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Abstract

Supersymmetric closed string theories contain an infinite tower of BPS-saturated, os-

cillating, macroscopic strings in the perturbative spectrum. When these theories have

dual formulations, this tower of states must exist nonperturbatively as solitons in the dual

theories. We present a general class of exact solutions of low-energy supergravity that

corresponds to all these states. After dimensional reduction they can be interpreted as su-

persymmetric black holes with a degeneracy related to the degeneracy of the string states.

For example, in four dimensions we obtain a point-like solution which is asymptotic to a

stationary, rotating, electrically-charged black hole with Regge-bounded angular momen-

tum and with the usual ring-singularity replaced by a string source. This further supports

the idea that the entropy of supersymmetric black holes can be understood in terms of

counting of string states. We also discuss some applications of these solutions to string

duality.
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1. Introduction

The concept of ‘strong-weak’ coupling duality has led to surprising new insights into

the dynamics of supersymmetric four-dimensional gauge theories. Duality provides equiv-

alent descriptions of the same physics in terms of either the ‘electric’ or the ‘magnetic’

variables. When one description is strongly-coupled and complicated, the dual description

can be weakly-coupled and simple. Many nonperturbative phenomena in one description

can then be understood perturbatively in the dual description. One important piece of in-

formation for relating the two descriptions is the spectrum of BPS-saturated states. These

states belong to a ‘short’ representation of the supersymmetry algebra, and their mass

is proportional to their charge. As a result, the semiclassical spectrum of BPS states is

often reliable even at strong coupling [1]. Analysis of the BPS spectrum has played a cru-

cial role in motivating duality and also in many subsequent developments. For example,

in the simplest context of N = 4 super Yang-Mills theory, fundamental particles of the

magnetic theory correspond to BPS-saturated, magnetic monopoles in the electric theory

[2]. In global N = 2 theories the BPS-saturated states are important for a qualitative

understanding of several dynamical phenomena such as confinement and chiral symmetry

breaking [3,4].

There is now increasing evidence for a similar duality between various string theories.

It is natural to expect that the spectrum of BPS-saturated states will be equally important

for a dynamical understanding of these dualities. For example, in N = 2 string theories

one can construct a generalized Kac-Moody Lie superalgebra in terms of BPS states, which

governs the form of the perturbative prepotential [5].

By analogy with field theory, one might hope to find fundamental strings themselves

as solitons in the dual string theory [6,7,8,9]. Moreover, because strings are extended,

oscillating objects, one might expect a much richer spectrum of such solitons. As usual in

strong-weak coupling duality this is problematic for non-BPS states, but in string theory,

many of the fundamental string states are BPS-saturated and therefore should exist as
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BPS solitons in a dual description. In particular, the perturbative spectrum of closed

string theories contains stable, macroscopic-string states [10,11] that are BPS-saturated.

For concreteness let us consider heterotic string theory on R9 × S1 and take the radius

of the S1 to be large compared to the string scale. A macroscopic string is a winding

state that wraps around this circle. In order to obtain a BPS-saturated state the right-

moving oscillators must be in the ground state, but an arbitrary number of left-moving

oscillators can be excited subject only to the mass-shell condition. We thus obtain an

infinite tower of stable, oscillating, macroscopic strings. Even though we regard these

states as macroscopic, string-like objects, one can always take the radius of the circle to

be quite small. Such a dimensional reduction gives rise to an infinite tower of point-like

states in one less dimension. For example, various electrically charged supersymmetric

black holes and their magnetic duals can be viewed in this manner.

In this paper we present solutions of the low-energy string equations of motion that are

in close correspondence with this entire tower of BPS states. We take as our starting point

the fundamental straight-string solution obtained in [12]. We then generate several new

solutions by using various solution-generating techniques, dimensional reduction, and du-

ality transformations. We are thus able to study a wide variety of string-like and point-like

solutions with either ‘electric’ or ‘magnetic’ charges in a unified framework. The original

straight-string solution is BPS-saturated, preserves half the supersymmetries, and has the

right structure of chiral fermionic zero modes expected for a Green-Schwarz superstring.

All these properties are inherited by the transformed solutions in a simple way.

Another motivation for this work is the suggestion that the entropy of black holes

can be understood in terms of degeneracy of massive string states [13,14,15,16,17]. In

particular, one can consider a supersymmetric, nonrotating black hole with given mass

and charges in toroidally compactified heterotic string theory in four dimensions and com-

pare its entropy with the number of BPS states in the spectrum with the same quantum

numbers. The degeneracy of these states can be computed reliably in string perturbation
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theory because their mass and charges are not renormalized. Sen has shown that this

counting agrees with the entropy associated with the stretched horizon of the correspond-

ing black holes [17]. The solutions that we describe here provide an attractive classical

picture of this degeneracy in terms of the oscillations of an underlying string.

The outline of this paper is as follows. In section two, we first describe the infinite

tower of BPS states in the perturbative spectrum of closed strings. We then obtain the

most general charged, oscillating-string solution that corresponds to these states. We begin

with the family of traveling-wave solutions constructed in [18] by applying the generat-

ing transform of [19] to the straight-string solution. We then apply the ‘charged-wave’

generating transform of reference [20,21]. By appropriately choosing the form of the trav-

eling wave we obtain an asymptotically flat solution which correctly matches onto a string

source. Furthermore, we show that a BPS-saturated solution is obtained only when the

traveling wave and the current have the right chirality to be consistent with the correspond-

ing state in the string spectrum. The asymptotic parameters can be readily identified with

the quantum numbers of the tower of BPS string states. We then discuss the dimensional

reduction of these solutions to obtain string solutions in lower dimensions by using periodic

arrays. This clarifies the relation between string solutions in different dimensions.

In section three, we obtain a family of point-like solutions in four dimensions by

dimensional reduction of the oscillating-string solution in five dimensions. The result-

ing four-dimensional solution is identical to the supersymmetric limit of a stationary,

electrically-charged, rotating black hole solution obtained by Sen [22]. The asymptotic

parameters of the black hole are all related to the profile of oscillation of the underlying

string in a simple way. Moreover, the angular momentum is Regge-bounded as expected

for a state in the string spectrum. Near the core, however, the naked ring-singularity of

the four-dimensional stationary solution is replaced by the much milder singularity of a

five-dimensional string source.

In section four, we briefly review the string duality transformations and discuss some

properties of the infinite tower of solitonic solutions obtained by dualizing the solutions of
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section two. We point out that in four dimensions, by dualizing the supersymmetric black

holes of section three one obtains the tower of rotating, magnetically-charged states that

are required by S-duality [23].

Section five contains some concluding remarks.

2. Macroscopic Fundamental Strings

2.1. Infinite tower of Macroscopic Strings

We now describe the perturbative spectrum of macroscopic strings on R9×S1. The S1

has radius R which we take to be large compared to the string scale and the macroscopic

string wraps around this circle. The string states are then characterized by their winding

number n and quantized momentum m/R in the compact direction. Specifically, if pR

and pL are the right-moving and the left-moving momenta respectively in the compact

direction, we have

pR = (
m

2R
− nR

2α′
), pL = (

m

2R
+
nR

2α′
). (2.1)

It is convenient to use the Green-Schwarz formalism in the light-cone gauge. Let us first

discuss the heterotic string which hasN = 1 spacetime supersymmetry that is generated by

right-moving worldsheet currents. The supercharge has 16 real components corresponding

to a single Majorana-Weyl fermion. A BPS-saturated state preserves 8 of these supersym-

metries [24], and the remaining 8 broken supercharges generate a 16-dimensional ‘short’

representation of the N = 1 superalgebra. 1

A ‘short’ representation in spacetime can be obtained only if all right-moving oscil-

lators on the world-sheet are in the ground state. The left-movers can have arbitrary

oscillations subject to the Virasoro constraint:

NL = 1 + α′
(

p2
R − p2

L − q2L
)

= 1 −mn− α′q2L, (2.2)

1 As discussed in [25,12], the N = 1 supersymmetry algebra in D = 9 admits a central extension

proportional to pR.
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where NL is the number of transverse left-moving oscillators and qL are the charges on the

internal torus of the heterotic string. Here we are working at a point in the Narain moduli

space where the lattice factorizes as Γ0,16 + Γ1,1. The mass of this state is related to the

right-moving momentum along the string

M2 = 4p2
R. (2.3)

For type-II strings, we haveN = 2 supersymmetry that is carried by both right-movers

and left-movers. Once again, a BPS-saturated state is obtained if at least 8 supersymme-

tries are unbroken which can be either all right-moving or all left-moving. Let us consider

the spectrum when the unbroken supercharges are all right-moving. In the worldsheet

theory these states are constructed as before by tensoring the right-moving ground state

with an arbitrary left-moving state subject to the mass-shell conditions:

NL =α′
(

p2
R − p2

L

)

= −mn,

M2 =4p2
R.

(2.4)

There is a corresponding tower of states when the unbroken supersymmetries are all left-

moving. All these states preserve one quarter of the the original 32 supersymmetries and

belong to a ‘short’ representation of the supersymmetry algebra which is now (16 × 256)-

dimensional. A special case is when both right-moving and left-moving oscillators are

in the ground state. These states preserve one half of the original supersymmetries and

belong to an ‘ultra-short’ representation which is (16 × 16)-dimensional.

Thus, the spectrum of BPS-saturated macroscopic strings splits into topological sec-

tors labeled by the winding number n, and for every n there is an infinite tower of oscillating

states with momentum m/R. We denote these states by (m,n). Of course it is necessary

to specify the charge vectors and which oscillators are excited to completely label the state.

T-duality exchanges winding and momenta and in the case of type-II theories takes the

IIA theory to the IIB theory [26].
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For each theory there is an absolutely stable macroscopic string state: (1, 1) for the

heterotic theory and (0, 1) for the type-II theories. The rest of the infinite tower of BPS

states are only neutrally stable. For example, the multiply-wound state (0, n) can decay

into n singly-wound (0, 1) states sitting on top of each other. However, because this tower of

states exists already in the single-string Hilbert space, they should be regarded as distinct

from multi-string states with the same quantum numbers 2.

This discussion can be readily generalized to compactifications to lower dimensions.

The mass shell formula (2.3) remains unchanged, but the constraint formulae (2.2) and

(2.4) now receive contributions from the internal conformal field theory. The nature of

these BPS states for compactifications of the heterotic string theory with N = 4 and

N = 2 supersymmetry are described in [33] and [5] respectively.

2.2. Fundamental Straight Strings

The massless bosonic fields that couple to a macroscopic string are the dilaton φ , the

metric tensor gµν , the antisymmetric tensor Bµν and gauge field Aµ. For simplicity we

shall take the gauge group to be a single U(1).

