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1. Introduction

One of the main obstacles preventing more direct phenomenological applications of

string theory is the problem of vacuum degeneracy. One aspect of this problem is

the presence of massless scalar fields or moduli in compactifications of string theory.

These moduli govern the shape and size of the compactification space as well as the

value of the coupling constant in string theory and correspond to massless fields in

spacetime. There are stringent constraints on the presence of such massless scalars

in the real world, so it is usually assumed that masses are generated for moduli fields

by whatever mechanism breaks supersymmetry in string theory. A related problem

is that the moduli fields, particularly the dilaton which governs the value of the

coupling constant, tend to run off to infinity in known mechanisms for supersymmetry

breaking, leaving one with no vacuum at all except at zero coupling [1]. Even in a

cosmological situation the presence of moduli is problematic [2]. Thus it is interesting

to consider string theories with few or no moduli.

Another reason why theories with few moduli are of interest has to do with spec-

ulative proposals for a solution to the cosmological constant problem [3, 4, 5]. In [3]

it was suggested that the one-loop contribution to the cosmological constant might
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vanish in certain special theories where the left and right-moving contributions are

chiral with respect to an Atkin-Lehner symmetry. This naturally leads to asym-

metric orbifold constructions and hence theories with a reduced number of moduli.

In [4] it was proposed that the cosmological constant could vanish if our four dimen-

sional world arises as a strong coupling limit of a three-dimensional world. In three

dimensions supersymmetry can enforce a vanishing cosmological constant without

imposing degeneracy between fermion and boson masses [6]. It seems quite likely

that this mechanism, if it works at all, could only work in a theory which cannot be

continuously connected to higher dimensional theories by varying moduli fields. This

is because one could first go to a higher dimensional theory and then take the strong

coupling limit which is known in many cases not to lead to supersymmetry breaking.

Therefore one is again interested in theories which are free of moduli other than the

dilaton or at least free of non-compact geometrical moduli which take one to higher

dimensions. For apparently different reasons small numbers of moduli also entered

into the proposal of [5] based on the AdS/CFT correspondence. In this case one

wants the theory to contain Reissner-Nordstrom black holes with AdS2 near horizon

geometry. The AdS2 symmetry is spoiled by the presence of moduli which couple to

the gauge fields under which the black hole is charged so again one is interested in

theories with few moduli.

One final motivation for studying such theories is to improve our understanding

of the moduli space of string compactifications with given spacetime supersymmetry.

Of particular interest is the question of whether this moduli space is connected. In [7]

it was pointed out that many Calabi-Yau vacua which were previously thought to

be disconnected are in fact related via conifold transitions. More generally, if we

take the size of the manifold of compactification to be very large, then locally the

physics looks ten dimensional. We will give examples here of string vacua which

appear to be isolated and are not continuously connected via vacuum configurations

to geometrical compactifications of string theory. These theories have no geometrical

moduli and moreover are self-dual so that even strong coupling does not relate them

to higher-dimensional theories. We refer to these vacua as “String Islands.” They

are higher-dimensional supersymmetric versions of the “Ginsparg Archipelago” of

c = 1 CFT [8].

The basic idea behind our construction has been known for a long time: one can

remove moduli by twisting a theory by a symmetry which exists only at special values

of the moduli [9]. There is a great deal of literature on this subject; the novelty here

as far as we know is that we construct theories with no moduli other than the dilaton

and use string duality to argue that the strong coupling limit does not take one back

to a higher-dimensional theory. Thus one can argue that these theories are truly

isolated in that no variation of the moduli connects them to higher dimensional

theories. Similar constructions appear in [10] in the context of two-dimensional

asymmetric orbifolds where it was argued that varying certain radial moduli would

2



J
H
E
P
0
2
(
1
9
9
9
)
0
0
6

lead to pure supergravity theories in higher dimensions. In such constructions one

must ensure that no new moduli appear as some radii are taken to infinity. Some

of the theories we construct do have a number of moduli, but many of these are

compact and so do not take us back to a higher-dimensional theory.

