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ABSTRACT: It has recently been proposed that a class of supersymmetric higher-derivative
interactions in A/ = 2 supergravity may encapsulate an infinite number of finite size cor-
rections to the microscopic entropy of certain supersymmetric black holes. If this proposal
is correct, it allows one to probe the string theory description of black-hole micro-states
to far greater accuracy than has been possible before. We test this proposal for “small”
black holes whose microscopic degeneracies can be computed exactly by counting the cor-
responding perturbative BPS states. We also study the “black hole partition sum” using
general properties of of BPS degeneracies. This complements and extends our earlier work

in [.
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1. Introduction

One of the distinct successes of string theory is that it explains the statistical origin of the
thermodynamic Bekenstein-Hawking entropy [B—H] of certain supersymmetric black holes
in terms of counting of underlying micro-states [§]. This has been particularly successful
in the case of dyonic black holes in string theories with A/ = 2 supersymmetry in four
dimensions. In the regime of large electric and magnetic charges, these black holes possess a
non-singular horizon with area much larger than the Planck or string scale. For such “large”
black holes, the Bekenstein-Hawking entropy, one quarter of the horizon area in Planck
units, matches the logarithm of the number of micro-states of specific supersymmetric
brane-configurations with the same quantum numbers [f, [f.

For black holes with large but finite area, there are subleading corrections to the
Bekenstein-Hawking formula, due to higher-derivative interactions in the quantum effective
action. The latter alter both the black hole geometry near the horizon, as well as the very
relation between macroscopic entropy and geometry [§, f]. On the microscopic side, there
are also finite size corrections to the entropy,! which however depend on the choice of
a statistical ensemble. It is natural to ask whether the successful matching between the
Bekenstein-Hawking entropy and the string theoretical counting of black hole micro-states
continues to hold beyond leading order.

Several advances in recent years have made it possible to address this question. By
generalizing the attractor mechanism for AV = 2 black holes, Cardoso, de Wit, and Mo-
haupt (CAWM) computed the Bekenstein-Hawking-Wald (BHW) entropy incorporating
an infinite number of higher derivative F-type interactions [[[0-[[3. Revisiting this result,
Ooguri, Strominger and Vafa (OSV) conjectured that the statistical ensemble implicit in

IFollowing standard practice, we define the entropy as the Legendre transform of the logarithm of the
partition function in a given statistical ensemble.



the CAWM entropy is a specific mixed ensemble [[I4], and furthermore that non F-type
interactions can be consistently neglected provided one restricts to a suitable supersym-
metric index on the microscopic side. If correct, this proposal opens the way to a more
detailed comparison of macroscopic and microscopic degeneracies than has been possible
thus far.

For a generic dyonic black hole, such a comparison is hampered by our insufficient
understanding of the dynamics of the D-brane micro-states. The aim of this work is to
identify and analyze a large class of examples where microscopic degeneracies are known
exactly and where a very explicit comparison is possible exactly and to all orders in an
asymptotic expansion. This complements and extends our earlier work [I]] where some of
the main results were announced. It should be noted that alternative approaches have been
put forward [I§-[[§], relying on different statistical ensembles. It goes beyond the scope
of this paper to relate these two approaches.

1.1 The black hole attractor and the OSV conjecture

In general, the quantum effective admits an infinite series of unknown higher-derivative
corrections, which make it difficult to determine higher-order corrections to the macroscopic
entropy. In type-ITA string theory compactified on a Calabi-Yau three-fold X however,
there exist an infinite series of computable higher-derivative F-term corrections of the form
F,(X)(~C™)(T7)*2 where ~C~ and T~ denote the anti-self-dual part of the Weyl
tensor and graviphoton field strength, and X’ the Kéhler moduli of X. The peculiarity of
these interactions is that they can be written as the integral of a chiral density in superspace,
and satisfy certain non-renormalisation properties. In particular, they arise only at genus
h in type-II string theory, and the coefficient Fj,(X!) reduces to the genus h vacuum
amplitude in the A-model topological string on X' [[9, BJ]. The Bekenstein-Hawking-Wald
macroscopic entropy of BPS black holes incorporating these interactions was computed by
CAdWM in [[[0-[3, generalizing the standard tree-level attractor mechanism. As noticed
by the authors of [I4], this expression takes a particularly simple form after Legendre

transform with respect to the electric charges,?
0
SCdWM(pla QI) == ftop(pla ¢I) + 7 ¢IQI7 qr = _wftop(pl7 ¢1) (11)
where
‘7:1:019(1)[, ¢I) = —mlm [FtOp (Pl + iﬁbl, 28)] . (1.2)

is proportional to the imaginary part of the all-order topological string vacuum amplitude
Fiop(X, W?) = S0 W?h=2F, (XT) evaluated at X! = p! + i¢! and W? = 28. The
attractor equations 234

OF,
p! = Re(X7), quRe<a)z,Ip> (1.3)

controlling the fixed point behavior of the Kahler moduli at the horizon follow naturally
from this procedure [[4].

