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Abstract. The asymptotic behavior of a distributed, asynchronous stochastic approximation
scheme is analyzed in terms of a limiting nonautonomous differential equation. The relation between
the latter and the relative values of suitably rescaled relative frequencies of updates of different
components is underscored.
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1. Introduction. There has been a resurgence of interest in stochastic approx-
imation algorithms, particularly as mechanisms for learning systems. They can, for
example, be a learning algorithm for neural networks [13] or a model of learning by
boundedly rational agents in a macroeconomic system [20], in addition to their tra-
ditional applications in adaptive engineering systems [2]. These applications call for
a distributed, asynchronous implementation of stochastic approximation schemes. In
engineering applications, this is a natural consequence of dealing with large intercon-
nected systems. In macroeconomics, it is simply the reality of life. It is not, however,
apparent that the traditional analysis of these schemes, extensively dealt with in [2],
automatically holds ground in the new scenario. Prompted by these and similar con-
cerns, there have been studies of distributed implementations of these algorithms [17,
18, 21, 22]. (See [3] for an extensive account of parallel distributed algorithms in
general). The present work is in the same spirit, but with some crucial differences.

1. Our model of asynchronism postulates a set-valued random process that marks
the indices to be updated at each iteration. This clumping of indices into sets can
be an artifice as long as causal relationships are not violated; thus the set-up is very
general indeed. We impose on this process a natural condition that requires all indices
to be updated comparably often in a precise sense.

2. In addition, we allow random, possibly nonstationary and unbounded delays
that are required to satisfy a mild conditional moment condition.

3. The analysis depends on proving that the algorithm asymptotically tracks a
nonautonomous ODE, in contrast to the traditional autonomous “ODE limit.” In
particular, it gives a handle on situations when the latter may not be feasible.

4. The ODE in question differs from the traditional one in that each component
of the driving vector field is now weighted by a time-varying nonnegative scalar.
These scalars add to 1 and may be interpreted as relative frequencies of updates of
different components after suitable time-scaling. This clearly brings out the desired
relationships between update schemes for different components and paves the way for
analyzing situations where they are not desirable (see remark 4 of the conclusion).
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The paper is organized as follows. The remainder of this section describes the
problem framework. The next section states the key assumptions and their immediate
consequences. The third section provides the convergence analysis. The final section
highlights some further possibilities.

Let TS (for tapering stepsize) denote the set of sequences {a(n)} in (0,1) satisfying

(1.1)
∑
n

a(n) =∞,
∑
n

a(n)2 <∞.

The standard stochastic approximation algorithm is the recursive scheme in Rd, d ≥ 1,
described by

(1.2) X(n+ 1) = X(n) + a(n)F (X(n), ξ(n)),

where {a(n)} ∈ TS, X(n) = [X1(n), . . . , Xd(n)]T ∈ Rd with a prescribed X(0),
F (·, ·) : Rd × Rk → Rd, and {ξ(n)} is a stationary random process in Rk. For
simplicity, we take {ξ(n)} to be independently and identically distributed (i.i.d.) with
a common law ψ (say). The ith row of this vector iteration reads

(1.3) Xi(n+ 1) = Xi(n) + a(n)Fi(X1(n), . . . , Xd(n), ξ(n)).

A distributed but synchronous version of (1.2) could be as follows. Let I = {1, 2, . . . , d}
and S be a collection of nonempty subsets of I that cover I. Let {Yn} be an S-valued
random process that selects the coordinates to be updated at time n, and for each n,
let τij(n), i 6= j ∈ I, be random variables taking values in {0, 1, . . . , n} that represent
communication delays. We set τii(n) = 0 ∀i, n. The synchronous distributed version
of (1.3) is then

(1.4) Xi(n+ 1) = Xi(n) +a(n)Fi(X1(n− τi1(n)), . . . , Xd(n− τid(n)), ξ(n))I{i ∈ Yn}

for i ∈ I, n ≥ 0. Special instances of (1.4) were studied in [5, 6]. The reason this
is a synchronous version is that the decision to use stepsize a(n) at time n by the
processor updating the ith component (say) presupposes the availability of a global
clock to all processors. This is not reasonable in an asynchronous environment. The
asynchronous version we propose is as follows. Let {a(n, i)} ∈ TS, i ∈ I, and define

ν(n, i) =
n∑

m=0

I{i ∈ Ym}, i ∈ I, n ≥ 0,

a(n, i) = a(ν(n, i), i), i ∈ I, n ≥ 0.