In Type-II theories all these fields come from the Neveu-Schwarz Neveu-Schwarz (NS-

NS) sector because, to lowest order, a fundamental string does not couple to the massless

fields from the Ramond-Ramond (R-R) sector. In ten dimensions there are no gauge fields

in the NS-NS sector, but after compactification they may be present in lower dimensions.

As we shall see in section four, some of the solitonic strings do couple to R-R fields, but in

that case, the R-R fields are related to the NS-NS fields by a duality transformation, and

need not be considered separately. There can also be more general stringy solitons that

couple to both the NS-NS and the R-R fields [7,9,34], however we do not discuss them in

this paper.

2 For non-perturbative solitons this is not always the case. For a discussion of related issues

see, for example, [4,27,28,29,30,31,32].

6



In heterotic string theory these fields are present in all dimensions. In ten-dimensional

heterotic string theory the gauge group can be either SO(32) or E8×E8, but we can break

it to U(1)16 by turning on Wilson lines along the circle that the macroscopic string wraps

around.

The low-energy action for these fields in D dimensions [35] is given by

S =
1

2κ2

∫

dDx
√−ge−2φ

(

R + 4(∇φ)2 − 1

12
H2 − α′F 2

)

, (2.5)

where F = dA and H is the three-form antisymmetric tensor field strength

H = dB − 2α′ωY M
3 (A) + . . . , (2.6)

with ω3 the Chern-Simons three-form. Note that the Lorentz Chern-Simons term will play

no role in our solutions.

We also need to know the source terms for various fields in the presence of a macro-

scopic string. These couplings can be calculated directly by vertex-operator calculations

as in [10]. Equivalently, one can use the sigma model action as in [12]:

Sσ = − 1

4πα′

∫

d2σ (
√
γγmn∂mX

µ∂nX
νgµν + ǫmn∂mX

µ∂nX
νBµν) + SA, (2.7)

where Xµ are the spacetime coordinates of the string, and ǫmn is the antisymmetric tensor-

density on the worldsheet with ǫ01 = 1. The gauge field coupling given by SA in (2.7) is

somewhat delicate due to world-sheet anomalies in the left-moving currents; this leads to an

important quantum modification of the current and source terms which will be discussed

in §2.6. At this order, there is no explicit source term for the dilaton, but the dilaton

couples to the string implicitly through its coupling to other fields.
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The equations of motion that follow from the combined action are

4∇2φ− 4 (∇φ)
2

+R− 1

12
H2 − α′F 2 = 0

∇µ

(

e−2φHµνρ
)

=
κ2

πα′
√−g

∫

d2σǫmn∂mX
ν∂nX

ρδ(D) (x−X(σ))

Rµν + 2∇µ∇νφ− 1

4
HµρσHν

ρσ − 2α′FµρF ν
ρ

= − κ2e2φ

2πα′
√−g

∫

d2σ
√
γγmn∂mX

µ∂nX
νδ(D) (x−X(σ))

∇µ

(

e−2φFµν
)

+
1

2
e−2φHνρσFρσ

=
κ2

4πα′2
√−g

∫

d2σJm∂mX
νδ(D) (x−X(σ)) .

+
κ2

2πα′
√−g

∫

d2σǫmn∂mX
ν∂nX

µAµ(x)δ(D) (x−X(σ)) .

(2.8)

After taking into account world-sheet anomalies, we shall show in §2.6 that Jm is the

consistent anomaly current and that the full gauge field source term (the right-hand side

of the last equation) becomes the covariant anomaly current.

The fundamental string solution [12] of these equations of motion is given by

ds2 = −e2φdudv + d~x · d~x,

Buv =
1

2
(e2φ − 1),

e−2φ = 1 +
Q

rD−4
,

Aµ = 0,

(2.9)

where u = x0 − xD−1 and v = x0 + xD−1 are the lightcone coordinates along the string

worldsheet, xi (with i = 1, ..., (D−2)) are the transverse coordinates, r is the radial distance

in the transverse space, and xD−1 ≡ xD−1 + 2πR. By changing the sign of the axion field

B, one can reverse the orientation of the string. The parameter Q is proportional to the

ADM-mass per unit length. It was shown in [12] that this solution satisfies a Bogomol’nyi

bound, admits a covariantly constant spinor and preserves half the supersymmetries. There

is no momentum in the compact direction, and the central charge in the supersymmetry

algebra in D − 1 dimensions is proportional to the winding number. This solution can be

identified with the field configuration around a neutral macroscopic string state (0, n) by

choosing the ADM mass per unit length to be n/(2πα′).
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2.3. Neutral Oscillating Strings

We would like to obtain a solution that carries charge as well as arbitrary left-moving

oscillations. When the charge and the oscillations are small, we could proceed by quantizing

the collective coordinates of the straight-string solution discussed in §2.1; this would be

analogous to constructing a dyon with a small electric charge by quantizing the collective

coordinates around a neutral static magnetic monopole solution. However, for large charge

and oscillations, one would like to directly construct a charged oscillating string-solution

analogous to the time-dependent Julia-Zee dyon solution in field theory.

In this subsection we discuss the neutral oscillating string. To this end, we shall

first review the solution-generating transform of [19]. This transform was used in [18] to

construct a general class of macroscopic string solutions with traveling waves. However,

as we shall see, only a very small sub-class of these solutions can be identified with the

tower of macroscopic string states that we are interested in. To make this identification we

require that the solution be asymptotically flat and supersymmetric. We further require

that it match onto appropriate string sources. We apply these criteria, in this and the

following subsections, to obtain the solution that corresponds to an arbitrary (m,n) state.

The solution generating transform of [19] can be applied to any solution of the equa-

tions of motion (2.8) which admits a null Killing vectorKµ that is hypersurface-orthogonal.

This means that the vector K and the corresponding one-form satisfy the conditions

K2 = 0, LKΨ = 0, dK = K ∧ dM, (2.10)

where Ψ refers to all fields, LK is the Lie-derivative along K, and M is a function that

is determined by the solution. The straight-string solution (2.9) admits two such Killing

vectors ∂/∂v and ∂/∂u with M = −2φ, so the generating technique can be used to con-

struct waves that are right-moving and left-moving respectively. For a left-moving wave

the resulting solution is given by

ds2 = − e2φ
(

dudv − T (v, ~x)dv2
)

+ d~x · d~x

Buv =
1

2
(e2φ − 1)

e−2φ =1 +
Q

rD−4
∂2T (v, ~x) = 0

(2.11)
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where ∂2 is the Laplacian operator in the flat transverse space. It is easy to see that the

equations of motion for φ and Bµν are unchanged with the new fields. It was shown in [19]

that the Einstein equations are also unchanged if T is a solution of the flat Laplacian. The

wave travels at the speed of light because the solution still admits ∂/∂u as a null Killing

vector. Replacing T (v, ~x)dv2 with T (u, ~x)du2 one obtains the right-moving traveling-wave

solutions.

The solution for T (v, ~x) can be decomposed as a power series in r using (D − 2)-

dimensional spherical harmonics Yℓ,

T (v, ~x) =
∑

ℓ≥0

[

aℓ(v)r
ℓ + bℓ(v)r

−D+4−ℓ
]

Yℓ. (2.12)

Terms that go as rβ with β = 0 can be removed by a change of coordinates. The remaining

terms in this expansion have a direct physical interpretation. Terms with β ≥ 2 and

β ≤ −D + 3 can be interpreted as gravitational plane-fronted waves superposed on the

string background. Note that the former are not asymptotically flat and while the latter

are, they do not contribute to the asymptotic quantities such as the ADM mass and,

moreover, they do not match onto string sources. The most relevant term for our purpose

is the one with β = 1. We shall see in §2.6 that this is the only term that matches onto

a string source corresponding to an oscillating string. The term with β = −D + 4 is also

interesting even though it does not match onto a classical string source; asymptotically it

corresponds to a momentum wave without oscillations. Keeping only these two terms, the

general form of T is given by

T (v, ~x) = ~f(v) · ~x+ p(v)r−D+4. (2.13)

In these coordinates, the solution does not appear asymptotically flat because T does not

vanish at large r. To remedy this we perform the following coordinate transformation:

v = v′

u = u′ − 2 ~̇F · ~x′ + 2 ~̇F · ~F −
∫ v′

Ḟ 2dv

~x = ~x′ − ~F

(2.14)
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where the dot indicates a derivative with respect to v, ~f(v) = −2 ~̈F , and Ḟ 2 = ~̇F · ~̇F . The

metric and the other fields in the new coordinates are

ds2 = −e2φdu dv+
[

e2φ p(v) r−D+4 −
(

e2φ − 1
)

Ḟ 2
]

dv2

+ 2
(

e2φ − 1
)

~̇F · d~xdv + d~x · d~x,

Buv =
1

2
(e2φ − 1),

Bvi =Ḟi(e
2φ − 1),

e−2φ =1 +
Q

|~x− ~F |D−4
,

(2.15)

where we have suppressed the primes on the new variables. The metric is now asymptoti-

cally flat and one can easily compute a mini ADM ’stress-energy’ tensor giving the mass

and the momentum per unit length, π0,µ
ADM , together with the momentum flow along the

string, πD−1,µ
ADM . We find

(

π0,µ
ADM

πD−1,µ
ADM

)

= k

(

Q+QḞ 2 + p QḞ i −QḞ 2 − p
−QḞ 2 − p −QḞ i −Q+QḞ 2 + p

)

, (2.16)

where k = (D−4)ωD−3

2κ2 with ωD−3 being the volume of the sphere SD−3.

We shall see in §2.6 that the neutral string solutions with p = 0 map onto a string

source with a traveling wave with profile ~F . Consequently, they can be identified with the

neutral states (m,n) 3. The ADM formulae are consistent with this interpretation because

the momentum is negative and the mass is modified in accordance with the constraints

and mass-shell conditions.

As in [12] there also exist multi-string solutions. In general, we have a solution of the

form (2.11) provided ∂2e−2φ(~x) = 0 and ∂2T (v, ~x) = 0. A general multi-string solution is

given by,

e−2φ(~x) = 1 +
∑

i

Q

|~x− ~xi|D−4
,

T (v, ~x) = ~f(v) · ~x+
∑

i

pi(v)

|~x− ~xi|D−4
.

(2.17)

3 The state (1, 1) in heterotic string theory is an exception because it has positive momentum

and no oscillations. We would like to identify this state with the solution with ~F = 0 and p < 0,

as will be discussed in §2.6.
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Making a coordinate transformation of the form (2.14), we find

e−2φ = 1 +
∑

i

Q
∣

∣

∣
~x− ~xi − ~F (v)

∣

∣

∣

D−4
. (2.18)

Clearly, the constants ~xi determine the locations of the strings, and we find that all the

strings carry the same profile of oscillation ~F , though in general carry different momentum

profiles pi(v). These multi-string solutions will be useful later when we discuss dimensional

reduction using periodic arrays of strings.