2The generality of this fact has been recently clarified in @]



Based on this observation, Ooguri, Strominger and Vafa (OSV) have proposed that
the statistical ensemble implicit in the above Bekenstein-Hawking-Wald entropy has fixed
magnetic charges p!, but fluctuating electric charges g; at a fixed electric potential ¢! [[[4]:

Zosv(p',¢") = exp Fosv (', ¢") == > Q' ar) e’ ar (1.4)
gleh.

where Q(p!, qr) denotes the number or possibly a suitable index of micro-states with electric
and magnetic charges ¢ and p’, and A, is the lattice of electric charges in the large volume
polarization. Put otherwise, the essence of the proposal [[4] is an equality between the
microscopic free energy Fogy in the mixed statistical ensemble ([[.4) and the macroscopic
free energy Fiop computed from the higher-derivative F-term interactions,

fOSV(pIa QSI) = ftop(pla QSI) . (1'5)

Using the relation ([.J) between the topological free energy Fiop, and the topological string
amplitude Fip, this equation may be rephrased as a relation between the BPS black hole
degeneracies in type-II on X and the topological string amplitude,

2

Zosv(p',¢") = (1.6)

T .
€xp [?Ftop(pl + Z(ﬁla 28)]

Evaluating the sum over charges in the partition function (.4) by steepest descent, one
indeed finds that the Legendre transform of the entropy is equal to the topological free
energy ([.J), in the limit of large charges.

The proposal ([.F) goes far beyond the large charge regime in which it was motivated,
since it allows in principle to extract the microscopic degeneracies of BPS black holes from

the topological string amplitude by means of an inverse Laplace transform,

Q(pl,qf)z/ [do'] exp [Fiop(p', ¢") + mar0"] - (L.7)

A strong form of the conjecture asserts that this equation holds at finite electric and
magnetic charges, provided some yet unknown non-perturbative contributions to the topo-
logical string amplitude are included [[[4]. A weaker form states that this equality hold
to all orders in an asymptotic expansion in the inverse of the charges [[4]. One aim of
our work is make eqgs. ([.7), ([.) more precise and use them to study the degeneracies of
finite charge black holes. Certain proposed nonperturbative corrections to ([.7) have been
explored in [R5, B], but in a rather different context from the examples studied here.

1.2 Small black holes

For this purpose, it is useful to consider cases for which the exact degeneracies of the micro-
states are computable. Using heterotic / type-II duality, this is indeed possible for type-I1
black holes which are dual to the heterotic Dabholkar-Harvey (DH) states R, R§. Recall
that these are BPS states in the perturbative heterotic spectrum, which exist provided the
conformal field theory contains a compact free boson. The simplest example is provided by



a state carrying quantized momentum n and winding number w around an internal circle.
The left- and right-moving momenta are given by

_ld,n  wR
qR,L = 5(}—% + 7)7 (1-8)

and the vector (qg,qr) belongs to the Narain lattice T'''. Such a state is half-BPS as
long as it is in the right-moving superconformal ground state but it can carry arbitrary
left-moving excitations that satisfy the level-matching

1
N—lzi(q;‘é—ﬁ):nw, (1.9)

where N is the left-moving excitation level. For given charges (n,w), there is a Hagedorn
density Q(n,w) ~ exp(4my/|nw|) of such states, as a result of the large degeneracy of the
left-moving excitations.

The integers (n,w) can be viewed as the quantized electric charges under the Kaluza-
Klein and Neveu-Schwarz gauge fields g,; and B,,; arising by dimensional reduction along
the circle. The mass M of the state (n,w) saturates the BPS bound

M2

R+o/

2 2 2 p2
ar = [n w—R} = % + wa,}; + 2<Na, D (1.10)
where R is the radius of the circle. Provided it does not become degenerate with another
half-BPS state with which it may pair up, the (n,w) state is therefore stable. As the string
coupling gy is increased, the de Broglie - Compton wavelength 1/M of the particle becomes
smaller than its Schwarzschild radius M l%, leading to the formation of an extremal black
hole with electric charges (n,w). It is thus tempting to compare the Bekenstein-Hawking
entropy of this black hole with the logarithm of the number of fundamental strings with

the same charges [@*@],

Spr = log Q(n,w) ~ 4w/ |nw| . (1.11)
More generally, the black hole charges are characterized by an arbitrary charge vector @)

in the Narain lattice T'6:22

SpH ~ 47T\/Q2/2.

In contrast with the “large” black holes discussed above, these black holes are singular

and the leading entropy of the DH states in that case goes as

solutions of the tree-level supergravity lagrangian [B4, BH], where the horizon and the
inner singularity coalesce. Their classical entropy therefore vanishes, as a result of their
carrying only electric charge (in the natural heterotic polarization). While the heterotic
string coupling goes to zero at the singularity, higher-derivative o’ corrections are however
expected to be quite important, and, assuming the singularity is resolved, have been argued
to lead to an entropy of the required order [BJ. By including the tree-level R? correction
to the heterotic effective lagrangian (or, from the type-II point of view, the large volume
limit of the one-loop topological amplitude F}), it was shown recently that the black hole
develops a smooth horizon, with a similar geometry AdSs x S? x X as found in the large

black hole case [B6, BT (see [BY, BY, [[d] for earlier work on this subject). Moreover, the



Bekenstein-Hawking-Wald entropy, taking into account this R? correction, matches the
microscopic entropy in leading order, including the precise numerical coefficient [Bd, B7.
The geometry interpolating between the horizon and infinity has been recently studied
in [[5, d]. For this type of black hole, the four-dimensional heterotic string coupling is of
order g% ~ 1/+/|nw| at the horizon, so that the area is of the same order as the inverse
tension of the heterotic string 1%, = [%/g% at the horizon. We shall thus refer to these
states as “small” black holes, keeping in mind that, for large charges, they are nevertheless
much larger than the Planck scale.

