
 Comments on the spectrum of CHL dyons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP01(2008)023

(http://iopscience.iop.org/1126-6708/2008/01/023)

Download details:

IP Address: 122.172.51.109

The article was downloaded on 16/09/2010 at 09:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1126-6708/2008/01
http://iopscience.iop.org/1126-6708
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
1
(
2
0
0
8
)
0
2
3

Published by Institute of Physics Publishing for SISSA

Received: October 3, 2007

Accepted: January 1, 2008

Published: January 9, 2008

Comments on the spectrum of CHL dyons

Atish Dabholkarabc and Suresh Nampuria

aDepartment of Theoretical Physics, Tata Institute of Fundamental Research,

Homi Bhabha Rd, Mumbai 400 005, India
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Abstract: We address a number of puzzles relating to the proposed formulae for the

degeneracies of dyons in orbifold compactifications of the heterotic string to four dimensions

with N = 4 supersymmetry. The partition function for these dyons is given in terms of

Siegel modular forms associated with genus-two Riemann surfaces. We point out a subtlety

in demonstrating S-duality invariance of the resulting degeneracies and give a prescription

that makes the invariance manifest. We show, using M-theory lift of string webs, that the

genus-two contribution captures the degeneracy only if a specific irreducibility criterion is

satisfied by the charges. Otherwise, in general there can be additional contributions from

higher genus Riemann surfaces. We analyze the negative discriminant states predicted

by the formula. We show that even though there are no big black holes in supergravity

corresponding to these states, there are multi-centered particle-like configurations with

subleading entropy in agreement with the microscopic prediction and our prescription for

S-duality invariance. The existence of the states is moduli dependent and we exhibit the

curves of marginal stability and comment on its relation to S-duality invariance.
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1. Introduction

The spectrum of BPS states has played a very significant role in several important devel-

opments in string theory. In the limit of small charges, counting low-lying BPS states has

provided many nontrivial tests of duality. In the opposite limit of large charges, computa-

tion of asymptotic degeneracies of BPS states has allowed for a statistical interpretation of

the Bekenstein-Hawking entropy of certain supersymmetric black holes addressing a long-

standing problem in quantum gravity. It is clearly desirable to obtain similar quantitative

information about the spectrum of BPS states with arbitrary intermediate charges.

Many BPS states can be mapped by duality to either perturbative winding-momentum

states or a collection of D-branes in a particular duality frame. In both cases, using powerful

techniques from the worldsheet and from gauge theory, it is possible to obtain detailed exact

information about the BPS spectrum for all values of charges. To complete the picture, one

would like to develop tools to analyze the spectrum of BPS states that are nonperturbative

in all duality frames. Such states, for example various dyons in four dimensions, are in a

sense more interesting because they can allow us to access the interior regions of moduli

space at intermediate couplings that are not weakly coupled in any duality frame.

For heterotic string compactifications with N = 4 supersymmetry in four dimensions,

there exists a formula for the exact degeneracies of the dyonic quarter-BPS states in terms

of Siegel modular forms of Sp(2, Z) and its subgroups [1, 2]. As for the perturbative

winding-momentum states or for D-brane bound states, it is desirable to have a systematic

derivation of the dyon partition function using worldsheet or gauge theory techniques. A
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weak coupling derivation has been suggested recently using the 4d-5d lift [3, 4]. A similar

derivation for the more general orbifolds with N = 4 supersymmetry is discussed in [5 – 8].

The role of genus-two Riemann surfaces and the appearance of Sp(2, Z) can be explained

using an M-theory lift of string webs [9] and an alternative derivation of the dyon partition

function in terms of a genus-two partition function of the heterotic string has been given

in [5, 10].

Our purpose here is to address a number of subtleties in the interpretation and deriva-

tion of the dyon partition function using these ideas. We first summarize the basic ingre-

dients of the dyon partition function in section 2. In section 3 we discuss the S-duality

invariance and give a prescription for the choice of the contours that yields manifestly

duality invariant spectrum. In § 4, using M-theory lift of string webs, we show that the

genus-two formula is adequate only if the charges satisfy a specific irreducibility criterion.

Otherwise there can be additional contributions from higher genus Riemann surfaces. In

section 5 we consider states predicted by the formula that have negative discriminant for

which there are no big black holes in supergravity corresponding to these states. We discuss

a simple example for such states with negative discriminant in section 5.1, and show that

there are multi-centered particle-like configurations with subleading entropy in agreement

with the microscopic prediction as well as with our prescription for S-duality invariance.

The supergravity solutions analyzed in section 5.2 display an intricate moduli dependence.

We show in section 5.3 that a two-centered solution with the desired degeneracy exists

in a large region of moduli space where supergravity and string loop expansion is under

control. However, there a straight line in the axion dilaton space defines a line of marginal

stability. The state exists only on one side of the line, decays into two fragments as one

approaches this line, and ceases to exist on the other side of the line. We conclude in sec-

tion 6 with a discussion of the interpretation of the dyon degeneracy formula in the light

of above-mentioned considerations of irreducibility criterion, moduli dependence, lines of

marginal stability, and duality invariance.

2. The dyon partition function

Let Ω be a (2 × 2) symmetric matrix with complex entries

Ω =

(

ρ v

v σ

)

(2.1)

satisfying

(Imρ) > 0, (Imσ) > 0, (Imρ)(Imσ) > (Imv)2 (2.2)

which parametrizes the ‘Siegel upper half plane’ in the space of (ρ, v, σ). It can be thought

of as the period matrix of a genus two Riemann surface. For a genus-two Riemann surface,

there is a natural symplectic action of Sp(2, Z) on the period matrix. We write an element

g of Sp(2, Z) as a (4 × 4) matrix in the block form as
(

A B

C D

)

, (2.3)
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where A,B,C,D are all (2 × 2) matrices with integer entries. They satisfy

ABT = BAT , CDT = DCT , ADT − BCT = I , (2.4)

so that gtJg = J where J =

(

0 −I

I 0

)

is the symplectic form. The action of g on the

period matrix is then given by

Ω → (AΩ + B)(CΩ + D)−1. (2.5)

The object of our interest is a Siegel modular form Φk(Ω) of weight k which transforms as

Φk[(AΩ + B)(CΩ + D)−1] = {det (CΩ + D)}kΦk(Ω), (2.6)

under an appropriate congruence subgroup of Sp(2, Z) [2]. The subgroup as well as the

index k of the modular form are determined in terms of the order N of the particular CHL

ZN orbifold one is considering [2]. In a given CHL model, the inverse of the Φk is to be

interpreted then as a partition function of dyons.