The first of these is the total number of times the ith component was updated up
until time n. Assuming that each component of the iteration is assigned to one and
only one processor once and for all, a(n, i) is a random variable known to the ith
processor at time n. The proposed algorithm is

(1.5) Xi(n+1) = Xi(n)+a(n, i)Fi(X1(n−τi1(n)), . . . , Xd(n−τid(n)), ξ(n))I{i ∈ Yn}

for i ∈ I, n ≥ 0. This is the algorithm analyzed in this paper, under the assumptions
stipulated in the next section. We conclude this section with the remark that even
the implicit presence of an unobserved global clock in the background in (1.5) is not
really needed. The clumping of updated coordinates into Ym’s could be a complete
artifice as long as causal relationships are not violated and the additional assumptions
of the next section (notably (A3)) remain valid.
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2. Preliminaries. The additional assumptions and their consequences that we
present in this section concern, respectively, the stepsize routines {a(n, i)}, the sam-
pling process {Yn}, the communication delays {τij(n)}, and the function F . We
proceed in that order. These assumptions, (A1)–(A5), are enforced throughout the
paper without further mention.

Let ITS (for “ideal tapering stepsize”) denote the subset of TS consisting of {a(n)}
satisfying:

(i) a(n+ 1) ≤ a(n) from some n onwards;
(ii) there exists r ∈ (0, 1) such that

(2.1)
∑
n

a(n)1+q <∞, q ≥ r;

(iii) for x ∈ (0, 1),

(2.2) sup
n
a([xn])/a(n) <∞,

where [· · ·] stands for the integer part of “· · ·”;
(iv) for x ∈ (0, 1) and A(n) ,

∑n
i=0 a(i),

(2.3) A([yn])/A(n)→ 1

uniformly in y ∈ [x, 1].
By (i), (2.2) may be strengthened to

(2.4) sup
n

sup
y∈[x,1]

a([yn])/a(n) <∞.

It is easy to construct examples of {a(n)} in TS which violate (2.2). Condition (iv) can
be given an alternative formulation. Let h : R+ → R+ be an eventually nonincreasing
function satisfying h(n) = a(n), n ≥ 0. Then (2.3) is equivalent to

(2.5) lim
t→∞

∫ yt
0 h(s)ds∫ t
0 h(s)ds

= 1,

which, by l’Hôpital’s rule, reduces to

lim
t→∞

yh(yt)/h(t) = 1.

One needs this to hold uniformly in y ∈ [x, 1]. One sufficient condition for this would
be that the derivative of the left-hand side of (2.5) in y, which is th(yt)/

∫ t
0 h(s)ds, be

bounded uniformly in y, t, ensuring the equicontinuity in y for the ratio in (2.5). It
is not clear whether (iv) is implied by (i)–(iii). Examples of {a(n)} satisfying (i)–(iv)
are {1/n}, {1/n logn}, and {logn/n}, with suitable modification for n = 0, 1 where
needed.

One property of {a(n)} ∈ TS that we shall need later is the following.
LEMMA 2.1. For s ∈ (0, 1), a(n)−s/n→ 0.
Proof. It suffices to prove that (a(n)nx)−1 → 0 for x = 1/s > 1, or equivalently,

that (a(n) + n−x)/a(n)→ 1. Let h1, h2 : R+ → R+ be continuous functions linearly
interpolated from h1(n) = a(n) + n−x, h2(n) = a(n), n ≥ 0. Since

∫ t
0 h1(y)dy → ∞

as t→∞ and
∫∞

1 t−xdt <∞, we have

lim
t→∞

∫ t
0 h2(y)dy∫ t
0 h1(y)dy

= 1.

The claim now follows from l’Hôpital’s rule.
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Our first assumption then is:
(A1) {a(n, i)} ∈ ITS for i ∈ I.
Next, introduce for n ≥ 0 the σ-fields Fn = σ(X(m), Y (m),m ≤ n, τij(m), ξ(m),

m < n, i, j ∈ I) and Gn = σ(X(m), Y (m), τij(m), ξ(m),m ≤ n, i, j ∈ I). Our
assumption concerning {Yn} is as follows.

(A2) There exists a δ > 0 such that for any A, B ∈ S, the quantity

(2.6) P (Yn+1 = B/Yn = A,Gn)

is either always zero almost surely (a.s.) or always exceeds δ a.s. That is, having picked
A at time n, picking B at time n+1 is either improbable or probable with a conditional
probability of at least δ, regardless of n and the “history” Gn. Furthermore, if we draw
a directed graph with node set S and an edge from A to B whenever (2.6) exceeds
δ a.s., the graph is irreducible; i.e., there is a directed path from any A ∈ S to
any B ∈ S. (As will become apparent later, this may be replaced by the weaker
requirement that every communicating class of the directed graph comprises sets that
together cover I.)

