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ABSTRACT

An orientifold of Type-IIB theory on a K3 realized as a Z2 orbifold is constructed

which corresponds to F-theory compactification on a Calabi-Yau orbifold with Hodge num-

bers (51, 3). The T-dual of this model is analogous to an orbifold with discrete torsion

in that the action of orientation reversal has an additional phase on the twisted sectors,

and both 9-branes and 5-branes carry orthogonal gauge groups. An orientifold of the Z3

orbifold and its relation to F-theory is briefly discussed.
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Orientifolds are a generalization of orbifolds in which the orbifold symmetry is a

combination of a spacetime symmetry and orientation reversal on the worldsheet [1,2,3,4].

These techniques have significantly enlarged the set of string vacua that can be studied

perturbatively. Several new string vacua can now be constructed as orientifolds which

exhibit novel dynamical phenomena and have interesting nonperturbative duals in M-

theory, F-theory, or heterotic string theory.

One important application of orientifolds is in the construction of models in six dimen-

sions with N = 1 supersymmetry. The dynamics of these theories offers many surprises like

the appearance of tensionless strings which can cause a phase transition in which the num-

ber of tensor multiplets changes [5,6,7], or the appearance of enhanced gauge symmetry

when an instanton shrinks to zero scale size [8]. Orientifolds are useful in understanding

some aspects of these phenomena perturbatively. For instance, the models with multiple

tensor multiplets are inaccessible using usual Calabi-Yau compactifications which give only

a single tensor multiplet. However, one can easily construct orientifolds [9,10,11,12,13] with

multiple tensor multiplets at special points in this moduli space. By turning on the mod-

uli in the tensor multiplets one can move away from these special points and thus explore

different regions of the moduli space that are separated by phase boundaries. Some of

these models [10] are known to have M-theory duals[14,15]. The extra tensor multiplets

which arise in M-theory from the addition of M-theory 5-branes occur perturbatively in

the dual orientifold. Similarly, small instantons, which cannot be described as a conformal

field theory in heterotic compactifications, have a perturbative description in terms of a

Dirichlet 5-brane in the dual orientifold [8,16]. In particular, the enhanced Sp(k) symme-

try when k small instantons coincide can be understood in terms of coincident 5-branes

with a specific symplectic projection in the open string sector that is determined by the

consistency of the world-sheet theory.

Another more recent application of orientifolds is in connection with F-theory

[17,18,19]. F-theory refers to a new way of compactifying Type-IIB theory in which the

complex coupling λ of Type-IIB theory is allowed to vary over space. The coupling is

given by λ = ξ+ ie−φ where φ is the dilaton from the NSNS sector and ξ is the RR scalar.

Consider an elliptically fibered Calabi-Yau manifold K which is a fiber bundle over a base

1



manifold B with a torus as a fiber whose complex structure parameter is τ . Even-though

K is a smooth manifold, there will be points in the base manifolds where the fiber becomes

singular, and the parameter τ can have a nontrivial SL(2, Z) monodromy around these

points. An F-theory compactification on K refers to a compactification of Type-IIB theory

on B, where the coupling λ is identified with τ . The nontrivial monodromy of λ around

the singular points then means that there are 7-branes at those points that are magnet-

ically charged with respect to the scalar λ. Typically, the base manifold is not Ricci-flat

and moreover, because λ is varying, there is a nonvanishing RR background. These back-

grounds cannot, therefore, be described using conformal field theory. For special choices

of the manifolds K, however, an F-theory compactification is equivalent to a perturbative

Type-IIB orientifold. This follows from an observation due to Sen [20] that the element −1I

of SL(2, Z) which is not an element of PSL(2, Z) is a perturbative symmetry of Type-IIB.

It flips the sign of the two 2-form fields B1
MN and B2

MN , but leaves all other massless fields,

in particular, the coupling fields λ invariant. From its action on the massless fields it is

easy to check that this element represents the action of Ω(−1)FL where Ω is orientation

reversal on the worldsheet and FL is the spacetime fermion number of the left-movers. In

the example considered by Sen, K is a K3 surface that is a Z2 orbifold of a four-tours;

F-theory on this surface corresponds to a Type-IIB orientifold with the orientifold group

{1,Ω(−1)FLσ} where σ is a specific Z2 involution of K3, and is T-dual to Type-I theory.

Such an identification of F-theory with an orientifold is very useful. For instance, it was

used in [20]to establish the duality between F-theory on K3 and the heterotic string on T 2

by relating it to the duality between the Type-I and the heterotic string in ten dimensions.