To see in more detail how the dyon degeneracies are defined in terms of the partition

function, let us consider for concreteness the simplest model of toroidally compactified

heterotic string as in the original proposal of Dijkgraaf, Verlinde, Verlinde [1]. Many of the

considerations extend easily to the more general orbifolds with N = 4 supersymmetry. In

this case the relevant modular form is the well-known Igusa cusp form Φ10(Ω) of weight ten

of the full group Sp(2, Z). A dyonic state is specified by the charge vector Q = (Qe, Qm)

which transforms as a doublet of the S-duality group SL(2, R) and as a vector of the T-

duality group O(22, 6; Z). There are three T-duality invariant quadratic combinations Q2
m,

Q2
e, and Qe ·Qm that one can construct from these charges. Given these three combinations,

the degeneracy d(Q) of dyonic states of charge Q is then given by

d(Q) = g

(

1

2
Q2

m,
1

2
Q2

e, Qe · Qm

)

, (2.7)

where g(m,n, l) are the Fourier coefficients of 1/Φ10,

1

Φ10(ρ, σ, v)
=

∑

m≥−1,n≥−1,l

e2πi(mρ+nσ+lv)g(m,n, l) . (2.8)

The parameters (ρ, σ, v) can be thought of as the chemical potentials conjugate to the in-

tegers
(

1
2Q2

m, 1
2Q2

e, Qe · Qm

)

respectively. The degeneracy d(Q) obtained this way satisfies

a number of physical consistency checks. For large charges, its logarithm agrees with the

Bekenstein-Hawking-Wald entropy of the corresponding black holes to leading and the first

subleading order [1, 11, 2, 12, 13]. It is integral as expected for an object that counts the

number of states. It is formally S-duality invariant [1, 2] but as we will see in the next

section the formal proof is not adequate. An appropriate prescription is necessary as we

explain in detail in the next section which also allows for a nontrivial moduli dependence.
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3. S-Duality Invariance

The first physical requirement on the degeneracy d(Q) given by (2.7) is that it should

be invariant under the S-duality group of the theory. For the simplest case of toroidal

compactification that we are considering, the S-duality group is SL(2, Z) and more generally

for ZN CHL orbifolds its a congruence subgroup Γ1(N) of SL(2, Z). So, we would like to

show for the N = 1 example, that the degeneracy (2.7) is invariant under an S-duality

transformation

Qe → Q′
e = aQe + bQm, Qm → Q′

m = cQe + dQm ,

(

a b

c d

)

∈ SL(2, Z) . (3.1)

A formal proof of S-duality following [1, 2] proceeds as follows. Inverting the relation (2.8)

we can write

d(Q) =

∫

C

d3Ω e−iπQ′t·Ω·Q 1

Φ10(Ω)
(3.2)

where the integral is over the contours

0 < Re(ρ) ≤ 1, 0 < Re(σ) ≤ 1, 0 < Re(v) ≤ 1 (3.3)

along the real axes of the three coordinates (ρ, σ, v). This defines the integration curve C
as a 3-torus in the Siegel upper half plane. Now we would like to show

d(Q′) =

∫

C

d3Ω e−iπQ′t·Ω·Q′ 1

Φ10(Ω)
(3.4)

equals d(Q). To do so, we define

Ω′ ≡
(

ρ′ v′

v′ σ′

)

= (AΩ + B)(CΩ + D)−1, (3.5)

for

(

A B

C D

)

=









a −b b 0

−c d 0 c

0 0 d c

0 0 b a









∈ Sp(2, Z) . (3.6)

We can change the integration variable from Ω to Ω′. Using these transformation properties

and the modular properties of Φ10 we see that

d3Ω′ = d3Ω , (3.7)

Φ10(Ω
′) = Φ10(Ω) , (3.8)

Q′t · Ω′ · Q′ = Qt · Ω · Q (3.9)

Moreover, the integration contour C as defined in (3.3) is invariant under the duality

transformation on the integration variables (3.5). We therefore conclude

d(Q′) =

∫

C

d3Ω′ e−iπQ′T ·Ω′Q′ 1

Φ10(Ω′)
= d(Q) . (3.10)
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This formal proof is however not quite correct. The reason is that the partition function

1/Φ10 has a double pole at v = 0 which lies on the integration contour C. Thus the

integral in (3.2) is not well-defined on the contour C and one must give an appropriate

prescription for the integration. The non-invariance can also be seen explicitly from the

Fourier expansion. To illustrate the point, let us look at states with

1

2
Q2

m = −1,
1

2
Q2

e = −1, Qe · Qm = N. (3.11)

Then according to (2.7), the degeneracy of such states can be read off from the coefficient

of yN/qp in the Fourier expansion (2.8). From the product representation of Φ10 given

for example in [1], we see that we need to pick the term that goes as p−1q−1yN in the

expansion of

1

qp(y
1

2 − y−
1

2 )2
=

y

qp

1

(1 − y)2
=

∞
∑

N=1

Nq−1p−1yN (3.12)

which implies that

d(−1,−1, N) = N. (3.13)

Let us now look at what is required for invariance under SL(2, Z) transformations.

Consider, for example, the element

S =

(

0 1

−1 0

)

(3.14)

of the S-duality group which takes (Qe, Qm) to (Qm,−Qe). Hence (1
2Q2

m, 1
2Q2

e, Qe · Qm)

goes to (1
2Q2

e,
1
2Q2

m, −Qe · Qm). Invariance of the spectrum under this element of the S-

duality group would then predict d(−1,−1,−N) = d(−1,−1, N) = N . However, from the

expansion (3.12) we see that there are no terms in the Laurent expansion that go as y−N

and hence an application of the formulae (2.7) and (2.8) would give d(−1,−1,−N) = 0 in

contradiction with the prediction from S-duality.

This apparent lack of S-duality invariance is easy to fix with a more precise prescription.