It is also interesting to ask about theories which contain no moduli at all, not

even the dilaton. Such theories exist in compactifications to two dimensions [11] and

of course the most famous example of such a theory is M theory which arises as the

strong coupling limit of IIA string theory. M theory is described at low-energies by

eleven-dimensional supergravity. There is by now good evidence that M theory exists

beyond the low-energy approximation and there is a proposal for a more complete

formulation of M theory [12] which has passed a number of non-trivial tests [13, 14].

We will comment at the end of this paper on the possibility of other theories without

any moduli at all. For most of the paper we focus on perturbative string constructions

in dimensions four or greater which therefore always contain a dilaton. The possibility

of constructing moduli free theories by modding out simultaneously by S and T

dualities and some non-perturbative aspects of theories with few moduli have been

discussed in [15] .

In searching for theories with few moduli it is not completely clear what criteria

to impose. The simplest and most stringent compatible with supersymmetry and

the one we will impose in this paper is to try to obtain pure supergravity theories

without matter fields as the low-energy limit of string constructions. Many pure

supergravity theories are inconsistent because of anomalies. Of the non-anomalous

pure supergravity theories we have been able to obtain all via string constructions

except for one in D = 8 and one in D = 7.

In the next section we summarize the consistent pure supergravity theories and a

few of their properties. The following section contains a set of explicit constructions

of most of these theories. We end with some general comments and speculations.

2. Consistent pure supergravities

We will refer to a supergravity theory without matter multiplets as pure supergrav-

ity. Some pure supergravities of course allow the addition of matter multiplets while

others (such as D = 11 supergravity) do not, but we will not make any distinction

between these two cases in what follows. Pure supergravity theories in D dimensions

are uniquely specified by the number of supersymmetries N . In six and ten dimen-

sions we must specify the number of supersymmetries of each chirality [NL, NR].

However there does not seem to be a uniform convention for counting supersymme-

tries because of various reality conditions. We will therefore denote theories by D,

N , and Ns with Ns the number of component real supersymmetries, so for example

the low-energy limit of M-theory is denoted by (11, 1, 32). A useful reference on the

possible supergravity theories is [16].
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All supergravities in D < 11 dimensions with Ns = 32 arise from toroidal com-

pactification of M theory and therefore have moduli which take one back to eleven

dimensions [17].

All pure supergravity theories with Ns < 16 and D ≥ 4 are either inconsistent
due to anomalies ((6, [1, 0], 8)) or have no scalars at all in the supergravity multiplet

((5, 1, 8), (4, 3, 12), (4, 2, 8), (4, 1, 4)). The latter theories are interesting since they

could in principle lead to lower-dimensional theories with no moduli but because they

have no dilaton they cannot be obtained from perturbative string constructions.

Of the remaining pure supergravities in D ≥ 4, (10, [1, 0], 16), (6, [2, 1], 24) and
(6, [2, 0], 16) have perturbative gravitational anomalies and so are inconsistent. The

(9, 1, 16) theory is also inconsistent due to a global gravitational anomaly. To see

this note first that a single Majorana spinor in D = 8k + 1 dimensions has a global

gravitational anomaly [18, 19]. On the other hand, we know that reduction of the

D = 10, (1, 0) heterotic theory with 496 vector multiplets on S1 gives a D = 9, N = 1

theory with 497 gauge supermultiplets, each containing a single Majorana fermion.

Since this theory is consistent, it must be the case that the pure supergravity theory

has a global gravitational anomaly which cancels the anomaly of the odd number of

Majorana fermions in the gauge supermultiplets.

We are then left with the following list of consistent pure supergravities in D ≥ 4
which have at least one scalar in the supergravity multiplet and cannot be obtained

from toroidal compactification of M theory:

(D,N,Ns) = (8, 1, 16), (7, 1, 16), (6, [1, 1], 16), (5, 3, 24) ,

(5, 2, 16), (4, 6, 24), (4, 5, 20), (4, 4, 16) . (2.1)

One family of theories consists of the five theories with 16 supercharges in D =

4, 5, 6, 7, 8. The D = 5, 6, 7, 8 theories all have only a single real scalar field in

the supergravity multiplet and thus in perturbative string theory can only arise in

theories where all geometrical moduli are frozen and the dilaton is the single scalar

in the supergravity multiplet. The D = 4 theory has two scalars which comprise the

dilaton/axion and thus we expect the same to be true for this theory. A reduction

on S1 of these theories in D dimensions yields the D − 1 theory with Ns = 16 with
a single vector multiplet in addition to the supergravity multiplet.

