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ABSTRACT: We address a number of puzzles relating to the proposed formulae for the
degeneracies of dyons in orbifold compactifications of the heterotic string to four dimensions
with N' = 4 supersymmetry. The partition function for these dyons is given in terms of
Siegel modular forms associated with genus-two Riemann surfaces. We point out a subtlety
in demonstrating S-duality invariance of the resulting degeneracies and give a prescription
that makes the invariance manifest. We show, using M-theory lift of string webs, that the
genus-two contribution captures the degeneracy only if a specific irreducibility criterion is
satisfied by the charges. Otherwise, in general there can be additional contributions from
higher genus Riemann surfaces. We analyze the negative discriminant states predicted
by the formula. We show that even though there are no big black holes in supergravity
corresponding to these states, there are multi-centered particle-like configurations with
subleading entropy in agreement with the microscopic prediction and our prescription for
S-duality invariance. The existence of the states is moduli dependent and we exhibit the
curves of marginal stability and comment on its relation to S-duality invariance.
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1. Introduction

The spectrum of BPS states has played a very significant role in several important devel-
opments in string theory. In the limit of small charges, counting low-lying BPS states has
provided many nontrivial tests of duality. In the opposite limit of large charges, computa-
tion of asymptotic degeneracies of BPS states has allowed for a statistical interpretation of
the Bekenstein-Hawking entropy of certain supersymmetric black holes addressing a long-
standing problem in quantum gravity. It is clearly desirable to obtain similar quantitative
information about the spectrum of BPS states with arbitrary intermediate charges.

Many BPS states can be mapped by duality to either perturbative winding-momentum
states or a collection of D-branes in a particular duality frame. In both cases, using powerful
techniques from the worldsheet and from gauge theory, it is possible to obtain detailed exact
information about the BPS spectrum for all values of charges. To complete the picture, one
would like to develop tools to analyze the spectrum of BPS states that are nonperturbative
in all duality frames. Such states, for example various dyons in four dimensions, are in a
sense more interesting because they can allow us to access the interior regions of moduli
space at intermediate couplings that are not weakly coupled in any duality frame.

For heterotic string compactifications with A/ = 4 supersymmetry in four dimensions,
there exists a formula for the exact degeneracies of the dyonic quarter-BPS states in terms
of Siegel modular forms of Sp(2,Z) and its subgroups [, f]. As for the perturbative
winding-momentum states or for D-brane bound states, it is desirable to have a systematic
derivation of the dyon partition function using worldsheet or gauge theory techniques. A



weak coupling derivation has been suggested recently using the 4d-5d lift [, {]]. A similar
derivation for the more general orbifolds with A = 4 supersymmetry is discussed in [f—[].
The role of genus-two Riemann surfaces and the appearance of Sp(2,Z) can be explained
using an M-theory lift of string webs [[J] and an alternative derivation of the dyon partition
function in terms of a genus-two partition function of the heterotic string has been given
in [{ .

Our purpose here is to address a number of subtleties in the interpretation and deriva-
tion of the dyon partition function using these ideas. We first summarize the basic ingre-
dients of the dyon partition function in section f. In section [} we discuss the S-duality
invariance and give a prescription for the choice of the contours that yields manifestly
duality invariant spectrum. In § [, using M-theory lift of string webs, we show that the
genus-two formula is adequate only if the charges satisfy a specific irreducibility criterion.
Otherwise there can be additional contributions from higher genus Riemann surfaces. In
section ] we consider states predicted by the formula that have negative discriminant for
which there are no big black holes in supergravity corresponding to these states. We discuss
a simple example for such states with negative discriminant in section p.J, and show that
there are multi-centered particle-like configurations with subleading entropy in agreement
with the microscopic prediction as well as with our prescription for S-duality invariance.
The supergravity solutions analyzed in section p.9 display an intricate moduli dependence.
We show in section p.3 that a two-centered solution with the desired degeneracy exists
in a large region of moduli space where supergravity and string loop expansion is under
control. However, there a straight line in the axion dilaton space defines a line of marginal
stability. The state exists only on one side of the line, decays into two fragments as one
approaches this line, and ceases to exist on the other side of the line. We conclude in sec-
tion f with a discussion of the interpretation of the dyon degeneracy formula in the light
of above-mentioned considerations of irreducibility criterion, moduli dependence, lines of
marginal stability, and duality invariance.

2. The dyon partition function

Let © be a (2 x 2) symmetric matrix with complex entries

Q:<5g) (2.1

(Imp) >0, (Imo) >0, (Imp)(Imo) > (Imv)? (2.2)

satisfying

which parametrizes the ‘Siegel upper half plane’ in the space of (p, v, o). It can be thought
of as the period matrix of a genus two Riemann surface. For a genus-two Riemann surface,
there is a natural symplectic action of Sp(2,Z) on the period matrix. We write an element
g of Sp(2,7Z) as a (4 x 4) matrix in the block form as

AB
(21) "



where A, B,C, D are all (2 x 2) matrices with integer entries. They satisfy
ABT = BAT, cD? = DC7T, ADT —BCT =1, (2.4)

0
so that g'Jg = J where J = <I 0 > is the symplectic form. The action of g on the

period matrix is then given by
Q— (AQ+ B)(CQ+ D). (2.5)
The object of our interest is a Siegel modular form ®(Q2) of weight k& which transforms as
DL[(AQ + B)(CQ + D)7 ] = {det (CQ + D)} d,(Q), (2.6)

under an appropriate congruence subgroup of Sp(2,7) [f}]. The subgroup as well as the
index k of the modular form are determined in terms of the order N of the particular CHL
Zn orbifold one is considering [f. In a given CHL model, the inverse of the @ is to be
interpreted then as a partition function of dyons.