This has the following important consequence. Let P(· · ·) denote the space of
probability vectors on “· · · .”

LEMMA 2.2. There exists a deterministic constant ∆ > 0 such that for any A ∈ S,

(2.7) lim inf
n→∞

1
n

n−1∑
m=0

I{Ym = A} ≥ ∆ a.s.

Proof. For A ∈ S, let DA = {B ∈ S| (2.6) exceeds δ a.s.} and VA = {u ∈
P(DA)|u(B) ≥ δ ∀B ∈ DA}, V =

∏
A VA. Define p : S × S × V → [0, 1] by

p(A,B, u) = uA(B), where uA is the Ath component of u. Define V -valued random
variables {Zn} by

ZnA(B) = P (Yn+1 = B/Gn)I{Yn = A}+ ψAI{Yn 6= A},

where ψA is a fixed element of VA for A ∈ S. Then (2.6) equals p(A,B,Zn) and
{Yn} may be viewed as an S-valued controlled Markov chain with action space V
and transition probability function p. (This is a pure artifice for the sake of the
proof. It is in no way implied that {Zn} is an actual control process.) In particular,
this allows us to conceive of a stationary policy π associated with a map π: S →
V . (A1) implies, in particular, that {Yn} will be an ergodic Markov chain under a
stationary policy π with a corresponding stationary distribution νπ ∈ P(S). Then
the left-hand side of (2.7) a.s. exceeds minπ νπ(A) > 0 by Lemmas 1.2 and 2.1 of
[4, pp. 56, 60].

For the communication delays, we assume the following. (Recall the r in (2.1).)
(A3) τij(n) ∈ {0, 1, . . . , n}, τii(n) = 0 ∀i, a. There exist b > r/(1− r), C > 0 such

that

(2.8) E[(τij(n))b/Fn] ≤ C a.s. ∀i, j, n.

(In particular, we do not require the delays to be either bounded or stationary.) Also,
{ξ(n)} is i.i.d. and independent of {X0, ξ(m), τij(m),m < n} for all n.

Next come the conditions on F .
(A4) F is assumed to be measurable and uniformly Lipschitz in the first argument;

i.e., for some K > 0,

‖F (x, z)− F (y, z)‖ ≤ K‖x− y‖ ∀ x, y, z.
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Other conditions on F will be given in terms of the function f : Rd → Rd defined
by

(2.9) f(x) =
∫
F (x, y)ψ(dy).

Under our conditions on F , f is Lipschitz with Lipschitz constant K. The traditional
analysis of (1.2) [2] proceeds by showing that it asymptotically tracks the ODE

(2.10) ẋ(t) = f(x(t)),

which in turn has trajectories converging to J = {x|f(x) = 0}.
(A5) J is assumed to be compact and nonempty.
We shall also have reason to consider a related nonautonomous ODE. Let D

denote the set of diagonal d× d matrices with nonnegative diagonal entries that add
to 1. For a > 0, say that M = diag(m1, . . . ,md) is a-thick if mi ≥ a ∀i. The ODE in
question is

(2.11) ẋ(t) = M(t)f(x(t)),

where t→M(t) is a D-valued measurable process.
We consider two scenarios.
Case 1: Strict Liapunov systems. A continuously differentiable function V : Rd →

R+ is said to be a strict Liapunov function for (2.10) if ∇V. f < 0 outside J . Call
(2.10) a strict Liapunov system if it has bounded trajectories and a strict Liapunov
function V exists. The latter implies the former if V (x)→∞ as ‖x‖ → ∞, which we
assume to hold. (Call this assumption (A6).) Examples of such systems can be found
among gradient systems and their variants, certain systems arising in neural networks
[14], and analog fixed point algorithms wherein f(x) = g(x) − x and g is either a
contraction under a ‖. ‖p-norm for p ∈ [1,∞] or nonexpansive under a ‖. ‖p- norm for
p ∈ (1,∞). (Here V (. ) = ‖.−x∗‖p, where x∗ ∈ J , will do. For p = ∞, this is not
continuously differentiable, but this does not pose any problems for contractions [7].)

Finally, a strict Liapunov system as above will be said to be a-robust for some
a > 0 if ∇V.Mf < 0 outside J for any a-thick M ∈ D.