Note that the function (y
1

2 − y−
1

2 )−2 has a Z2 symmetry generated by the element S of

the S-duality group that takes y to y−1. Under this transformation the contour |y| < 1

is not left invariant but instead gets mapped to the contour |y| > 1. The new contour

cannot be deformed to the original one without crossing the pole at y = 1 so if we are

closing the contour around y = 0 then we need to take into account the contribution from

this pole at y = 1. Alternatively, it is convenient to close the contour at y−1 = 0 instead

of y = 0. Then we do not encounter any other pole and because of the symmetry of the

function (y
1

2 −y−
1

2 )−2 under y going to y−1, the Laurent expansion around y has the same

coefficients as the Laurent expansion around y−1. We then get,

1

pq(y
1

2 − y−
1

2 )2
=

y−1

pq

1

(1 − y−1)2
=

∞
∑

N=1

Np−1q−1y−N . (3.15)

If we now define d(−1,−1,−N) as the coefficient of qpy−N in the expansion (3.15) instead of

in the expansion (3.12) then d(−1,−1,−N) = N = d(−1,−1, N) consistent with S-duality.
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States with negative N must exist if states with positive N exist not only to satisfy

S-duality invariance but also to satisfy parity invariance. The N = 4 super Yang-Mills

theory is parity invariant. Under parity, our state with positive N goes to a state with

negative N and the asymptotic values χ of the axion also flips sign at the same time.

Hence if a state with N positive exists at χ = χ0 then a state with N negative must exist

at χ = −χ0. Thus, the naive expansion (3.12) would give an answer inconsistent with

parity invariance and one must use the prescription we have proposed, to satisfy parity

invariance. Note that even though S-duality and parity both take the states (−1,−1, N)

to (−1,−1,−N) they act differently on the moduli fields.

In either case, the important point is that to extract the degeneracies in an S-duality

invariant way, we need to use different contours for different charges. The function 1/Φ10

has many more poles in the (ρ, σ, v) space at various divisors that are the Sp(2, Z) images

of the pole at y = 1 and in going from one contour to the other these poles will contribute.

Instead of specifying contours, a more practical way to state the prescription is to define

the degeneracies d(Q) by formulae (2.7) and (2.8) first for charges that belong to the

‘fundamental cell’ in the charge lattice satisfying the condition 1
2Q2

m ≥ −1, 1
2Q2

e ≥ −1, and

Qe ·Qm ≥ 0. For these charges d(Q) can be represented as a contour integral for a contour

of integration around p = q = y = 0 that avoids all poles arising as images of y = 1. This

can be achieved by allowing (ρ, v, σ) to all have a large positive imaginary part as noted also

in [7]. For other charges, the degeneracy is defined by requiring invariance under SL(2, Z).

The degeneracies so defined are manifestly S-duality invariant. This statement of S-duality

invariance might appear tautologous, but its consistency depends on the highly nontrivial

fact that an analytic function defined by Φ10(ρ, σ, v) exists that is SL(2, Z) invariant. Its

pole structure guarantees that one gets the same answer independent of which way the

contour is closed.

The choice of integration contour is possibly related to moduli dependence of the

spectrum. To see this let us understand in some detail what precisely is required for

S-duality. Given a state with charge Q that exists for the values of the moduli ϕ, the

statement of S-duality only requires that the degeneracy d(Q) at ϕ be the same as the

degeneracy d(Q′) at ϕ′ where Q′ and ϕ′ are S-duality transforms of Q and ϕ respectively.

In many cases, one can then invoke the BPS property to assume that as we move around

in the moduli space, barring phase transitions, the spectrum can be analytically continued

from ϕ′ to ϕ to deduce d(Q′) = d(Q) at ϕ. This argument is known to work perfectly

for half-BPS states in theories with N = 4 supersymmetric but with lower supersymmetry

or for quarter-BPS states in N = 4, generically there can be curves of marginal stability.

In such cases, states with charges Q′ may exist for moduli values ϕ′ but not for ϕ and

similarly states with charges Q may exist for moduli values ϕ but not for ϕ′. Therefore,

there are two possibilities for extracting the dyon degeneracies.

• There are no curves of marginal stability in the dilaton-axion moduli space. In this

case if two charge configurations Q and Q′ are related by S-duality, then d(Q) = d(Q′).

• There are curves of marginal stability in the dilaton-axion moduli space. In this case

one can say at most that d(Q) at ϕ equals d(Q′) at ϕ′.

– 6 –
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We will return in section 6 to a further discussion of these possibilities in the present context

after considering explicit examples of moduli dependence and lines of marginal stability in

section 5.

4. Irreducibility criterion and higher genus contributions

One way to derive the dyon partition function is to use the representation of dyons as

string webs wrapping the T2 factor in Type-IIB on K3 × T2. Using M-theory lift, the

partition function that counts the holomorphic fluctuations of this web can be related to

the genus-two partition function of the left-moving heterotic string [9, 5, 10]. The appear-

ance of genus-two is thus explained by the topology of the string web. Such a derivation

immediately raises the possibility of contribution from higher genus Riemann surface be-

cause string webs with more complicated topology are certainly possible. In this section

we address this question and show that the genus-two partition function correctly captures

the dyon degeneracies if the charges satisfy certain irreducibility criteria. Otherwise, there

are higher genus corrections to the genus-two formula.

There are various derivations of the dyon degeneracy formula, but often they compute

the degeneracies for a specific subset of charges, and then use duality invariance to extend

the result to generic charges. Such an application of duality invariance assumes in particular

that under the duality group SO(22, 6, Z) the only invariants built out of charges would be

Q2
e, Q2

m, and Qe · Qm. This assumption is incorrect. If two charges are in the same orbit

of the duality group, then obviously they have the same value for these three invariants.

However the converse is not true. In general, for arithmetic groups, there can be discrete

invariants which cannot be written as invariants of the continuous group.

An example of a non-trivial invariant that can be built out of two integral charge

vectors is I = gcd(Qe ∧ Qm), i.e., the gcd of all bilinears Qi
eQ

j
m − Qj

eQi
m. Our goal is

to show that the genus-two dyon partition function correctly captures the degeneracies if

I = 1. Note that half-BPS states have I = 0 and hence are naturally associated with

a genus-one surface. If I > 1, then there are additional zero modes for the dyon under

consideration and it would be necessary to correctly take them into account for counting

the dyons.