To see in more detail how the dyon degeneracies are defined in terms of the partition
function, let us consider for concreteness the simplest model of toroidally compactified
heterotic string as in the original proposal of Dijkgraaf, Verlinde, Verlinde [ll]. Many of the
considerations extend easily to the more general orbifolds with N' = 4 supersymmetry. In
this case the relevant modular form is the well-known Igusa cusp form ®;¢(2) of weight ten
of the full group Sp(2,7Z). A dyonic state is specified by the charge vector Q = (Qc, Qm)
which transforms as a doublet of the S-duality group SL(2,R) and as a vector of the T-
duality group O(22,6;7Z). There are three T-duality invariant quadratic combinations Q?2,,

2 and Q.- Q,, that one can construct from these charges. Given these three combinations,
the degeneracy d(Q) of dyonic states of charge @ is then given by

1 1
d(Q) =g <§Q$n, 5@3, Qe : Qm) ) (27)
where g(m,n,l) are the Fourier coefficients of 1/®1q,
1 2mi(mp+no+lv)
— = e m,n,l). 2.8
D1o(p, o, 0) > 9( ) (2.8)

m>—1n>—1,1

The parameters (p,o,v) can be thought of as the chemical potentials conjugate to the in-

tegers (% 2 %Qg, Q.- Qm) respectively. The degeneracy d(Q) obtained this way satisfies

m
a number of physical consistency checks. For large charges, its logarithm agrees with the
Bekenstein-Hawking-Wald entropy of the corresponding black holes to leading and the first
subleading order [fil, i, B, [d, [[J]. Tt is integral as expected for an object that counts the
number of states. It is formally S-duality invariant [il, B but as we will see in the next
section the formal proof is not adequate. An appropriate prescription is necessary as we

explain in detail in the next section which also allows for a nontrivial moduli dependence.



3. S-Duality Invariance

The first physical requirement on the degeneracy d(Q) given by (R.7) is that it should
be invariant under the S-duality group of the theory. For the simplest case of toroidal
compactification that we are considering, the S-duality group is SL(2, Z) and more generally
for Zy CHL orbifolds its a congruence subgroup I'1 (V) of SL(2,Z). So, we would like to
show for the N = 1 example, that the degeneracy (@) is invariant under an S-duality

transformation

Q= Q=@+ 0 Qu—Qu=cQutdQn. (1)) eSL22). B)

A formal proof of S-duality following [[l], f]] proceeds as follows. Inverting the relation (R.§)
we can write

oy 1
d(Q) = / d3Q i@ Q 3.2
@= o) (32)
where the integral is over the contours
0< Re(p) <1, 0< Re(o)<1l, 0<Re(v)<1 (3.3)

along the real axes of the three coordinates (p,o,v). This defines the integration curve C
as a 3-torus in the Siegel upper half plane. Now we would like to show

Ny / 1
Q) = / dPQ Q0@ 3.4
@) c D19(2) (34)
equals d(@). To do so, we define
1 p, v/ -1
Q' = (v, U,) = (AQ+ B)(CQ+ D)™, (3.5)
for
a —-b b 0
A B —c d 0 ¢
= 2,7). .
(6 o)=|o o ¢ o]esen (36)
0 0 b a

We can change the integration variable from 2 to €. Using these transformation properties
and the modular properties of @1y we see that

Q) = d*Q, (3.7)
P1p(Y) = D19(Q),
Qlt'Q,-Q, :QtQQ

Moreover, the integration contour C as defined in (B.3) is invariant under the duality

transformation on the integration variables (B.). We therefore conclude

T .0 O 1
d(Q/) _ /cdSQ/e—MTQT-QQ

D1o(8)

= d(Q). (3.10)



This formal proof is however not quite correct. The reason is that the partition function
1/®19 has a double pole at v = 0 which lies on the integration contour C. Thus the
integral in (B.J) is not well-defined on the contour C and one must give an appropriate
prescription for the integration. The non-invariance can also be seen explicitly from the
Fourier expansion. To illustrate the point, let us look at states with

1 1
SQn=-1 Q=-1 Q- Qu=N (3.11)

Then according to (B.7), the degeneracy of such states can be read off from the coefficient
of 4V /gp in the Fourier expansion (). From the product representation of ®19 given
for example in [[], we see that we need to pick the term that goes as p~l¢~'y” in the

expansion of

o
Y 1 -1, -1, N
== = E Nqg 'p~y (3.12)
— )2
gp(1-y)?* =
which implies that
d(—-1,-1,N) = N. (3.13)

Let us now look at what is required for invariance under SL(2,Z) transformations.

01
S = <_1 0) (3.14)

of the S-duality group which takes (Q¢, Qm) to (Qm, —Q.). Hence (% 2 %Qz, Qe - Qm)

goes to (% 2 %Q%n, —Q¢ - Q). Invariance of the spectrum under this element of the S-

duality group would then predict d(—1,—1,—N) =d(—1,—1, N) = N. However, from the
N

Consider, for example, the element

expansion (B.12) we see that there are no terms in the Laurent expansion that go as y~
and hence an application of the formulae (R.7) and (R.§) would give d(—1,—1,—N) =0 in
contradiction with the prediction from S-duality.

This apparent lack of S-duality invariance is easy to fix with a more precise prescription.
Note that the function (y% - y_%)_2 has a Zo symmetry generated by the element S of

the S-duality group that takes y to y~!.

Under this transformation the contour |y| < 1
is not left invariant but instead gets mapped to the contour |y| > 1. The new contour
cannot be deformed to the original one without crossing the pole at y = 1 so if we are
closing the contour around y = 0 then we need to take into account the contribution from

L — 0 instead

this pole at y = 1. Alternatively, it is convenient to close the contour at y~
of y = 0. Then we do not encounter any other pole and because of the symmetry of the
function (y% — yfé)_2 under y going to y~!, the Laurent expansion around y has the same
coefficients as the Laurent expansion around y~'. We then get,
1 y ! 1 = 1 -1, -N

_ = = Np q "y . (3.15)

pa(y? —y 22 pa (L—y7')? Nz—:l
If we now define d(—1, —1, —N) as the coefficient of gpy " in the expansion (B.15) instead of
in the expansion (B.19) then d(—1,—~1,—~N) = N = d(—1,—1, N) consistent with S-duality.



