2πinaϑ
[a

b

]

(τ)

ϑ
[−a
−b

]

(τ) = ϑ
[a

b

]

(τ)
. (2.14)



Using these properties it is easy to check that (2.10) is modular invariant, and the modular

integration can be restricted to the fundamental domain (2.11) .

Let us now move on to the superstring. For simplicity we consider the nonchiral

type IIA superstring moving on M8 × KN . It will be easiest to use the Green-Schwarz

formalism. We fix the light-cone gauge by using two of the directions in M8 and obtain

the remaining theory as an orbifold. Before modding out by the orbifold group, we have

the supersymmetric sigma model in flat space

L = − 1

π
∂+X

i∂−X
i − i

π
Sa∂+S

a − i

π
S̃ȧ∂−S̃

ȧ , (2.15)

where the coordinates X i transforms as a vector 8V of SO(8) and Sa and S̃ȧ transform as

spinors of SO(8), 8L and 8R respectively. The orbifold group ZN is a subgroup of planar

rotations, so we shall use the decomposition SO(8) → SO(6) × SO(2), or equivalently

SO(8) → SU(4) × U(1). The vector and the spinor representations then decompose as

follows
8V → 6(0) + 1(1) + 1(−1)

8L → 4(
1

2
) + 4̄(−1

2
)

8R → 4(−1

2
) + 4̄(

1

2
)

. (2.16)

Here the numbers in the parentheses are the U(1) charges. We have one boson X with

charge 1, eight fermions Sm, S̃m with charge 1
2
, and their complex conjugates. The index

m transforms in the 4 of SU(4). The one-loop vacuum amplitude for the superstring is

quite similar to (2.10) ,

A1(N) ∼ Area

∫

M1

d2τ

(Im τ)2
|η2(τ)η̄2(τ̄)Imτ |−3 1

N
Z(N) . (2.17)

The area here refers to the volume L8 of the transverse dimensions and the first factor

in the integrand comes from the six real boson that are neutral under the ZN rotations.

Before discussing the orbifold partition function Z(N), we should point out an important

subtlety for the superstring that has to do with the fact that fermions have half integer

spin. A rotation through 2π does not bring a spacetime fermion back to itself; which means

we really have to embed our ZN not into SO(2) but into a double cover of SO(2). As a



result, it will turn out that we must distinguish between even and odd N . Let us first

consider the odd N theories. In this case we have a sum similar to the bosonic case

Z(Nodd) =
N

∑

k,l=1

Zk,l(N) . (2.18)

Each term Zk,l is a partition function for the fields X,Sm, S̃m and their complex conjugates

with twisted boundary conditions

Sm(σ1 + 1 , σ2) = e
2πik

N Sm(σ1 , σ2) , S̃m(σ1 + 1 , σ2) = e−
2πik

N Sm(σ1 , σ2) ,

X(σ1 + 1 , σ2) = e
4πik

N X(σ1 , σ2)
, (2.19)

and similarly in the σ2 direction. Altogether, we have four fermionic and one bosonic

determinants. Using the formula (2.8) for the determinants we obtain,

Z(Nodd) =

N
∑

k,l=1

∣

∣

∣

∣

∣

ϑ4

[

k
N

+ 1

2

l
N

+ 1

2

]

η3ϑ

[

2k
N

+ 1

2

2l
N

+ 1

2

]

∣

∣

∣

∣

∣

2

. (2.20)

We can repeat the analysis for even N with minor modification and obtain

Z(Neven) =
1

4

2N
∑

k,l=1

∣

∣

∣

∣

∣

ϑ4

[

k
2N

+ 1

2

l
2N

+ 1

2

]

η3ϑ

[

k
N

+ 1

2

l
N

+ 1

2

]

∣

∣

∣

∣

∣

2

. (2.21)

This formula would look identical to (2.20) in terms of new variable N ′ = 2N , however,

N is chosen so that δ = 2π(1− 1
N

). It is straightforward to check for modular invariance.