In this note we analyze an orientifold of a K3 orbifold which gives N = 1 supersymme-

try in six dimensions. Its T-dual has the same orientifold group as the Type-I orientifold

analyzed by Gimon and Polchinski [3], but the orientation reversal symmetry Ω acts with

an additional minus sign on the twisted sector states of the orbifold. One is familiar

with an analogous situation in orbifold constructions. For a Zk × Zk orbifold symmetry,

there are k inequivalent orbifolds which correspond to turning on discrete torsion[21,22].

These different orbifolds correspond to the k distinct choices of phases for the action of

the generator of one Zk subgroup on the sectors twisted by other generators.
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This model illustrates interesting new features that are relevant to all the applications

mentioned earlier: the unusual action of orientation reversal gives rise to multiple tensor

multiplets, the 5-branes at the fixed points of the orbifold have orthogonal projection

instead of the symplectic projection of a small instanton at a nonsingular point, and

it is perturbatively equivalent to F-theory on a Calabi-Yau orbifold T 6/{Z2 × Z2} with

Hodge numbers (h11, h21) = (51, 3) [22]. Using the formulae in [18] we see that this F-

theory compactification gives 17 tensor multiplets, four neutral hypermultiplets, SO(8)8

gauge group, and no charged hypermultiplets. Our aim in the following is to see how the

orientifold reproduces this spectrum.

Let us denote the complex coordinates of the six-torus by z1, z2, z3 with identifications

zl ≡ zl + 1 ≡ zl + i, l = 1, 2, 3. The Z2 × Z2 symmetry is generated by the elements α and

β where

α : (z1, z2, z3) → (−z1,−z2, z3),

β : (z1, z2, z3) → (z1,−z2,−z3).
(1)

It is easy to work out the cohomology [23,24,22]. The untwisted sector contributes (3, 3)

to (h11, h21), and the sectors twisted by α, β, and αβ each contribute (16, 0), giving

(51, 3) altogether. To obtain the corresponding orientifold, we take z3 as the coordinate

of the fiber, and consider Type-IIB compactified on a four-torus with coordinates (z1, z2):

z1 = X6 + iX7, z2 = X8 + iX9. Orbifolding with the symmetry α gives Type-IIB on K3 =

T 4/Z2. The element β can be written as R2R3 where R2 is a geometric symmetry (z1, z2) →

(z1,−z2), and R3, which reflects the fiber, is nothing but the element −1I of SL(2, Z)

which corresponds to the operation Ω(−1)FL as explained in the preceding paragraph.

We are thus led to consider an orientifold of Type-IIB on K3 with the orientifold group

{1,Ω(−1)FLR2}
1.

This orbifold is a special case of a large class of elliptic Calabi-Yau threefolds studied

by Voisin [26] and Borcea [27] and discussed in [28,19]. One can take the base to be a K3

which admits an involution σ under which the holomorphic 2-form ω is odd, and construct

the Calabi-Yau as an orbifold K3 × T 2/{1, σR3} where R3 is the reflection of the torus.

1 We would like to thank S. Mukhi for this observation which prompted this investigation [25].
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It should be possible to generalize the considerations of this paper to this whole class of

models.

The projection that we wish to perform is 1

4
(1+Ω(−1)FLR2)(1+R) where R = R1R2.

The projection 1

2
(1+R) gives us Type-IIB theory on a K3 which has 21 tensor multiplets

of N = 2 supersymmetry which is sum of a tensor multiplet and a hypermultiplet of

N = 1 supersymmetry. Five of these multiplets come from the untwisted sector, and the

remaining 16 come from the twisted sectors at the 16 fixed points of the orbifold. Now,

from the arguments of [12,20], one would have expected, by T-duality in the 89 directions,

that the operation Ω(−1)FLR2 is equivalent to the operation Ω. It seems, therefore, that

we get an orientifold of T 4 with the orientifold group {1, R,Ω,ΩR} which is nothing but

a Type-I orientifold on K3 analyzed by [3]. The massless spectrum, however, is very

different; for example, the closed-string spectrum of the model of [3] has only one tensor

multiplet instead of 17, and 20 neutral hypermultiplets instead of four. The reason for this

mismatch is that, even though the two projections are the same in the untwisted sector,

they are different in the twisted sectors of the orbifold. This is clear if we look at the

action of Ω(−1)FLR2 on the twisted sectors. The operation Ω that is dual to Ω(−1)FLR2

corresponds to Ω0T , where Ω0 is the operation considered in [3], and T is a symmetry of

the orbifold that flips the sign of the twist fields at all fixed points. In untwisted sector in

both theories give one tensor multiplet and four hypermultiplets. But in the twisted sector

at each fixed point, Ω0 projects out the tensor multiplet and keeps the hypermultiplet

giving the closed string spectrum of Type-I on K3 whereas Ω keeps the tensor multiplet

and projects out the hypermultiplet giving 17 tensor multiplets and four hypermultiplets

altogether, as required.