States with negative N must exist if states with positive N exist not only to satisfy
S-duality invariance but also to satisfy parity invariance. The N = 4 super Yang-Mills
theory is parity invariant. Under parity, our state with positive N goes to a state with
negative N and the asymptotic values y of the axion also flips sign at the same time.
Hence if a state with IV positive exists at x = xo then a state with NV negative must exist
at x = —xo. Thus, the naive expansion (B.I1J) would give an answer inconsistent with
parity invariance and one must use the prescription we have proposed, to satisfy parity
invariance. Note that even though S-duality and parity both take the states (—1,—1, N)
to (—1,—1,—N) they act differently on the moduli fields.

In either case, the important point is that to extract the degeneracies in an S-duality
invariant way, we need to use different contours for different charges. The function 1/®1
has many more poles in the (p, o, v) space at various divisors that are the Sp(2,Z) images
of the pole at y = 1 and in going from one contour to the other these poles will contribute.
Instead of specifying contours, a more practical way to state the prescription is to define
the degeneracies d(Q) by formulae (2.7) and (B.§) first for charges that belong to the
‘fundamental cell’ in the charge lattice satisfying the condition %Q?n > —1, %Qz > —1, and
Qe - Q> 0. For these charges d(Q) can be represented as a contour integral for a contour
of integration around p = ¢ = y = 0 that avoids all poles arising as images of y = 1. This
can be achieved by allowing (p, v, o) to all have a large positive imaginary part as noted also
in [[i]. For other charges, the degeneracy is defined by requiring invariance under SL(2, Z).
The degeneracies so defined are manifestly S-duality invariant. This statement of S-duality
invariance might appear tautologous, but its consistency depends on the highly nontrivial
fact that an analytic function defined by ®19(p, o, v) exists that is SL(2,Z) invariant. Its
pole structure guarantees that one gets the same answer independent of which way the
contour is closed.

The choice of integration contour is possibly related to moduli dependence of the
spectrum. To see this let us understand in some detail what precisely is required for
S-duality. Given a state with charge ) that exists for the values of the moduli ¢, the
statement of S-duality only requires that the degeneracy d(Q) at ¢ be the same as the
degeneracy d(Q') at ¢/ where Q" and ¢’ are S-duality transforms of @ and ¢ respectively.
In many cases, one can then invoke the BPS property to assume that as we move around
in the moduli space, barring phase transitions, the spectrum can be analytically continued
from ¢’ to ¢ to deduce d(Q') = d(Q) at . This argument is known to work perfectly
for half-BPS states in theories with A/ = 4 supersymmetric but with lower supersymmetry
or for quarter-BPS states in N = 4, generically there can be curves of marginal stability.
In such cases, states with charges Q' may exist for moduli values ¢’ but not for ¢ and
similarly states with charges Q may exist for moduli values ¢ but not for ¢’. Therefore,
there are two possibilities for extracting the dyon degeneracies.

e There are no curves of marginal stability in the dilaton-axion moduli space. In this
case if two charge configurations @) and @’ are related by S-duality, then d(Q) = d(Q’).

e There are curves of marginal stability in the dilaton-axion moduli space. In this case
one can say at most that d(Q) at ¢ equals d(Q') at ¢'.



We will return in section [f to a further discussion of these possibilities in the present context
after considering explicit examples of moduli dependence and lines of marginal stability in
section .

4. Irreducibility criterion and higher genus contributions

One way to derive the dyon partition function is to use the representation of dyons as
string webs wrapping the T2 factor in Type-IIB on K3 x T2. Using M-theory lift, the
partition function that counts the holomorphic fluctuations of this web can be related to
the genus-two partition function of the left-moving heterotic string [f], i, [JJ. The appear-
ance of genus-two is thus explained by the topology of the string web. Such a derivation
immediately raises the possibility of contribution from higher genus Riemann surface be-
cause string webs with more complicated topology are certainly possible. In this section
we address this question and show that the genus-two partition function correctly captures
the dyon degeneracies if the charges satisfy certain irreducibility criteria. Otherwise, there
are higher genus corrections to the genus-two formula.

There are various derivations of the dyon degeneracy formula, but often they compute
the degeneracies for a specific subset of charges, and then use duality invariance to extend
the result to generic charges. Such an application of duality invariance assumes in particular

that under the duality group SO(22,6,Z) the only invariants built out of charges would be
2 2

e’ m?

of the duality group, then obviously they have the same value for these three invariants.

and Q. - Q.. This assumption is incorrect. If two charges are in the same orbit

However the converse is not true. In general, for arithmetic groups, there can be discrete
invariants which cannot be written as invariants of the continuous group.

An example of a non-trivial invariant that can be built out of two integral charge
vectors is I = ged(Qe N Qn), i.e., the ged of all bilinears QZGQ%L - QéQ}n Our goal is
to show that the genus-two dyon partition function correctly captures the degeneracies if
I = 1. Note that half-BPS states have I = 0 and hence are naturally associated with
a genus-one surface. If I > 1, then there are additional zero modes for the dyon under
consideration and it would be necessary to correctly take them into account for counting
the dyons.

The essential idea is to represent quarter-BPS states in the Type-IIB frame as a pe-
riodic string network wrapped on the two-torus. Type-IIB compactified on a K3 has a
variety of half-BPS strings that can carry a generic set of (21,5) charges arising from D5
and NS5 branes wrapped on the K3, D3-branes wrapped on some of the (19, 3) two-cycles
as well as D1 and F1-strings. Several half-BPS strings can join into a web that preserve a
quarter of the supersymmetries [[4—[[q]. The supersymmetry condition requires that the
strings lie in a plane, and that their central charge vectors also lie in a plane. The strands
must be oriented at relative angles that mimic the relative angle of their central charge
vectors. The condition on the angles between strings guarantees the balance of tensions at
the junction of three strands of the web as shown in figure [I.