The essential idea is to represent quarter-BPS states in the Type-IIB frame as a pe-

riodic string network wrapped on the two-torus. Type-IIB compactified on a K3 has a

variety of half-BPS strings that can carry a generic set of (21, 5) charges arising from D5

and NS5 branes wrapped on the K3, D3-branes wrapped on some of the (19, 3) two-cycles

as well as D1 and F1-strings. Several half-BPS strings can join into a web that preserve a

quarter of the supersymmetries [14 – 17]. The supersymmetry condition requires that the

strings lie in a plane, and that their central charge vectors also lie in a plane. The strands

must be oriented at relative angles that mimic the relative angle of their central charge

vectors. The condition on the angles between strings guarantees the balance of tensions at

the junction of three strands of the web as shown in figure 1.

The central charges are given in terms of the charges and the scalar moduli of the theory

as Z = TQ. The matrix T contains the scalar moduli of the theory, that parameterize

– 7 –
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Figure 1: Charge conservation at a string junction

the way a vector in the Γ(21,5) Narain lattice of charges decomposes into a left-moving

and a right-moving part. The five-dimensional right-moving part is the vector of central

charges for the string. For generic values of the scalar moduli, one does not expect to have

tensionless strings. Hence it follows that TQ = 0 implies Q = 0. The condition that all

central charges TQi should lie in a plane, TQi = aiTQ1 + biTQ2 is then equivalent to

Qi = aiQ1 + biQ2, i.e., the charge vectors Qi of all strings should also lie in a plane. A

periodic string web can be wrapped on the torus of a K3× T2 compactification as shown

in figure 2.

After compactification on the torus, the strands of the web can carry additional charges:

momentum along the direction they wrap, and KK monopole charge for the circle they do

not wrap. The charges are organized in a (22, 6) charge vector. The result is a quarter-BPS

dyon in the four dimensional theory. A dyon with generic charges Qe, Qm typically has a

very simple realization as a web with three strands. A simple possible choice of charges on

the strands would be Qe, Qm, Qe + Qm. This web comes from the periodic identification

of a hexagonal lattice. As the shape of the T 2 or the moduli in T change, the size of one

strand may become zero, and the web may degenerate into two cycles of the torus meeting

at a point. On the other side, of the transition the intersection will open up in the opposite

way and the configuration then smoothly become a new three-strands web. For example,

the web with strands Qe, Qm, Qe + Qm may go to a web with strands Qe, Qm, Qe − Qm.

This process has interesting consequences on the stability of certain BPS states, that will

be reviewed in section 5.

It has been argued [9] that the partition function of supersymmetric ground states

for such webs can be computed by an unconventional lift to M-theory that relates it to a

chiral genus-two partition function of the heterotic string. The genus-two partition function

computed using this lift for CHL-orbifolds [5, 10] indeed equals the dyon partition function

obtained by other means.

A priori, the string junction need not to be stable against opening up into more com-
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Qe Qm+
Qm

Qe

Figure 2: A quarter-BPS dyon carrying irreducible charges Qe and Qm with gcd(Qe ∧ Qm)= 1

2
mQ

2
mQ

Qe

e+ QmQ

Figure 3: A quarter-BPS dyon carrying reducible charges Qe and Qm with gcd(Qe ∧ Qm)=2

plicated configurations. For example, a strand may split into two or more parallel strands,

or the junction may open up into a triangle. Any complicated periodic network made out

of strands with charges that are linear combinations of Qe and Qm, and such that the total

charge flowing across one side of the fundamental cell is Qe, and through the other side

Qm will give a possible realization of the dyon as shown in figure 3. If that is possible, the

M-theory lift would predict a more complicated expression for the dyon degeneracies. For

simplicity, in the following analysis we restrict to configurations with no momentum or KK

charge.

To understand the relation between the value of I and the possible variety of string

webs that may describe a dyon with given charges, it is useful to consider a graph in the

space of charges that is topologically dual to the string web. A dual graph is constructed

– 9 –
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as follows. For every face of the web associate a vertex in the dual graph. If two faces

A and B in the web share an edge then the corresponding vertices A′ and B′ in the dual

graph are connected by a vector that is equal in magnitude to the central charge of the

edge but rotated by π/2 in orientation compared to the edge. Recall that each edge in the

string web carries a central charge and that the relative angles between the edges mimic

the angles between the corresponding central charge vectors. A junction has three faces

and three edges which maps to a triangle in the dual graph with three vertices and three

edges. Charge conservation at each junction means that the vector sum of the three edge

vectors is zero. This then guarantees that the sides of the dual triangle actually close, as

their vector sum is zero. A string web constructed from a period array of junctions then

corresponds to a triangulation in the dual graph.

Now, the vertices of the dual graph will sit at integral points of the charge lattice,

on the plane defined by the vectors Qe and Qm. The graph will have a fundamental cell

with sides Qe and Qm. Our invariant I counts the number of integral points inside the

fundamental cell. In this dual description, it is clear geometrically that Qi
eQ

j
m − Qj

eQi
m

are the various components of the area 2-form associated with the fundamental cell. If all

the components do not have common factor then the fundamental parallelogram does not

have any integral points either on the edges or inside [18].

Let us see in more detail that I counts the number of integral points inside the funda-

mental cell. If all Qi
eQ

j
m − Qj

eQi
m are multiples of I, then consider any vector Q such that

Q · Qe is not a multiple of I. If such a vector does not exist, then Qe is a multiple of I

and there are extra integral points on the edges of the parallelogram. If on the other hand,

such a vector exists, then Q·Qe

I Qi
m − Q·Qm

I Qi
e is an integral charge vector that is a linear

combination of Qe and Qm with fractional coefficients. Up to shifts by Qe and Qm it will

lie inside the parallelogram. Conversely, if the lattice of integral points that are coplanar

with Qe and Qm has a smaller fundamental cell than the parallelogram with sides Qe and

Qm, then Qe = aQ1 + bQ2, Qm = cQ1 + dQ2, ad − bc > 1. There will be ad − bc points

inside the parallelogram, and as Qe ∧ Qm = (ad − bc)Q1 ∧ Q2, I = ad − bc is the number

of points inside the parallelogram with sides Qe and Qm.

We thus see that if I > 1, then the fundamental cell in the dual graph has an internal

integral point. Each of the internal points can be used as a vertex for a triangulation. A

generic periodic triangulation subdivides a fundamental cell into at most 2I faces. 1 In

the dual description, a string web on the torus that carries charges Qe and Qm will have

at most 2I three-strand junctions, and I faces.

To put it differently, note that I = 1 without any internal faces is a genus two surface

after M-theory lift. Adding a face increases the genus by one. Hence the genus of a

M-theory lift of a string web with the invariant I will be a surface with genus I + 1.

