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ABSTRACT

String propagation on a cone with deficit angle 27 (1 — %) is described by constructing
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and has tachyons in the twisted sectors that are localized to the tip of the cone. A
possible connection with the quantum corrections to the black hole entropy is outlined.
The entropy computed by analytically continuing in N would receive contribution only
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1. Introduction

In this paper we discuss the propagation of strings on a conical space. The chief
motivation for this work stems from its possible application to computing the entropy of a
black hole in string theory. In field theory, an efficient way to compute the entropy is via
the Euclidean path integral on a cone. The leading contribution to the entropy comes from
field modes near the horizon of the black hole which in Euclidean space corresponds to the
tip of a cone. In order to understand this leading contribution, the details of the geometry
of a specific black hole can be ignored and it is adequate to consider field propagation in
a conical space. We would like to do something similar in string theory. This work should
be regarded as a step in that direction. For special values of the deficit angle of the cone,
it is easy to construct the corresponding string theory as a Zy orbifold of the theory in
flat space. We describe this construction in the next section. These orbifolds can also be
viewed as describing string propagation in the background of a cosmic string. We shall
also see some evidence for duality in a new guise. Moreover, for large N, there are nearly
massless tachyons in the spectrum that are localized to the tip of the cone. These could
be useful for studying the tachyon instability in string theory.

We shall now describe some basic aspects of black-hole entropy that will be important
in the following discussion. There are three distinct notions of the entropy associated with
a black hole. The Bekenstein-Hawking entropy is calculated using thermodynamics and

quantum field theory in a fixed, classical background of a black hole [[B]. It is given by

Spr = ZlGih (1.1)
where A is the area of the event horizon of the black hole and G is the renormalized
Newton’s constant. The Gibbons-Hawking entropy [B], on the other hand, is obtained by
evaluating the full functional integral of quantum gravity around a saddle point which rep-
resents the Euclidean continuation of the Schwarzschild solution. Remarkably, it also gives
the same expression for the entropy as the Bekenstein-Hawking formula with the renormal-
ized Newton’s constant replaced by its bare value. It is natural to ask about the quantum

corrections to the leading semiclassical formula. Susskind and Uglum [fJ] have argued that



these quantum corrections can all be absorbed into the renormalization of Newton’s con-
stant. Thus the renormalized Gibbons-Hawking entropy equals the Bekenstein-Hawking
entropy.

Both these derivations do not offer any statistical interpretation of the thermodynamic
black hole entropy in terms of counting of states. 't Hooft [[] has advocated that the entropy
of quantum fluctuations as seen by a Schwarzschild observer should account for the black
hole entropy. In field theory this quantity is ultraviolet divergent. Several authors have
found a similar divergence in Rindler spacetime which approximates the geometry of a
large black hole very near the horizon |,B,[d,8,0,I0]. There is a simple description of the
leading divergence. A fiducial observer that is stationed at a fixed radial distance from the
black hole, has to accelerate with respect to the freely falling observer in order not to fall
into the black hole. Very near the horizon, the fiducial observer is like a Rindler observer
in flat Minkowski space. As a result, she sees a thermal bath [[[T] at a position-dependent

1

proper temperature T(2) = 5~ where z is the proper distance from the horizon. Using

Planck’s formula for a single massless boson we get the entropy density:
_ 4 7?2 1

5(2) = 555 (52)° (1.2)
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Note that we have been able to define the entropy density because entropy is an extensive
quantity as it should be. However, the dominant contribution comes from the region near
the horizon z = 0 and is not extensive but proportional to the area. If we put a cutoff on

the proper distance at z = € (or alternatively on proper temperature) the total entropy is:

S = / " s(2)Adz

A
~ 360mwe2

(1.3)

where A is the area in the transverse dimensions. This is in agreement with the result
obtained in [fH] by other means. Because the thermal bath is obtained by tracing over
states that are not accessible to the observer in the Rindler wedge, this entropy is also the
same as the ‘entropy of entanglement’ [§,0,[[0,[F] or the ‘geometric entropy’ [[,f]. For a
massive field with mass m, there will be corrections to this formula which will be down by

powers of me.