Recently, the OSV conjecture has been tested for small black holes in type IIA string
theory compactified on K3 x T2, or equivalently, in heterotic string theory on T° [B7.
Although the original proposal was formulated for N' = 2 backgrounds, an extension to the
N = 4 case is simpler to analyze since all gravitational F-terms vanish except F; [iI]]. Using
the generalized attractor formalism in [[[0—[3], adapted to the N = 4 setting, it was found
that the macroscopic entropy of these small black holes precisely matches the Ramanujan-
Hardy estimate for the number of heterotic BPS states preserving 1/2 supersymmetry [B7].
It was also shown that even the sub-leading corrections to the entropy computed using the
OSV proposal match to all orders in an asymptotic expansion. The super-gravity solutions
for these small black holes have been further analyzed in [B6, [[3, Ed, [J].

In this paper, we greatly extend the range of validity of the analysis in [B7], by studying
the exact degeneracy of small black holes in a variety of backgrounds with A/ = 4 super-
symmetry (but a different low-energy spectrum from the “benchmark” K3 x T? case), or
with A/ = 2 supersymmetry (for Calabi-Yau compactifications with a K3 fibration).

1.3 Summary of main results

For the reader’s convenience, we summarize our main results below:

1. On the heterotic side, by standard orbifold techniques, the microscopic degeneracy
of the DH states can be enumerated using modular forms. The leading microscopic
entropy at large charge can be extracted using the Hardy-Ramanujan formula. The
Rademacher formula provides a convenient way to extract subleading corrections: it
expresses the Fourier coefficients of the modular form as a series of modified Bessel
functions, where each term is exponentially suppressed (but nevertheless exponen-
tially growing) with respect to the previous one (see [[iJ for a review). In particular,
all power corrections to the leading entropy are captured by the first Bessel function
in the Rademacher expansion.

2. Retaining only the perturbative part of the topological amplitude (i.e. discarding the
Gromov-Witten instanton series), and assuming a proper choice of contour, we find
that the integral ([.7) can be computed exactly, both in the large and small black hole
case, and expressed as a modified Bessel function of the first kind. Using the standard
asymptotic expansion of the latter, the leading term is the Bekenstein-Hawking-Wald
entropy Sppyw = 4m/Q?/2 predicted by the generalized attractor mechanism. In
particular, due to the topological coupling F}, the entropy of small black holes is



computable and finite, as observed in [B7. In addition, the Bessel function captures
an infinite number of computable corrections in inverse powers of the charges.

. In a variety of N' = 4 and N = 2 models, we find that the integral ([.7), neglecting
the Gromov-Witten instanton series, reproduces precisely the leading Bessel function
in the Rademacher expansion of the degeneracies of heterotic DH states. In other
words, the OSV proposal predicts the correct degeneracies of BPS states, to all
orders in an asymptotic expansion in inverse powers of the charges. In particular, the
leading entropy is correctly reproduced, including the corrections computed in [[i4].
Importantly, this success relies only on the large volume limit of F} only (equivalently,
on the heterotic tree-level R? amplitude).

. For this all order perturbative agreement to hold, it is important to use the holo-
morphic topological amplitude, which controls the Wilsonian supergravity action,
rather than the non-holomorphic BCOV generating function, which describes the
1PI couplings in the low-energy effective action. This is consistent with the discus-
sion in [AF], but in stark contrast with the alternative approaches in [Id, [[§] (note
however that [I] has proposed a formally equivalent formula, using the holomorphic
rather than real polarization, where non-holomorphic anomalies are likely to play a
role). It is also important to count states with arbitrary angular momentum J, as the
restriction to J = 0 states leads to different subleading terms in the microscopic am-
plitude, which would spoil agreement with the OSV prediction. In other words, the
proper statistical ensemble implicit in the Bekenstein-Hawking-Wald entropy appears
to be an ensemble with zero angular velocity at the horizon, rather than zero angular
momentum. Finally, it is necessary to consider ratios of degeneracies at fixed mag-
netic charge only, in order to cancel a magnetic-charge dependent pre-factor N (p),
which would spoil duality invariance. For p® # 0, a more drastic modification is nec-
essary, since, as shown in section [[.4, the pre-factor in general involves both electric
and magnetic charges.

. The neglect of Gromov-Witten instantons can be rigorously justified in N' = 4 cases,
as all instanton corrections are exponentially suppressed. The situation is more subtle
in A/ = 2 theories: when y(X) # 0, the series of point-like instantons contribution
becomes strongly coupled in the regime of validity of the Rademacher formula, gg >
c (p). The strong coupling behavior is controlled, up to a logarithmic term, by
the Mac-Mahon function, which is exponentially suppressed in this regime. Upon
absorbing the logarithmic term into a redefinition of the topological string amplitude
Uiop — A/ 24\IItOp, one recovers the naive result. As for non-degenerate instantons,
they are exponentially suppressed provided all magnetic charges are non zero. This is
unfortunately not the case for the small black holes dual to the heterotic DH states,
whose Kéahler classes are attracted to the boundary of the Kéhler cone at the horizon.
In this case, we cannot rigorously justify the neglect of Gromov-Witten contributions.