Let us now turn to the open-string sector. We shall follow the notation of [3] in

the T-dual picture so that we have 7-branes and 7’-branes instead of 9-branes and 5-

branes respectively. The T-dual picture turns out to be easier because then the symmetry

breaking is given by geometric separation between branes instead of by Wilson lines. The

orientifold group in this case is {1, R,Ω(−1)FRR1,Ω(−1)FLR2}. Note that both R1 and

R2, and similarly Ω(−1)FL and Ω(−1)FR all square to (−1)F but the elements of the

orientifold group all square to 1I as they should. To simplify the notation, let us denote
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Ω(−1)FRR1 and Ω(−1)FLR2 by Ω1 and Ω2 respectively. To determine the open-string

sector we need to determine, as in [3], the number of branes of each type and the eight γ

matrices that give the action of the four orientifold group elements on 7 and 7′ branes.

Before discussing the details of the calculation let us present the results. Tadpole

cancellation requires 32 branes of each kind; the 32 7-branes are located at the four fixed

planes of R1 in groups of eight, and the 32 7’-branes are located at the fixed planes of R2

in groups of eight. Moreover, by a unitary change of basis, the various gamma matrices

are given by
γ1,7 = 1I, γΩ1,7 = 1I, γR,7 = 1I, γΩ2,7 = 1I;

γ1,7′ = 1I, γΩ2,7′ = 1I, γR,7′ = −1I, γΩ1,7′ = −1I.
(2)

Now consider the massless bosonic states coming from the 77 sector at the fixed point

where eight 7-branes are located. The vectors are given by ψµ
−1/2

|0, ij〉λji, µ = 1, 2, 3, 4;

R = +1 implies λ = λ, and Ω1 = +1 implies λ = −λT , which means that the vectors are

in the adjoint of SO(8). The scalars are given by ψµ
−1/2

|0, ij〉λji, µ = 6, 7, 8, 9; R = +1

implies λ = −λ, which means that they are all projected out. From four fixed planes of R1

we get SO(8)4, and similarly from the 7′7′ sector we get another SO(8)4. Thus, altogether

we get SO(8)8 with no charged hypermultiplets.

In the 77′ sector there is a subtlety. In this case, we have to choose the oscillator

vacuum of this sector to be odd under the action of R instead of even as in [3]. This is

consistent with factorization because 77′ and 7′7 states can turn into 77 or 7′7′ states,

but we cannot have two 77 or two 7′7′ states turning into a 77′ state. So one can choose

the 77′ vacuum to be odd and the 77 and 7′7′ vacua to be even. We shall explain two

paragraphs later that this choice is indeed forced upon us by consistency. In this sector

the fermions Ψm have integer modings, so the ground states are given by a representation

of Clifford algebra generated by the zero modes. The total state after GSO projection is

|s3, s4, ij〉λji, s3 = −s4 where s3, s4 = ±1

2
. We choose R on these GSO-projected vacuum

states to be −1 instead of +1. Thus, R=+1 on the total state implies λ = −λ which

projects out the massless states completely. To summarize, we get 17 tensor multiplets

and four hypermultiplets from the closed-string sector, and SO(8)8 gauge group with no

charged hypermultiplets from the open-string sector, altogether in agreement with the

F-theory spectrum.
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This determination of the spectrum, however, poses the following puzzle. From argu-

ments similar to those presented in [3], one would have expected that if γΩ1,7 is symmetric

then γΩ1,7′ should be antisymmetric. How did we then obtain a solution in which both

are symmetric? To see that this is a consistent choice, let us recall the argument of [3]. In

the following we shall often switch between our model and its T-dual. In order to obtain

a true representation (and not merely a projective representation) of the orientifold sym-

metry that we are gauging, we must have Ω2 = 1I in the full string Hilbert space, which is

a direct product of the Fock space of string oscillators and the Chan-Paton index space.

Now, because Ω2 is −1 on the oscillator part of the massless states, it must be compensated

by choosing −1 on the Chan-Paton part. This forces γΩ,5 to be antisymmetric if γΩ,9 is

symmetric. In our case, however, because of our choice of R = −1I on the GSO-projected

vacuum states that we used in the previous paragraph, the massless states in the 59 are

projected out. Moreover, it is easy to see that at the massive level, the oscillator part of

the physical states that are left after the GSO and the R-projection all have Ω2 = +1.

This is so because only the states at half-integer mass levels survive the projections. Now,

Ω2 = −1 for the half integer oscillator modes, and moreover because Ω2 = −1 on the

oscillator vacuum as noted by [3], the total oscillator state has Ω2 = +1. This in turn

implies that in the Chan-Paton space we must choose Ω2 = 1 which means that if γΩ,9 is

symmetric then γΩ,5 must also be symmetric. To put it differently, of the whole tower of

states in the 59 sector, the states that are kept after the GSO and the R projection, all

have Ω2 = −1 in [3], but have Ω2 = +1 in this paper. Thus, the choice of the projection R

and the sign of the eigenvalue of Ω2 are correlated. Under T-duality 59 sector corresponds

to 7′7 sector and the argument above can be repeated there.