There is one more modular invariant combination for odd N given by,

Ẑ(Nodd) =
1

4

2N
∑

k,l=1

∣

∣

∣

∣

∣

ϑ4

[

k
2N

+ 1

2

l
2N

+ 1

2

]

η3ϑ

[

k
N

+ 1

2

l
N

+ 1

2

]

∣

∣

∣

∣

∣

2

. (2.22)

It may seem a little disconcerting that there are more than one ways of constructing the

orbifold. After all, if we wish to use this construction for computing the entropy, we would

like to get a unique answer for each theory. Fortunately, there is a good explanation for this

non-uniqueness. The Green-Schwarz superstring has a Z2 symmetry, (−1)F where F is



the spacetime fermion number. This symmetry is obviously a subgroup of the double cover

of SO(2), (−1)F = e2πiJ12 . The orbifold with respect to this Z2 changes the spectrum

drastically. In the untwisted sector the projection onto Z2 invariant states removes all

fermions. The twisted sector adds more particles including a tachyon. Moreover, the

number of bosonic zero modes is the same in the twisted sectors because the bosonic

coordinates are neutral under this Z2. This means that the states in the twisted sector

move over all space and are not restricted to the tip of the cone. We should really regard

this theory as a different theory (vacuum). The orbifolds in (2.22) should then be regarded

as the orbifolds not of flat space but of this different underlying theory. It is to be exptected

that the entropy of black holes would be different in these two cases because, after all, the

patricle spectrum of the two theories is completely different.

As an aside, we note that in all these orbifold models, supersymmetry is completely

broken. This is not surprising. In order to have an unbroken supersymmetry, we must

have a covariantly constant spinor on the cone, which means that the cone must have

SU(1) holonomy. But SU(1) holonomy is no holonomy at all, and the only manifold with

this holonomy is the plane. As a result, there are no unbroken supersymmetries on a

cone. Even though supersymmetry is completely broken, in some cases drastically, the

equivalence between the Green-Schwarz string and the Neveu-Schwarz-Ramond string still

continues to hold. Let us recall the following Riemann theta identity:

2
4

∏

i=1

ϑ

[ 1
2
1
2

]

(xi|τ) =
4

∏

i=1

ϑ

[

0

0

]

(yi|τ) −
4

∏

i=1

ϑ

[

0
1
2

]

(yi|τ) −
4

∏

i=1

ϑ

[ 1
2

0

]

(yi|τ) +
4

∏

i=1

ϑ

[ 1
2
1
2

]

(yi|τ)

(2.23)

where y1 = 1
2 (x1+x2+x3+x4) , y2 = 1

2 (x1−x2−x3+x4) , y3 = 1
2 (x1+x2−x3−x4) and y4 =

1
2 (x1 − x2 + x3 − x4) and ϑ

[

a
b

]

(z|τ) = e2πia(z+b)q
a2

2 ϑ(z + aτ + b|τ). With the use of this

identity we can write each term in the sum for Z(N) as the modulus-squared of sum of

four terms. These four terms correspond to the four spin structures on the left and the

right of the NSR superstring. The simplest example is the Ẑ1 orbifold above. With N = 1

in (2.22) we get,

Ẑ(1) =

∣

∣ϑ4
[

0
0

]
∣

∣

2
+

∣

∣ϑ4
[

0
1

2

]
∣

∣

2
+

∣

∣ϑ4
[ 1

2

0

]
∣

∣

2
+

∣

∣ϑ4
[ 1

2

1

2

]
∣

∣

2

4
∣

∣η3ϑ
[ 1

2

1

2

]
∣

∣

2
. (2.24)



Thus, in this case, we see the equivalence of the two formalisms simply by reinterpreting

the orbifold sum in the GS formalism as the sum over spin structures in the NSR formalism

with a modular invariant combination diagonal in spin structures. The corresponding NSR

string has been discussed in [25]. It has a very different projection than the usual GSO

projection and there are no fermions in the spectrum. Remarkably, the GS and the NSR

formalism are equivalent even after this rather extreme breaking of supersymmetry. This

points to a deep connection between the two formalisms that goes beyond supersymmetry.

The spectrum of the ZN orbifold in the sector twisted by η = k
N

is easily ob-

tained. We shall use the light-cone gauge and describe only the low lying states as-

suming that η is small. Let us first consider the GS formalism. The ground state has

energy −η
2 and is tachyonic. In the right moving sector, we have the oscillator modes

Sm
n− η

2

, Sm̄
n+ η

2

, αn−η , and ᾱn+η. Acting on the vacuum with various powers of Sm
− η

2

, we

generate a sixteen dimensional representation quite similar to the gauge supermultiplet

in flat space. It decomposes in terms of SU(4) representations 1, 4, 6, 4̄, 1 with masses

−η
2 , 0,

η
2 , η,

3η
2 respectively. The representations 4 and 4̄ are fermions and the remaining

states are bosons. We get a similar representation on the left and the low lying spectrum

is the tensor product of the two, keeping only the ZN invariant states. In addition, there

are more states that are obtained by acting with various powers of α−η on these states. In

the NSR formalism the analysis is somewhat different. The eight worldsheet fermions ψi

transform as the vector of SO(8) exactly like the bosons . As a result, only two get twisted

and the remaining six are untwisted. In the NS sector, the ground state energy is −1
2 + η

2 .