. Even in the cases where an all-order agreement is obtained, the OSV formula appears
to fail in reproducing the subleading Bessel functions in the Rademacher expansion



of the microscopic degeneracies, as those cannot be associated to subleading sad-
dle points in the contour integral ([L.7) in any obvious way.® As a matter of fact,
we encounter serious difficulties in trying to make sense of the formula ([[.7) non-
perturbatively. Due to the non-convexity of the free energy F (or, equivalently, the
instability of the mixed thermodynamical ensemble), the convergence of the integral
can only be achieved when the potentials ¢’ take imaginary values. However, at least
for Calabi-Yau threefolds admitting a K3 fibration, the topological string amplitude
Uiop is an automorphic form, and is very badly behaved at the boundary of moduli
space where the moduli X! become real.

7. On general grounds (e.g. if it is to satisfy the second law of thermodynamics), the
Bekenstein-Hawking-Wald entropy, including all higher-derivative corrections, is ex-
pected to be equal to the logarithm of the total number of micro-states. The trun-
cation to only F-term type higher-derivative corrections is not expected to have a
thermodynamical interpretation, unless non-F-terms do not contribute by some non-
renormalization property.* On the other hand, the counting of heterotic DH states at
zero string coupling may differ from the actual number of states in the regime where
a black hole is formed, due to the possibility of BPS states pairing up into longer
multiplets. Useful diagnostic tools to determine whether this happens are helicity
supertraces Q,, = Tr(—=1)FJ2 (where F is the space-time fermion number and J3 one
of the generators of the little-group of a massive particle in 4 dimensions), namely 5
for 1/2 BPS states in theories with N' = 2 supersymmetry, €4 for 1/2 BPS states in
theories with N' =4 and Qg for 1/4 BPS states in theories with N' = 4. In contrast
to absolute degeneracies, helicity supertraces are invariant under generic variations
of the moduli (except for lines of marginal stability). If cases where the degeneracies
at zero coupling can be identified with an helicity supertrace, one can reasonably as-
sume that they will be equal to the actual number of states in the black hole regime
(barring the unlikely possibility that long multiplets unpair as the coupling is in-
creased). We can then reliably compare them with the macroscopic BHW entropy.®
In some cases however, the helicity supertraces can be exponentially smaller than
the zero-coupling degeneracies,® and it is difficult to determine the actual number of

states at strong coupling.

8. We find that in cases where the absolute degeneracies are equal to the helicity su-
pertraces, the instanton-deprived OSV proposal appears to work successfully. This

3Tt was recently proposed that exponentially suppressed contributions should reflect multi-centered black
hole configurations |

“See [@] for some recent interesting results in this direction.

5This differs from the interpretation advocated in , who propose to identify directly the topological
amplitude with a supersymmetric index. This is a mathematically appealing and logically acceptable
conjecture, but it has no direct bearing on the relation between the BHW entropy and the counting of
black hole micro-states.

5This occurs e.g. in the case of 5D black holes [@], but we shall find numerous other examples in this
work.



10.

includes 1/2 BPS states in all N' = 4 models, as well as BPS states in twisted sec-
tors of N' = 2 orbifolds. This suggests that, for this class of BPS black holes, non
F-type higher derivative interactions have no effect, if not on the geometry, at least
on the Bekenstein-Hawking-Wald entropy. It would be very interesting to check such
a non-renormalization explicitly.

In cases where it appears to fail, the helicity supertraces are in general exponentially
smaller than their absolute degeneracy, due to cancellations of pairs of DH states.
This occurs in general for (i) untwisted DH states of N/ = 2 heterotic orbifolds, and
(ii) DH states in N/ = 4 type-1I orbifolds. In case (i), the OSV prediction appears to
agree with the absolute degeneracies of untwisted DH states to leading order ( which
have the same exponential growth as twisted DH states), but not at subleading
order (as the subleading corrections in the untwisted sector are moduli-dependent,
and uniformly smaller than in the twisted sectors). In models where twisted and
untwisted states cannot be distinguished by their charges, the helicity supertrace 29
is dominated by the contribution of the twisted sectors, and it may be consistent
to identify it with the Lh.s. of (7). The situation in case (ii) is rather different,
since the helicity supertraces grow only as a power rather than exponentially. On the
macroscopic side, R? interactions are not sufficient to resolve the singular horizon,
and higher derivative interactions are bound to become important.

Conversely, one may try to compute the black hole partition function ([.4) from our
knowledge of the microscopic degeneracies, and compare to the proposed answer ([L.§).
For some choices of Calabi-Yau manifolds and of magnetic charges, in the infinite
radius limit, the degeneracies are known exactly for arbitrary electric charges, and
this program can be carried out explicitly. Examples of this are D4-D2-D0 bound
states wrapped on a rigid divisor, or D-branes dual to heterotic DH states.

An immediate problem which arises when attempting to compute the partition sum
(L4) is that it is badly divergent. We solve this by introducing a convenient and
physically natural regulator, namely an additional Boltzmann weight e~ 9 ith
H(p, q) the BPS energy of the given charge. This renders the partition function finite
and rigorously justifies various formal manipulations, after which one can send « back
to zero.

Our result is that in these cases, the polynomial part of the resulting free energy
indeed equals the corresponding terms at the right-hand side of ([.G), but with an
additional sum over integral imaginary shifts of the ¢ on the right hand side. This
ensures periodicity under ¢% — ¢% + 2in®, as is required by the definition ([L4). In
fact this summed version of ([.§) is trivially equivalent to the integral form ([L.7),
with the ¢% integration contours running over the entire imaginary axis.

More importantly, we find that at least for these choices of charges, the non-pertur-
bative part of the topological string free energy is not reproduced; the corrections to
the polynomial terms of both sides do not match. This is true even in the limit of
large charges.