It is not clear how this divergent quantity can equal the black hole entropy which is
finite. There are other difficulties with identifying this entropy of entanglement with the
Bekenstein-Hawking entropy. For expample, the entropy of entanglement has no classsical
contribution and starts at one loop whereas the black hole entropy is inversely proportional
to the coupling constant. Furthermore, the entropy of entanglement depends on the species
and couplings of various particles in the theory whereas the black hole entropy does not.
't Hooft has argued that it is necessary to understand the ultraviolet structure of the
theory in order to address these issues. He has conjectured that these difficulties will
be resolved once the correct short distance structure is known. He has further suggested
that this divergence of entropy in field theory is intimately related to the puzzle of loss of
information in black hole evaporation. If the entropy does have a statistical interpretation
in terms of counting of states then its divergence would suggest an infinite number of states
associated with a finite mass black hole. As long as the black hole has an event horizon, it
can apparently store an arbitrary amount of information in terms of correlations between
the outgoing radiation and the high energy modes near the horizon. When the horizon
eventually disappears, the information in these correlations is irretrievably lost.

It is almost impossible to test these ideas within field theory, especially when one
is dealing with a nonrenormalizable theory such as quantum gravity. Fortunately, string
theory offers a suitable framework for addressing this question. It is a perturbatively
finite theory of quantum gravity and comes with a well-defined matter content. Moreover,
Susskind [[3[I4] has argued that string theory may also possess some of the properties
required for describing black hole evaporation without information loss. It is therefore of
great interest to know how the ultraviolet behavior of the entropy is controlled in string
theory. One can hope that string theory will illuminate this question in important ways.

In field theory, there is a general method of computing the entropy of entanglement
using Euclidean path integral over a conical space. As we shall see in section three, the
analogous formula in string theory for the entropy at G loop is

d(N Ag)

5¢ = —IN

|N=1- (1.4)

where A¢g is the vacuum amplitude at G loop in string perturbation theory on a conical

space with deficit angle § = 27 (1 — %) A major obstacle in using this formula is that the



conical background in general does not satisfy the equations of motion because there is a
curvature singularity at the tip of the cone. Luckily, in string theory, for special values of
the deficit angle § = 27(1— %) with integer NV, the theory manages to be on-shell at least at
tree level. We would like to use this fact to obtain the entropy by analytically continuing in
N. Similar suggestion has been made also in [J]. We do not yet have a complete expression
for the entropy and we wish to return to it in a subsequent publication [[J]. However, the
entropy computed this way already appears to have several desirable features. Moreover,
a number of technical issues arise in the construction of the orbifold that are interesting
in their own right. With this objective in mind, in the next section, we describe the
propagation of strings on a cone for integer N. In section three, we discuss its relation to

the computation of entropy.

2. Strings on a Cone

We first construct the bosonic orbifold from the uncompactified string theory in
twenty-six dimensions. Our spacetime will be Myy X Ky where My, is flat spacetime
and Ky is a cone with deficit angle 27 (1 — %) We can further compactify some of the
dimensions of the My, if we so desire. The details of compactification will not be im-
portant. For non-integer N, this background is not a solution to the string equations of
motion because when a string encounters the curvature singularity at the tip of the cone,
it would develop a kink. For integer N, however, we can have consistent propagation of
strings despite the curvature singularity.

In this case, we can tile the entire plane with N copies of the cone. The configurations
on the plane that are symmetric under Zy rotations define consistent string configurations
on the cone [see fig. 1]. We can then regard K as an orbifold of the plane Ry/Zy [L6,[7).
Notice that unlike the orbifolds considered in string compactification we are interested in
an orbifold of a non-compact space. If instead of Ry we consider a compact space like a
torus [[§], then we cannot take N to be arbitrary and the allowed orbifold groups are very

limited. Moreover, in that case, there are more than one points with a conical singularity

and the orbifold only locally looks like a cone.