2.4. Charged Oscillating Strings

Charged solutions can be obtained by applying the solution generating transform of

[21]. The basic idea behind this transform is as follows [20,36]. In string theory, the

left-moving and the right-moving coordinates can be rotated independently, except for the

rotation of zero modes. Consider string fields that are independent of p left-moving and

q right-moving compact coordinates of an internal torus as well as the time coordinate t.

Because the rotation of zero modes is unimportant for the coordinates that the fields do

not depend on the string field equations of motion and their low-energy limit are expected

to possess an O(1, p)L × O(1, q)R symmetry. In the low-energy theory these rotations

correspond to nonlinear field transformations described in [20]. Now, if a solution of the

equations of motion is not invariant under this symmetry, then one obtains a new ‘twisted’

solution. Some of the symmetries, corresponding to rotations of the internal coordinates,

change the parameters of the internal torus. Thus, if we want to keep the parameters of the

internal torus fixed, then the moduli space of solutions is (O(1, p)/O(p))× (O(1, q)/O(q)).

The fundamental string solution is independent of time and also of the internal co-

ordinate corresponding to the U(1) gauge group which we take to be left-moving. So, we

can twist (2.9) using an O(1, 1)L rotation to obtain a one parameter family of charged

strings carrying left-moving current. It turns out that the resulting solution [21,24] admits

a null, hypersurface-orthogonal, Killing vector ∂/∂v. So we can apply the the generating
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technique of the previous subsection to obtain the most general solution representing a

charged string with traveling waves:

ds2 = − e2φ
(

dudv −W (v, ~x)dv2
)

+ d~x · d~x

Buv =
1

2
(e2φ − 1)

Av =
q(v)

rD−4 +Q

e−2φ =1 +
Q

rD−4

W =~f(v) · ~x+
p(v)

rD−4
+

2α′q(v)2

Q (rD−4 +Q)
.

(2.19)

This solution represents a charged, superconducting string with a left-moving electric cur-

rent as well as left-moving oscillations. The current is equal in magnitude to the charge per

unit length and is proportional to q. We have also generalized the charge to a charge wave

q(v). The most general solution of this form has Av = N(v, ~x)e2φ with ∂2N(v, ~x) = 0, but

we shall assume that the string is only a monopole source and drop the higher spherical

harmonics in the full solution for Av.

One can obtain an asymptotically flat spacetime by a coordinate transformation ex-

actly as in the previous subsection. The ADM stress-energy is then given by

(

π0,µ
ADM

πD−1,µ
ADM

)

= k

(

Q+QḞ 2 + 2α′q2

Q
+ p −QḞ 2 − 2α′q2

Q
− p QḞ i

−QḞ 2 − 2α′q2

Q − p −Q+QḞ 2 + 2α′q2

Q + p −QḞ i

)

. (2.20)

In heterotic string theory in ten dimensions we expect macroscopic string solutions

with left-moving oscillations and only left-moving charges; these are clearly included in our

construction. In toroidal compactifications of the heterotic and type II strings we expect

solutions with both left-moving and right-moving charges. We expect the most general

solution can be obtained from our solutions by a combination of dimensional reduction

and boosting. We leave the details of this to future work.
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2.5. Supersymmetry

We have already discussed that the BPS states in the first-quantized string spectrum

are invariant under half or one quarter of the spacetime supersymmetries. If the spacetime

solutions we have described are to be identified with such string states we must be able to

show that they too preserve the same fraction of the spacetime field supersymmetries. We

now show this by explicit calculation, restricting to ten dimensions for simplicity.

Let us first consider the heterotic string. In a given background of bosonic fields, the

supersymmetry transformation laws of the fermion fields are

δλ− =

(

γµ∂µφ− 1

12
Hµνργ

µνρ

)

ǫ+

δψ+µ =

(

∂µ +
1

4
Ω−µ

abΓab

)

ǫ+

δχ = Fµνγ
µνǫ+,

(2.21)

where λ− is the dilatino, ψ+µ is the gravitino, χ is the gaugino, ǫ+ is the supersymmetry

parameter and we have introduced the generalized spin connection Ω−µ = ωµ − Hµ/2.

All spinors are Majorana-Weyl and the subscript denotes their chirality. Also γµ,Γa are

gamma matrices with spacetime and tangent space indices, respectively. The general

charged string with left-moving oscillations is given by (2.19); substituting into (2.21) we

obtain

δλ− = −1

2
∂iφΓiΓ−Γ+ǫ+

δψ+v =

[

∂v − 1

8
eφ (∂iW + 2W∂iφ) ΓiΓ+

]

ǫ+

δψ+u =

[

∂u +
1

4
eφ∂iφΓiΓ+

]

ǫ+

δψ+i =

[

∂i −
1

2
∂iφ− 1

4
∂iφΓ−Γ+

]

ǫ+

δχ = e−φ∂iAuΓiΓ+ǫ+,

(2.22)

where Γ± = Γ0 ± Γ1. It is easy to see that the variations vanish when ǫ is of the form

ǫ+ = eφ/2ǫ+0, ∂µǫ+0 = 0, Γ+ǫ+0 = 0. (2.23)
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Therefore, the solution admits a Killing spinor field of a particular helicity along the

worldsheet, and half the supersymmetries are preserved.

Let us now consider a heterotic string with right-moving oscillations and zero charge

which is given by (2.11) with T (v, ~x)dv2 replaced with T (u, ~x)du2. For this case δλ and

δψi transform as before but the remaining components transform slightly differently:

δψ+v = ∂vǫ+

δψ+u =

[

∂u − 1

8
eφ
(

∂iTΓiΓ− − 2∂iφΓiΓ+
)

]

ǫ+.
(2.24)

One can easily verify that there are no nonzero spinors for which these variations vanish and

hence all supersymmetries are broken. So, in accordance with the states in the perturbative

spectrum of the heterotic string, a BPS-saturated, partially supersymmetric solution exists

only if the oscillations are left-moving.

In the case of type-II strings we have two supersymmetry charges, and the analysis

for each of them parallels the discussion in the preceding paragraphs. In IIA theory in ten

dimensions, if we set the R-R fields to zero, we can put the supersymmetry transformations

in the form

δλ =

[

∂µφγ
µΓ11 +

1

6
Hµνργ

µνρ

]

η

δψµ =

[

∂µ +
1

4

(

ωµ
ab +Hµ

abΓ11

)

Γab

]

η,

(2.25)

where Γ11 = Γ0 . . .Γ9 and the d = 10 Majorana spinor η can be decomposed into two

Majorana-Weyl spinors of opposite helicity, η = ǫ+ + ǫ−. If we substitute the uncharged

solutions with either left-moving traveling waves, (2.11), or right-moving traveling waves,

(2.11) with T (v, ~x)dv2 replaced by T (u, ~x)du2, we again find Killing spinors of the form

ǫ± = eφ/2ǫ±0, ∂µǫ±0 = 0 (2.26)

with the following helicity conditions. If T = 0, then there is no traveling wave and both

right-moving and left-moving oscillators are in the ground state. In this case we have

Γ−ǫ+ = 0 Γ+ǫ− = 0, (2.27)
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and half of the N = 2 supersymmetries are preserved. If T 6= 0 then we have a traveling

wave solution moving in either direction and we obtain

left-moving ⇒ ǫ+ = 0, Γ+ǫ− = 0,

right-moving ⇒ Γ−ǫ+ = 0, ǫ− = 0.
(2.28)

In each case only one quarter of the N = 2 supersymmetries are preserved.

A similar story unfolds for the type IIB string. Setting the R-R fields to zero, the

supersymmetry transformations can be written as

δλ =

[

∂µφγ
µη∗ − 1

6
Hµνργ

µνρη

]

δψµ =

[

∂µη +
1

4
ωµ

abΓabη −
1

4
Hµ

abΓabη
∗

]

,

(2.29)

where η is a Weyl spinor and η∗ its complex conjugate. Substituting the general form

of the solution with left-moving or right-moving traveling waves we obtain Killing spinor

fields of the form (2.26), with the helicity conditions

fundamental string ⇒ Γ+ǫ1+ = 0, Γ−ǫ2+ = 0

left-moving ⇒ Γ+ǫ1+ = 0, ǫ2+ = 0

right-moving ⇒ ǫ1+ = 0, Γ−ǫ2+ = 0

(2.30)

where we have decomposed η into its real and imaginary Majorana-Weyl components

η = ǫ1+ + iǫ2+. Just as in the type IIA case the fundamental string solution preserves half

the supersymmetries, the traveling wave solutions, one quarter.

In summary, the supersymmetry of the spacetime solutions exactly mirrors that of

the corresponding BPS states in the perturbative spectrum 4.

4 The matching of fermion zero modes for Type II strings requires one to take into account

a peculiar chirality flip between static gauge and light-cone gauge which is exactly analogous to

that discussed in [37]
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2.6. Sources

In order to make a clear identification of our solutions with the underlying fundamental

string states we must show that near the core they match onto appropriate string sources

which satisfy both the string equations of motion and the Virasoro constraints. To do this

in an unambiguous way we shall take the radius of the macroscopic string to be much larger

than both the string scale and the scale of compactification. For the neutral solutions this

means we can ignore the contribution to the world-sheet stress tensor from the internal

conformal field theory and from normal ordering. Therefore, we need to solve only the

classical Virasoro constraints for D large dimensions. For charged strings on the other

hand we are forced to include one-loop anomaly effects in order to get a consistent picture.

This is forced by the close connection between the Chern-Simons couplings in the low-

energy field theory and sigma-model anomalies in the string world-sheet action [38]. We

first discuss the source terms for the neutral strings and then the charged strings.

Near the core, it is convenient to use the coordinates used in (2.11) even though they

are not asymptotically flat. On the worldsheet we fix conformal gauge and use σ± = τ±σ.