A second family consists of the two theories with 24 supercharges, the D =

5, N = 3 theory and the D = 4, N = 6 theory. The D = 5, N = 3 theory contains

14 scalars, two of which are non-compact while the D = 4, N = 6 theory contains

30 scalars, three of which are non-compact. These theories are apparently related

by reduction on an S1 since the field content of the D = 4 theory is the same as the

reduction on S1 of the D = 5, N = 3 theory. This suggests that it should be possible

to obtain the D = 5, N = 3 theory as a limit of the D = 4, N = 6 theory, either by

varying a geometrical modulus or by going to strong coupling.
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The D = 4, N = 5 theory is the odd man out, being the only theory with 20

supercharges. The supergravity multiplet contains ten scalars, but only one of these

is non-compact so again all moduli which would correspond to going to large radius

of the internal space have been frozen.

The structure of the moduli space for these theories will be discussed in more

detail in the following section in the context of explicit string constructions.

3. Explicit constructions

We now turn to explicit constructions of string theories with pure supergravity the-

ories as their low-energy limits. We will construct these theories using asymmetric

orbifold constructions, although there are undoubtedly other constructions of some

of these theories involving free fermions, tensor products of minimal models, or ori-

entifolds.

First we recall a few basic facts about asymmetric orbifold constructions [20].

In this paper we deal primarily with orbifolds of Type-II string theory. We thus

start with a toroidal compactification of Type-II string on a d-dimensional torus. At

special points in the Narain moduli space of such compactifications we can obtain

theories with purely left or right moving symmetries. These occur at points in the

Narain moduli space where some of the T-duality symmetries have fixed points. One

very useful construction of such special points proceeds as follows [20]. We choose a

simply laced Lie algebra G of rank d and define the lattice Γd,d(G) [21] as

Γd,d(G) = {(pL, pR)} , pL, pR ∈ ΛW (G) , pL − pR ∈ ΛR(G) , (3.1)

with ΛR and ΛW the root and weight lattices of G respectively. The resulting theory
has purely left (and right) moving symmetries given by elements of the Weyl group

W(G), and in order to act correctly on fermion fields these must also be elements of
Spin(d). The general transformation is thus of the form

|pL, pR〉 → e2πi(pL·vL−pR·vR)|gLpL, gRpR〉 , (3.2)

where v = (vL, vR) is a shift vector and gL and gR lie in the intersection of W(G)
with Spin(d). The right and left-moving fermions must also be twisted by gR,L in

order to preserve the world-sheet supersymmetry.

Classifying such orbifolds amounts to classifying conjugacy classes of the Weyl

groups of rank d simply laced Lie algebras and then for elements of each conju-

gacy class determining the allowed shift vectors which are consistent with modular

invariance. In what follows we will use the classification of and notation for Weyl

group conjugacy classes developed by Carter [22]. Useful tables of these conjugacy

classes can be found in [23, 24]. We will often try to choose shift vectors which give

positive vacuum energy in the twisted sectors in order to ensure that there are no
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massless states coming from the twisted sectors. In doing this it is important to

remember that in twisted sectors the momenta live in the lattice I∗ which is dual
to the lattice left invariant by the twist. Thus we will want to choose shift vectors

which are not in I∗. A necessary condition for modular invariance of abelian orb-
ifolds is level-matching [25]. For Zn orbifolds, level-matching is ensured if in every

sector there are states for which n(ER − EL) = 0mod 1 where EL,R are the left and
right-moving energies. Equivalently, there must be physical states in every twisted

sector for every ground state of definite momentum and winding. This condition is

known to be sufficient for modular invariance at one loop [25]. In fact it suffices to

check level matching for the ground state rather than for all momentum and winding

states and to check a single mod 2 condition for elements of even order 2n:

pgnp = 0 mod 2 , (3.3)

for all p ∈ Γd,d. In what follows we will mostly use odd order twists for which it
suffices to check level matching for the ground state.