11. Despite the fact that the exact degeneracies are not known in more general cases, one
can extract some information about the general partition function by exploiting large
radius monodromy invariance. These are integral shifts of the NS B-field, acting on
the ¢% as ¢* — ¢® 4+ n@". This induces a spectral flow on the electric and magnetic
charges, which leaves the degeneracies unchanged, at least in the large volume limit.
Exploiting this symmetry, we argue that the BPS partition sum does not generate the
full data of the topological amplitude at any finite magnetic charge P. In particular
we show that the ¢?-dependence of the integrand in ([.) predicted from monodromy
invariant BPS degeneracies is simply given by a finite sum of gaussians, which is to
be compared to the intricate ¢®-dependence generated by the Gromov-Witten series
in the topological string free energy. The conjecture might still hold in a suitable
asymptotic sense when P — oo, because in this case number of independent gaussian
terms will in general go to infinity.

1.4 Outline of the paper

This paper is organized as follows.

In section B, we illustrate our methods in the simplest example with ' = 4 supersym-
metry: type-IIA string theory compactified on K3 x T2, or equivalently, in heterotic string
theory compactified on T, extending the analysis in [B7].

In section [, we generalize this analysis to a class of N' = 4 models with reduced rank,
obtained as freely acting orbifolds of the ITA/K3 x T? or Het/T% models.

In section ll, we come to the " = 2 supersymmetric case, for which the OSV conjecture
was originally formulated. After recalling the main features of the topological string am-
plitude, we compute the asymptotic degeneracies predicted by ([.7) for a particular scaling
of the charges.

In section [, we compare this prediction to the microscopic counting in the perturbative
heterotic description. After discussing several illustrative N/ = 2 models, we find the
asymptotic degeneracies of DH states for arbitrary asymmetric orbifold of the heterotic
string compactified on 7.

In section [, we reverse the approach, construct the partition function in the mixed
thermodynamical ensemble ([L.4) from our partial knowledge of the micro-canonical degen-
eracies, and compare the result to the topological string amplitude.

Section E contains our conclusions and further comments.

In the appendices, the reader will find a summary of the Rademacher expansion for
the Fourier coefficients of modular forms with negative weight (appendix [d]), a collection
of useful modular identities (B), an analysis of the degeneracies of the DH states at fixed
angular momentum in the Het/7% model (C) and a detailed computation of the degen-
eracies of DH states in /' = 4 and N' = 2 orbifolds of the SO(32) heterotic string (D), a
detailed analysis of the asymptotic expansion of the Mac-Mahon as well as an observation
on its (non-)modularity (E).

,10,



2. A benchmark N = 4 example: type ITA/K3 x T?

In this section, we revisit the “benchmark” case of small black holes in type-IIA string
theory compactified on K3 x T2, or equivalently heterotic string compactified on T, first
discussed in [B7]. Despite the fact that this model has N' = 4 supersymmetry, we shall
be able to apply the N/ = 2 attractor formalism, provided 4 out of the 28 charges, corre-
sponding to gauge fields in gravitino multiplets of A/ = 2 supersymmetry, vanish. For this
reason we shall denote this model as the Het/ITA(4,24), where the first number refers to
the number of supersymmetries in 4 dimensions, and the second to the effective number
of N = 2 vector multiplets, including the graviphoton. More general Het/ITA(4,ny ) com-
pactifications with A/ = 4 supersymmetry and ny < 24 vector multiplets will be discussed
in section [J and appendix [D.

2.1 Review of heterotic/type-II duality in 4 dimensions

Let us consider the type-IIA string compactified on K3 x T2?. The massless spectrum
consists of the N' = 4 supergravity multiplet together with 22 vector multiplets. The
moduli space takes a factorized form

SL(2,R)  SO(6,ny — 2,R)
U1)  * SO(6) x SO(ny — 2)

(2.1)

with ny = 24, where the first factor corresponds to the Kahler modulus 7" of T2, while the
axio-dilaton S, the complex structure modulus U of 72 and the geometric moduli of K3
sit in the second factor. Points in (R.1) related by an action of the duality group Si(2,Z) x
O(T'6,22) are non-perturbatively equivalent. The gauge fields in the 22 vector multiplets
originate from the 3-form gauge field in the ten-dimensional type-1TA string, after reduction
on a basis y4,a = 2...24 of 2-cycles in H?(K3,R). Accordingly, the electrically charged
states are D2-branes wrapped on 2-cycles v,, and their magnetic counterparts are D4-branes
wrapped on T? x ~,, with charges (qq,p®), respectively. On the other hand, the 6 gauge
fields in the N/ = 4 supergravity multiplet correspond to the ten-dimensional Ramond-
Ramond (RR) 1-form, the 3-form reduced on T2, the Kalb-Ramond 2-form reduced on
either circle of 7?2 and the Kaluza-Klein gauge fields on 72. The corresponding electric
charges are therefore carried by the DO-brane (denoted by ¢g), D2-brane wrapped on 72
(q1), the fundamental string wrapped on S* C T2 (w®,w®) and the momentum states on
T2 (ns,ng), respectively; the magnetic charges are carried by the D6-brane wrapped on
K3 x T? (p°), the D4-brane wrapped on K3 (p'), the NS5-branes wrapped on K3 x S*
(m5,m%) and the Kaluza-Klein monopoles on S* c T? (k%, k%).