For the spacetime fields we take the ansatz (2.11), and for the string coordinates we take

U = U(σ+, σ−) V = V (σ+, σ−) ~X = 0. (2.31)

The equations of motion for the string coordinates are

gµν∂m (
√
γγmn∂mX

ν) + Γµνρ (
√
γγmn∂mX

ν∂nX
ρ)

+
1

2
Hµνρ (ǫmn∂mX

ν∂nX
ρ) = 0,

(2.32)

where Γµνρ is the Christoffel symbol for gµν . With our ansatz, the u, v and i components

become
e2φ (∂+∂−U − 2T∂+∂−V − ∂vT∂+V ∂−V ) = 0

e2φ∂+∂−V = 0

∂i

(

e2φT
)

∂+V ∂−V − ∂i

(

e2φ
)

∂+U∂−V = 0

(2.33)
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respectively. Similarly, the Virasoro constraints are given by

T++ = −e2φ (∂+V ∂+U − T∂+V ∂+V ) = 0

T−− = −e2φ (∂−V ∂−U − T∂−V ∂−V ) = 0
(2.34)

Finally, the equations of motion for the spacetime fields reduce to

∂2e−2φ = − κ2

πα′

∫

dσ+dσ− (∂+V ∂−U − ∂−V ∂+U) δD(~x− ~X)

∂2e−2φ = − κ2

πα′

∫

dσ+dσ− (∂+V ∂−U + ∂−V ∂+U) δD(~x− ~X)

0 =

∫

dσ+dσ−∂+V ∂−V δ
D(~x− ~X)

T∂2e−2φ + e−2φ∂2T = − κ2

πα′

∫

dσ+dσ−∂+U∂−Uδ
D(~x− ~X)

(2.35)

coming from the vu component of the Hµνρ equation, the vu, vv and uu components of

the Einstein equation, respectively.

There is an important subtlety in solving these equations because the sources are

not ordinary functions but are Dirac delta-functions in the transverse space. Do such

distributional sources lead to unique spacetime solutions? One can regard the Dirac delta-

function as a limit of a smooth function. Now, there are many different smooth functions

which, in a limit, represent a delta-function. Geroch and Traschen [39] show that in

general, due to the non-linear nature of general relativity, the limiting spacetimes are in

fact different depending on the function one uses to represent the delta function. However,

for metrics whose curvature tensor (or in our case the left-hand side of (2.35)) itself is a

distribution, the limiting spacetimes are the same. Therefore, if we want a distributional

string source to uniquely determine a spacetime solution, the left-hand sides of (2.35) must

also be distributions.

Another subtlety is that for all the solutions that we consider, e2φ = 0 at r = 0. As a

result, (2.33) can be satisfied without constraining the string coordinates at all provided the

string is infinitely thin and lies precisely at r = 0. However, if we replace the delta-function
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in (2.35) with a smooth distribution then the equations must be solved even slightly away

from r = 0 where e2φ is nonzero. This is what we shall do in the following.

We are now ready to determine which of the solutions described earlier match onto

sources. Let us first discuss the straight-string solution with T = 0. In this case, the left-

hand sides of (2.35) are indeed distributions. As shown in [12], we can satisfy all equations

of motion and constraints if we choose V = V (σ+) and U = U(σ−). Using the residual

conformal invariance we can write the solution in the form

U = 2Rnσ−, V = 2Rnσ+. (2.36)

Here we have chosen the normalization such that the string wraps n times around the

circle of radius R as σ goes from 0 to π. The constant Q in the spacetime solution is then

determined by the source to be

Q =
nκ2

πα′(D − 4)ωD−3
, (2.37)

which is such that the ADM-mass per unit length is equal to n times the string tension

n/(2πα′).

For the traveling wave solution (2.11), we find that the left-hand side of the uu com-

ponent of the Einstein equation is not a distribution if T diverges at r = 0. Hence neither

the solutions with β ≤ −D + 3 (see the discussion after (2.12)), nor the solutions with

nonzero p (β = −D + 4) can be interpreted as arising from delta-function sources. If we

further require that the solution be asymptotically flat, then T is completely determined

to be ~f(v) · ~x. Using this form of T the string and source equations can be easily solved.

Because T = 0 at the source we can solve the Virasoro constraints (2.34) by taking

U = (2Rn+ a)σ−, V = 2Rnσ+. (2.38)

where a ≡ 1
π

∫ 2πRn

0
Ḟ 2 is the zero mode of Ḟ 2. We shall shortly see that this is a convenient

choice. The constant Q in the spacetime solution is again given by (2.37). Thus, the

19



oscillating string solutions are the only asymptotically flat solutions that correctly match

onto a string source.

As it stands, the solution (2.38) appears to correspond not to an oscillating string at

all, but rather to a straight string lying at r = 0. However, if we transform to the primed

coordinates (2.14) in which the metric is manifestly asymptotically flat, we obtain

V ′ = 2Rnσ+

U ′ = (2Rn+ a)σ− +

∫ V ′

Ḟ 2

~X ′ = ~F (V ′),

(2.39)

which is indeed an oscillating string with profile ~F (V ′). One can directly check that the

Virasoro constraints are satisfied using the metric (2.15) at the source.

The identification of this solution with the spacetime fields around an oscillating

string state can be further clarified by taking κ2 → 0 so that the string is very weakly

coupled to the spacetime fields. This implies that e2φ → 1 and uniquely defines a flat-

space limit. One can then directly verify that the string configuration (2.39) satisfies

the Virasoro constraints in the limiting flat space and it is clearly that of an oscillating

string. The momentum pµ and winding vector nµ of the string (2.39) in flat space can

be straightforwardly determined and we find in the (X ′0, ~X ′, X ′D−1
) coordinates that

nµ = (0,~0, n) and pµ = (2α′)−1(2nR + a,~0,−a), where we have used the fact that ~F

has no zero mode. The momentum in the compact direction is defined as m/R and, by

definition, the classical number oscillator is given by NL = −nm. For the string in flat

space we thus have,

m = −Ra

2α′
, NL =

nRa

2α′
, a =

1

π

∫ 2πRn

0

dvḞ 2. (2.40)

Note that both the momentum in the compact direction and NL are determined by the

zero mode of Ḟ 2, as one expects.

The ADM momentum of our full string solution, (2.16), is consistent with the mo-

mentum of the above string source in flat space. This confirms that our spacetime solution
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really does correspond to that of an oscillating string and that the momentum is not renor-

malized. On this latter point lets us also note that the calculation of the winding vector

in flat space is equally valid for the source (2.39) in the full solution. What about the

momentum vector? Starting from the string source in (2.7), the momentum conjugate to

Xµ is given by:

pµ =
1

2πα′

∫ π

0

dσ(gµνẊ
ν +BµνX

′ν). (2.41)

After substituting the quantities in (2.15) evaluated at the string source, we find a can-

cellation between various term and we are left with the momentum vector in flat space.

Note that in flat space, pµ comes from the gµνẊ
ν term, while in the full solution it comes

from the BµνX
′ν term. This again reveals that the momentum is not renormalized and is

perhaps analogous to the cancellation of perturbative contributions to the energy density

for straight string solutions originally found in [11].

At this point we have provided substantial evidence that the neutral traveling wave

solutions with p = 0 should be identified with the neutral (m,n) state. We have worked in

the regime where NL is large and the radius of the circle is large compared to the string

scale so that the string source can be treated classically. In this limit, an oscillating string

solution can be thought of as a coherent superposition of large numbers of first-quantized

states and should not be sensitive to normal ordering effects such as the one in the Virasoro

constraint in (2.2).

The solutions with p 6= 0, F = 0 have not played a role in our discussion so far because

they do not map onto classical source terms. However, they are important for describing

low-lying states. For example, the state (1, 1) withNL = 0 in the heterotic string theory has

positive momentum and no oscillations. Therefore, it cannot be identified with a solution

with p = 0, F 6= 0 which asymptotically always has negative momentum. However, as

advocated in [40], it can be identified with the string solution with F = 0, p = −Q/2R2

and Q given by (2.37). Using the ADM mass formula (2.16) and the calculations in this

section, we see that asymptotically it corresponds to a straight string with momentum
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1/R in the compact direction and mass (2R− 1/R). Of course, for the low lying states, α′

corrections could be important and can modify the classical source. Further evidence for

this identification would be provided if one could show that this solution can be mapped

onto some kind of “quantum string source.” Such a calculation was attempted in [40] but

there are subtleties in matching to the correct string states which were overlooked, so this

is still an open question. Nevertheless, the comparison of the classical scattering of these

spacetime solutions with scattering of (1, 1) states in string theory carried out in [40] seems

to support this identification.

Now let us discuss how the string solutions with left-moving charges and traveling

waves map onto source terms. We expect that the charged strings can be mapped onto

sources coming from left-moving internal coordinates.

In order to do this correctly we must take into account the relation between the

spacetime Chern-Simons couplings in the low-energy effective action and the world-sheet

chiral anomalies which arise for purely left-moving currents. When we couple to external

gauge or gravitational fields the Chern-Simons terms lead to a current inflow which is

precisely balanced by the anomalies of the world-sheet theory [41] so that overall charge

and energy-momentum are conserved. Because we include the Chern-Simons terms in our

low-energy effective action, we must also include one-loop world-sheet anomalies in order

to have a consistent α′ expansion.

In discussing this we shall make use of the formalism developed by Naculich [42].

There it was shown that at one loop the total gauge current on the world-sheet is afflicted

by the covariant anomaly rather than the consistent anomaly. The point is that the Chern-

Simons coupling in (2.5) leads to an extra term in the gauge current (the last term in (2.8))

which is precisely what is needed to turn the total gauge current into the covariant anomaly

current when Jm is the consistent anomaly current.

It was also shown in [42] how to incorporate these quantum effects in terms of classical

chiral world-sheet bosons. This is ideal for our needs since, as in the neutral case, we would

22



like to solve for both the spacetime and the worldsheet fields. The last term in (2.7) is

then given by

SA = − 1

4πα′

∫

d2σ
(√

γγmn(∂mY −
√

2α′Am)(∂nY −
√

2α′An) −
√

2α′Y ǫmnFmn

)

(2.42)

where Y is a left-moving internal coordinate satisfying the constraint

∂−Y =
√

2α′A−. (2.43)

and we have introduced the notation Am = ∂mX
µAµ and Fmn = ∂mX

µ∂nX
νFµν . Varying

this action with respect to the spacetime gauge field leads to (2.8) where Jm is given by

the consistent anomaly current

Jm = −
√

2α′
√
γγmn

(

∂nY −
√

2α′An

)

−
√

2α′ǫmn∂nY. (2.44)

Note that the total action is gauge invariant provided Y transforms along with Aµ

and Bµν , so that

δAµ = ∇µΛ

δBµν = 2α′ΛFµν

δY =
√

2α′Λ.

(2.45)

It is worth pointing out that the source terms (2.42) are consistent with dimensional

reduction. If we reduce the spacetime and source action with no gauge fields on a circle

of constant radius, then we obtain a spacetime action with left-moving and right-moving

gauge fields. Using the formula presented in the next section one can show that the source

terms precisely give (2.42) after setting the right-moving gauge fields to zero. From this

perspective, however, the constraint (2.43) must be imposed by hand.