When a face opens up at a string junction, its size is a zero mode in that the mass of

dyon is independent of the size of the additional face. These zero modes and the invariant

I have been discussed earlier in a related context of quarter-BPS dyons in field theory

1This follows from Euler formula on the torus: a triangulation has 3/2 edges for each face, hence the

number of vertices is 1/2 the number of faces.

– 10 –



J
H
E
P
0
1
(
2
0
0
8
)
0
2
3

using their realization as string junctions going between a collection D3-branes [19]. In

that context, the zero mode is one of the collective coordinates that must be quantized

to determine the ground state wavefunction. Similar comments might apply in our case.

More work is need to obtain a definite interpretation of the higher genus contribution.

5. States with negative discriminant

An important test of the dyon degeneracy formula is that for large charges, the logarithm of

the predicted degeneracy log d(Q) matches with Bekenstein-Hawking entropy. To make this

comparison, for a given a BPS dyonic state with electric and magnetic charges (Qe, Qm),

one would like to find a supersymmetric black hole solution of the effective action with the

same charges and mass and then compute its entropy. It is useful to define the ‘discriminant’

∆ by

∆(Q) = Q2
eQ

2
m − (Qe · Qm)2. (5.1)

which is the unique quartic invariant of the full U-duality group SO(22, 6; Z)×SL(2, Z). For

a black hole with charges (Qe, Qm), the attractor value of the horizon area is proportional

to the square root of the discriminant and the entropy is given by

S(Q) = π
√

∆(Q) . (5.2)

On the microscopic side also, the discriminant is a natural quantity. It is useful to think

of SL(2, Z) as SO(1, 2; Z) which has a natural embedding into Sp(2, Z) ∼ SO(2, 3; Z). The

dyon degeneracy formula depends on the T-duality invariant vector of SO(1, 2; Z)







Q2
m/2

Q2
e/2

Qe · Qm






(5.3)

The discriminant is the norm of this vector with the Lorentzian metric






0 2 0

2 0 0

0 0 −1






. (5.4)

With this norm, for a given state (Q2
m/2, Q2

e/2, Qe ·Qm),the vector (5.3) is spacelike, light-

like, or timelike depending on whether ∆ is positive, zero, or negative. We can accordingly

refer to the state as spacelike, lightlike, or timelike.

Clearly, to obtain a physically sensible, nonsingular, supersymmetric, dyonic black hole

solution in supergravity, it is necessary that the discriminant defined in (5.1) is positive and

large so that the entropy defined in (5.2) is real. The vector in (5.3) in this case is spacelike.

This fact seems to lead to the following puzzle regarding the dyon degeneracy formula. The

formula predicts a large number of states that can have vanishing or negative discriminant.

Since there are no big black holes in supergravity in that case, there does not appear to

be a supergravity realization of these states predicted dyon degeneracy. This raises the

following question. Do the lightlike and timelike states predicted by the dyon degeneracy
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formula actually exist in the spectrum and if so what is their macroscopic realization? It

is important to address this question to determine the range of applicability of the dyon

degeneracy formula.

5.1 Microscopic prediction

To start with, let us emphasize that the lightlike or timelike states are not necessarily

pathological even though there is no supergravity solution corresponding to them. The

simplest example of a lightlike state is the half-BPS purely electric state in the heterotic

frame with winding w along a circle and momentum n along the same circle [20, 21].

For such a state, Q2
e = 2nw is nonzero but since it carries no magnetic charge, both Q2

m

and Qe · Qm are zero and hence the discriminant is zero. The supergravity solution is

singular but higher derivative corrections generate a horizon with the correct entropy [22 –

24]. We would like to know if similarly there exist quarter-BPS states that are timelike or

lightlike in accordance with the predictions of the dyon degeneracy formula and what their

supergravity realization is.

In general, it is not easy to extract closed form asymptotics from the degeneracy

formula in this regime when the discriminant is negative or zero. But we have al-

ready encountered a simple example of a timelike state in section 3. The states with
(

Q2
m/2, Q2

e/2, Qe · Qm

)

equal to (−1,−1, N) have discriminant 1−N2 which can be arbi-

trarily negative and we have determined the degeneracy of this state to be d(−1,−1, N) =

N . Do such states exist in the physical spectrum, and if so what is their supergravity

realization that can explain the degeneracy?

It is easy to construct such a state from a collection of winding, momentum, KK5,

NS5 states in heterotic description. We choose a convenient representative that makes

the supergravity analysis in the following section simpler. We consider heterotic string

compactified on T4 × S1 × S̃1. Let the winding and momentum around the circle S1

be w and n and around the circle S̃1 be w̃ and ñ. Similarly, K and W are the KK-

monopole and NS5-brane charges associated with the circle S1 whereas K̃ and W̃ are the

KK-monopole and NS5-brane charges associated with the circle S̃1. Note that the state

with charge W can be thought of as an NS5 brane wrapping along T4 × S̃1 whereas the

states with charges W̃ is wrapping along T4 × S1. While the state that magnetically dual

to n is K in terms of Dirac quantization condition, the state that is S-dual to n is W .

Similar comment holds for other states. With this notation, we then choose the charges

Γ = (Qe|Qm) = (n,w; ñ, w̃|W,K; W̃ , K̃) to be

Γ = (1,−1; 0, N |0, 0; 1,−1). (5.5)

This state clearly has (Q2
m/2, Q2

e/2, Qe · Qm) = (−1,−1, N). In section 5.2 we will show

that the supergravity solution corresponding to this state with the required degeneracy has

two centers instead of one. One center is purely electric with charge vector

Γ1 = (1,−1; 0, N |0, 0; 0, 0), (5.6)

and the other purely magnetic with charge vector

Γ2 = (0, 0; 0, 0|0, 0; 1,−1), (5.7)
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both separated by a distance L. The corresponding supergravity solution exists for charge

configuration with a positive, nonzero value for the distance L both for positive and negative

N in a large regions of the moduli space but not for all values of the moduli. We discuss

the explicit solution and as well as the moduli dependence and lines of marginal stability

in the next subsections.