One of the earliest string duality conjectures identifies this model with the heterotic
string compactified on T°®. The massless spectrum is identical, but the SI(2)/ U(1) complex
scalar in the supergravity multiplet is now the heterotic axio-dilaton. The second factor
in (R.I) is identified as the Narain moduli space of the even self-dual compactification
lattice I's 22. The 28 charges now correspond to the Cartan subalgebra of the rank 16
ten-dimensional gauge group, the reduction of the Kalb-Ramond two-form on 7 and
the Kaluza-Klein gauge fields on T6. Accordingly, the electric charges in the natural
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Het/T" ITA/K3 x T? Charges

KK/1 NS5/1 || Do D2/T? o Q
KK/2,3,4| NS5/2,3,4 ||D2/y, |D4/T? x v, ||qa=234 |p*=23*
KK/56 | NS5/6,5 ||KK/5,6|F1/6,5 ns,ng | —wb, wd

F1/1 KKM/1 ||D4/K3 |D6/K3 x T?|p! Y

F1/2,3,4 |KKM/2,3,4\|D2/v, |D4/T? x v, ||qu=s67 |p*=>%7
F1/5,6 | KKM/5,6 |[NS5/6,5|KKM/5,6 |m° m® [k° kS
Qi.16 | HMi 16 ||D2/va  |D4/T* X a ||qa=s,..23|p"=>

Table 1: Charge assignment in the Het/ITA(4,24) model. The vertical columns denote O(6,22)
vectors. Even and odd columns are related by the Weyl reflection in S1(2,Z), i.e. S-duality on the

heterotic side or double T-duality on T2 followed by an exchange of the two circles on the type-
II side. Abbreviations: KK/1= momentum state along S?, NSE)/i = NSb5-brane wrapped on all
directions except 1, KKM/ 5 =Kaluza-Klein monopole localized in direction 5, HM=H-monopole.

heterotic polarization are carried by the 10-dimensional charged states, the fundamental
string wound around S' C 7% and the momentum states along S' C T; the corresponding
magnetic charges are carried by H-monopoles, NS5-branes and KK5-monopoles wrapped on
T° C TS. The precise map can be obtained by applying triality on an SO(4,4) subgroup
of the SO(4,20) duality group in 6 dimensions [AJ], and is displayed in table [I] below.
In particular, the SO(6,22) vectors @, P of electric and magnetic charges in the natural
heterotic polarization are related to the type-II charges by

Q = (QO,Pl,Qa,n&n&mS,mﬁ)
P = (_qlapoacabpb7_w67w57k57k6)

with SO(6,22) invariant inner products

Q* = 2qop" + ¢uCqp + 2m'n; (2.4a)
P? = —2¢1p° + p"Capp” + 2ei5w' K/ (2.4Db)
Q- P = p’q0 — p'qr + pga + ik’ + eiym'u’ . (2.4c)

The heterotic polarization is therefore obtained from the type-1I large volume polarization
by applying electric-magnetic duality to the (D4/K3,D2/T2) and (F1,NS5/K3 x S*)
pairs.

2.2 Small black holes and DH states in the Het(4,24) model

The tree-level Bekenstein-Hawking entropy for generic BPS black holes in models with
N = 4 supersymmetry is given by

Spu =mV/(P-P)(Q-Q) - (P-Q)? (2.5)

in the natural heterotic polarization, such that P, @ transform as a doublet of SO(6, ny —2)
vectors under SI(2) [B(]. We shall be interested in black holes which are dual to perturbative
heterotic states, with vanishing magnetic charge P = 0, hence zero tree-level entropy. In
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particular, let us consider a type-IIA state with ¢ DO-brane charge and p; D4-brane charge.
This is dual to a fundamental heterotic string with momentum n = ¢g and winding w = p!
along one circle in 7% As we reviewed in section P.1, DH heterotic states with these
charges can be obtained by tensoring the ground state of the right-moving superconformal
theory with a level N excitation of the 24 left-moving bosons, provided the level matching
condition N — 1 = nuw is satisfied. The number of distinct DH states with fixed charges
(n,w) is thus Q(n,w) = pos(N), where pos(N) is the number of partitions on N into
the sum of 24 integers (up to an overall factor of 16 corresponding to the size of short
N = 4 multiplets, which we will always drop). Accordingly, the generating function of the

degeneracies of DH states is

. 1
S pau(N)gV = (2.6)
feat A(q)
where A(q) is Jacobi’s discriminant function
Alg)=n"*(q)=q ] -q"). (2.7)
n=1

It should be noted that the partition function for the degeneracies of the D0— D4 system can
be obtained without resorting to the dual heterotic formulation, either by computing the
Euler number of the Hilbert scheme of K3, or by enumerating genus g curves in K3 [51], bJ].
Nevertheless, the heterotic description will prove very useful in more complicated examples.
Notice that the type-IIA model on K3 x T? also has DH states with zero tree-level entropy,
but those are in general 1/4-BPS. We shall return to them in R.7.