The central charges are given in terms of the charges and the scalar moduli of the theory
as Z = T(Q. The matrix T contains the scalar moduli of the theory, that parameterize



% /A

Figure 1: Charge conservation at a string junction

the way a vector in the I'®1%) Narain lattice of charges decomposes into a left-moving
and a right-moving part. The five-dimensional right-moving part is the vector of central
charges for the string. For generic values of the scalar moduli, one does not expect to have
tensionless strings. Hence it follows that T'QQ = 0 implies Q = 0. The condition that all
central charges T'Q); should lie in a plane, TQ; = a;TQ1 + b;T Q> is then equivalent to
Q; = a;Q1 + b;Q2, i.e., the charge vectors ; of all strings should also lie in a plane. A
periodic string web can be wrapped on the torus of a K3 x T2 compactification as shown
in figure B

After compactification on the torus, the strands of the web can carry additional charges:
momentum along the direction they wrap, and KK monopole charge for the circle they do
not wrap. The charges are organized in a (22,6) charge vector. The result is a quarter-BPS
dyon in the four dimensional theory. A dyon with generic charges Q., Q. typically has a
very simple realization as a web with three strands. A simple possible choice of charges on
the strands would be Q., Qm, Qe + Q. This web comes from the periodic identification
of a hexagonal lattice. As the shape of the T2 or the moduli in 7' change, the size of one
strand may become zero, and the web may degenerate into two cycles of the torus meeting
at a point. On the other side, of the transition the intersection will open up in the opposite
way and the configuration then smoothly become a new three-strands web. For example,
the web with strands Q., Qm, Qe + @, may go to a web with strands Q¢, Qum, Qe — Qm.-
This process has interesting consequences on the stability of certain BPS states, that will
be reviewed in section .

It has been argued [f] that the partition function of supersymmetric ground states
for such webs can be computed by an unconventional lift to M-theory that relates it to a
chiral genus-two partition function of the heterotic string. The genus-two partition function
computed using this lift for CHL-orbifolds [f, [[(] indeed equals the dyon partition function

obtained by other means.

A priori, the string junction need not to be stable against opening up into more com-



Figure 2: A quarter-BPS dyon carrying irreducible charges Q. and Q,, with ged(Q. A Q)= 1

Figure 3: A quarter-BPS dyon carrying reducible charges Q. and @,, with gcd(Qe A Q.)=2

plicated configurations. For example, a strand may split into two or more parallel strands,
or the junction may open up into a triangle. Any complicated periodic network made out
of strands with charges that are linear combinations of Q). and @Q,,, and such that the total
charge flowing across one side of the fundamental cell is @, and through the other side
Qm will give a possible realization of the dyon as shown in figure f|. If that is possible, the
M-theory lift would predict a more complicated expression for the dyon degeneracies. For
simplicity, in the following analysis we restrict to configurations with no momentum or KK
charge.

To understand the relation between the value of I and the possible variety of string
webs that may describe a dyon with given charges, it is useful to consider a graph in the
space of charges that is topologically dual to the string web. A dual graph is constructed



as follows. For every face of the web associate a vertex in the dual graph. If two faces
A and B in the web share an edge then the corresponding vertices A’ and B’ in the dual
graph are connected by a vector that is equal in magnitude to the central charge of the
edge but rotated by /2 in orientation compared to the edge. Recall that each edge in the
string web carries a central charge and that the relative angles between the edges mimic
the angles between the corresponding central charge vectors. A junction has three faces
and three edges which maps to a triangle in the dual graph with three vertices and three
edges. Charge conservation at each junction means that the vector sum of the three edge
vectors is zero. This then guarantees that the sides of the dual triangle actually close, as
their vector sum is zero. A string web constructed from a period array of junctions then
corresponds to a triangulation in the dual graph.

Now, the vertices of the dual graph will sit at integral points of the charge lattice,
on the plane defined by the vectors Q). and @,,,. The graph will have a fundamental cell
with sides Q. and @Q,,. Our invariant I counts the number of integral points inside the
fundamental cell. In this dual description, it is clear geometrically that Qéan — Qngn
are the various components of the area 2-form associated with the fundamental cell. If all
the components do not have common factor then the fundamental parallelogram does not
have any integral points either on the edges or inside [[L].

Let us see in more detail that I counts the number of integral points inside the funda-
mental cell. If all QQQ% — Qngn are multiples of I, then consider any vector @) such that
Q - Q. is not a multiple of I. If such a vector does not exist, then (). is a multiple of
and there are extra integral points on the edges of the parallelogram. If on the other hand,
such a vector exists, then %an — %Qé is an integral charge vector that is a linear
combination of Q). and @), with fractional coefficients. Up to shifts by Q. and @, it will
lie inside the parallelogram. Conversely, if the lattice of integral points that are coplanar
with Q. and @, has a smaller fundamental cell than the parallelogram with sides Q). and
Qm, then Q. = aQ1 4+ bQ2, Q, = cQ1 + dQ2, ad — bc > 1. There will be ad — bc points
inside the parallelogram, and as Q. A @, = (ad — bc)Q1 A Q2, I = ad — be is the number
of points inside the parallelogram with sides Q). and Q.

We thus see that if I > 1, then the fundamental cell in the dual graph has an internal
integral point. Each of the internal points can be used as a vertex for a triangulation. A
generic periodic triangulation subdivides a fundamental cell into at most 21 faces. ! In
the dual description, a string web on the torus that carries charges (). and @Q,, will have
at most 2/ three-strand junctions, and I faces.

To put it differently, note that I = 1 without any internal faces is a genus two surface
after M-theory lift. Adding a face increases the genus by one. Hence the genus of a
M-theory lift of a string web with the invariant I will be a surface with genus I + 1.

When a face opens up at a string junction, its size is a zero mode in that the mass of
dyon is independent of the size of the additional face. These zero modes and the invariant
I have been discussed earlier in a related context of quarter-BPS dyons in field theory

!This follows from Euler formula on the torus: a triangulation has 3/2 edges for each face, hence the
number of vertices is 1/2 the number of faces.