Conditions for modular invariance at higher loops have been analyzed in [26]

where it is shown that one-loop level matching is not sufficient to guarantee level

matching for theories with a non-Abelian point group. Our theories all have Abelian

point groups and so we do not expect any problems with higher loop modular in-

variance, but it is not clear to us that the analysis of [26] guarantees higher loop

modular invariance for abelian asymmetric orbifolds which do not have a simple

fermionic description.

As discussed above we will focus on consistent minimal supergravities with 16≤
Ns < 32. Theories with Ns = 16 occur in dimensions D = 4, 5, 6, 7, 8. These theories

contain 8(D − 2) physical boson and fermion degrees of freedom and have half of
the maximal supersymmetry. In Type-II string, 16 supercharges come from the left-

movers and 16 come from the right-movers. This suggests that one can construct

an asymmetric orbifold with a left-moving twist which lies in O(10 − D) but not
in a subgroup and which thus breaks half of the spacetime supersymmetry coming

from the left-movers and removes all Narain moduli from the untwisted sector. If

we accompany the twist by a right-moving shift which prevents the occurrence of

massless states in the twisted sector we clearly get the minimal supergravity spectrum

for theories with Ns = 16.

If the left-moving twist lies in SU(3) or in SU(2), then four or eight left-moving

supersymmetries are preserved respectively, giving us 20 or 24 supersymmetries in

all. In some examples that we discuss below, additional supersymmetries come from

the twisted sector if the the twists are not accompanied by any shifts.

As we move down in dimension there are both more moduli that must be pro-

jected out by the orbifold and larger orbifold groups and more choices of shift vector

that can be used in the construction. It is not obvious a priori, but it will turn out

that going down in dimension in fact makes it easier to remove the moduli and that
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as we move up in dimension it becomes more difficult until we reach D = 7 and

D = 8 where it seems unlikely that asymmetric orbifold constructions of the pure

supergravity theories exist. This will become clearer as we proceed.

We now consider such orbifolds on a case by case basis. In what follows we write

the roots of An in an n + 1 dimensional orthonormal basis {ei, i = 1 . . . n + 1} as
{(ei − ej)}. For Dn we write the roots in terms of {ei, i = 1 . . . n} as {±ei ± ej}.

3.1 D = 4

3.1.1 N = 4

In order to implement the orbifold discussed above we need a rank six simply laced

Lie algebra and an element of the Weyl group of this Lie algebra which lies in SO(6)

but not in a subgroup. An inspection of the list of conjugacy classes of Weyl groups of

simply laced Lie algebras [23, 24] leads to many possibilities. Let ω denote a primitive

nth root of unity when the Weyl group element has order n. We find for example

that E6 has a conjugacy class E6(a1) of elements of order 9 with eigenvalues ω, ω
2, ω4;

D6 has a conjugacy class D6(a2) of elements of order 6 with eigenvalues ω, ω
3, ω5;

A4 × A2 has a conjugacy class A4 × A2 of elements of order 15 with eigenvalues
ω3, ω5, ω6 along with many other possibilities.

a. We can construct a D = 4, N = 4 model based on the conjugacy class E6(a1)

of the E6 Weyl group [27]. We start with the lattice Γ
6,6(E6). We then twist by a

Z9 element with gR = 1 and gL = (ω, ω
2, ω4). We accompany this by a shift with

vL = 0 and

vR =
1

9
(1, 1,−2; 1, 1,−2;−1,−1,+2) . (3.4)

Here we have written the shift vector in terms of the embedding of A32 ⊂ E6. The
action of the twist gL can be represented by a 3×3 matrix action on the A2×A2×A2
planes as 


0 1 0

0 0 1

α 0 0


 , (3.5)

where α is a rotation in a single A2 plane by 2π/3.

In this model I = (0,ΛR(E6)), I
∗ = (0,ΛW (E6)) and we can check that vR is not

in I∗, and moreover 3vR is also not in I∗ because 3vR is in the (3, 3, 3̄) conjugacy
class of A32, whereas ΛW (E6) has only the (3, 3, 3) and (3̄, 3̄, 3̄) conjugacy classes.

b. It is also possible to construct a heterotic string theory with pure D = 4, N = 4

supergravity as its low-energy limit using a free fermion construction as discussed

in [28].