The equations of motion for the string coordinates X can be straightforwardly derived

and for our ansatz we are led to the first two equations in (2.33) with T replaced with W ,

while the i component is modified to give

∂i

(

e2φW
)

∂+V ∂−V − ∂i

(

e2φ
)

∂+U∂−V + 2
√

2α′∂iAv∂+Y ∂−V = 0. (2.46)
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The equation of motion for Y is implied by the constraint (2.43). The Virasoro constraints

are given by

T++ = −e2φ (∂+V ∂+U −W∂+V ∂+V ) + (∂+Y −
√

2α′A+)2 = 0

T−− = −e2φ (∂−V ∂−U − T∂−V ∂−V ) = 0.
(2.47)

The equations of motion for the spacetime fields reduce to the first three equations in

(2.35) and in addition:

W∂2e−2φ+e−2φ∂2W + 4α′e−4φ∂iAv∂
iAv

= − κ2

πα′

∫

dσ+dσ−∂+U∂−Uδ
D(~x− ~X)

Av∂
2e−2φ−∂2

(

Ave
−2φ
)

=
κ2

4πα′
√

2α′

∫

dσ+dσ−
(

∂+Y −
√

2α′Av∂+V
)

∂−Uδ
D(~x− ~X)

(2.48)

coming from the uu component of the Einstein equation and the u component of the Aµ

equation, respectively.

We can now solve these equations for the general charged, traveling-wave solution

given in (2.19) except that we take p = 0. The first three equations in (2.35) imply that

∂−V = 0 and that the constant Q is given by (2.37). Whereas T was zero at r = 0 for the

pure traveling wave solution, for the general charged solution, W at r = 0 is 2α′q2/Q2.

This means that, while the second two terms on the right-hand side of the first equation

in (2.48) are zero distributions, the first term is no longer zero. To solve this equation we

must take

∂+U =
2α′q2

Q2
∂+V. (2.49)

Finally, we must solve the second equation in (2.48). Noting that Av = q/Q at r = 0, we

find that the two terms on the left-hand side of the equation, each a delta function in the

transverse space, cancel against each other. Solving for the right-hand side equal to zero,

we get the further condition

∂+Y =

√
2α′q

Q
∂+V. (2.50)
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Of course the value of the gauge field at r = 0 can always be changed by a gauge trans-

formation. In general we find the condition (2.50) is ∂+Y =
√

2α′ Av|r=0 ∂+V , which is a

gauge covariant expression. We note that if the string is not wound around the internal Y

direction then we can always find a gauge transformation to put Y = 0. This is the analog

of choosing coordinates where the traveling wave profile is flat.

With the conditions (2.49) and (2.50) we find that the string equations of motion are

also satisfied, except for the v component of the Xµ equation which reads

e2φ∂+∂−U = 0. (2.51)

implying that U = U+(σ+)+U−(σ−). In particular we note that (2.50) implies that there

is no contribution from Y to the Virasoro constraints. From the left-moving constraint

(2.43) on Y we find that ∂−Y = 0.

As before, using the residual conformal invariance, we can rewrite the solution for the

string coordinates in the convenient form

U = (2Rn+ aF + aq)σ
− +

2α′

Q2

∫ V

q2

V = 2Rnσ+

Y =

√
2α′

Q

∫ V

q,

(2.52)

where now

aF ≡ 1

π

∫ 2πRn

0

Ḟ 2 aq ≡ 1

π

∫ 2πRn

0

2α′

Q2
q2. (2.53)

Transforming to manifestly asymptotically flat coordinates this becomes

U ′ = (2Rn+ aF + aq)σ
− +

∫ V ′ (

Ḟ 2 +
2α′

Q2
q2
)

V ′ = 2Rnσ+

~X ′ = ~F (V ′)

Y =

√
2α′

Q

∫ V ′

q

(2.54)
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which appears to describe an oscillating string with a profile ~F (V ′) in the transverse

space and a profile
∫ V ′

q in the internal space, which is manifest as a charged wave in

the external space. To pin down the state of the source string, we again go to the weak

coupling limit by letting κ2 → 0. One can then directly verify that the configuration

(2.54) satisfies the corresponding flat Virasoro constraints, and so we may interpret the

source as a oscillating string state carrying a charge wave. Calculating the momentum,

pµ, and winding, nµ, vectors in (X ′0, ~X ′, X ′D−1
) coordinates gives nµ = (0,~0, n) and

pµ = (2α′)−1(2nR + aF + aq,~0, aF + aq). The momentum in the internal Y direction is

aq. Thus we can identify the momentum in the X ′D−1
direction, the classical oscillator

number NL and internal charges q2L as

m = −(aF + aq)R

2α′
NL =

(aF + aq)nR

2α′
q2L = −aqnR

α′
. (2.55)

Again the ADM momentum of the full solution (2.20) is consistent with the momentum of

the string source (2.54) in flat space.

So far we have discussed the solution only to the lowest order in α′, but it may

be possible to extend these results to higher orders. Away from the string source, all

solutions that we have described, essentially belong to a general class of solutions called

‘chiral null models’ by Horowitz and Tseytlin [43]. These authors have shown that there

exists a particular renormalization scheme in the worldsheet sigma-model in which the

lowest-order solution of a chiral null model satisfies the string equations of motion to all

orders in α′. Moreover, Tseytlin has suggested [44] that, even near the core, the only

effect of α′ corrections will be to smooth out the source on the scale of α′. Tseytlin has

also proposed [45] an attractive and plausible picture of how the sources might arise by

resumming ‘thin handles’ of the full string partition function. These results suggest that

an exact conformal field theory should exist corresponding to a macroscopic string. Such

a ‘conformal field theory’ with sources would be an interesting generalization of the usual

notion of an exact string solution.
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2.7. Dimensional Reduction

Under toroidal compactification, the infinite tower of macroscopic strings reduces to

various pointlike and string-like BPS-saturated states in lower dimensions. One can gener-

ate the solutions corresponding to these states by dimensional reduction of the macroscopic

string solutions described earlier.

A macroscopic string solution can be reduced in two ways: either in a direction trans-

verse to the string to obtain a string-like solution, or in the longitudinal direction to obtain

a point-like solution. We discuss the former in this subsection and the latter in section

three. Dimensional reduction in a transverse direction can be achieved by considering

an infinite periodic array of strings. This is similar to the way magnetic monopoles or

H-monopoles can be obtained from periodic arrays of instantons [46,47,48].

For simplicity let us consider a macroscopic string in six dimensions that wraps around

the x5 direction on a large circle of radius R. We would like to reduce this solution along

one of the transverse directions, say x4, on a circle of radius Rc, x
4 ≡ x4 + 2πRc. We

can take Rc to be much smaller than R but still much larger than the string scale. To

reduce the solution we consider an infinite periodic array of oscillating strings localized at

~x = ~x0, x
4 = x4

0 + 2πRck where ~x = (x1, x2, x3) is a three-dimensional vector and k is an

integer, with the same profile of oscillation ~F (v). This multi-string solution is determined

by the dilaton (2.18)

e−2φ = 1 +

∞
∑

k=−∞

Q

r2 + (x4 − x4
0 − 2πRck)2

(2.56)

with r2 = |~x− ~x0 − ~F (x)|2. The infinite sum can be readily performed [46] to obtain

e−2φ = 1 +
Q

2Rcr
sinh

r

Rc
(cosh

r

Rc
− cos

x4 − x4
0

Rc
)−1. (2.57)

For fixed Q, in the asymptotic limit r ≫ Rc or, equivalently, averaging over x4, (2.57)

reduces to

e−2φ = 1 +
Q

2Rcr
+O(e−r/Rc). (2.58)
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We recognize this solution as the five-dimensional dilaton given by (2.18) with D = 5 if

we identify the five-dimensional dilaton charge with Q/2Rc. We have thus constructed a

solution that at distances much larger than the scale of compactification looks exactly like

a five-dimensional oscillating string. On smaller scales, however, it differs substantially. In

particular, near the core it dynamically decompactifies and matches onto a six-dimensional

source.

It is easy to generalize this construction to an arbitrary toroidal compactification of

an oscillating string. We simply consider an array of strings on an arbitrary lattice using

the general multi-string solution (2.18). In general, it is not possible to perform the infinite

discrete sum analytically but its asymptotic form can easily be extracted.

These considerations clarify the nature of sources in the previous subsection. When

we solved the constraint equations for a string in D large dimensions we ignored the

contributions to the world-sheet stress tensor from the internal conformal field theory. If

the the conformal field theory is a torus, then this is justified when the size of the torus

Rc is much smaller than the radius R of the string. The solution then matches onto a

D-dimensional source. However, one can also consider intermediate scales when R and Rc

are both comparable and much larger than the string scale. In this case, we effectively

have a ten-dimensional theory and the solution matches onto a ten-dimensional source.

Similar considerations should apply to a more general compactification.

We can also use dimensional reduction to understand the relation between different

types of string solutions. For example, consider a traveling wave solution with the profile

pointing in the compact direction. Then using the solution in asymptotically flat coordi-

nates and the techniques in the following section we get precisely the charged string solution

after taking the limit r >> R. In particular the charge wave is given by q(v) = QḞ/
√

2.

3. Black Holes as Strings

We now turn to dimensional reduction of macroscopic strings in the longitudinal

direction to obtain point-like “black hole” solutions in one lower dimension.
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In toroidal compactification of string theories, there exists an infinite tower of BPS-

saturated, electrically-charged, point-like states in the perturbative spectrum, which is

closely related to the tower of macroscopic strings discussed earlier. For example, in

heterotic string theory compactified to four dimensions on a six-torus, there is a tower of

states satisfying the mass-shell conditions

NL =1 + α′
(

q2R − q2L
)

, NR = 0,

M2 =4q2R.
(3.1)

Here qR and qL are the right-moving and the left-moving charge-vectors respectively; to-

gether they define a point in a 28-dimensional, self-dual, Lorentzian lattice with signature

(22, 6). A typical such state has nonzero angular momentum J which satisfies a Regge

bound [35]. The right-moving ground state corresponds to a N = 4 vector-multiplet in

four dimensions so can have maximum spin one. The maximum left-moving spin is |NL|,

so the total angular momentum satisfies the Regge bound:

J ≤ |2 + α′
(

q2R − q2L
)

|. (3.2)

Starting from these states, S-duality predicts [23] an infinite tower of magnetically charged

states, which must exist as solitons. We shall discuss these solitons in section four.