Fig. 1: Configurations on the plane that define consistent string configurations on
the cone with deficit angle %’r. The solid and the dashed lines indicate strings with
zero and nonzero winding number around the tip of the cone respectively.

The Hilbert space of the orbifold is obtained by first considering the theory on the
plane which is conformal and modular invariant and then projecting onto Zy invariant
states. As is well known, we also have to include the twisted string states because the
winding number on the plane around the tip of the cone is conserved only modulo N

[fig. 1]. It is convenient to combine the co-ordinates of the plane into a complex boson

X = X1+;X2 and X = Xl_i\/%X? The orbifold group then acts on X by multiplication by a
2mik

phase e~ . In the untwisted sector this field has the standard mode expansion:

S

_ E % —2in(t—o0) E % —2in(t+0)
X—x+p7+2§ne +2;ne . (2.1)

and the ground states are labelled by the momenta in the plane |p,p). The spectrum
before projection is the same as the twenty-six dimensional string and consists of states
with some number of creation operators acting on the ground states. For states with
nonzero p and p, the projection onto Zy invariant states reduces the spectrum by a factor
of N. For example, for N = 3, the states a_,|p,p) are projected onto %(oz_n|p, ) +

27d 4ri 47 47

__2mi 2mi _ — =27t
e a_ple 3 p, eI p)tes ayle” 3 p e

p)). Thus, on a Zx cone, we still have the
same set of particles in the untwisted sector as in flat space, except that the allowed
combinations of momenta are reduced N-fold. The zero momentum states, however, need

to be treated differently. In this case, only those combinations of creation operators that



are invariant under Zy rotations are allowed. For example, a_,|0, 0} is projected out but
a_pn@_p,|0,0) is allowed. As we shall see, it is the zero momentum sector that mixes with
the twisted sectors under modular transformations. In the twisted sectors, the boson is

2nmik

subject to the boundary condition X (o 4+ 7,7) = e~ X(o,7), k=0,..., N-1. The mode

expansion and the commutation relations are given by:

x=2t 3 Ont® —2itnt ) (r—0) ! 3 M= —2i(n—E)(r+o)
2 n -+ L3 2 n — k ’
n N n N (22)
_ . - k
[t > O] = (M A+ —)omin, (Gt g5 Qg ] = (M A+ =)0t
The zero point energy for the % moded (complex) boson is given by %%(1 — %) — % The

22 untwisted bosons contribute _1—121 . Consequently, we have N — 1 tachyons, one in each
twisted sector with mass-squared % (1— %) — 8 . Note that there are no zero modes in the
expansion (.). As a result, these tachyons are localized to the tip of the cone but can
have momenta in the remaining 24 dimensions.

The vacuum amplitude for the cone is not very different from the one in flat space.

For the bosonic string in flat space, the G-loop amplitude is given by (see [I9] 0] [BT] )

Ag ~ 92G—2L26/ d(WP) 2m2det’ A,
M Vol(kerPy) [d*%\/g

Here d(W P) is the Weil-Petersson measure over the genus-G moduli space Mg, A, is the

)_ det’ (P} P,) (2.3)

scalar Laplacian —%gaa \/ygabab and P is the operator that maps vectors into symmetric
traceless two-tensors: (P1v)ap = Va U + VbV — gab V ¥ - The volume factor L26 comes
from the zero modes of the scalar Laplacian, one power for each real boson. det’ is the
determinant only over nonzero modes. In the orbifold theory, one inverse power of the
determinant in (B.3) coming from one complex free boson and two powers of L coming
from the zero modes, get replaced by the orbifold partition function Z(N) for the field X,
at genus G.