In both of these examples one obtains the N = 4 pure supergravity multiplet

that contains the graviton, four gravitini, six graviphotons, and two scalars. The only
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noncompact scalar is the dilaton φ which is accompanied by the axion b that comes

from the dualized antisymmetric tensor Bµν . Together, the scalars parameterize the

coset SL(2,R)/SO(2). The duality group is expected to be a subgroup of SL(2,Z).

Precise determination of this duality group in each example is an important and

interesting problem.

c. We now discuss an N = 4 model which is somewhat tangent to the main theme

of this paper. Its spectrum contains, in addition to the supergravity multiplet, 28

vector multiplets. What is interesting about this model is not that there are few

moduli but rather that there are so many! In particular, to our knowledge all known

D = 4, N = 4 string compactifications have N = 4 supergravity coupled to at most

22 vector multiplets whereas this model has 28 vector multiplets.

This model is obtained by considering the lattice Γ6,6(A32). One can twist by the

group Z3L × Z3R that is generated respectively by
α : gL = (ω, ω, ω) , vL = 0 ,

gR = 1 , vR = 0 ,

β : gL = 1 , vL = 0 ,

gR = (ω, ω, ω) , vR = 0 . (3.6)

Let us denote the sectors twisted by αkβl, as [k, l] for k, l = 0, 1, 2. From the untwisted

or the [0, 0] sector one obtains the supergravity multiplet and a single hypermultiplet–

the so called ‘universal’ hypermultiplet of N = 2. The sectors [0, 1], [0, 2], [1, 0], and

[2, 0] give two spin 3/2 and two spin 1 multiplets of N = 2 and their CPT conjugates.

Together with the untwisted sector this gives the N = 4 gravity multiplet and one

N = 4 vector multiplet. There are 27 fixed points in the sectors with twists [1, 1]

and [2, 2] which give 27 hypermultiplets of N = 2. These combine with the 27 vector

multiplets of N = 2 coming from the 27 sectors with twists [1, 2] and [2, 1] to give

27 additional vector multiplets of N = 4. In all, we have the supergravity multiplet

and 28 vector multiplet of N = 4 supersymmetry.

As before, there is the dilaton and the axion from the gravity multiplet that

parameterize SL(2,R)/SO(2). The scalars in the vector multiplets parameterize the

coset O(6, 28,R)/O(6)×O(28) as determined by supersymmetry. This coset has six
noncompact moduli. One might try to identify them with the radii of some internal

torus as in the case of the toroidally compactified heterotic string. This does not

seem possible because after decompactification we would be led to a string theory in

ten dimensions with N = 1 supersymmetry and a gauge group with rank bigger than

sixteen which would be anomalous. To correctly identify a noncompact modulus

with the radius of an internal circle, we need the right spectrum of solitons that can

be interpreted as the electric and magnetic states that couple to the Kaluza-Klein

gauge field. It is possible that the decompactified theory has ten large dimensions,

but does not have ten-dimensional Poincare invariance. This happens, for example,
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when the rank is enhanced nonperturbatively in the compactified theory due to

small instantons or due to D5-branes. In this case, in the decompactified theory

one is left with some solitonic objects that break Poincare invariance. It would

be interesting to analyze the spectrum of solitons in these models and determine

the behavior of the theory after various degenerations. This question is intimately

related to the determination of the global identifications of the moduli space under

the duality group.

3.1.2 N = 5

a. We start with a toroidal compactification of type II string theory described by

the lattice Γ6,6(A6) and twist by the Z7 symmetry generated by

gL = (ω, ω
2, ω4) , vL = 0 ,

gR = 1 , vR =
1

7
(1, 2,−3, 0, 0, 0, 0) . (3.7)

In terms of orthonormal basis vectors ei, i = 1, . . . , 7 in R
7 the weight lattice of A6

is in the hyperplane in R7 that is orthogonal to
∑
i ei. The Weyl group of A6 is the

permutation group S7 which permutes the seven basis vectors. A Z7 subgroup of the

Weyl group is generated by ei → ei+1 for all i. There are seven eigenvalues given by
the different seventh roots of unity. The eigenvector corresponding to eigenvalue 1 is

obviously
∑
i ei which is orthogonal to the weight lattice. Therefore, we can choose a

complex basis in which the remaining six eigenvalues are ω, ω2, ω4 and their complex

conjugates. It is also clear that 7vR is in the root lattice of A6 and that vR is not in