Corresponding to the tower of first-quantized states we expect to find BPS-saturated

electric black-holes. The most general, rotating, charged, stationary black hole solution of

the low-energy heterotic string has been constructed by Sen [22]. We can try to identify

this solution with the states discussed above by choosing appropriate asymptotic quantum

numbers, so that in particular, the solution is supersymmetric. However, we immediately

run into a difficulty because to obtain the supersymmetric limit one has to extend well

beyond extremality when the angular momentum is non-zero and the solution has a severe

ring-like naked singularity [49]. Moreover, the angular momentum of these solutions can

be arbitrary and is not Regge-bounded.
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The new solutions that we discuss in this section are obtained by dimensionally reduc-

ing an oscillating string in higher dimensions along the length of the string. These solu-

tions are asymptotically identical to the supersymmetric, stationary, rotating, electrically-

charged, black-hole solutions but near the core they have a much milder singularity of a

higher-dimensional string source. Their angular momentum is naturally Regge-bounded

because the source solves the string equations of motion and constraints.

In this section we restrict our attention to those states in the spectrum whose entire

left-moving and right-moving charge arises from the winding and momentum along a single

internal circle. In this case, the charges qR and qL in (3.1) are identical to the momenta

pR and pL respectively in (2.2). For simplicity, we shall also restrict to the dimensional

reduction of oscillating strings in five dimensions to four. These considerations can be

easily extended to more general cases.

3.1. Dimensional Reduction to Four Dimensions

The five-dimensional action is obtained by specializing (2.5) to D = 5 and setting the

gauge fields to zero:

S =
1

2κ̃2

∫

d5x
√

−g̃e−2φ̃

(

R(g̃) + 4(∇φ̃)2 − 1

12
H̃2

)

, (3.3)

where the tilde˜is used to denote five-dimensional quantities. For dimensional reduction,

it is convenient to introduce [50] the ‘four-dimensional’ fields gµν , Bµν , φ, A
a
µ and σ (0 ≤

µ ≤ 3, a = 1, 2) through the relations

e−4σ = g̃44, φ = φ̃+ σ,

A1
µ =

1

2
g̃4µe

4σ, A2
µ =

1

2
B̃4µ,

gµν = g̃µν − g̃4µg̃4νe
4σ,

Bµν = B̃µν − 2(A1
µA

2
ν − A1

νA
2
µ).

(3.4)
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The low-energy lagrangian of a string compactified on a circle is expected to have SO(1, 1)

symmetry. This is broken to the perturbative SO(1, 1, Z) T-duality symmetry by world-

sheet instantons. To make this symmetry manifest, we define

M =

(

e4σ 0
0 e−4σ

)

L =

(

0 1
1 0

)

(3.5)

which satisfy

MLMT = L, MT = M (3.6)

To obtain the effective action in four dimensions, we express the five-dimensional fields

in (3.3) in terms of the four-dimensional fields and take all fields to be independent of x4.

The resulting action is

S =
1

2κ2

∫

d4x
√−ge−2φ

(

R + 4(∇φ)2 − 1

12
H2 − F a(LML)abF

b

)

+
1

8
Tr(∇ML∇ML),

(3.7)

where all spacetime indices are contracted with the four-dimensional metric and κ2 ≡ κ̃2

2πR

is the four-dimensional gravitational coupling. The field strengths are defined by

F a = dAa, H = dB + 2Aa ∧ F bLab. (3.8)

Note that a Chern-Simons term appears in the definition of H in four dimensions even

though it was absent in five dimensions. For later use, it is more convenient to use ‘left-

moving’ and ‘right-moving’ gauge fields defined by

AL =
−A1 +A2

√
2

, AR =
A1 +A2

√
2

, (3.9)

so that the anomaly term for the two gauge fields is diagonal.

By applying these reduction formulae to the neutral oscillating string solution (2.15)

with p = 0 and reducing along the direction x4 (recall u = x0 − x4, v = x0 + x4) one
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obtains the four-dimensional quantities:

e−4σ =
(

e2φ̃ − Ḟ 2(e2φ̃ − 1)
)

,

e4φ = − g00 = e4φ̃+4σ,

gij = δij − ḞiḞje
4σ(e2φ̃ − 1)2,

g0i = ḞiḞ
2e4σ(e2φ̃ − 1)2 + Ḟi(e

2φ̃ − 1),

A1
0 = − 1

2
Ḟ 2e4σ(e2φ̃ − 1), A1

i =
1

2
Ḟie

4σ(e2φ̃ − 1),

A2
0 = − 1

2
(e2φ̃ − 1), A2

i =
1

2
Ḟi(e

2φ̃ − 1),

B0i = Ḟi(e
2φ̃ − 1) +

1

2
Ḟi(Ḟ

2 − 1)e4σ(e2φ̃ − 1)2,

(3.10)

where

e−2φ̃ = 1 +
Q

|~x− ~F (v)|
. (3.11)

Note that this solution still has dependence on the internal coordinate. To obtain a true

four-dimensional solution one must do the usual Kaluza-Klein truncation as we explain

in the following. Before continuing to analyze this solution we first review the stationary

extremal black hole solutions of [22]. We shall see that the solution (3.10) asymptotically

approaches these solutions.

3.2. Supersymmetric Stationary Black holes

The most general stationary solution of (3.7) that describes a rotating, electrically-

charged black hole was constructed by Sen [22]. For our purpose we shall be interested in

only the supersymmetric solutions, which in the notation of [22], correspond to the limit

β → ∞, m→ 0 keeping m0 = m cosh(β) and α fixed. The resulting solution depends upon

three parameters, a, m0, and α. Introducing

∆ = (r2 + a2 cos2 θ)2 + 2m0 coshα(r2 + a2 cos2 θ) +m2
0r

2 (3.12)
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the solution can be written as

e4φ = ∆−1(r2 + a2 cos2 θ)2,

ds2 ≡ gµνdx
µdxν

= − e4φdt2 + (r2 + a2 cos2 θ)(r2 + a2)−1dr2 + (r2 + a2 cos2 θ)
{

dθ2

+ ∆−1 sin2 θ
[

∆ + a2 sin2 θ(r2 + a2 cos2 θ + 2m0r coshα)
]

dϕ2

− 2m0ar sin2 θ∆dtdϕ
}

,

AL
0 = − m0nL√

2
∆−1r sinhα(r2 + a2 cos2 θ),

AL
ϕ = − m2

0nL√
2

∆−1a sinhαr2 sin2 θ(r2 + a2 cos2 θ),

AR
0 = − m0nR√

2
∆−1r coshα(r2 + a2 cos2 θ),

AR
ϕ = +

m0nR√
2

∆−1ar sin2 θ(r2 + a2 cos2 θ +m0r coshα),

B0ϕ = −m0a sin2 θr∆−1(r2 + a2 cos2 θ +m0r coshα),

(3.13)

where nL and nR determine the sign of the charges and can be either ±1. For discussing

the asymptotic behavior of these fields at large r, it is simpler to use cartesian coordinates

t, z, x1, x2. The axis of rotation of the black hole is in the z direction, xi(i = 1, 2) are the

coordinates in the transverse plane, and r2 = z2 + (xi)2. The asymptotic fields are then

given by

e4φ ∼ 1 − 2m0 coshα

r
,

ds2 ∼ − (1 − 2m0 coshα

r
)dt2 + dz2 + dxidxi − 2m0a

r
ǫijx

idxjdt,

AL
0 ∼ − m0nL sinhα√

2r
, AL

i ∼ 0,

AR
0 ∼ − m0nR coshα√

2r
, AR

i ∼ m0nRaǫijx
j

√
2r3

,

B0i ∼ − m0aǫijx
j

r3
,

(3.14)

where ǫij is an antisymmetric tensor with ǫ12 = 1. From these asymptotic formulae, one

can easily read off the massM , the angular momentum J , the left-moving and right-moving
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charges QL and QR, and the magnetic moments µL and µR to obtain

M =
1

2
m0 coshα, J =

1

2
m0a,

QL =
m0nL√

2
sinhα, QR =

m0nR√
2

coshα,

µL =0, µR =
m0nRa√

2
.

(3.15)

Recall that for a black hole of mass M and angular momentum J , the canonical Einstein

metric ĝµν takes the asymptotic form [51]

dŝ2 ≡ ĝµνdx
µdxν ∼ −(1 − 2M

r
)dt2 + dz2 + dxidxi − 4J

r3
ǫijx

idxjdt. (3.16)

In four dimensions, the string metric is related to the Einstein metric by the relation

gµν = ĝµνe
2φ.

3.3. Supersymmetric Black Holes as Strings

To obtain a rotating black hole in four dimensions from our dimensionally reduced

string solutions, we choose the profile of oscillation ~F in (3.10) to be of the form

~F = A(ê1 cosωt+ ê2 sinωt), (3.17)

where êi are unit vectors in the ith direction. This corresponds to a string configuration

that is rotating in the x1 − x2 plane with amplitude A and frequency ω. The period

of oscillation T can be taken to be very small, and on time scales much larger than T ,

only time-averaged quantities will be observable. These time-averaged quantities can be

compared with the parameters of the stationary solution. There is an ambiguity in directly

time-averaging the fields themselves. For example, the average of a product of two fields

will not be the same as the product of averages if there are correlations between the two

fields. Of course, all physical quantities such as geodesic distance, forces, and in particular

all asymptotic charges will have a well defined time-average. Therefore, we consider time-

averages of only the asymptotic fields.
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The time-averaging is equivalent to the usual dimensional reduction. In order to reduce

a solution that depends on the internal coordinate x4, one has to first expand every field Ψ

in terms of the momentum modes: Ψ(x4) =
∑

n Ψne
inx4/R. From the lower-dimensional

point of view, the modes Ψn are massive with masses of order n/R. Unless we probe the

structure of the solution on scales much shorter than R, we see only the zero momentum

mode Ψ0 which is nothing but the average of Ψ. Because our solution depends on x4 only

through the combination x4 + t, averaging over x4 is the same as time-averaging.

The two basic time-averages are

〈FiḞj〉 =
A2ω

2
ǫij ,

〈ḞiḞj〉 =
A2ω2

2
δij ,

(3.18)

where we use 〈A〉 to denote time-average of the quantity A over a period of oscillation.

Using these relations we obtain

〈e4φ〉 ∼ − 〈g00〉 ∼ 1 − Q

r
(1 + A2ω2),

〈g0i〉 ∼ − QA2ω

2r3
ǫijx

j ,

〈B0i〉 ∼ − QA2ω

2r3
ǫijx

j ,

〈A1
0〉 ∼ QA2ω2

2r
〈A1

i 〉 ∼ −QA
2ω

4r3
ǫijx

j ,

〈A2
0〉 ∼ Q

2r
〈A2

i 〉 ∼ −QA
2ω

4r3
ǫijx

j .