,10,



using their realization as string junctions going between a collection D3-branes [[J]. In
that context, the zero mode is one of the collective coordinates that must be quantized
to determine the ground state wavefunction. Similar comments might apply in our case.
More work is need to obtain a definite interpretation of the higher genus contribution.

5. States with negative discriminant

An important test of the dyon degeneracy formula is that for large charges, the logarithm of
the predicted degeneracy log d(Q) matches with Bekenstein-Hawking entropy. To make this
comparison, for a given a BPS dyonic state with electric and magnetic charges (Qc, Qm),
one would like to find a supersymmetric black hole solution of the effective action with the
same charges and mass and then compute its entropy. It is useful to define the ‘discriminant’
A by

A(Q) = Qngn - (Qe : Qm)Q- (5.1)
which is the unique quartic invariant of the full U-duality group SO(22,6;7Z) x SL(2,Z). For
a black hole with charges (Qe, @), the attractor value of the horizon area is proportional
to the square root of the discriminant and the entropy is given by

5(Q) = mV/A(Q) - (5.2)

On the microscopic side also, the discriminant is a natural quantity. It is useful to think
of SL(2,Z) as SO(1,2;Z) which has a natural embedding into Sp(2,Z) ~ SO(2,3;Z). The
dyon degeneracy formula depends on the T-duality invariant vector of SO(1,2;7)

m/2
Qz/2 (5.3)
Qe : Qm

The discriminant is the norm of this vector with the Lorentzian metric

02 0
200 |. (5.4)
00 -1

With this norm, for a given state (Q2,/2, Q2/2, Q- Qm),the vector (B.J) is spacelike, light-
like, or timelike depending on whether A is positive, zero, or negative. We can accordingly
refer to the state as spacelike, lightlike, or timelike.

Clearly, to obtain a physically sensible, nonsingular, supersymmetric, dyonic black hole
solution in supergravity, it is necessary that the discriminant defined in (f.J)) is positive and
large so that the entropy defined in (f.3) is real. The vector in (f.3) in this case is spacelike.
This fact seems to lead to the following puzzle regarding the dyon degeneracy formula. The
formula predicts a large number of states that can have vanishing or negative discriminant.
Since there are no big black holes in supergravity in that case, there does not appear to
be a supergravity realization of these states predicted dyon degeneracy. This raises the
following question. Do the lightlike and timelike states predicted by the dyon degeneracy
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formula actually exist in the spectrum and if so what is their macroscopic realization? It
is important to address this question to determine the range of applicability of the dyon

degeneracy formula.

5.1 Microscopic prediction

To start with, let us emphasize that the lightlike or timelike states are not necessarily
pathological even though there is no supergravity solution corresponding to them. The
simplest example of a lightlike state is the half-BPS purely electric state in the heterotic
frame with winding w along a circle and momentum n along the same circle [0, BI].
For such a state, Q2 = 2nw is nonzero but since it carries no magnetic charge, both Q2
and Q. - ., are zero and hence the discriminant is zero. The supergravity solution is
singular but higher derivative corrections generate a horizon with the correct entropy [P94-
24]. We would like to know if similarly there exist quarter-BPS states that are timelike or
lightlike in accordance with the predictions of the dyon degeneracy formula and what their
supergravity realization is.

In general, it is not easy to extract closed form asymptotics from the degeneracy
formula in this regime when the discriminant is negative or zero. But we have al-
ready encountered a simple example of a timelike state in section f]. The states with
(Q2,/2, Q%/2, Qc - Qm) equal to (—1,—1, N) have discriminant 1 — N* which can be arbi-
trarily negative and we have determined the degeneracy of this state to be d(—1,—1, N) =
N. Do such states exist in the physical spectrum, and if so what is their supergravity
realization that can explain the degeneracy?

It is easy to construct such a state from a collection of winding, momentum, KKS5,
NS5 states in heterotic description. We choose a convenient representative that makes
the supergravity analysis in the following section simpler. We consider heterotic string
compactified on T4 x S x S1. Let the winding and momentum around the circle S!
be w and n and around the circle ST be @ and f. Similarly, K and W are the KK-
monopole and NS5-brane charges associated with the circle ST whereas K and W are the
KK-monopole and NS5-brane charges associated with the circle S'. Note that the state
with charge W can be thought of as an NS5 brane wrapping along T4 x S® whereas the
states with charges W is wrapping along T4 x S!. While the state that magnetically dual
to n is K in terms of Dirac quantization condition, the state that is S-dual to n is W.
Similar comment holds for other states. With this notation, we then choose the charges
' = (QelQm) = (n,w; i, |W, K; W, K) to be

I =(1,-1;0,N|0,0;1,—1). (5.5)

This state clearly has (Q2,/2,Q%/2,Qc - Q) = (—1,—1,N). In section f.J we will show
that the supergravity solution corresponding to this state with the required degeneracy has
two centers instead of one. One center is purely electric with charge vector

F1 = (1’_1aOaN|0’070’0)5 (56)
and the other purely magnetic with charge vector

F2 = (050a050|0’071’_1)’ (57)
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both separated by a distance L. The corresponding supergravity solution exists for charge
configuration with a positive, nonzero value for the distance L both for positive and negative
N in a large regions of the moduli space but not for all values of the moduli. We discuss
the explicit solution and as well as the moduli dependence and lines of marginal stability
in the next subsections.

It is easy to see that such a two-centered solution has the desired degeneracy in agree-
ment with the prediction from the dyon partition function. Each center individually con-
tributes no entropy because for example the electric center by itself has Q?/2 = —1 and
hence carries no left-moving oscillations. However, because the charges are not mutually
local, there is a net angular momentum j = N/2 in the electromagnetic field. For large
N, the angular momentum multiplet has 25 + 1 or N states in agreement with the dyon
degeneracy formula. We thus see that at least some of the states with negative discriminant
predicted by the dyon degeneracy formula can be realized physically but as multi-centered
configurations.