I∗ = ΛW (A6).

b. Another possibility is to consider the lattice Γ6,6(A32) and twist by an asymmetric

Z3 symmetry generated by

gL = (ω, ω, ω) , vL = 0 ,

gR = 1 , vR =
1

3
(1,−1, 0; 1,−1, 0; 2,−2, 0) . (3.8)

In both these models there is no twist on the right, so all four supersymmetries

from the right are preserved. On the left, the twist is in SU(3), so one supersymmetry

from the left is preserved and together one obtains N = 5 supersymmetry.

In the NS-NS sector we obtain the metric gµν , an antisymmetric tensor Bµν which

can be dualized to a scalar a, the dilaton φ, and six vector fields. In the R-R sector

we find eight additional scalars and four more vector fields. Thus the moduli consist

of one non-compact scalar, the dilaton, and nine compact scalars.

The supergravity action is known to have SU(1, 5) symmetry. The ten vector

fields transform in the 10 (self-dual antisymmetric rank-three tensor) of SU(1, 5).

The classical moduli space parametrized by the ten scalars is locally the coset

SU(1, 5)/U(5).

9



J
H
E
P
0
2
(
1
9
9
9
)
0
0
6

Since there are no states from the twisted sectors, one can determine the sym-

metry group purely from group theory. Our starting point is Type-II theory com-

pactified on a 6-torus. The moduli space is E7(Z)\E7(R)/SU(8) where the E7 is in
the maximally split form. The duality group E7(Z) maps a generic point x of the

coset E7(R)/SU(8) to some other point x
′ of the coset. If a subgroup Gx of E7(Z)

leaves x invariant then it would be a symmetry of the theory at x. One can then

orbifold the theory at x with the orbifold group Gx to obtain a new theory. Gx is

obviously a discrete subgroup of the isotropy group SU(8). In our case because the

left-moving twist preserves four supersymmetries, it is a subgroup also of SU(3). In

the absence of twisted states, we expect that the symmetry group of the orbifold

theory will be the subgroup of E7(R) that commutes with SU(3). It is somewhat

subtle to see that one obtains the correct real form SU(1, 5) and not, say, SU(2, 4).

One useful observation is that, in SU(8), which is the maximal compact subgroup

of E7, the centralizer of SU(3) is U(5). The symmetry group therefore must contain

U(5) as a compact subgroup. If we decomose the adjoint representation of E7 in

terms of SU(8) ⊃ SU(3) × U(5) representations, and keep only those states that
are invariant under the SU(3), then the remaining U(5) representations properly

combine into SU(1, 5) adjoint representation. Using these facts one can easily deter-

mine, in agreement with the supergravity considerations, that the symmetry group

is indeed SU(1, 5).

One can ask what the quantum moduli space is. Supersymmetry prevents any

quantum corrections, so the question is really only about global identifications or the

U-duality group. At the level of group theory it seems natural to conjecture that the

U-duality group is SU(1, 5,Z). Physically this may not be true because, in general,

duality does not commute with orbifolding. One supporting piece of evidence is

that the quantized electric and magnetic charges certainly exist in the theory. They

transform as 20 of SU(1, 5) and satisfy the Dirac quantization condition. One way to

define the integral form SU(1, 5,Z) is to note that the 20 representation of SU(1, 5)

is symplectic. The group Sp(20,Z) has a natural action on the lattice of electric

and magnetic charges. One might therefore define SU(1, 5,Z) as the intersection of

Sp(20,Z) and SU(1, 5). This conjecture can be tested by analyzing the spectrum of

dyonic bound states in the theory.

3.1.3 N=6

We know two ways to obtain this theory.

a. The first is closely related to a model discussed in [29] and is obtained by a Z2
asymmetric twist on Γ4,4(D4).

1 The Z2 acts as−1 on the four left-moving coordinates
of Γ4,4, as a shift by half a lattice vector on the right, and this action is accompanied

1The model discussed in [29] had the same orbifold action but started with the lattice Γ4,4(A41).

As pointed out to us by E. Silverstein, this model is not modular invariant because it does not

satisfy the mod 2 condition 3.3.