It is easy to see that such a two-centered solution has the desired degeneracy in agree-

ment with the prediction from the dyon partition function. Each center individually con-

tributes no entropy because for example the electric center by itself has Q2
e/2 = −1 and

hence carries no left-moving oscillations. However, because the charges are not mutually

local, there is a net angular momentum j = N/2 in the electromagnetic field. For large

N , the angular momentum multiplet has 2j + 1 or N states in agreement with the dyon

degeneracy formula. We thus see that at least some of the states with negative discriminant

predicted by the dyon degeneracy formula can be realized physically but as multi-centered

configurations.

5.2 Supergravity analysis

For the supergravity analysis of the dyonic configurations, it is convenient to use the

N = 2 special geometry formalism. Consider Type-II string compactified on a Calabi-Yau

threefold with Hodge numbers (h1,1, h2,1) which results in a N = 2 supergravity in four

dimensions with h1,1 vector multiplets and h2,1 + 1 hyper-multiplets. The hypermultiplets

will not play any role in our analysis. The vector multiplet moduli space is a special

Kähler geometry parameterized by h1,1 + 1 complex projective coordinates {XI} with

I = 0, 1, . . . , h1,1 and {λXI} ∼ {XI}. The low energy effective action of the vector

multiplets is completely summarized by a prepotential which is a homogeneous function

F (XI) of degree two,

F (λXI) = λ2F (XI). (5.8)

In particular, the Kähler potential K is determined in terms of the prepotential by

e−K = i(X̄IFI − XI F̄I), (5.9)

where

FI =
∂F

∂XI
. (5.10)

In our case, since we have a special Calabi-Yau K3 × T2, we actually get N = 4 su-

persymmetry which has two additional gravitini multiplets. With our charge assignment,

the vector fields in the gravitini multiplets are not excited and we can restrict our atten-

tion to the N = 2 sector. In the heterotic frame, we have excited electric and magnetic

charges (5.5) which couple only to gauge fields associated with the T2 part and to the

metric and the dilaton-axion. As a result, the sigma model corresponding to the black

hole configuration in R4 is completely factorized into the T4 conformal field theory and

the sigma model involving T2 × R4 parts. This implies that for analyzing our charge con-

figuration, we can restrict our attention to the moduli fields associated with T2 and the
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dilaton-axion. The prepotential in this case can be chosen to be

F (XI) = −X1X2X3

X0
, (5.11)

which corresponds to the so called STU model. Here

S = X1/X0 = a + ie−2Φ (5.12)

is the dilaton-axion field, where a is the axion and Φ is the dilaton in the heterotic frame.

Similarly T = X2/X0 is the complex structure modulus of the T2 and U = X3/X0 is the

Kähler modulus of the T2 in the heterotic frame. All other moduli fields do not vary in

the geometry corresponding to our charge configuration. Restricting to the STU model

greatly simplifies the analysis. Indeed this motivates the choice of the charges as in (5.5).

Given the prepotential (5.11) specifying the special geometry, there is a natural sym-

plectic action Sp(4, R) on (XI , FI). Similarly, the charges (pI , qI) transform as a symplectic

vector. These charges are more naturally defined in the Type-IIA frame, where qI are the

electric charges arising from D0-brane and wrapped D2-branes, and pI are the magnetic

charges arising from D6-brane and wrapped D4-branes.

A general supersymmetric multi-centered dyonic solution has a metric of the form

− e−2G(~r)(dt + ωidxi)2 + e2G(~r)(dr2 + r2dΩ2
2). (5.13)

The four complex moduli fields XI that solve the equations of motion are determined in

terms of the function G and harmonic functions HI and HI by the eight real equations

e−G(XI − X̄I) = HI(~r) (5.14)

e−G(FI − F̄I) = HI(~r), (5.15)

in the gauge

e−K =
1

2
(5.16)

with the Kähler potential given by (5.9). For a configuration with s charge centers with

charges Γa = (pI
a, qIa), a = 1, . . . s localized at the centers ~r = ~ra respectively, the harmonic

functions HI and HI are given by [25]

HI = hI +

s
∑

a=1

pI
a

|~r − ~ra|
, HI = hI +

s
∑

a=1

qIa

|~r − ~ra|
. (5.17)

The constants of integration hI and hI will be determined in terms of the moduli fields

shortly. Let Σ(Q) be the entropy of the black hole which in our case equals π
√

∆(Q). Then

geometry of the solution is completely determined in terms of these harmonic functions [25].

The moduli are given by

XA

X0
=

∂AΣ(H) − iHA

∂0Σ(H) − iH0
(5.18)
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with A = 1, 2, 3 and ∂A = ∂/∂HA. The metric is given by

e−2G = Σ(H), (5.19)

∇× ω = HI∇HI − HI∇HI . (5.20)

Taking divergence of both sides then implies the Denef’s constraint [26]

HI∇2HI − HI∇2HI = 0. (5.21)

This is a consistency condition for a solution with s centers to exist, where ∇2 is the flat

space Laplacian in R3. This implies the following s equations

(hIp
I
a − hIqIa) +

s
∑

b=1

(pI
aqIb − qIap

I
b)

|~ra − ~rb|
= 0, (5.22)

where sum over repeated I index is assumed. Summing over the index a in the equation

above gives the summed constraint

(hIp
I − hIqI) = 0, (5.23)

where pI =
∑

pI
a and qI =

∑

qIa are the total charges.

The values of the moduli fields S = S1 + iS2, T = T1 + iT2 and U = U1 + iU2 at

asymptotic infinity are specified by six real constants. The solutions on the other hand are

determined by eight real constants of integration (hI , hI), I = 0, 1, 2, 3 which however must

satisfy two real constraints (5.16) and (5.23). Thus, they can be determined in terms of

the six asymptotic values of the moduli fields and the complete supersymmetric solution

for all fields is then determined by (5.14), (5.13), and (5.17).

Specializing to our case, we will consider a two-centered solution so s = 1, 2. We restrict

ourselves to a region of moduli space where T2 is factorized into two circles S1 × S̃1 and

there is no B field on the torus. In other words, we work on the submanifold of the moduli

space with T1 = U1 = 0. Let R1 and R2 be the radii of the circles S1 and S̃1 respectively,

χ be the asymptotic expectation value of the axion, and g2 be the string coupling given by

the asymptotic value of e2Φ. A nonzero value of χ will be essential to obtain a well defined

solution. Given this asymptotic data

S∞ = χ +
i

g2
, T∞ = i

R1

R2
, U∞ = iR1R2, (5.24)

we now proceed to determine the constants of integration (hI , hI).