5.2 Supergravity analysis

For the supergravity analysis of the dyonic configurations, it is convenient to use the
N = 2 special geometry formalism. Consider Type-II string compactified on a Calabi-Yau
threefold with Hodge numbers (h!!, h%!) which results in a A/ = 2 supergravity in four
dimensions with A" vector multiplets and h*! + 1 hyper-multiplets. The hypermultiplets
will not play any role in our analysis. The vector multiplet moduli space is a special
Kihler geometry parameterized by h'! + 1 complex projective coordinates {X'} with
I =0,1,...,h%" and {AXT} ~ {XT}. The low energy effective action of the vector
multiplets is completely summarized by a prepotential which is a homogeneous function
F(XT) of degree two,

FOXD) = X2F(xh). (5.8)

In particular, the Kéahler potential K is determined in terms of the prepotential by

e =i(XTF — XTFy), (5.9)
where
oF
Fp= . 5.10
I ox1 (5.10)

In our case, since we have a special Calabi-Yau K3 x T2, we actually get NV = 4 su-
persymmetry which has two additional gravitini multiplets. With our charge assignment,
the vector fields in the gravitini multiplets are not excited and we can restrict our atten-
tion to the N/ = 2 sector. In the heterotic frame, we have excited electric and magnetic
charges (p.§) which couple only to gauge fields associated with the T2 part and to the
metric and the dilaton-axion. As a result, the sigma model corresponding to the black
hole configuration in R* is completely factorized into the T# conformal field theory and
the sigma model involving T2 x R* parts. This implies that for analyzing our charge con-
figuration, we can restrict our attention to the moduli fields associated with T2 and the
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dilaton-axion. The prepotential in this case can be chosen to be

X'x?x3
F(XT) = SR (5.11)
which corresponds to the so called STU model. Here
S=X'"X"=a+ie?® (5.12)

is the dilaton-axion field, where a is the axion and ® is the dilaton in the heterotic frame.
Similarly 7 = X2/X0 is the complex structure modulus of the T? and U = X3/X0 is the
Kahler modulus of the T2 in the heterotic frame. All other moduli fields do not vary in
the geometry corresponding to our charge configuration. Restricting to the STU model
greatly simplifies the analysis. Indeed this motivates the choice of the charges as in (b.5).

Given the prepotential (5.11]) specifying the special geometry, there is a natural sym-
plectic action Sp(4,R) on (X', Fy). Similarly, the charges (p!, ¢7) transform as a symplectic
vector. These charges are more naturally defined in the Type-ITA frame, where q; are the
electric charges arising from DO-brane and wrapped D2-branes, and p! are the magnetic
charges arising from D6-brane and wrapped D4-branes.

A general supersymmetric multi-centered dyonic solution has a metric of the form
— e 2600 (dt 4 wida')? + 20 (dr? + r2d03). (5.13)

The four complex moduli fields X7 that solve the equations of motion are determined in

terms of the function G' and harmonic functions H’ and H; by the eight real equations

e C(XT - XI) = HI(7) (5.14)
e C(F; — Fr) = H/(P), (5.15)
in the gauge
1
—K
— = 5.16
€ 5 (5.16)

with the Kahler potential given by (@) For a configuration with s charge centers with
charges I'y = (pL,q14),a = 1,... s localized at the centers i = 7, respectively, the harmonic
functions Hy and H' are given by ]

I I - Pé - dIa
H =h +;yf—m’ HI:hI—i—Z’F - (5.17)
The constants of integration h; and h! will be determined in terms of the moduli fields
shortly. Let ¥(Q) be the entropy of the black hole which in our case equals m1/A(Q). Then
geometry of the solution is completely determined in terms of these harmonic functions [@]
The moduli are given by
X4 O4%(H) —iHA
X0~ 9yS(H) — iHO

(5.18)



with A =1,2,3 and 94 = 9/0H*. The metric is given by

e 2 = %(H), (5.19)
Vxw=HVH; — HVH". (5.20)

Taking divergence of both sides then implies the Denef’s constraint [Pq]
H'V?*H; — H;V?H! =0. (5.21)

This is a consistency condition for a solution with s centers to exist, where V? is the flat
space Laplacian in R3. This implies the following s equations

d I I
Padib — qiaP
(haph — hlgp) + 3 el Zhals) _ (5.22)
where sum over repeated [ index is assumed. Summing over the index a in the equation
above gives the summed constraint

(hip" — h'qr) =0, (5.23)

where p! =" pl and q; = Y q7, are the total charges.

The values of the moduli fields S = 57 +iSy, T = 11 + i1 and U = Uy 4 iUy at
asymptotic infinity are specified by six real constants. The solutions on the other hand are
determined by eight real constants of integration (hl ,hr), I =0,1,2,3 which however must
satisfy two real constraints (5.16)) and (5.23). Thus, they can be determined in terms of
the six asymptotic values of the moduli fields and the complete supersymmetric solution
for all fields is then determined by (5.14), (b.13), and (f.17).

Specializing to our case, we will consider a two-centered solution so s = 1,2. We restrict
ourselves to a region of moduli space where T? is factorized into two circles St x S and
there is no B field on the torus. In other words, we work on the submanifold of the moduli
space with T} = U; = 0. Let Ry and Ry be the radii of the circles S and St respectively,
x be the asymptotic expectation value of the axion, and g2 be the string coupling given by
the asymptotic value of €2®. A nonzero value of y will be essential to obtain a well defined
solution. Given this asymptotic data

S =X+ ;—2, Ty = 1%, Uso = iRy Ry, (5.24)
we now proceed to determine the constants of integration (h!, hy).