10



J
H
E
P
0
2
(
1
9
9
9
)
0
0
6

by an asymmetric shift along one component of a Γ2,2. This theory has a limit where

the radius of the untwisted and unshifted direction goes to infinity and in this limit

it gives the D = 5, N = 3 theory. The local moduli space of the D = 5, N = 3

theory is
SU∗(6)
USp(6)

. (3.9)

The theory thus has two non-compact moduli which in this construction correspond

to the dilaton and a modulus which is the radius of the shifted S1. Since states odd

under the twist and with odd momenta on this S1 are physical, by going to infinite

radius we recover the D = 6, N = (2, 2) theory and we can perturb all the way back

to D = 10.

b. The second construction is the theory with an asymmetric Z3 twist. We take a

lattice Γ6,6(A32) and twist by

gL = (ω, ω, ω) , vL = 0 ,

gR = 1, vR = 0 . (3.10)

This is rather similar to (3.8) that gave us N = 5 theory except that there is no

shift; as a result now there are additional massless states in the twisted sector. We

get N = 5 supergravity from the untwisted sector as in (3.8). To find the number of

twisted sectors, note that gL leaves (0, pR) invariant. So, the invariant lattice I is the

root lattice of SU(3)3, and I∗ is therefore the weight lattice of SU(3)3. The number
of twisted sectors is D ≡

√
det(1− θL)/|I∗/I| =

√
27/27 = 1. The single twisted

sector contributes an additional gravitino multiplet. Together, we obtain the gravity

multiplet of N = 6 supersymmetry.

In this construction there is no obvious radial modulus to vary so it is not clear

if this theory has a limit which gives the D = 5, N = 3 theory and if so whether the

limit is perturbative or involves strong coupling.

The bosonic spectrum of N = 6 supergravity contains, in addition to the gravi-

ton, 32 vector fields and 30 scalars. The symmetry group in this case is SO∗(12).
The vectors transform in the 32-dimensional spinor representation. The scalars pa-

rameterize the coset SO∗(12)/U(6) [30]. Because the real rank of SO∗(12) is three,
there are three non-compact moduli.

3.2 D = 5

3.2.1 N = 2

We start with type II string theory at the point in Narain moduli space defined by the

lattice Γ5,5(D5). The Weyl group has a conjugacy class D5(a1) of elements of order

12 with a pair of complex eigenvalues ω2, ω3 and a single real eigenvalue of −1 = ω6.
The shift vector vR = (1, 1, 2, 3, 3)/12 satisfies level matching and neither vR nor nvR,

11
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n < 12 lie in I∗. This asymmetric orbifold thus leads to pure N = 2 supergravity
in D = 5. The only scalar in the spectrum is the dilaton which parameterizes the

positive real line R+.

3.2.2 N = 3

This theory was discussed earlier as a perturbative large radius limit of a D = 4, N =

6 theory.

3.3 D = 6

To obtain N = (1, 1) pure supergravity, we start with type II string theory at the

point in Narain moduli space defined by the lattice Γ4,4(A4). The Coxeter element

of A4 is order 5 and has eigenvalues ω, ω
3. This is in SO(4) but not in SU(2) so

twisting by this element on the left breaks all the left-moving supersymmetries. The

shift vector vR = (0, 1,−1, 2,−2)/5 satisfies level matching and is not in I∗ so there
are no massless states in the twisted sectors. The spectrum of this orbifold is that

of pure N = (1, 1) supergravity. Again, the dilaton parameterizes the positive real

line R+.

3.4 D = 7 and D = 8

These construction seems to fail when we get to seven or eight dimensions because

we cannot find appropriate shift vectors. For D = 8 we can give an exhaustive

demonstration that there are no asymmetric orbifold constructions of type II string

theory leading to the (8, 1, 16) theory in the low-energy limit.