It is easy to write down the one-loop partition function explicitly. The world-sheet at
one loop is a torus. The metric for a torus in a given conformal class is parametrized by
a complex modular parameter 7: ds? = |doy + Tdos|? with 0 < 01,09 < 1. The partition

function is given by the orbifold sum

Z(N) =) Zri(N). (2.4)
k,l



Each term Zj,; represents the path integral of a complex boson on a torus with twisted
boundary conditions. The path integral gives one inverse power of a determinant

Det[‘lﬂ (Ag) of the scalar Laplacian on a torus subject to the boundary conditions

X(o1+1,09) = e K" X(oy,02), X(o1,00+1)= e F X (o1, 092). (2.5)
Instead of evaluating the bosonic determinant we shall evaluate a related quantity,
Det|[?](v* %) which is the determinant of a chiral Dirac operator. This will also be
useful later when we discuss the superstring. It can be regarded as a path integral of a
complex chiral fermion with boundary condition ¥ (o1 + 1, 02) = —e2™%)(0y , 02), and
P(oy, og+1) = —e2™)(0y, 03). It is straightforward to evaluate this determinant in the

27T

operator formalism [27]. Writing ¢ = €*™7, and using the standard relation between the

path integral and the operator formalism, it is equal to the trace I{T (hy ¢*1+). H, is the
Hamiltonian of a chiral, twisted fermion:

a? 1

TRy (2.6)

H, = Z(n — % +a)d! d, + (n — % —a)d!d, +
n=1
The fermionic oscillators satisfy the canonical anticommutation relations {dIL, dm} = Omn
and {d! ,d,,} = 6,un, and H is the usual Fock space representation of these commutations.
The group Zx acts on this Fock space through hdh™! = —e=2"d | hdh~! = —e?™d. The
trace equals (up to an arbitrary phase)

oo
1

eQﬂ'iabq%—ﬂ H(l + qn—%—l—anﬂ'ib) (1 + qn—%—ae—%rib) ‘ (27>
n=1
Using the product representation of the theta function 9[§](7) with characteristics 23] ,

we see that
a

b
where 7(7) is the Dedekind 7 function.

d[3](0|7)

Det[ n(7)

J(v,) = Tr (hyg'™) = , (2.8)

Now we return to the problem at hand. Up to zero modes, the chiral boson determi-

nant is the inverse of the chiral fermion determinant. The orbifold sum (2.4)) becomes

()
Z(N) = SEA (2.9)
k,zl_:o I 73]



The bosonic zero modes can give a divergence for some of these terms such as Z o, and
should be treated more carefully. For the moment, we shall continue to treat them in a
somewhat cavalier manner.

2,

5

The Weil-Petersson measure for the torus is (IiiT)? and vol(kerP;) = Im7. Using the

standard expressions for the other determinants [2I] we obtain

A1(N) ~ Area/M (Ircxlj:)Q 1n? ()7 (7)Imr| %Z(N) (2.10)

The factor of % in this formula comes from the fact that the operator that projects onto
Zn invariant states is +(1 4+ h + h? 4+ ...+ AN 71). The area here refers to the volume
L?* of the transverse dimensions. The integration is over the genus-one moduli space M,
which is the fundamental domain of the modular group

1 1
|T\>1,—§<Re7<§,1m7>0. (2.11)

The modular group SL(2, Z)/Z5 for the torus is the group of disconnected diffeomorphisms.
The co-ordinate transformations (o7 ,02) — (doy + bos , cos + aoy) with a, b, ¢, d integers
and ad — bc = 1, transform the metric into a conformally inequivalent metric parametrized

by a new modular parameter

T —

% : (a Z) e SL(2,Z). (2.12)
We have to divide the SL(2,Z) by Z; because the elements {I, —1} leave 7 unchanged. In
order that the theory does not suffer from global diffeomorphism anomaly, it is necessary
that the integrand in the amplitude (B.1() be invariant under the action of the modular
group. The modular group is generated by the elements T': 7 — 7+ 1and S : 7 — —% .

Under these transformations the theta functions transform as

T 19[2}(7) - eﬂiazﬂiaé[a+z+ %](7) (2.13)
5 19{2](7) - (—z’7>%€2““b19{ ab}m
Moreover,
5= "

o[ )@ =[]



Using these properties it is easy to check that (R.I(]) is modular invariant, and the modular
integration can be restricted to the fundamental domain (2.I7]) .