At asymptotic infinity, G(7) vanishes, so the solutions (p.14) reduce to

o2lm(X) =n!,  2Im(F}) = hy. (5.25)

Let X2 = a +if. Then from (f.14) and (5.24) we see that the constants of integration

are given by

R2
h’ = 24 ho = —20— — 2RIfx (5.26)
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1
hl = 2ag—2 +283x hi = 23R} (5.27)

R RiR
2 _ 1 _ 1412
h* = 2a—R2 h2 == Qﬁ 92 - 20éXR1R2 (528)
Ry Ry
h3 = 2aRR hs = 20—— — 2y — . 5.29
aRi1 Ry 3 ﬁRQQQ XE, (5.29)

The two constants a and ( that we have introduced are in turn determined in terms

of the charges by plugging (5.26) into the two constraint equations (p.16) and (f.23).

(3

Equation (p.16) in particular implies
1 g°
XP=a?+5= = : 5.30
X = o™+ 5 165;ToUs  16R2 (5:30)

5.3 Moduli dependence and lines of marginal stability

So far our analysis is valid for any charge assignment but with the specific choice of the
asymptotic moduli as in (§.24). The remaining equations (f.29) as well as (5.26) depend
on the specific charge assignment of the configuration under study. To use the attractor
equations to analyze the geometry for our charge configuration (p.4) and (5.7), we first
translate the charges given in the heterotic frame to purely D-brane charges in the Type-
ITIA frame. The charges (p’,q;) in the Type-IIA arise from various D-branes wrapping
even-cycles. We label charges so that qg is the number of DO-branes, ¢; is the number of
D2-branes wrapping the T2, ¢y is the number of D2-branes wrapping a 2-cycle Xy in K3,
g3 is the number of D2-branes wrapping a 2-cycle ¥y that has intersection number one
with the cycle X9. Similarly, p° is the number of D6-branes wrapping K3 x T2, p!, p?, p?
are the number of D4-branes wrapping K3, Y9 x T2 and Ty x T2 respectively. By the
usual string-string duality, these charges in the Type-IIA frame are related to the electric
and magnetic charges (Q¢, @) in the heterotic frame by

Qe = (n,w;n, @) = (g0, —p", 42, 43) (5.31)
Qm = W, K; W, K) = (1,0, 0°,0%). (5.32)

Now we are ready to apply the NV = 2 formalism to our two-centered configuration with
the charge assignment (f.6) and (5.7). The electric center has charges

r=@1,-1,0,N|,0,0,0,0) (5.33)
and the magnetic center has charges
'y =(0,0,0,0/0,0,1,—1). (5.34)
The constraint (5.23) then reads
hy —h® — Nh> 4 hg —hy = 0. (5.35)

Substituting the values of the integration constants h! and h; in terms of a and f
from (p.26) into this equation, we obtain one equation for the two unknowns « and 3
in terms of charges and asymptotic moduli

Ry

2
14—

R
1~ ) +a(-NRiRy — x4+ xFaRa) = 0 (5.36)
2
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Combining this with the second equation (f.3() that comes from the gauge fixing constraint

e ® =1 (B14), we can now solve for the two unknowns to obtain

R? —1+-25,01—-R2)g
W BLrROoRY s
4R1(NR1R2 + XR_; — XRlRQ)A 4R1A
where )
R} -1+ 21— R}
A2=1+ ! R?ﬁ’;( 2) . (5.38)
—NR1Ry — x7t + xFa Ry

We have thus determined the integrations constants (f.24) that appear in the solution (5.17)
completely in terms of the asymptotic moduli and the charges. The geometry of the
solution is in tern determined entirely in terms of the harmonic functions. In particular the
separation L between the two centers can be obtained by solving Denef’s constraint (5.29),
which for our configuration becomes

N
hy—hy =+ (5.39)

we have,
R1 2 ﬁ N
2— -1)(—= — = — A

Since L is the separation between the two centers, it must be positive. This requires that
(g% — ary) must be positive. It is clear that this can be ensured for a large region of moduli

space. The locus in the moduli space where this quantity becomes negative determines the
line of marginal stability in the upper half S plane by the equation

9 NR1R2+X% — xR1Ry =0 .

which simplifies to
N RiRy 1

X = B_lg (5.42)
This equation defines a straight line in the complex Ss, plane with S, = x + i/g%. Note
that the slope of the line is proportional to V. For fixed R; and Rs, this defines a curve
of marginal stability in the complex S, plane. For positive N, the desired two-centered
solution exists if x + i/g? lies to the left of the line defined by the equation (5.43). In
this region, the distance between the two centers determined by Denef’s constraint ([5.4()
is positive and finite. After crossing the line of marginal stability, the solution ceases to
exist because then there is no solution with positive L to the constraint (5.40). As one
approaches the line of marginal stability from the left, the distance L between the electric
and magnetic centers goes to infinity. In other words, the total state with charge vector I'
decays into two fragments with charge vectors I'y and I's. The mass M of the state with
charge I is given in terms of the central charge by the BPS formula M = |Z(T")| with

Z =2 (plFr — g X7). (5.43)
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At the curve of marginal stability, it is easy to check that Z(I') = Z(T'y) + Z(I'2). Hence
the state with charge vector I' can decay into its fragments with charge vectors I'y and I'y
by a process that is marginally allowed by the energetics and charge conservation.

Similarly, if N is negative, the straight line defined by (b.3) has negative slope and
a solution with positive L exists only to the right of this line. As we have noted, the S-
transformation maps the configuration with N positive to N negative. Hence the line with
positive slope gets mapped to a line with negative slope and thus the curves of marginal
stability move under S-duality. The fact that a two centered solution exists for both signs
and with the correct degeneracy is consistent with our prescription for extracting S-duality
invariant spectrum proposed in section . In the wedge between the two lines defined the
two lines of marginal stability for IV positive and N negative, both states coexist. In other
regions, only one or the other state exists.