2.3 Asymptotic degeneracies and the Rademacher formula

In order to determine the asymptotic density of states at large N —1 = nw, it is convenient
to extract d(N) from the partition function (B.§) by an inverse Laplace transform,
1 [t 16
N)=— dp PN -1 : 2.8
pa(V) = g [ ap (28)

2mi €—im

where the contour C' runs from € —im to e+im, parallel to the imaginary axis. One may now
take the high temperature limit ¢ — 0, and use the modular property of the discriminant
function (see appendix [B)

A = (B aermy. (2.9)
2
As e~4m/8 0, we can approximate A(q) ~ ¢ and write the integral as
16 B\ pv—1)tar?
N)=— dp | — B 2.1
P24(N) 2m'/c B(%) ° (2.10)

This integral may be evaluated by steepest descent: the saddle point occurs at G =
2w /v/N — 1, leading to the characteristic exponential growth pos(IN) ~ exp (4my/nw) for
the degeneracies.
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To calculate the sub-leading terms systematically in an asymptotic expansion at large-
N, one may recognize that (R.1(]) is proportional to the integral representation of a modified
Bessel function,

L(z) = (E) 1 /E“OO %e@w/u) _ 1 ( z >ny(z). (2.11)

2) 2mi | i om \4rm

In order to reach (P.11) from (R.1(), notice however that one should extend the contour
C to the whole line € 4+ i{R. While this would have lead to an infinite multiplicative factor
in (.8) (a Dirac delta at integer N rather than a Kronecker delta), this is no longer a
problem in (R.10), where periodicity under 3 — 3 + 2mi has been broken. We thus obtain

poa(N) ~ 2% T3 (47r N 1) . (2.12)

Using the asymptotic expansion of fy(z) at large z (see e.g. [b3))

- & (z\ V2 (p=1)  (p=DE-=3) (-1)E=3")(E-5)
L(z) ~ V2 <E) [1 B T 31(82)3 e
(2.13)

where p = 412, we can thus compute the subleading corrections to the microscopic entropy
of DH states,

675 675
32my/|nw| 287 |nw|

This is however not the complete asymptotic expansion of Q(n,w) at large charge: indeed,

2 1
log Q(n, w) ~ 4w/ |nw| — 17 log |nw| + 75 log2 — (2.14)

there are exponentially suppressed corrections to (.19) which can be computed by using
the general Rademacher expansion formula for the Fourier coefficients of modular forms
with weight w < 0 (see appendix [A]). For the case at hand, we have

= . (4
Qn, w) = 2* 20714 Kl(nw +1,-1;c¢) I13 <E7n/ \nw[) (2.15)

c=1

where KI(N,—1;¢) are the Kloosterman sums defined in ([A.f)), which are uniformly
bounded by |c|. Although each term is exponentially suppressed with respect to the previ-
ous one in the sum, they all become large at large charge.

2.4 Generalized attractor formalism for A/ = 4 and leading entropy

Now, we would like to compute the black hole degeneracies from the macroscopic side. Since
the attractor formalism is tailored for N' = 2 supergravity, one should first decompose the
spectrum under an N' = 2 subalgebra. The N = 4 supergravity multiplet consists of
the N/ = 2 supergravity multiplet with its graviphoton gauge field, two N' = 2 gravitino
multiplets with 2 abelian gauge fields each, and one N' = 2 vector multiplet. In addition,
each N = 4 vector multiplet decomposes into one vector and one hypermultiplet of N' = 4.
The gauge fields from the A/ = 2 gravitino multiplets have different couplings from the
rest of the N' = 2 vectors and we will restrict to black holes which are neutral with respect
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to them. In terms of N = 2 multiplets, the spectrum of type-IIA/K3 x T? has therefore
ny = 24 abelian gauge fields. In order to evaluate the generalized prepotential F (X4, W?2)
which governs the NV = 2 supersymmetric couplings of these 24 gauge fields, recall the
following;:

i) The tree-level topological amplitude Fy is fixed by the triple intersection product
on H2(K3 x T?). We choose a basis of two-cycles with v; = H?(T?) and v,—2293 a
basis of H?(K3). The triple intersection product vanishes except between ~; and two
2-cycles 74,75 in H2(K3), where it equals the signature (3,19) intersection product
Cab

ii) The topological amplitude F; has been computed in [[fI]], and can be obtained as the
holomorphic part of the R? amplitude at one-loop,

fre = 241og (Tl (T)|*) (2.16)

where T, U denote the Kéhler and complex structure moduli of the torus 72. From
the heterotic point of view, this result can be interpreted as NS5-brane instanton
corrections to the tree-level heterotic R? amplitude [

iii) All higher topological amplitudes F}, for h > 1 vanish for models with N' = 4 su-
persymmetry. Indeed, the type-II dilaton is part of the second factor in (2.1]), and a
non-vanishing Fj, amplitude would be inconsistent with SO(6, ny — 2) duality.

We therefore obtain the generalized prepotential

XaXle W2
F(XT,w?) = -2 Z Cor™—7— ~ Tog; 108 2(0) (2.17)
ab 2

where T = X'/X? and ¢ = €2>™. The appearance of the same discriminant function A(q)
as in the heterotic result (R.6) is at this stage coincidental.”