Let us now move on to the superstring. For simplicity we consider the nonchiral
type ITA superstring moving on Mg x K. It will be easiest to use the Green-Schwarz
formalism. We fix the light-cone gauge by using two of the directions in Mg and obtain
the remaining theory as an orbifold. Before modding out by the orbifold group, we have

the supersymmetric sigma model in flat space
1 , S i~ o~
L=——04X"0_X"—=50,5— =5%0_5", (2.15)
T T 0

where the coordinates X transforms as a vector 8y of SO(8) and S® and S% transform as
spinors of SO(8), 8, and 8p respectively. The orbifold group Zy is a subgroup of planar
rotations, so we shall use the decomposition SO(8) — SO(6) x SO(2), or equivalently
SO(8) — SU(4) x U(1). The vector and the spinor representations then decompose as

follows
8y — 6(0) +1(1) +1(-1)

8, —>4(§)+21(——) , (2.16)

8 — 4(~3) +4(3)

Here the numbers in the parentheses are the U(1) charges. We have one boson X with
charge 1, eight fermions S, S™ with charge %, and their complex conjugates. The index

m transforms in the 4 of SU(4). The one-loop vacuum amplitude for the superstring is

quite similar to (.I0) ,

Ai(N) ~ Area/ dr

. (Im7)? |n%(7)7?(7)Imr| 3 %Z(N) (2.17)

The area here refers to the volume L?® of the transverse dimensions and the first factor
in the integrand comes from the six real boson that are neutral under the Zy rotations.
Before discussing the orbifold partition function Z(N), we should point out an important
subtlety for the superstring that has to do with the fact that fermions have half integer
spin. A rotation through 27 does not bring a spacetime fermion back to itself; which means

we really have to embed our Zy not into SO(2) but into a double cover of SO(2). As a



result, it will turn out that we must distinguish between even and odd N. Let us first

consider the odd N theories. In this case we have a sum similar to the bosonic case

Nodd) Z Zia( (2.18)

k,l=1

Each term Zj,; is a partition function for the fields X, S™, S™ and their complex conjugates
with twisted boundary conditions

Sm<0'1 + 1, 0'2) = 6271r"1k Sm(O'l s 0'2) Svm(o_l + 1, 0'2) = 6_% Sm(dl s 0'2) s
| ,(2.19)
4drmik

X(o1+1,09)=€e~ X(o1, 02)

and similarly in the oo direction. Altogether, we have four fermionic and one bosonic

determinants. Using the formula (P.§) for the determinants we obtain,

o[t
‘ . (2.20)
n31
el 11]
We can repeat the analysis for even N with minor modification and obtain
94 aN T3
]
k
39| ¥t3
77&{%+%}

This formula would look identical to (B.20) in terms of new variable N’ = 2N, however,

N

odd §

ON 2

1
Z(Neven> = =

k=1

(2.21)

=

N is chosen so that 6 = 27(1 — —) It is straightforward to check for modular invariance.

There is one more modular invariant combination for odd N given by,
o]ty
avt2

ol 1]

It may seem a little disconcerting that there are more than one ways of constructing the

2N 2

1

Z(Nopgq) = - (2.22)

k=1

lol»—A N

orbifold. After all, if we wish to use this construction for computing the entropy, we would
like to get a unique answer for each theory. Fortunately, there is a good explanation for this

non-uniqueness. The Green-Schwarz superstring has a Z, symmetry, (—1) where F is



the spacetime fermion number. This symmetry is obviously a subgroup of the double cover
of SO(2), (—1)¥ = €271z The orbifold with respect to this Z, changes the spectrum
drastically. In the untwisted sector the projection onto Z; invariant states removes all
fermions. The twisted sector adds more particles including a tachyon. Moreover, the
number of bosonic zero modes is the same in the twisted sectors because the bosonic
coordinates are neutral under this Z5. This means that the states in the twisted sector
move over all space and are not restricted to the tip of the cone. We should really regard
this theory as a different theory (vacuum). The orbifolds in (B.2) should then be regarded
as the orbifolds not of flat space but of this different underlying theory. It is to be exptected
that the entropy of black holes would be different in these two cases because, after all, the
patricle spectrum of the two theories is completely different.