(3.19)

One can easily read off various asymptotic quantities:

M =
Q(1 + A2ω2)

4
, J =

QA2ω

4
,

QL = − Q

2
√

2
(A2ω2 − 1), QR = − Q

2
√

2
(1 + A2ω2),

µL =0, µR = −
√

2J.

(3.20)

These are exactly the same parameters as in (3.15) with nL = nR = −1. The three

parameters m0, α, and a can be easily computed in terms of Q,A, and ω. The left-

moving and right-moving gyromagnetic ratios are defined by the relations µL = gLQLJ
2M

and µR = gRQRJ
2M . One easily obtains

gL = 0, gR = 2 (3.21)
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These gyromagnetic ratios are related to the left-moving and right-moving angular mo-

menta by the relations [15,22]

gL = 2
JR

JR + JL
, gR = 2

JL

JR + JL
. (3.22)

Thus, from these asymptotic quantities we find that the angular momentum of our solution

is carried entirely by left-movers consistent with the fact that the underlying string solution

has only left-moving oscillations. It is also satisfying that the right-moving gyromagnetic

ratio is two as expected for a fundamental object.

The discussion in the preceding paragraphs can be easily extended to nonrotating

charged black holes by considering a slightly different profile of oscillation ~F :

~F (t) = Aê1 cosωt. (3.23)

The time-averages are somewhat different from (3.18)

〈FiḞj〉 =0,

〈ḞiḞj〉 =
A2ω2

2
δi1δj1,

(3.24)

The asymptotic parameters are then given by

M =
Q(2 + A2ω2)

8
, J = 0,

QL = − Q

4
√

2
(A2ω2 − 2), QR = − Q

4
√

2
(A2ω2 + 2),

(3.25)

which again agrees with (3.14) if we set a = 0. More generally, one can consider an

arbitrary Fourier expansion for ~F .

As a consistency check we note that, both for the rotating and the nonrotating so-

lution, the asymptotic form of the antisymmetric tensor is also in agreement with the

stationary solution. In four dimensions, the antisymmetric tensor is equivalent to an axion

field b through the relation db = ∗dH. Now, because of the anomaly term dH ∼ ~E · ~B,

there is a source term for the axion whenever there is a non-vanishing ~E · ~B. A rotating
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charged object has both charge and magnetic moment and accordingly a nonzero ~E · ~B

that falls off as 1/r5. One then expects a nonzero value of the axion that falls off as 1/r3.

In the non-rotating case, on the other hand, one expects a faster fall-off. This is precisely

the behavior we find for the time-averaged fields in the two cases.

We now compare these results with the perturbative spectrum (3.1). For this purpose

we need to properly take into account different normalizations that we have used. The

normalization of charges QL and QR depends on the normalization of the gauge fields, and

is different from the normalization qL and qR. Furthermore, in the black-hole formulae

above, we have chosen units in which the four-dimensional Newton’s constant G ≡ κ2/(8π)

is one. From the normalization of the sigma model action and the dimensional reduction

formulae, we readily see that QL,R = 2
√

2qL,R, and from (2.37) that Q = 4nR/α′. If

we consider a string that wraps n times around the internal circle of radius R then the

periodicity of string coordinates implies that ω = ℓ/nR for some integer ℓ.

Using these formulae it is easy to see that various asymptotic parameters of our black

hole are in complete agreement with the quantum numbers of a perturbative state in the

spectrum (3.1). In particular, M = 2qR and the angular momentum is given by

J =
A2ℓ

α′
. (3.26)

The maximum angular momentum on the other hand is given by (3.2) which from (3.20)

equals A2ℓ2/α′. We thus see that the angular momentum is Regge-bounded and the leading

Regge trajectory corresponds to taking l = 1 for arbitrary A. This is in precise agreement

with the behavior expected from a string source at the core.

We would now like to comment upon the singularities of the reduced string solution

vis-a-vis those of the stationary Sen solution. Recall, that the stationary Sen solution

is obtained by twisting the Kerr solution in Einstein gravity. One of the peculiarities

of the Kerr solution is the existence of the Kerr singular ring [49] which is a branch-cut

connecting spacetime on ‘negative’ and ‘positive’ sheets. Across the branch-cut various
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fields change their signs and directions. A similar naked singularity exists also for the Sen

solution; across the branch-cut the dilaton becomes imaginary. By contrast, although the

reduced string solution asymptotically approaches the Sen solution after time-averaging,

the solution has only a mild singularity of a string source from the five-dimensional point

of view. In four dimensions, the string source with a rotating profile is squashed to a disk

and it may appear to have a disk-like naked singularity.

We note that this is reminiscent of the proposal of [52] in which the negative sheet

of the Kerr solutions is replaced by a disk-like source bounded by the Kerr ring. It was

argued in [52] that the disk must be super-conducting and in rigid rotation, and in [49]

that the boundary of the disk could be identified with some string-like source.

It is also worth comparing our solutions with those in [53] where rotating charged

black holes were constructed in dimensions D > 4 with one non-zero component of the

angular momentum. It was found that for these dimensions the BPS limit coincides with

the extremal limit. By taking periodic arrays of these solutions in six dimensions, a four-

dimensional rotating black hole was constructed by dimensional reduction that asymp-

totically approached the four-dimensional stationary charged rotating black hole solution.

For these solutions the ring singularity of the four- dimensional black hole is replaced by

a six-dimensional BPS charged rotating extremal black hole singularity. One difficulty in

relating these solutions to the four-dimensional BPS states of string theory is that, unlike

our solutions, the angular momentum is not Regge bounded.

We conclude this section with some comments concerning the dimensional reduction

of solutions with F = 0, p 6= 0. Starting with the five-dimensional solution with F = 0, p 6=

0 we obtain four-dimensional static supersymmetric black hole solutions with mass and

charge given by

M =
Q+ p

4
, QL =

1

2
√

2
(Q− p), QR =

1

2
√

2
(Q+ p). (3.27)

For p > 0 this static black hole solution is precisely the same as the asymptotic behavior of

the black hole solution that arises from the profile (3.24). This is to be expected because
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even before dimensional reduction, the solution with p > 0 is asymptotically the same as

the time-averaged, non-rotating oscillating string solution. This can be seen, for example,

from the ADM tensor (2.16).

It is also illuminating to consider the behavior of these static black hole solutions under

the T -duality transformations of Buscher [54]. In our notation these transformations take

the form
σ′ = −σ, φ′ = φ+ σ,

A1′ = A2, A2′ = A1,

g′µν = gµν , B′
µν = Bµν .

(3.28)

One finds that this has the effect of simply interchanging the parameters Q and p in the

solution. Now let us consider a neutral (m,n) state. We have seen in the last section

that this corresponds to the neutral, oscillating-string solution with p = 0, Q given by

(2.37), and a profile F satisfying (2.40). Comparing how F and p contribute to the ADM

momentum we deduce that asymptotically the state (m,n) corresponds to the static black

hole with parameters given by

Q =
n

2πα′

κ̃2

2π

p = − m

2πR2

κ̃2

2π

(3.29)

Replacing the five-dimensional gravitational coupling κ̃2 with 2πRκ2 and recalling that

the four-dimensional coupling κ2 is held fixed under T -duality, we see that the interchange

of p and Q coming from spacetime duality corresponds to the interchange of n and −m

along with R and α′/R which are the worldsheet T -duality transformations.

It is also interesting to consider the solution with p < 0. From (3.27) we see that we

have constructed massless black holes when we choose p = −Q. In fact this construction

is essentially the same as that in [55]. Note that for the value of p corresponding to the

heterotic string state (1, 1), p = −QR2/α′, the black holes are massless precisely at the

self dual radius R2 = α′.
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4. Strings as Solitons

At present there are essentially three independent exact string-string dualities which

we list below.

I. The Type-IIA string compactified on a K3 surface is conjectured to be dual to the

heterotic string compactified on a torus T 4.

II. The Type-IIB string in ten dimensions is conjectured to be dual to itself.

III. In ten dimensions, the Type-I string and the heterotic string with gauge group SO(32)

are conjectured to be dual to each other.

For our present purpose we shall be interested in only a few general aspects of these

dualities. A more detailed description can be found, for example, in [56,32].

If two string theories are exactly dual to each other at a microscopic level, the spectrum

of BPS-saturated states in the two theories must match. Under duality, perturbative states

in one theory typically match onto nonperturbative states in the other. In this section we

discuss the nonperturbative states that are dual to the infinite tower of states analyzed in

previous sections. We then describe a variety of string-like and point-like solitons in the

low energy theory that correspond to these states.

4.1. Infinite Tower of Solitonic Strings

Note that all string theories in the above list, with the exception of the Type-I theory,

are supersymmetric theories of closed strings only. Consequently, they contain an infinite

tower of macroscopic strings in their perturbative spectrum. Which states do these map

onto under duality? We address this question below.

A basic requirement of exact duality is that the low-energy action for the massless fields

in the two theories must agree after appropriate field-redefinitions. One feature common to

all dualities is that strong coupling must match onto weak coupling, so the dilaton φ maps

onto −φ. Furthermore, the Einstein-Hilbert action should be left invariant, so ĝµν → ĝµν

where the canonical metric ĝ is related to the string metric g by ĝµν = e−4φ/(D−2)gµν in
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D ‘large’ dimensions. Transformations of the remaining fields such as the gauge fields and

the antisymmetric fields are specific to each case, and are often nonlocal, but they can all

be deduced uniquely from the low-energy actions.

Given the duality map for the massless modes, and their coupling to a fundamen-

tal macroscopic string, one can immediately see that the infinite tower of macroscopic

strings in each case must map onto a nonperturbative state in the corresponding dual

theory. A macroscopic fundamental string couples universally and locally to the second-

rank, antisymmetric, Kalb-Ramond field Bµν through the action (2.7). So the duality

transformation of this field is particularly important. For example, in the case of dual-

ity I above, the Bµν fields of the two theories are related by a nonlocal transformation

involving the field-strengths H, H → ∗H. Thus, the state that is dual to a macroscopic

string couples non-locally to the dual antisymmetric tensor field. Such a state must arise

nonperturbatively because all perturbative states have local couplings with this field. Sim-

ilarly, in the case of dualities II and III, the Bµν field maps onto a field coming from the

Ramond-Ramond sector. Once again there are no perturbative states that couple to the

Ramond-Ramond field through the action (2.7), so these must also be nonperturbative.

It is trivial to find the solitonic solutions of the low-energy equations of motion that

correspond to this infinite tower of states once we know the duality map for the massless

modes. A solitonic solution is obtained simply by rewriting a solution in the previous

sections in terms of the new dual variables.