The simplicity of the line of marginal stability defined by (f.43) has a simple and
beautiful interpretation from the string web picture reviewed in section [|. Indeed a string
web made out of strands with certain charges exists only if these charges can be carried
by a supersymmetric string in six dimensions. If one crosses a line of degeneration in the
moduli space, across which a strand with charges, say, Q. + @, shrinks to zero length
and is replaced by a strand with charge Q. — Q,,, the quarter-BPS state will decay if no
supersymmetric string with charge Q). — @, exists. The line of degeneration is simply the
line at which a string of charge (). along one cycle of the torus and a string of charge
Q. along the other can be simultaneously supersymmetric. This is equivalent to the
requirement that the phase of S is the same as the angle between the central charge
vectors for Q). and @Q,,, that defines a straight line in the S plane. In the present case
Qe = (1,-1,0,N) and Qp, = (0,0,1, 1), hence Qe + Qn, = (1,—1,£1,N F1). 1(Q. +
Qm)? = —1 4+ N, but a BPS string with charge @ must have Q?/2 > —1. Hence the line
of degeneration of the string web is indeed a line of marginal stability.

It is not surprising that the existence of quarter-BPS dyons depends on the moduli
and that there are lines of marginal stability which separate the regions where the state
exists from where it does not exist. This phenomenon is well known in the field theory
context [R7. Moduli dependence of the spectrum of quarter-BPS dyons and the lines of
marginal stability in the present string-theoretic context have been observed and analyzed
from a different perspective also in the forthcoming publication [Rg].

6. Interpretation and discussion

As we have seen, the interpretation of the proposed dyon degeneracy formula presents
many subtleties. It is unlikely that the formula is valid in all regions of moduli space for
all charges in a way envisioned in [f], B that depends only on the three invariants Q?/2,

2 /2, and Q. - Q. We summarize below our observations and what we believe would be
the consistent physical interpretation of the dyon degeneracy formula.

e It is clear that the three invariants (Q?/2,Q2,/2,Q. - Q) do not uniquely specify
the state and the degeneracy will depend on additional data. This is natural because

,18,



the arithmetic duality group has many more invariants than the continuous duality
group. We have identified a particular invariant I which determines when the genus-
two partition function is adequate but this is not the end of the story. To illustrate this
point, let us consider an even more striking example of a quarter-BPS lightlike state
for which additional data is required to specify the degeneracy of states.? Consider a
perturbative BPS state that is purely electric in the Type-1IA frame carrying winding
w along a circle of the T? factor and momentum n along the same circle. In the
heterotic frame it corresponds to a state with w NS5-branes wrapping T4 x S! with
momentum n along the S'. For nonzero n and w the state carries arbitrary left-
moving oscillations N, = nw and has entropy 27v/2/nw. Unlike a similar heterotic
electric state which is half-BPS, these states are quarter-BPS because both right and
left movers carry supersymmetry for the Type-II string. Now, for all such states, all
three invariants (Q?/2,Q2,/2,Q. - Q,,) vanish and so does the discriminant. Thus
there is a large set of legitimate quarter-BPS states with the same values for the
three invariant, namely zero, but very different entropy depending on the values
of n and w. The degeneracy of such states cannot possibly be captured by the
genus-two partition function. This example illustrates that additional data might be
required to determine the degeneracy of states, although alternative explanations are
possible. The difference might also be attributed to a difference between the absolute
degeneracy of states and the supersymmetry index computed by the dyon degeneracy
formula.

e The states with negative discriminant appear problematic at first because there is no
black hole corresponding to them. We have seen that they can nevertheless have a
sensible physical realization. In the specific example considered here the states are
described as a two-centered configuration in supergravity. These configuration have
the right degeneracy coming from the angular momentum multiplicity consistent with
the prediction of the dyon degeneracy formula. We would like to propose that other
negative discriminant states also exist and can be realized as complicated multi-
centered configurations. The supergravity analysis also indicates that existence of
these states is moduli dependent. The states exist over a large region of the moduli
space but cannot exist in certain regions of the moduli space because the distance
between the two centers determined by Denef’s constraint goes to infinity. This shows
that generically there are walls of marginal stability in the moduli space that separate
regions where the states exist from regions where they do not. This is not surprising
since even in field theory, quarter-BPS states in N/ = 4 theories are known to have
curves of marginal stability 27, RJ]. It is possible that this moduli dependence is
related to the need to change the choice of contour to obtain an S-duality invariant
answer. As these lines of marginal stability have a simple description in the string web
picture, it might be possible to understand the change of contour from the M-theory
lift of the string web.

2We thank Boris Pioline for discussions on this point.
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e Despite these subtleties, it is also true that the dyon partition function has been
derived from various points of views for specific charge configurations and in specific
regions of moduli space. Considering the caveats above, a conservative interpretation
of these results in our view is that the dyon degeneracy formula given in terms of the
genus-two Siegel modular forms is exact and valid for specific charges in the specific
regions of moduli spaces as well as for all charges related by a duality transformations
in the dual regions of the moduli space. This already contains highly nontrivial
information about the degeneracies of quarter-BPS bound states of various branes
in the theory. This can be seen quite generally from the point of view of the string
web picture. For a given charge configuration, and in a given region of the moduli
space, if a string web is stable and can be lifted to a wrapped K3-wrapped Mb-
brane with a genus-two world sheet, then one can derive the degeneracy from the
genus-two partition function of the left-moving heterotic string as has been done
in [f, f, [[0]. However, as one moves around in the moduli space, the string web
can become unstable. Once the string web is unstable, the dyon degeneracies can no
longer be obtained from the genus-two partition function. Thus the derivation of the
dyon partition function is valid in only a certain region of the moduli space for a given
charge configuration. Moreover, for some quarter-BPS state, it may not be possible
at all to represent the state as a string web that lifts to a K3-wrapped M5-brane. For
example, the Type-1I perturbative states discussed above lift to a circle-wrapped M2-
brane with genus-one topology and not to a K3-wrapped Mb5-brane with genus-two
topology. A circle-wrapped M2-brane is nothing but the Type-II string and hence for
these states the counting is correctly done using the genus-one partition function of
the Type-1I string and not using a genus-two partition function of the heterotic string.
These examples clearly delineate the range of applicability of the dyon degeneracy
formula.
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