As an aside, we note that in all these orbifold models, supersymmetry is completely
broken. This is not surprising. In order to have an unbroken supersymmetry, we must
have a covariantly constant spinor on the cone, which means that the cone must have
SU (1) holonomy. But SU(1) holonomy is no holonomy at all, and the only manifold with
this holonomy is the plane. As a result, there are no unbroken supersymmetries on a
cone. Even though supersymmetry is completely broken, in some cases drastically, the
equivalence between the Green-Schwarz string and the Neveu-Schwarz-Ramond string still

continues to hold. Let us recall the following Riemann theta identity:

4 1 4 4 4 4 1
= O =
NUHEER U Hﬂ[ J i - Hﬁ{ Jiir) + L[ 2| sl
i=1 L2 i=1 i=1 i=1 i=1 L2
(2.23)
where y; = %(501-1-5!324-3334-334), Y2 = %($1—$2—$3+$4) » Y3 = %(331—1-582—333—334) andy, =
$(@1 — 22+ 23 — x4) and I[]](2]7) = ezma(z“’)q% Y(z 4+ at + b|T). With the use of this
identity we can write each term in the sum for Z(N) as the modulus-squared of sum of
four terms. These four terms correspond to the four spin structures on the left and the

right of the NSR superstring. The simplest example is the 7, orbifold above. With N = 1
in (E23) we get,

2 2 1
oA [S11° + (92 (211 + [0 (311 + 9]

Alreo[3][?

JI°

SN

Z(1) =

(2.24)



Thus, in this case, we see the equivalence of the two formalisms simply by reinterpreting
the orbifold sum in the GS formalism as the sum over spin structures in the NSR formalism
with a modular invariant combination diagonal in spin structures. The corresponding NSR
string has been discussed in [BJ]. It has a very different projection than the usual GSO
projection and there are no fermions in the spectrum. Remarkably, the GS and the NSR
formalism are equivalent even after this rather extreme breaking of supersymmetry. This
points to a deep connection between the two formalisms that goes beyond supersymmetry.

The spectrum of the Zy orbifold in the sector twisted by n = % is easily ob-
tained. We shall use the light-cone gauge and describe only the low lying states as-
suming that 7 is small. Let us first consider the GS formalism. The ground state has
energy —a and is tachyonic. In the right moving sector, we have the oscillator modes
S;”_% , ;ﬁ+ 15 Cn—n and &p4y. Acting on the vacuum with various powers of S’_”% , we
generate a sixteen dimensional representation quite similar to the gauge supermultiplet
in flat space. It decomposes in terms of SU(4) representations 1,4,6,4,1 with masses
—3,0, 2,7, 3777 respectively. The representations 4 and 4 are fermions and the remaining
states are bosons. We get a similar representation on the left and the low lying spectrum
is the tensor product of the two, keeping only the Zy invariant states. In addition, there
are more states that are obtained by acting with various powers of a_,, on these states. In
the NSR formalism the analysis is somewhat different. The eight worldsheet fermions
transform as the vector of SO(8) exactly like the bosons . As a result, only two get twisted
and the remaining six are untwisted. In the NS sector, the ground state energy is —% + 7.
The low energy fermion creation operators are 1_ 1, and @_% 4+n coming from the two
twisted fermions, and six wi_% coming from the untwisted fermions. The ground state
gets projected out by the GSO projection. At the next level, we have one of the creation
operators above acting on the vacuum. This gives one state with energy —3, six states
with energy 3 and one state with energy 32—77 All of these are spacetime bosons. As usual,
the spacetime fermions come from the Ramond sector. The ground state energy is zero in
the Ramond sector. The six untwisted fermions have zero modes that form the Clifford

algebrea of SO(6) and have an eight-dimensional spinor representation, that splits as 4

and 4 . The 4 gets projected out by the GSO projection and we are left with four fermions



with mass 0 in 4. The next excited state is obtained by acting on the vacuum with a
creation operator with energy n coming from the twisted fermions. The GSO projection
removes the 4 at this level and we obtain four fermions in 4 with energy 7. The bosonic
oscillators in the NSR string are the same as in the GS string, so the low lying spectrum

matches exactly with the one obtained from the GS formalism.