The low energy fermion creation operators are ψ− 1

2
−η and ψ̄− 1

2
+η coming from the two

twisted fermions, and six ψi
− 1

2

coming from the untwisted fermions. The ground state

gets projected out by the GSO projection. At the next level, we have one of the creation

operators above acting on the vacuum. This gives one state with energy −η
2 , six states

with energy η
2

and one state with energy 3η
2

. All of these are spacetime bosons. As usual,

the spacetime fermions come from the Ramond sector. The ground state energy is zero in

the Ramond sector. The six untwisted fermions have zero modes that form the Clifford

algebrea of SO(6) and have an eight-dimensional spinor representation, that splits as 4

and 4̄ . The 4̄ gets projected out by the GSO projection and we are left with four fermions



with mass 0 in 4. The next excited state is obtained by acting on the vacuum with a

creation operator with energy η coming from the twisted fermions. The GSO projection

removes the 4 at this level and we obtain four fermions in 4̄ with energy η. The bosonic

oscillators in the NSR string are the same as in the GS string, so the low lying spectrum

matches exactly with the one obtained from the GS formalism.

3. Black Hole Entropy in String Theory

The entropy is given by,

S = −β ∂(logZ)

∂β
+ logZ. (3.1)

In order to compute this we need to vary the Rindler temperature away from 2π which

corresponds to flat space. This introduces a conical defect with the deficit angle δ which

is related to the inverse temperature by β = 2π(1− δ
2π

) = 2π
N

. Treating N as a continuous

variable, we see that S = d(N log Z)
dN

|N=1 . In string perturbation theory at G loop, the

spacetime partition function ZG and the worldsheet vacuum amplitude AG are related by

logZG = AG [26]. This gives us the desired formula for the entropy at G loop:

SG =
d(N AG)

dN
|N=1 . (3.2)

Substituting (2.17) into (3.2) we obtain the final expression for the entropy in the bosonic

string at one loop:

S1 ∼ Area

∫

M1

d2τ

(Im τ)2
|η2(τ)η̄2(τ̄)Imτ |−11 Z ′(1) . (3.3)

Similarly for the type IIA supersting we obtain

S1 ∼ Area

∫

M1

d2τ

(Im τ)2
|η2(τ)η̄2(τ̄)Imτ |−3 Z ′(1) . (3.4)

Here Z ′(1) for each theory is the first derivative of the orbifold partition function evaluated

at N = 1. It is quite satisfying that the entropy comes out proportional to the area. Before

making this assertion, we must clarify one point that we have so far glossed over. In the

orbifold sum (2.18) the term Z0,0 is divergent. This is because the theta function vanishes



due to the contribution of the bosonic zero modes to the corresonding determinant. If we

treat the determinant carefully, the zero modes would turn the area in (2.17) into volume

for this particular term in the sum. Modular invariance would still hold because Z0,0 does

not mix with other terms under modular transformations and is invariant by itself. More

importantly, it is independent of N and as we see from (3.3) , it does not contribute to

the entropy. Thus, the entropy will be proportional to the area and not the volume.

Before proceeding further let us see what we expect to find. The Schwarzschild ob-

server near the horizon sees a hot thermal bath. We can thus view the orbifolds as describ-

ing the Euclidean path integral for strings in a thermal ensemble at Rindler temperature

N
2π

. The proper temperature is position dependent and diverges at the tip of the cone. As

a result, we expect the strings to undergo a Hagedorn phase transition well known in string

theory. Correspondingly, we expcect to find an infrared instability in the form of tachyons.

The tachyons that we find in the twisted sector are closely related to tachyons coming from

the winding modes of the string around the Euclidean time direction [27] which signal the

Hagedorn transition in strings at finite temperature. After the phase transition, a tachyon

condensate will be formed. This can explain the tree level contribution to the entropy as

coming from the latent heat of this phase transition [28]. Furthermore this condensate will

be confined very close to the horizon and spread only in the transverse directions. It raises

the exciting possibility that we can understand the dependence of the Bekenstein-Hawking

entropy on area as well as the coupling constant [15]. Unfortunately, at the moment, the

Hagedorn transition is not very well understood. Moreover, once we include interactions

we also have to worry about the Jeans instability [29]. It is not clear how to properly take

these effects into account. However, we are really interested only in the entropy at a special

value of the temperature and we hope that at least some of the features of the entropy will

be accesible without having to understand all the consequences of the Hagedorn transition.