Given T, δ > 0, a (T, δ)-perturbation of (2.10) (resp., (2.11)) is a function y :
R+ → Rd such that there exist 0 = T0 < T1 < · · · < Tn ↑ ∞ and solutions xj(t),
t ∈ [Tj , Tj+1], j ≥ 0, of (2.10) (resp., (2.11)) such that Tj+1 − Tj ≥ T for j ≥ 0 and

‖y(t)− xj(t)‖ < δ, Tj ≤ t ≤ Tj+1, j ≥ 0.

For ε > 0, let Jε = {x ∈ Rd| ‖x− y‖ < ε for some y ∈ J}.
LEMMA 2.3. Under (A6), we have: (a) For any T, ε > 0, there exists a δ0 =

δ0(T, ε) > 0 such that for δ ∈ (0, δ0), any (T, δ)-perturbation of (2.10) converges to
Jε. (In particular, solutions of (2.10) converge to J .)

(b) Suppose that (2.10) is a-robust for some a > 0 and M(t) in (2.11) is a-thick
for almost every t. Then, for any T, ε > 0, there exists a δ0 = δ0(T, ε, a) > 0 such
that for δ ∈ (0, δ0), any (T, δ)-perturbation of (2.11) converges to Jε. (In particular,
the solutions of (2.11) converge to J .)

These are straightforward adaptations of Theorem 1 of [14, p. 339].
Case 2: ∞-nonexpansive maps. In this case f(x) = g(x) − x, where g is ∞-

nonexpansive, i.e., ‖g(x)− g(y)‖∞ ≤ ‖x− y‖∞, x, y ∈ Rd. Thus J is the set of fixed
points of g. This case is important in dynamic programming applications [3, 7].
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For this case, we have the following analog of Lemma 2.3.
LEMMA 2.4. The conclusions of Lemma 2.3(a) continue to hold. Those of

Lemma 2.3(b) hold if M(t) is a-thick for almost every t, for some a > 0.
This is proved in Theorem 2.1 and Corollary 2.2 of [5].

3. Convergence. We start by establishing a link between (1.4) and (2.11). Our
first observation is that we may equivalently consider the recursion

(3.1) Xi(n+1) = Xi(n)+a(n, i)Fi(Xi(n−τij(n)), . . . , Xd(n−τid(n)), ξ̃(n))I{ϕn = i},

where {ϕn} is an I-valued random process satisfying the following statement. There
exists a deterministic constant η > 0 such that

(3.2) lim inf
n→∞

1
n

n−1∑
m=0

I{ϕn = i} ≥ η a.s. ∀i ∈ I

and ξ̃(n) = ξ(k(n)) for a nondecreasing map n → k(n), satisfying k(n + 1) − k(n) ∈
{0, 1}.

This is achieved simply by unfolding each iteration as follows.
Let Yn = {i1, . . . , ic(n)} (say) with the elements arranged in ascending order.

Replace the iteration (1.4) by c(n) distinct iterations such that the jth iteration
among them updates only the ijth component in accordance with (1.4). Next, relabel
the iteration index and the delays to obtain a correspondence with (3.1). Then (3.2)
is an immediate consequence of Lemma 2.2. Note that this blows up the delays at
most d fold, thus still retaining (A3). Note also that for m > n, ϕm = ϕn implies
k(m) > k(n). With these considerations, we proceed to analyze (3.1). We start with
some preliminaries.

Let U be the space of P(I)-valued trajectories µ = {µt, t ≥ 0} with the coarsest
topology that renders continuous the maps µ →

∫ T
0 h(t)µt(i)dt for T ≥ 0, i ∈ I,

h ∈ L2[0, T ]. U is compact metrizable. Say that µ ∈ P(I) is α-thick for some α > 0
if µ(i) ≥ α ∀i. Say that µ ∈ U is α-thick, α > 0, if µt is so for almost every t. Say
that µ (resp., µ) is thick if it is α-thick for some α > 0.

LEMMA 3.1. (a) For α > 0, {µ|µ is α-thick} is compact in U . (b) The map
(µ, x)→ x(. ) : U ×Rd → C([0,∞);Rd) defined via

(3.3) ẋ(t) = Mµ(t)f(x(t)), x(0) = x,

with Mµ(t) = diag(µt(1), . . . , µt(d)), is continuous.
Proof. (i) For i ∈ I, t > s, n ≥ 1, and any α-thick µ, α > 0,∫ t

s

µy(i)dy ≥ α(t− s).