Even though the two solutions are related by a field redefinition, their interpretation

and properties are completely different. First, the mass per unit length of a solitonic string

in a given theory is inversely proportional to the coupling constant of that theory. So these

states are infinitely massive at weak coupling, as they should be. Second, a fundamental

string solution discussed in previous sections has a source at the core; it therefore describes

the fields around a perturbative macroscopic string state. One cannot really regard them

as solitons any more than one can regard the fields around a classical electron as a soliton
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in quantum electrodynamics. A solitonic solution, on the other hand, has no sources.

Third, for a fundamental string, the coupling constant vanishes near the core whereas

for a solitonic string it diverges. Consequently, the structure of singularities of the string

metric is quite different in the two cases. Finally, the nature of higher order α′ corrections

to the solutions also differs substantially in the two cases.

To illustrate these points let us consider the infinite tower of solitonic strings required

to exist by duality in Type-IIA theory compactified on a K3 surface. The mass of these

states goes as 1/λ2 where λ2 is the loop counting parameter. These are the solitons that are

dual to the infinite tower of perturbative states in the heterotic string theory compactified

on T 4. The solution corresponding to an infinitely long straight-string soliton was analyzed

in [6,7]. At a generic point in the moduli space of K3, where the gauge symmetry is U(1)24,

it was shown in [6,7] that the charged zero modes in the background of such a string live on

an even, self-dual, Lorentzian lattice with signature (20, 4). This is precisely the structure

expected for a charged heterotic soliton with NL = 0. We would now like consider a more

general soliton corresponding to the state (m,n) at finite radius with nonzero oscillations.

We start with the general uncharged solution (2.11) corresponding to an oscillating,

heterotic macroscopic string in six dimensions and rewrite it in terms of Type-IIA variables.

The resulting solution is given by,

ds2 = −
(

dudv − ~f(v) · ~xdv2
)

+ e2φd~x · d~x

Hijk = − ǫ l
ijk ∇lφ

e2φ =1 +
Q

rD−4
,

(4.1)

where i, j, k, l are the indices in the space transverse to the string, ǫ is the completely

antisymmetric tensor, and f is an arbitrary function as before. We have used the coordinate

frame that is not asymptotically flat because we wish to concentrate on the properties of

the solution near the core. Notice that near the core, ~x → 0, the solution reduces to the

one with no oscillations i.e. the straight-string solution discussed in [6,7]. This has two
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important consequences. First, the entire infinite tower of solitons is smooth near the core

and has an infinite throat just like the straight-string soliton. Second, near the core they

will be described by an exact superconformal field theory [57,58] that consists of a product

of a WZW model and a free field with a linear dilaton, with an additional perturbation

corresponding to the dv2 term in the metric that becomes smaller and smaller down the

throat. Of course, because of the growing dilaton, the theory eventually gets into strong

coupling and the semi-classical approximation breaks down.

If we consider the duality III, then we expect to find heterotic winding states as

solitons in Type-I theory. Because the mass of these solitons goes as 1/λ they are very

different from the usual solitons in field theory. These solitons are also a source of the

Kalb-Ramond field in the R-R sector of the Type-I theory, and correspond to Dirichlet

one-branes [59,60]. The straight-string soliton was constructed in [8,9]. For weak coupling

and low winding number, interactions are small, and this soliton has a description in terms

of an exact conformal field theory of a one-brane [60]. It would be interesting to generalize

these results to oscillating one-branes.

4.2. Infinite tower of Magnetically charged States

The three basic string-string dualities, I-III, discussed above imply other dualities in

lower dimensions after toroidal compactification. Under this reduction, a solitonic string

gives rise to different point-like and string-like solitons, which is what we describe now.

Our main interest will be the magnetically charged states predicted by S-duality in four

dimensions.

Let us consider the heterotic string compactified on T 4 × T 2 which is dual to Type-

IIA on K3 × T 2. It has been shown that the six-dimensional string-string duality implies

that each of the four-dimensional theories are S-dual [32,61]. In both theories there is an

infinite tower of electrically charged point-like states given by a formula analogous to (3.1).

Four-dimensional S-duality then predicts an infinite tower of magnetically charged states.
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We would now like to show that the solutions corresponding to many of these states can

be obtained directly from solitonic strings in six dimensions.

For example, consider the Type-IIA string which has a heterotic string soliton in six

dimensions. We now consider a two step reduction of the soliton to four dimensions. We

first reduce in the x5 direction, as in §2.7, by taking a periodic array of solitons, to obtain

a five-dimensional string soliton. We then reduce in the x4 direction, as in §3.3, to obtain

a point-like solution in four dimensions. The original string soliton has a ‘magnetic’ charge
∫

Σ
H where H is the field strength of Bµν and Σ is an asymptotic three-surface on the

spatial slice transverse to the string. As a result, the dimensionally reduced soliton is

magnetically charged under the gauge field coming from B4µ. This is precisely the state

that is S-dual to a perturbative state that is electrically charged under the gauge field

coming from g4µ. Starting with an oscillating string soliton in six dimensions, one can

obtain an infinite tower of magnetically charged states. The degeneracy of these states

is naturally related to the degeneracy of the oscillating string soliton. Moreover, because

these solitons are obtained from the smooth string soliton, they are smooth near the core

and have an infinite throat much like the stationary solution [62]. The low lying states

in this tower are particularly interesting. For example, the lowest level of this tower

corresponds to magnetic monopoles [63], the first level to H-monopoles [64,47,48] and so

on. Most of the analysis in this paper is applicable to states with large oscillation number.

It would be interesting to extend it to these low-lying states.

This discussion makes it clear that the problem of finding H-monopoles in four-

dimensional heterotic string theory is closely related to the problem of finding the Type-IIA

solitonic string moving on K3 in six-dimensional heterotic string theory. It is difficult to

see how one can obtain translational zero modes for a soliton that parametrize a compli-

cated surface like K3. The main difficulty is that such a motion is not associated with any

charges at infinity as is the case with the motion on a torus. In particular, the charged

zero modes which are present for the heterotic string soliton in Type IIA theory can be
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inferred using an anomaly inflow argument directly from the low-energy theory [65]. This

is not true for the IIA string as a soliton in the heterotic theory because the zero mode

structure after reduction to six dimensions is completely non-chiral. These arguments

seem to suggest that the detailed zero mode structure of the Type-IIA soliton cannot be

understood entirely within the massless theory. It would follow that obtaining the precise

degeneracy of H-monopoles also requires a treatment beyond field theory, something that

was also apparent in [66] for somewhat different reasons.

We do not have much to say about this important problem except to point out the

following possibility. Consider a Type-IIA theory compactified on a K3 that is geometri-

cally an orbifold obtained from flat space by modding out with a discrete group G. One

can consider a ten-dimensional macroscopic string that is located at a point other than the

fixed points of G. Its image under G generates a ‘periodic’ array of strings. On distances

larger than the characteristic size of the K3, this periodic array will describe a macro-

scopic Type-IIA string moving in six dimensions. The zero modes that move it along the

K3 will be visible, however, only on scales smaller than the size of the K3. By taking

the duality transform of this solution, one can obtain, at least at large distances and away

from the orbifold singularities, the soliton in heterotic string theory that corresponds to

the Type-IIA string.

5. Conclusions

In this paper we have shown that there is a very satisfying agreement between the

structure of BPS states in toroidal compactifications of supersymmetric strings and su-

persymmetric solutions to the low-energy effective theory when source terms are included.

This leaves little doubt that the solutions we have discussed are just the fields outside of

elementary string states.

This point of view has in the past led to a puzzle when considering BPS fundamental

string states carrying angular momentum. In string theory the states have Regge-bounded
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angular momentum and one expects source terms for the external fields. On the other hand

to reach the supersymmetric limit for the known rotating black hole solutions one must

go beyond the extremal limit to very singular configurations, and there is no reason for

the angular momentum to be bounded. We think we have resolved this puzzle by showing

that the rotating BPS string configurations are stable but depend on both time and the

internal coordinate. This leads to a substantial modification of the short distance structure

of the solution which is consistent with an underlying string source. Upon time-averaging

the solution, which is equivalent to the usual Kaluza-Klein reduction, one obtains the

asymptotic form of the previously studied solutions. This point of view may have broader

applicability to black hole physics in that it shows that information about black hole

structure may be carried by configurations which vary in time on the string scale and

which are averaged out in a low-energy description of black hole physics.

There are a number of directions related to this work which would be interesting to

pursue. It would be very interesting to extend this analysis to non-extremal black holes.

Both the uncharged and the charged fundamental-string solutions are the extremal limit

of a larger class of black-string solutions representing string-like singularities surrounded

by event horizons [67]. Because the charged black-string solutions do not possess a null

Killing vector, it is not possible to use the generating technique to construct traveling-wave

solutions on these backgrounds. Such a construction remains an open problem.

It would also be interesting to see whether some of the problems of black hole informa-

tion loss can be resolved using a picture in terms of microscopic string states as has been

advocated by Susskind and others [13,14,15]. A related question is the statistical inter-

pretation of black hole entropy. The entropy of supersymmetric black holes as considered

in [17] now appears to have a nice state-counting interpretation in terms of oscillations of

an underlying string. This entropy has so far been computed only for non-rotating black

holes [17]. To make this picture complete, one would like to generalize this computation to

rotating black holes. We expect that the solutions discussed in this paper will be useful for
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this purpose. One puzzle is that in Sen’s calculation the relevant scale for determining the

location of the stretched horizon is the string scale and not the scale of compactification.

On the other hand, we have seen in this paper that the four-dimensional black hole solution

matches not onto a four-dimensional point source but rather onto a five-dimensional string

source. Thus, beyond the scale of compactification one should really use a five-dimensional

description. We hope to return to these questions in the near future.

We have also provided more evidence for the idea that fundamental strings are soli-

tons in the dual theory. We have shown that the entire spectrum of macroscopic BPS

states exists as solitons. This makes it more plausible that even small, oscillating loops

of fundamental strings, which in general are unstable, have a dual description. There are

many open questions in string duality related to BPS states and macroscopic strings. We

have sketched a few possible applications in section four; it would be nice to make these

ideas more concrete. We have so far explored the detailed structure of these states only in

theories with maximal supersymmetry. Many new dynamical features emerge in theories

with reduced supersymmetry, so it would be useful to explore the structure of BPS string

states and their duals in these theories as well.

It has also become clear recently that extended objects, p-branes, play a fundamental

role in duality. We have seen that for strings, which are one-branes, BPS states arise as

purely left-moving excitations of the underlying string. This suggests, at least for odd p,

that there may be a connection between excited BPS states of these p-branes and “chiral

brane waves.” This would be particularly interesting for D-branes [59,60,31,68].
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