For example, it would be nice to see if the entropy can be rendered finite in the infrared

by adding a tree level contribution.

In order to complete this computation we need an analytic expression for the sum

Z(N) so that we can take its derivative. Several comments are in order here. First, all

terms in the sum are analytic functions of N so we can expect that the sum will also be



analytic. Second, modular invariance of the vacuum amplitude holds only for integer N .

In fact, for non-integer N , the sum may not have any interpretation as a partition function

of some string theory. However, for our entropy computation we do not really require that

the theory be well defined for arbitrary N . All that is needed is that the first derivative

of the vacuum amplitude at N = 1 be well-defined and modular invariant. This certainly

seems possible, especially if we think of the entropy as the counting of states of a given

finite theory in flat space as seen by the Rindler observer. Finally, even if we do perform

the sum, there is a high degree of non-uniquness because we can always add to the sum

any function that vanishes for integer N e.g. sin(πN). We can fix this non-uniqueness

if we know that the partition function does not have an essential singularity at N = ∞.

This requires some physical input about the theory. We can guess the correct ananlytic

continuation by comparing our answers with strings in a thermal ensemble discussed in

[15].

It is interesting to take the large N limit of our formula (2.18) . Putting z = k
N
τ + l

N

in (2.18) and taking N to infinity, we see that

Z(N)|N→∞ =
N2

Imτ

∫

d2z exp(−π(z − z̄)2

2Imτ
)

∣

∣

η(τ)

ϑ11(z|τ)
∣

∣

2
(3.5)

where ϑ11 is the theta function with half characteristics. The integration is over a torus

with modular parameter τ which is parametrized with a flat metric as a parallelogram

with corners at 0, 1, τ and τ +1. The integrand is doubly periodic over this region and is a

well defined function on the torus. This expression is clearly analytic in N and moreover is

modular invariant even for non-integer N . Encouragingly, Z(N) does not have an essential

singularity but only a second order pole at infinite N . Another interesting feature of (3.5)

is that the integral is logarithmically divergent. The theta function has a zero at z = 0,

ϑ11(z|τ) ∼ 2πzη3(τ). As a result the leading contribution to (3.5) is

Z(N)|N→∞ ∼ N2 logN |η2(τ)η̄2(τ̄)Imτ |−1 . (3.6)

This expression is strikingly similar to the partition function in R2 (N = 1) after properly

taking into account the bosonic zero modes

Z(N)|N=1 ∼ L2 |η2(τ)η̄2(τ̄)Imτ |−1 . (3.7)



We regard this as evidence for some kind of duality similar to the R → 1
R

duality. As

N becomes large, the space is becoming smaller and one might think that the number of

states is also becoming smaller. However, more and more twisted states come down and

become almost massless as we take N to infinity. These states combine to give a partition

function very similar to the partition function of the original theory. So in some sense we

still have as many states as we started with.

4. Discussion

We have seen that string theory offers a suitable framework for testing the conjecture

by ‘t Hooft and Susskind that the Bekenstein-Hawking entropy should be understood in

terms of the entropy of fluctuations near the horizon. With this objective in mind, we

have described the construction of string propagation on a cone. We have obtained an

expression for the entropy that is proportional to the area of the event horizon. In order to

complete this computation we need to perform the finite sum for Z(N) which is currently

under investigation [15]. The presence of tachyons in these models also deserves attention.

Tachyons signify a vacuum instability and it is very important to understand their role in

string theory. For example, it has long been thought that the bosonic string represents

a metastable point in the space of vacua and in the proper non-perturbative formulation

we would see the theory relax into one of the stable ground states. This proposition is of

course too difficult to test in flat place because the usual tachyon moves over all space and

we do not even know any candidates for a nearby ground states. In our case, we have a

whole family of theories which can have a large number of tachyons localized to the tip

of the cone. If a tachyon condensate is formed, it will most likely change the value of the

deficit angle i.e.the value of N . For large N, some of the tachyons are nearly massless and

it may be possible to understand their condensation as a perturbation of the KN conformal

field theory with a nearly marginal operator.

The existence of tachyons in the twisted sectors along with the results of [15] indicates

that there will be a Hagedorn transition close to horizon. It seems possible to understand

the dependence of the black hole entropy on the area of the event horizon and also the

coupling constant if a condensate is formed. If the entropy comes from the fundamental



degrees of freedom of string theory beyond the Hagedorn transition, then quite possibly,

it is also independent of the low energy particle spectrum. If this conjecture turns out

to be correct, we may be able to learn something about the Hagedorn transition from its

relation to the black hole entropy and vice versa.
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