The relation is preserved under limits in U , implying the claim.
(ii) Let (µn, xn)→ (µ∞, x∞). For n ≥ 1, let xn(. ) satisfy

(3.4) ẋn(t) = Mµn(t)f(xn(t)), xn(0) = xn.

Using the Gronwall lemma and the Arzela–Ascoli theorem, one verifies that {xn(. )} is
relatively compact in C([0,∞);Rd), and a straightforward limiting argument (keeping
in mind our topology on U) shows that any limit x∞(. ) thereof must satisfy (3.4) with
n =∞. The claim follows.
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Let ã(n) = a(n, ϕn) and rewrite (3.1) as

X(n+ 1) = X(n) + ã(n)W (n)

for appropriately definedW (n) = [W1(n), . . . ,Wd(n)]T . Redefine Fn by Fn = σ(X(m),
m ≤ k−1(n), ξ(m), m < k−1(n), τij(m), m < n, ϕm, m ≤ n), where k−1(n) =
min{j|k(j) = n}. Set Ŵ (n) = E[W (n)/Fn], n ≥ 0, the conditioning bring compo-
nentwise. Write Ŵ (n) = [Ŵ1(n), . . . , Ŵd(n)]T . Define f i : Rd → Rd by f ij(x) =
fi(x)δij , i, j ∈ I, δij being the Kronecker delta. Let b(n) = maxi a(n, i), n ≥ 0. Let
Q denote the set of sample points for which X̂ , supn ‖X(n)‖ <∞.

LEMMA 3.2. {b(n)} satisfies
∑
n b(n)1+r <∞ a.s., and for a ∈ (0, 1],

sup
n

sup
α∈[a,1]

b([αn])/b(n) <∞ a.s.

Proof. By (2.4) and (3.2), supn a(n, i)/a(n, i) < ∞ a.s., i ∈ I. Combining this
with property (2.1) for {a(n, i)}, we have

∑
a(n, i)1+r < ∞ a.s. The first claim

follows. The second follows easily from (2.4) applied to {a(n, i)}.
LEMMA 3.3. Almost surely on Q, there exist K1 > 0, N ≥ 1 (random) such that

for n ≥ N,

‖fϕn(X(n))− Ŵ (n)‖ < K1b(n)r.

Proof. Consider ω ∈ Q. Let K2 be an upper bound on {‖f(x)‖∞ | ‖x‖ ≤ X̂}.
Let W̃i(n) = fϕni (X1(n − τi1(n)), . . . , Xd(n − τid(n))). Let c = 1 − r. For i ∈ I, we
have

(3.5)

|fϕni (X(n))− Ŵi(n)| ≤ E[|fϕni (X(n))− W̃i(n)|I{τij(n) ≤ b(n)−c ∀i, j}/Fn]

+ E[|fϕni (X(n))− W̃i(n)|I{τij(n) > b(n)−c for some i, j}/Fn] a.s.

By (A3) and the conditional Chebyshev inequality, the second term is a.s. bounded
by 2K2Cd

2b(n)bc. Let n = [b(n)−c]. By Lemma 2.1, n is o(1) a.s. as n → ∞, and
outside a zero probability set, we may pick n large enough so that n > n. Then for
m ≤ n,

‖X(n)−X(n−m)‖ ≤ 2K2d
n∑

j=n−n
b(j) ≤ K3b(n)1−c

for a suitable (random) K3 > 0, by the above lemma. Thus the first term in (3.5) is
bounded by K4b(n)r for a suitable (random) K4 > 0. Since b > r/(1− r), the claim
follows.

Let T > 0. Define t0 = T0 = 0, tn =
∑n−1
m=0 ã(m), n ≥ 1, and Tn = min{tm|tm ≥

Tn−1 + T}, n ≥ 1. Then Tn = tm(n) for a strictly increasing sequence {m(n)}. Let
In = [Tn, Tn+1], n ≥ 0. Define xn(t), t ∈ In, by xn(Tn) = X(m(n)) and

xn(tm(n)+k+1) = xn(tm(n)+k) + ã(m(n) + k)fϕm(n)+k(xn(tm(n)+k)),

with linear interpolation on each interval [tm(n)+k, tm(n)+k+1]. Define x(t), t ≥ 0, by
x(tn) = X(n) with linear interpolation on each interval [tn, tn+1].
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LEMMA 3.4. limn→∞ supt∈In ‖x(t)− xn(t)‖ = 0 a.s. on Q.
Proof. Let n ≥ 1. For i ≥ m(n), we have

x(ti+1) = x(ti) + ã(i)fϕi(x(ti)) + ã(i)(Ŵ (i)− fϕi(x(ti))) + ã(i)(W (i)− Ŵ (i)).