3. Black Hole Entropy in String Theory

The entropy is given by,

d(log Z)

S=-=7;

+ log Z. (3.1)

In order to compute this we need to vary the Rindler temperature away from 27 which
corresponds to flat space. This introduces a conical defect with the deficit angle 4 which
is related to the inverse temperature by = 2w (1 — %) = %T Treating N as a continuous

variable, we see that S = d(N log z )|

. In string perturbation theory at G loop, the
spacetime partition function Zg and the worldsheet vacuum amplitude Ag are related by
log Z¢ = A [BE]. This gives us the desired formula for the entropy at G loop:
d(N Ag)

So = =N In=1-

(3.2)

Substituting (B.17) into (B-J) we obtain the final expression for the entropy in the bosonic

string at one loop:

S NArea/Ml (Ii:)z |n%(7)7?(F)Imr |~ 27(1) . (3.3)

Similarly for the type IIA supersting we obtain

S1 NAlrea/M1 (Ii:)2 |n%(7)7?(F)Imr| 2 2/(1) . (3.4)

Here Z’(1) for each theory is the first derivative of the orbifold partition function evaluated
at N = 1. It is quite satisfying that the entropy comes out proportional to the area. Before
making this assertion, we must clarify one point that we have so far glossed over. In the

orbifold sum (B.I§) the term Zj o is divergent. This is because the theta function vanishes



due to the contribution of the bosonic zero modes to the corresonding determinant. If we
treat the determinant carefully, the zero modes would turn the area in (2.I7) into volume
for this particular term in the sum. Modular invariance would still hold because Z; ¢ does
not mix with other terms under modular transformations and is invariant by itself. More
importantly, it is independent of N and as we see from (B-J) , it does not contribute to
the entropy. Thus, the entropy will be proportional to the area and not the volume.

Before proceeding further let us see what we expect to find. The Schwarzschild ob-
server near the horizon sees a hot thermal bath. We can thus view the orbifolds as describ-
ing the Euclidean path integral for strings in a thermal ensemble at Rindler temperature
%. The proper temperature is position dependent and diverges at the tip of the cone. As
a result, we expect the strings to undergo a Hagedorn phase transition well known in string
theory. Correspondingly, we expcect to find an infrared instability in the form of tachyons.
The tachyons that we find in the twisted sector are closely related to tachyons coming from
the winding modes of the string around the Euclidean time direction [R7] which signal the
Hagedorn transition in strings at finite temperature. After the phase transition, a tachyon
condensate will be formed. This can explain the tree level contribution to the entropy as
coming from the latent heat of this phase transition [B§]. Furthermore this condensate will
be confined very close to the horizon and spread only in the transverse directions. It raises
the exciting possibility that we can understand the dependence of the Bekenstein-Hawking
entropy on area as well as the coupling constant [[5]. Unfortunately, at the moment, the
Hagedorn transition is not very well understood. Moreover, once we include interactions
we also have to worry about the Jeans instability [29]. It is not clear how to properly take
these effects into account. However, we are really interested only in the entropy at a special
value of the temperature and we hope that at least some of the features of the entropy will
be accesible without having to understand all the consequences of the Hagedorn transition.
For example, it would be nice to see if the entropy can be rendered finite in the infrared
by adding a tree level contribution.