At asymptotic infinity, G(~r) vanishes, so the solutions (5.14) reduce to

2Im(XI) = hI , 2Im(FI) = hI . (5.25)

Let X0
∞ = α + iβ. Then from (5.14) and (5.24) we see that the constants of integration

are given by

h0 = 2β h0 = −2α
R2

1

g2
− 2R2

1βχ (5.26)
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h1 = 2α
1

g2
+ 2βχ h1 = 2βR2

1 (5.27)

h2 = 2α
R1

R2
h2 = 2β

R1R2

g2
− 2αχR1R2 (5.28)

h3 = 2αR1R2 h3 = 2β
R1

R2g2
− 2αχ

R1

R2
. (5.29)

The two constants α and β that we have introduced are in turn determined in terms

of the charges by plugging (5.26) into the two constraint equations (5.16) and (5.23).

Equation (5.16) in particular implies

|X0|2 = α2 + β2 =
1

16S2T2U2
=

g2

16R2
1

. (5.30)

5.3 Moduli dependence and lines of marginal stability

So far our analysis is valid for any charge assignment but with the specific choice of the

asymptotic moduli as in (5.24). The remaining equations (5.23) as well as (5.26) depend

on the specific charge assignment of the configuration under study. To use the attractor

equations to analyze the geometry for our charge configuration (5.6) and (5.7), we first

translate the charges given in the heterotic frame to purely D-brane charges in the Type-

IIA frame. The charges (pI , qI) in the Type-IIA arise from various D-branes wrapping

even-cycles. We label charges so that q0 is the number of D0-branes, q1 is the number of

D2-branes wrapping the T2, q2 is the number of D2-branes wrapping a 2-cycle Σ2 in K3,

q3 is the number of D2-branes wrapping a 2-cycle Σ̃2 that has intersection number one

with the cycle Σ2. Similarly, p0 is the number of D6-branes wrapping K3 × T2, p1, p2, p3

are the number of D4-branes wrapping K3, Σ̃2 × T2 and Σ2 × T2 respectively. By the

usual string-string duality, these charges in the Type-IIA frame are related to the electric

and magnetic charges (Qe, Qm) in the heterotic frame by

Qe = (n,w; ñ, w̃) ≡ (q0,−p1, q2, q3) (5.31)

Qm = (W,K; W̃ , K̃) ≡ (q1, p
0, p3, p2) . (5.32)

Now we are ready to apply the N = 2 formalism to our two-centered configuration with

the charge assignment (5.6) and (5.7). The electric center has charges

Γ1 = (1,−1, 0, N |, 0, 0, 0, 0) (5.33)

and the magnetic center has charges

Γ2 = (0, 0, 0, 0|0, 0, 1,−1). (5.34)

The constraint (5.23) then reads

h1 − h0 − Nh3 + h3 − h2 = 0 . (5.35)

Substituting the values of the integration constants hI and hI in terms of α and β

from (5.26) into this equation, we obtain one equation for the two unknowns α and β

in terms of charges and asymptotic moduli

β(R2
1 − 1 +

R1

R2g2
(1 − R2

2)) + α(−NR1R2 − χ
R1

R2
+ χR1R2) = 0 (5.36)
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Combining this with the second equation (5.30) that comes from the gauge fixing constraint

e−K = 1
2 (5.16), we can now solve for the two unknowns to obtain

α =
(R2

1 − 1 + R1

R2g2 (1 − R2
2))g

4R1(NR1R2 + χR1

R2
− χR1R2)Λ

, β =
g

4R1Λ
, (5.37)

where

Λ2 = 1 +

(

R2
1 − 1 + R1

R2g2 (1 − R2
2)

−NR1R2 − χR1

R2
+ χR1R2

)2

. (5.38)

We have thus determined the integrations constants (5.26) that appear in the solution (5.17)

completely in terms of the asymptotic moduli and the charges. The geometry of the

solution is in tern determined entirely in terms of the harmonic functions. In particular the

separation L between the two centers can be obtained by solving Denef’s constraint (5.22),

which for our configuration becomes

h2 − h3 =
N

L
(5.39)

we have,

2
R1

R2
(R2

2 − 1)(
β

g2
− αχ) =

N

L
(5.40)

Since L is the separation between the two centers, it must be positive. This requires that

( β
g2 −αχ) must be positive. It is clear that this can be ensured for a large region of moduli

space. The locus in the moduli space where this quantity becomes negative determines the

line of marginal stability in the upper half S plane by the equation

1

g2
− (

R2
1 − 1 + R1

R2g2 (1 − R2
2)

NR1R2 + χR1

R2
− χR1R2

)χ = 0, (5.41)

which simplifies to

χ = N
R1R2

R2
1 − 1

1

g2
. (5.42)

This equation defines a straight line in the complex S∞ plane with S∞ = χ + i/g2. Note

that the slope of the line is proportional to N . For fixed R1 and R2, this defines a curve

of marginal stability in the complex S∞ plane. For positive N , the desired two-centered

solution exists if χ + i/g2 lies to the left of the line defined by the equation (5.42). In

this region, the distance between the two centers determined by Denef’s constraint (5.40)

is positive and finite. After crossing the line of marginal stability, the solution ceases to

exist because then there is no solution with positive L to the constraint (5.40). As one

approaches the line of marginal stability from the left, the distance L between the electric

and magnetic centers goes to infinity. In other words, the total state with charge vector Γ

decays into two fragments with charge vectors Γ1 and Γ2. The mass M of the state with

charge Γ is given in terms of the central charge by the BPS formula M = |Z(Γ)| with

Z = eK/2(pIFI − qIX
I). (5.43)
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At the curve of marginal stability, it is easy to check that Z(Γ) = Z(Γ1) + Z(Γ2). Hence

the state with charge vector Γ can decay into its fragments with charge vectors Γ1 and Γ2

by a process that is marginally allowed by the energetics and charge conservation.

Similarly, if N is negative, the straight line defined by (5.3) has negative slope and

a solution with positive L exists only to the right of this line. As we have noted, the S-

transformation maps the configuration with N positive to N negative. Hence the line with

positive slope gets mapped to a line with negative slope and thus the curves of marginal

stability move under S-duality. The fact that a two centered solution exists for both signs

and with the correct degeneracy is consistent with our prescription for extracting S-duality

invariant spectrum proposed in section 3. In the wedge between the two lines defined the

two lines of marginal stability for N positive and N negative, both states coexist. In other

regions, only one or the other state exists.