Let M i =
∑i
j=0 ã(j)(W (j) − Ŵ (j)) and λi = M i − Mm(n), i ≥ m(n). Also, let

Mk
i =

∑k
j=0 ã(j)(W (j) − Ŵ (j))I{ϕj = k}, 1 ≤ k ≤ d. Recall that m > n and

ϕm = ϕn implies k(m) > k(n). Then, for each k, {Mk
i ,Fi} is a zero mean–bounded

increment vector martingale, and the quadratic variation process of each of its compo-
nent martingales is a.s. convergent onQ. By Proposition VII-3-(c) of [19, pp. 149–150],
each {Mk

i } and hence {M i} converges a.s. on Q. Fix a sample point for which this
convergence holds and let ε > 0. Then supi≥m(n) ‖λi‖ < ε/2 for sufficiently large n.
Let x̂i+1 = x(ti+1) − λi, i ≥ m(n), with x̂m(n) = X(m(n)). Then, for i ≥ m(n), we
have

x̂i+1 = x̂i + ã(i)fϕi(x̂i) + ã(i)(fϕi(x̂i + λi−1)− fϕi(x̂i)) + ã(i)(Ŵ (i)− fϕi(x(ti))).

Also,

xn(ti+1) = xn(ti) + ã(i)fϕi(xn(ti)).

Fix ω ∈ Q, where the foregoing and Lemma 3.3 hold. Subtracting and using
Lemma 3.3, we have, for n sufficiently large,

‖x̂i+1 − xn(ti+1)‖ ≤ (1 +Kã(i))‖x̂i − xn(ti)‖+ ã(i)‖λi−1‖K +K1ã(i)b(i)1+r.

By increasing n if necessary, we may suppose that∑
i≥n

b(i)1+r < ε/2.

Then using the inequality 1 + x ≤ exp(x) and iterating, we have

sup
m(n)≤i≤m(n+1)

‖x̂i − xn(ti)‖ ≤ eK(T+1)(K1 +K(T + 1))ε

for sufficiently large n. Since ‖x̂i − x(ti)‖ < ε/2, i ≥ m(n) for sufficiently large
n, supm(n)≤i≤m(n+1) ‖x(ti) − xn(ti)‖ ≤ K̃ε for a suitable K̃ > 0. Since ε > 0 was
arbitrary, the claim follows on noting that both x(. ) and xn(. ) are linearly interpolated
from their values at {ti}.

Next, define µ ∈ U by µt = the Dirac measure at ϕn for t ∈ [tn, tn+1), n ≥ 0.
Define x̃n(t), t ∈ In, by x̃n(tm(n)) = x(tm(n)) and

(3.6) ˙̃x
n
(t) = Mµ(t)f(x̃n(t)), t ∈ In.

LEMMA 3.5. limn→∞ supt∈In ‖x̃n(t)− xn(t)‖ = 0 a.s.
Proof. This follows easily from the Gronwall inequality.
For µ as above, define µt = {µt+s, i ≥ 0} ∈ U for t ≥ 0. Combining the foregoing

with Lemmas 2.3 and 2.4, we have the following theorem.
THEOREM 3.1. (a) Suppose there exists an a > 0 such that (2.10) is an a-robust

strict Liapunov system, (A6) applies, and all limit points of µt in U as t → ∞ are
a-thick a.s. Then the algorithm converges to J a.s. on Q.
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(b) For the ∞-nonexpansive case (Case 2), suppose all limit points of µt in U as
t→∞ are a-thick for some a > 0, a.s. Then the algorithm converges to J a.s. on Q.

Remark. For Case 1 without the a-robustness hypothesis, the above analysis
still gives some clue about the convergence of the algorithm: if all limit points of µt

are a-thick a.s., the algorithm will converge to the smallest closed set outside which
∇V.Mf < 0 for a-thick M .

Clearly, one would like P (Q) = 1 = P (X̂ < ∞). One observes that the bound-
edness of X̂ is used twice: in Lemma 3.3 and to prove almost sure convergence on
Q of {Mn}. In either case, it is unnecessary if f (or, in Case 2, g) is bounded.
If not, the problem of establishing P (Q) = 1 remains. This is so even for the
traditional “centralized” algorithm, and it is not unusual to find results that state
convergence if the iterates remain bounded or visit a neighborhood of the desired
attractor infinitely often, a.s. There is no general scheme for showing P (Q) = 1.
There are, however, problem-specific techniques for special problem classes. We list
a few recent ones below without details, referring the reader to the original works for
those.