In order to complete this computation we need an analytic expression for the sum
Z(N) so that we can take its derivative. Several comments are in order here. First, all

terms in the sum are analytic functions of N so we can expect that the sum will also be



analytic. Second, modular invariance of the vacuum amplitude holds only for integer N.
In fact, for non-integer NV, the sum may not have any interpretation as a partition function
of some string theory. However, for our entropy computation we do not really require that
the theory be well defined for arbitrary N. All that is needed is that the first derivative
of the vacuum amplitude at N = 1 be well-defined and modular invariant. This certainly
seems possible, especially if we think of the entropy as the counting of states of a given
finite theory in flat space as seen by the Rindler observer. Finally, even if we do perform
the sum, there is a high degree of non-uniquness because we can always add to the sum
any function that vanishes for integer NV e.g. sin(wN). We can fix this non-uniqueness
if we know that the partition function does not have an essential singularity at N = oc.
This requires some physical input about the theory. We can guess the correct ananlytic
continuation by comparing our answers with strings in a thermal ensemble discussed in
).

It is interesting to take the large N limit of our formula (R.1§) . Putting 2z = %7’ + %
in (R.1§) and taking N to infinity, we see that

‘ 2

(V) = e [ 2 exp(- TSy | D) (3.5)

Imr 2Imr (z|7)

where 911 is the theta function with half characteristics. The integration is over a torus
with modular parameter 7 which is parametrized with a flat metric as a parallelogram
with corners at 0, 1, 7 and 7+ 1. The integrand is doubly periodic over this region and is a
well defined function on the torus. This expression is clearly analytic in N and moreover is
modular invariant even for non-integer N. Encouragingly, Z (V) does not have an essential
singularity but only a second order pole at infinite N. Another interesting feature of (B.3)
is that the integral is logarithmically divergent. The theta function has a zero at z = 0,

911(2|7) ~ 272n3(7). As a result the leading contribution to (B3) is
Z(N)|N—oo ~ N?log N |n*(7)ij*(F)Imr| " . (3.6)

This expression is strikingly similar to the partition function in Ry (N = 1) after properly

taking into account the bosonic zero modes

Z(N)|n=1 ~ L? |p*(1)7* (F)Im| " . (3.7)



We regard this as evidence for some kind of duality similar to the r — % duality. As
N becomes large, the space is becoming smaller and one might think that the number of
states is also becoming smaller. However, more and more twisted states come down and
become almost massless as we take N to infinity. These states combine to give a partition
function very similar to the partition function of the original theory. So in some sense we

still have as many states as we started with.

4. Discussion

We have seen that string theory offers a suitable framework for testing the conjecture
by ‘t Hooft and Susskind that the Bekenstein-Hawking entropy should be understood in
terms of the entropy of fluctuations near the horizon. With this objective in mind, we
have described the construction of string propagation on a cone. We have obtained an
expression for the entropy that is proportional to the area of the event horizon. In order to
complete this computation we need to perform the finite sum for Z (V) which is currently
under investigation [[J]. The presence of tachyons in these models also deserves attention.
Tachyons signify a vacuum instability and it is very important to understand their role in
string theory. For example, it has long been thought that the bosonic string represents
a metastable point in the space of vacua and in the proper non-perturbative formulation
we would see the theory relax into one of the stable ground states. This proposition is of
course too difficult to test in flat place because the usual tachyon moves over all space and
we do not even know any candidates for a nearby ground states. In our case, we have a
whole family of theories which can have a large number of tachyons localized to the tip
of the cone. If a tachyon condensate is formed, it will most likely change the value of the
deficit angle i.e.the value of N. For large N, some of the tachyons are nearly massless and
it may be possible to understand their condensation as a perturbation of the K conformal
field theory with a nearly marginal operator.

The existence of tachyons in the twisted sectors along with the results of [[5] indicates
that there will be a Hagedorn transition close to horizon. It seems possible to understand
the dependence of the black hole entropy on the area of the event horizon and also the

coupling constant if a condensate is formed. If the entropy comes from the fundamental



degrees of freedom of string theory beyond the Hagedorn transition, then quite possibly,
it is also independent of the low energy particle spectrum. If this conjecture turns out
to be correct, we may be able to learn something about the Hagedorn transition from its

relation to the black hole entropy and vice versa.
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