Let us now show that the spectrum described above satisfies all consistency require-

ments, and is moreover uniquely determined. Tadpole calculation in this case is very

similar to the T-dual of [3]. The Klein-Bottle and the Möbius strip amplitudes are iden-

tical, and for the cylinder amplitude, the only difference is the additional minus sign in

the 77′ and 7′7 sector in calculating the trace of R. The tadpoles are thus given, in the
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notation of [3], by

v6v2
16v′

2

{

322 − 64Tr(γ−1

Ω1,7γ
T
Ω1,7) + (Tr(γ1,7))

2

}

+
v6v

′

2

16v2

{

322 − 64Tr(γ−1

Ω2,7′γ
T
Ω2,7′) + (Tr(γ1,7′))2

}

+
v6
8

{

Tr(γR,7)Tr(γR,7′) + 2

4
∑

I=1

(Tr(γR,7))
2

+ 2

4
∑

I′=1

(Tr(γR,7′))
2

}

.

(3)

Here v6 is the regularized volume of the uncompactified dimensions, v2 and v′2 is the the

volume of the 2-tori in the 67 and in the 89 directions respectively; I and I ′ refer to the

fixed points of R1 and R2 respectively.

The chain of reasoning that determines the solution is then as follows. To cancel the

tadpoles of the 8-forms from the untwisted sector (the terms proportional to
v6v′

2

v2

and

v6v′

2

v2

), we need 32 branes of each kind with γ1,7 and γ1,7′ equal to 1I, and γΩ1,7 and γΩ2,7′

both symmetric, which can be chosen to be 1I with a unitary change of basis of Chan-Paton

indices. One can then use the argument presented in [29] which considers the amplitude in

which a closed-string twisted state turns into open string states. Conservation of Ω1 and Ω2

requires that γR,7 and γR,7′ both be symmetric, which in turn implies that γΩ2,7 and γΩ1,7′

must also be symmetric. This can be consistent only if we choose vacuum states in the 77′

to have R = −1 so that all oscillator states with Ω2 = −1 are projected out. Cancellation

of the tadpoles of 6-forms from the twisted sector (the terms in (3)proportional to v6)

then determines that the branes are distributed in groups of eight at the fixed planes, with

γR,7 = 1I and γR,7′ = −1I. This determines the solution completely.

The next simplest orientifold is when the K3 is given by Z3 orbifold of a hexagonal

lattice. In this case, zl ≡ zl + 1 ≡ e2π/3zl, l = 1, 2. The element α in (1) is given by

α : (z1, z2) → (e2π/3z1, e
−2π/3z2) and β is the same as in (1). We are thus interested

in the projection 1

6
(1 + α + α2)(1 + Ω(−1)FLR2) Now, because Ω(−1)FLR2, in this case

interchanges the sectors twisted by α with those twisted by α2, one can easily see that this

orientifold is T-dual to the Z3 orientifold with the usual Ω projection discussed in [11,12].

This model has 10 tensor multiplets and 11 hypermultiplets, and 32 7-branes of one kind.

If they are all located at the fixed point of R2, that is also invariant under α, then the

gauge group is SO(16) × U(8) with hypermultiplets in (1, 28) + (16, 8).
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To find a potential F-theory dual on a Voisin-Borcea orbifold, we consider the config-

uration in which there are eight 7-branes at each fixed point of R2 so that the tadpoles

are canceled locally. One fixed point of R2 is invariant under α, and the remaining three

form a triplet. The gauge group is SO(8)× SO(8) with one adjoint hypermultiplet under

the first SO(8) that comes from the fixed points that form a triplet under α. To identify

the F-theory dual we need to find an elliptic Calabi-Yau X with the right Hodge numbers.

The Hodge number can be calculated by compactifying further on a T 2 and computing

the Type-IIA spectrum as in [19]. We then have

h11(X) = r(V ) + T + 2, h21 = H0 − 1, (4)

where r(V ) is the rank of the gauge group, T is the number of tensor multiplets, and H0 is

the number of hypermultiplets that are uncharged with respect to the Cartan subalgebra

of the gauge group. Thus, the candidate Calabi-Yau should have h11 = 20 and h21 = 14.

Happily, there is a unique Voisin-Borcea with the above Hodge numbers which corresponds

to (r, a, δ) = (11, 9, 1) in the notation of [19,27]. Indeed, this model has the same matter

content as the orientifold configuration with local tadpole cancellation.
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