(i) Martingale methods. These usually take the form of establishing the “almost
supermartingale” property [19, p. 33] for {V (X(n))}, where V : Rd → R+ is a
continuously differentiable “stochastic Liapunov function” satisfying V (x) → ∞ as
‖x‖ → ∞. This leads to the almost sure boundedness of {V (X(n))}, hence of {X(n)}.
For strict Liapunov systems, the Liapunov function therein will itself suffice in most
cases. The adaptation of this approach to the asynchronous case, however, is rendered
difficult by the presence of delays. Specific instances of it have been worked out, a
good example being the stochastic gradient schemes discussed in [3, section 7.8]. For
the “centralized” case without delays, see [2, p. 239].

(ii) Projection and related schemes. One way to escape the boundedness issue is
to alter the algorithm by projecting the iterates back onto a prescribed, large bounded
set whenever they exit from the same. The trade-off is that the limiting ODE becomes
more complicated. It is now confined to the said set and thus involves a “reflection at
the boundary” of the same in an appropriate sense. The analysis of such schemes for
the centralized case is by now standard, and an excellent exposition appears in [16,
pp. 191–194]. It seems possible to extend it to the present case. (See [1] for a specific
instance.)

In an ingenious boundedness proof for the case when F (x, y) is homogeneous of
degree 1 in its first argument (important in certain “learning” algorithms), Jaakola,
Jordan, and Singh [15] use the almost sure convergence of the algorithm with rescaling
to deduce the almost sure boundedness of the one without. See [1] for some extensions
of this idea and application to a specific asynchronous situation.

In a somewhat similar spirit, but using different techniques, Chen [8] discusses
stabilization of the (centralized) algorithm by truncating the iterates while slowly
increasing the truncation bounds.

(iii) Tsitsiklis conditions. For Case 2 (nonexpansive maps) studied above, Tsit-
siklis [21] gives a remarkable set of conditions for almost sure boundedness when
additional structure is available, such as an appropriate monotonicity property of
the map or contraction property under a suitable norm. These are very useful for
applications arising from dynamic programming.

In some special cases (e.g., when F (· , y) has a common fixed point), one may
adapt the conditions of [3, p. 433], for deterministic algorithms to prove almost sure
boundedness. See [5] for an instance of this.
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In [5], almost sure a-thickness of the limit points of {µt} for a suitable a >
0 is established for the synchronous case. That argument does not follow for the
asynchronous case. In fact, it will soon become clear that such a result need not hold
in general, and whether it does depends crucially on the relationships between the
sequences {a(n, i)} ∈ ITS, i ∈ I. We now consider an important special case where
things work out.

Say that the family {a(n, i)}, i ∈ I, is balanced if there exist aij > 0, i, j ∈ I, such
that

lim
n→∞

∑n
m=0 a(m, j)∑n
m=0 a(m, i)

= aij .

Equivalently, if hi, hj are continuous, eventually nonincreasing functions R+ → Rd

that restrict to {a(n, i)}, {a(n, j)}, respectively, at integer values of their arguments,
then

(3.7) lim
t→∞

∫ t
0 hj(s)ds∫ t
0 hi(s)ds

= aij .

Certain relations between aij ’s are obvious: aii = 1, aik = aijajk, aji = 1/aij . An
important special case is aij = 1 ∀i, j, which would be true, e.g., when all {a(n, i)}, i ∈
I, are identical. Let β(i) = a1i/a11 and β(i) = β(i)/

∑
j β(j). Then β(i) ∈ (0, 1) ∀i

and
∑
i β(i) = 1. Also aij = β(j)/β(i) ∀i, j. Set a = minβ(i).

THEOREM 3.2. If {a(n, i)}, i ∈ I, are balanced, the conclusions of Theorem 3.1(b)
hold. Those of Theorem 3.1(a) hold if, in addition, a ≤ a.

Proof. For i ∈ I, let q(i, n) =
∑n
m=0 I{ϕm = i}. By (3.2),

(3.8) lim inf
n→∞

q(i, n)/n ≥ η a.s., i ∈ I.