We can classify the possible asymmetric orbifolds as follows. We start with a

compactification on T 2 with moduli space O(2, 2,Z)\O(2, 2)/O(2)×O(2), or equiv-
alently [

SL(2,Z)\SL(2,R)/U(1)× SL(2,Z)\SL(2,R)/U(1)
]
/Z2 . (3.11)

We can twist by elements of the T-duality group if we are at a point in the moduli

space where these elements preserve the lattice and therefore have fixed points acting

on the above coset. Let σ and τ be the modular coordinates on each component

of (3.11). Then following [31] we can write the Γ2,2 lattice using a complex basis as

Γ2,2 =
1√
2=σ=τ Z

(
1

1

)
⊕ Z

(
σ̄

σ

)
⊕ Z

(
τ

τ

)
⊕ Z

(
σ̄τ

στ

)
. (3.12)

Fixed points occur at the orbifold point σ = i, τ = i which has an enhanced (Z4 ×
Z4) × Z2 symmetry, at σ = ρ, τ = ρ with ρ = e2πi/3 which has an enhanced Z3
symmetry and at σ = i, τ = ρ (or vice versa) which has a Z12 symmetry which acts

quasicrystallographically [11] as(
z1
z2

)
→
(−iρ 0
0 iρ

)(
z1
z2

)
. (3.13)
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The Z12 twist breaks all the supersymmetry and so does not yield the theory

in question. Similarly, twists by a subgroup of Z12 at the point σ = i, τ = ρ also

break all the supersymmetry since they act both on the left and right. At the point

τ = σ = i the Z4 or Z2 abelian subgroups of (Z4×Z4)×Z2 do not satisfy the mod two
condition (3.3). At the Z3 symmetric point one can easily classify the possible shift

vectors of order three and find that shift vectors compatible with modular invariance

always lie in I∗ and thus lead to additional massless fields in the twisted sector.
We have not tried to perform an exhaustive search of orientifold constructions or

heterotic constructions of this theory, but they seem unlikely to exist. Note that

no such constructions were found in the detailed search of heterotic free fermion

constructions carried out in [28].

We have not tried to carry out a similar classification of possible D = 7 con-

structions, but the obvious possibilities all fail to construct the (7, 1, 16) theory.

It might be possible to obtain these theories in the context of F-theory [32].

In [33] an extension of F-theory is considered where the monodromy of the coupling

constant field τ is in a subgroup of SL(2,Z) because of a nontrivial background of

the 2-form Bµν field. Such compactifications also lead to vacua where some of the

moduli are frozen. More generally, it would be interesting to know whether some or

all of the string islands considered in this paper can also be obtained as F-theory

compactifications.

4. General comments and speculations

We have constructed all but two of the consistent pure supergravity theories in D ≥ 4
as the low-energy limit of asymmetric orbifold string constructions. Several of these

theories have no moduli other than the dilaton and we expect that they are self-dual

so that the strong coupling limit simply leads again to the same theory. For the theo-

ries with Ns = 16 in D = 4, 5, 6 there is no consistent higher dimensional theory with

the right spectrum that one could obtain by taking the strong coupling limit. The

strong coupling limit must therefore have the same low-energy spectrum, although

possibly with a different construction leading to a different massive spectrum. For

other cases such as the (4, 6, 24) theory constructed in paragraph 3.1.3b the strong

coupling limit is not clear. In all these cases it would be interesting to study the

non-perturbative D-brane spectrum in order to determine the full U-duality group

and hence the strong coupling limit.

Finally, part of the motivation for this work was the possibility of constructing

lower-dimensional versions of M theory, that is supersymmetric theories with no

moduli at all which at low-energies are described by one of the moduli-free pure

supergravities (5, 1, 8), (4, 3, 12), (4, 2, 8) or (4, 1, 4). The (5, 1, 8) theory in particular

has many similarities to M theory [34, 35, 36]. It is tempting to speculate that such

theories might be obtained as the strong coupling limit of theories in D = 4 or

13
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D = 3 which have only the dilaton as a modulus. In particular, the (5, 1, 8) theory

could arise as the strong coupling limit of a D = 4, N = 2 theory with a single

vector-multiplet. In fact, given such a theory, this would seem to be the simplest

candidate for the strong coupling limit. Needless to say, we have not yet been

able to construct such an asymmetric orbifold although there does not seem to be

any fundamental reason why such a construction should not exist [37]. Of course,

given such a construction one would still need to exhibit evidence for a Kaluza-

Klein spectrum of soliton bound states. For the time being this theory remains a

“Fantasy Island.”
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