The simplicity of the line of marginal stability defined by (5.42) has a simple and

beautiful interpretation from the string web picture reviewed in section 4. Indeed a string

web made out of strands with certain charges exists only if these charges can be carried

by a supersymmetric string in six dimensions. If one crosses a line of degeneration in the

moduli space, across which a strand with charges, say, Qe + Qm shrinks to zero length

and is replaced by a strand with charge Qe − Qm, the quarter-BPS state will decay if no

supersymmetric string with charge Qe −Qm exists. The line of degeneration is simply the

line at which a string of charge Qe along one cycle of the torus and a string of charge

Qm along the other can be simultaneously supersymmetric. This is equivalent to the

requirement that the phase of S is the same as the angle between the central charge

vectors for Qe and Qm, that defines a straight line in the S plane. In the present case

Qe = (1,−1, 0, N) and Qm = (0, 0, 1,−1), hence Qe ± Qm = (1,−1,±1, N ∓ 1). 1
2(Qe ±

Qm)2 = −1 ± N , but a BPS string with charge Q must have Q2/2 ≥ −1. Hence the line

of degeneration of the string web is indeed a line of marginal stability.

It is not surprising that the existence of quarter-BPS dyons depends on the moduli

and that there are lines of marginal stability which separate the regions where the state

exists from where it does not exist. This phenomenon is well known in the field theory

context [27]. Moduli dependence of the spectrum of quarter-BPS dyons and the lines of

marginal stability in the present string-theoretic context have been observed and analyzed

from a different perspective also in the forthcoming publication [28].

6. Interpretation and discussion

As we have seen, the interpretation of the proposed dyon degeneracy formula presents

many subtleties. It is unlikely that the formula is valid in all regions of moduli space for

all charges in a way envisioned in [1, 2] that depends only on the three invariants Q2
e/2,

Q2
m/2, and Qe ·Qm. We summarize below our observations and what we believe would be

the consistent physical interpretation of the dyon degeneracy formula.

• It is clear that the three invariants (Q2
e/2, Q

2
m/2, Qe · Qm) do not uniquely specify

the state and the degeneracy will depend on additional data. This is natural because
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the arithmetic duality group has many more invariants than the continuous duality

group. We have identified a particular invariant I which determines when the genus-

two partition function is adequate but this is not the end of the story. To illustrate this

point, let us consider an even more striking example of a quarter-BPS lightlike state

for which additional data is required to specify the degeneracy of states.2 Consider a

perturbative BPS state that is purely electric in the Type-IIA frame carrying winding

w along a circle of the T2 factor and momentum n along the same circle. In the

heterotic frame it corresponds to a state with w NS5-branes wrapping T4 × S1 with

momentum n along the S1. For nonzero n and w the state carries arbitrary left-

moving oscillations NL = nw and has entropy 2π
√

2
√

nw. Unlike a similar heterotic

electric state which is half-BPS, these states are quarter-BPS because both right and

left movers carry supersymmetry for the Type-II string. Now, for all such states, all

three invariants (Q2
e/2, Q

2
m/2, Qe · Qm) vanish and so does the discriminant. Thus

there is a large set of legitimate quarter-BPS states with the same values for the

three invariant, namely zero, but very different entropy depending on the values

of n and w. The degeneracy of such states cannot possibly be captured by the

genus-two partition function. This example illustrates that additional data might be

required to determine the degeneracy of states, although alternative explanations are

possible. The difference might also be attributed to a difference between the absolute

degeneracy of states and the supersymmetry index computed by the dyon degeneracy

formula.

• The states with negative discriminant appear problematic at first because there is no

black hole corresponding to them. We have seen that they can nevertheless have a

sensible physical realization. In the specific example considered here the states are

described as a two-centered configuration in supergravity. These configuration have

the right degeneracy coming from the angular momentum multiplicity consistent with

the prediction of the dyon degeneracy formula. We would like to propose that other

negative discriminant states also exist and can be realized as complicated multi-

centered configurations. The supergravity analysis also indicates that existence of

these states is moduli dependent. The states exist over a large region of the moduli

space but cannot exist in certain regions of the moduli space because the distance

between the two centers determined by Denef’s constraint goes to infinity. This shows

that generically there are walls of marginal stability in the moduli space that separate

regions where the states exist from regions where they do not. This is not surprising

since even in field theory, quarter-BPS states in N = 4 theories are known to have

curves of marginal stability [27, 29]. It is possible that this moduli dependence is

related to the need to change the choice of contour to obtain an S-duality invariant

answer. As these lines of marginal stability have a simple description in the string web

picture, it might be possible to understand the change of contour from the M-theory

lift of the string web.

2We thank Boris Pioline for discussions on this point.
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• Despite these subtleties, it is also true that the dyon partition function has been

derived from various points of views for specific charge configurations and in specific

regions of moduli space. Considering the caveats above, a conservative interpretation

of these results in our view is that the dyon degeneracy formula given in terms of the

genus-two Siegel modular forms is exact and valid for specific charges in the specific

regions of moduli spaces as well as for all charges related by a duality transformations

in the dual regions of the moduli space. This already contains highly nontrivial

information about the degeneracies of quarter-BPS bound states of various branes

in the theory. This can be seen quite generally from the point of view of the string

web picture. For a given charge configuration, and in a given region of the moduli

space, if a string web is stable and can be lifted to a wrapped K3-wrapped M5-

brane with a genus-two world sheet, then one can derive the degeneracy from the

genus-two partition function of the left-moving heterotic string as has been done

in [9, 5, 10]. However, as one moves around in the moduli space, the string web

can become unstable. Once the string web is unstable, the dyon degeneracies can no

longer be obtained from the genus-two partition function. Thus the derivation of the

dyon partition function is valid in only a certain region of the moduli space for a given

charge configuration. Moreover, for some quarter-BPS state, it may not be possible

at all to represent the state as a string web that lifts to a K3-wrapped M5-brane. For

example, the Type-II perturbative states discussed above lift to a circle-wrapped M2-

brane with genus-one topology and not to a K3-wrapped M5-brane with genus-two

topology. A circle-wrapped M2-brane is nothing but the Type-II string and hence for

these states the counting is correctly done using the genus-one partition function of

the Type-II string and not using a genus-two partition function of the heterotic string.

These examples clearly delineate the range of applicability of the dyon degeneracy

formula.
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