Fix i, j ∈ I. Then, for z > 0,

lim
t→∞

∫ t
z
µs(j)ds∫ t

z
µs(i)ds

= lim
n→∞

∑q(j,n)
m=0 a(m, j)∑q(i,n)
m=0 a(m, i)

= lim
n→∞

∫ q(j,n)
0 hj(s)ds∫ q(i,n)
0 hi(s)ds

= lim
n→∞

∫ q(j,n)
0 hj(s)ds∫ n

0 hj(s)ds
·
∫ n

0 hj(s)ds∫ n
0 hi(s)ds

·
∫ n

0 hi(s)ds∫ q(i,n)
0 hi(s)ds

= aij a.s.

uniformly in z in a compact interval, by (2.5) and (3.8).
Thus, for x > 0,

lim
t→∞

∫ x
0

∫ t
0 µs+y(j)dsdy∫ x

0

∫ t
0 µs+y(i)dsdy

= lim
t→∞

∫ t
0

∫ x
0 µs+y(j)dsdy∫ t

0

∫ x
0 µs+y(i)dsdy

= aij a.s.

By l’Hôpital’s rule,

lim
t→∞

∫ x
0 µt+y(j)dy∫ x
0 µt+y(i)dy

= aij a.s.
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It follows that, a.s., any limit point µ∗ of {µt} in U as t→∞ must satisfy
∫ x

0 µ
∗
t (j)dt/∫ x

0 µ
∗
t (i)dt = aij . Then so will µ∗t, t ≥ 0. Since x > 0 was arbitrary, we have

µ∗t (j)/µ
∗
t (i) = aij for almost every t, where we may drop the “almost every t” by

taking a suitable modification. Then we must have µ∗t (i) = β(i) ∀i, t, and the
matrix Mµ∗(t) is the constant diagonal matrix M∗ = diag(β(1), . . . , β(d)). The rest
is easy.

Remark. In the latter case, one may in fact replace the a-robustness condition
and the condition a ≤ a by the simpler condition ∇V.M∗f < 0 outside J .

In particular, if {a(n, i)} are identical, Mµ∗ is 1/d times the identity matrix,
implying that the rescaled time axis is apportioned equally to all components. One
may dub this the “asymptotic equipartition of time.”

4. Conclusions. The foregoing analysis raises several interesting issues, which
are listed below.

1. We have not presented any results on the convergence rate. For the ODE,
the rate of convergence to Jε for ε > 0 could be gleaned from the Liapunov function
and would be eventually mimicked by the interpolated algorithm x(·). There are two
catches here. One is that “eventually” could be a long way into the future. Second, the
passage from {X(n)} to x(·) involves a time-scaling n→ t(n), which has to be inverted
to obtain the actual convergence rate of {X(n)}. These aspects need further study.

2. It seems plausible that one could retain the above results if (3.7) were replaced
by the weaker requirement that the corresponding liminf be bounded away from zero.
One cannot then expect {µt} to a.s. converge to a fixed element, but it is conjectured
that one will still retain the property that all limit points of {µt} in U are a-thick for
some a > 0.

3. In engineering applications, {a(n, i)} are design parameters and can be chosen
to be balanced. This may not, however, be so in “emergent” computations or when
(1.4) is merely a computational paradigm for a natural process such as a macroeco-
nomic learning system. An interesting problem, then, is to let each agent (processor)
“learn” its stepsize scheme in real time based on observations of stepsizes used by, say,
“neighboring” agents. One may then try to show that under reasonable conditions,
this leads to balanced schemes.

4. If we had allowed some of the aij ’s to be zero, it is clear that the corresponding
diagonal elements of M∗ will be zero and M∗ is no longer thick. This reflects different
time scales in the speed of adjustment of different learners. It would be interesting to
analyze this situation using the theory of singularly perturbed differential equations.

5. If (1.2) had no extraneous randomness, i.e., F (X(n), ξ(n)) = H(X(n)) ∀n for a
suitable H, the foregoing shows that a stepsize scheme from ITS suppresses the effects
of communication delays in deterministic recursions under a mild conditional moment
condition (A3). This is in contrast to the usual role of ITS as a pure noise-suppressing
mechanism. Compare this with the fact that even linear recursions with constant
stepsize show very complex behavior in the presence of communication delays [12].

6. Yet another possibility to explore is the use of the Wentzell–Freidlin theory of
small noise asymptotics [10] to get a dynamic picture of the behavior of the algorithm
in the vicinity of J , in particular, to see if it favors certain points in J . This is in the
spirit of some recent work on annealing algorithms [11] and equilibrium selection in
evolutionary games [9].
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