We may now apply the N' = 2 attractor formalism summarized in section [L.1] to the
heterotic DH states (n,w), or equivalently to bound states of p! = w D4-branes wrapping
K3 with ¢g = n D0-branes. Since this does not cause any additional complications, we shall
allow arbitrary electric charges qg, g;—2.23, as long as ¢ = 0 and the only non-vanishing
magnetic charge is p!. Under these assumptions, the black hole free energy ([.3) reduces

to
a b 1
() =~ a5 ~log M) (218)
where )
q = exp [¢_§ (p" + iqﬁl)] . (2.19)

"The two are however related by the following chain of arguments: the R? coupling is related by mirror
symmetry to a (V2S)? coupling, where S is the type-ITA axio-dilaton @] The latter can be computed
from a 1-loop amplitude on the heterotic side, which produces both a 1-loop log(Uz|n(U)|*) contribution
in type-IIA, and a series of D-instanton contributions on K3 x S'; the latter are governed by the Fourier
coefficients of 1/A(g), in agreement with the partition function of the DO — D4 system [Q]
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According to ([L.1)), the Bekenstein-Hawking-Wald entropy is simply obtained by performing
a Legendre transform over all electric potentials ¢!, = 0,...,23. The Legendre transform
over ¢@=%23 sets ¢ = (¢°/p')C%qy, where C® is the inverse of the matrix Cyy. We will
check a posteriori that in the large charge limit, it is consistent to approximate A(q) ~ g,
whereby all dependence on ¢! disappears. We thus obtain

T Cab
Spw ~ Bxtr [—5 pq“q” ¢ + arl ¢0 + 76 (2.20)
The extremum of the bracket lies at
o 1 [ pt . I b
¢ =3 6 =@ + 2—])10 Qat (2.21)

so that at the horizon the Kahler class ImT ~ y/—pldy is very large, justifying our as-
sumption. Evaluating () at the extremum, we find

QQ

5 Q* =2"q0 + C"qats (2.22)

Sy ~ 4w

in agreement with the leading exponential behavior in (R.14), including the precise numer-
ical factor. Note that this result is independent of the OSV conjecture, and relies only on
the classical attractor mechanism in the presence of higher-derivative corrections. This ob-
servation, first made in [B7], indicates that the tree-level R? coupling in the effective action
of the heterotic string on T (or, equivalently, large volume limit of the 1-loop R? coupling
in type-IIA/K3 x T?) is sufficient to cloak the singularity of the small black hole behind
a smooth horizon. This is in fact confirmed by a study of the corrected geometry [Bg, [(].
Furthermore, the fact that the correct numerical factor is reproduced from R? interactions
alone indicates that, in contrast to general expectations based on the form of the tree-level
metric [[], further higher-derivative interactions do not correct the Bekenstein-Hawking-
Wald entropy (although they may still correct the actual solution). It would be interesting
to understand the origin of this non-renormalization.

2.5 Testing the OSV formula

We are now ready to test the proposal ([[.7) and evaluate the inverse Laplace transform of
exp(F) with respect to the electric potentials,

1 ¢ p!
|A(q)[? ol

Due to the non-definite signature of Cg, the integral over ¢® diverges for real values. This

T
Qosv (o' ,a") = [ do® o' o s exp [—gcab +76%q0 + maaqa} . (223)

may be avoided by rotating the integration contour to € + iR for all ¢’s. The integral over
¢® is now a gaussian, leading to

I I\ __ 0 1 { %o 1 _lcaanQb 0 0
Qosv(p',q )—/d¢ de ( > AP exp( 5 ¢ +QO¢> (2.24)
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where we dropped numerical factors and used the fact that det C' = 1. Unfortunately,
for imaginary ¢°, ¢!, ¢ is a pure phase, and A(q) is ill-defined. The asymptotics of € is
independent of the details of the contour, as long as it selects the correct classical saddle
point (R.21) at large charge. Approximating again A(q) ~ ¢, we find the quantum version

of ()7

11 b 1
0 1 Cqaqe P
Qosv(p',q") = / dg® do' ¢—1 exp (—z——5—¢" — 415 + qo¢° ) . (2.25)
p 2 p ¢
The integral over ¢! superficially leads to an infinite result. However, since the free energy

is invariant under ¢! — ¢! + ¢°, it is natural to restrict the integration to a single period
[0, ¢%], leading to an extra factor of ¢° in (R.2§). The integral over ¢° is now of Bessel type,

leading to
. 2
Qosv(p',q") = (p')*h3 <47T\/ %) (2.26)

in impressive agreement with the microscopic result (.12) at all orders in 1/Q.
While this result is encouraging, it however indicates that ([[.7) should interpreted with
some care:

e The extra factor of (p')? in eq. (2.24) is inconsistent with O(T'g22) duality, which
requires the exact degeneracies to be a function of Q? only. This indicates that
the integration measure implicit in ([.7) is not the trivial euclidean measure. Given
the wave function interpretation of eftr [FJ], one attractive possibility would be
to normalize it — alas, it appears to be severely non-normalizable. For lack of a

proper understanding of this integration measure, we are thus forced to consider
ratios Q(p, q)/Qp, ¢') only.®

e In order to obtain the modified Bessel function with the correct index, note that it
was crucial to discard the non-holomorphic correction proportional to logTs in F}
(keeping this correction would have resulted in an index 19 rather than 13, spoiling
the agreement with the microscopic result (R.19)). In addition, it was important
to compare to the degeneracies of DH states with arbitrary angular momentum J
(degeneracies of DH states with J = 0 are computed in appendix [J, and lead to a
Bessel function with index 29/2 and a different intercept).

e The “all order” result (:26) depends only on the number of N’ = 2 vector multiplets,
as well as on the leading large volume behavior of F; ~ ¢/(1287i). By heterotic/type-
II duality, this term is mapped to a tree-level R? interaction on the heterotic side,
which is in fact universal. We thus conclude that in all ' = 2 models which admit
a dual heterotic description, the degeneracies of small black holes predicted by ([[.7)

R ()2
Qosv(pl,ql) X InV+2 (47‘(’ %) s (2.27)
2

8The analysis of the p° # 0 case in section Q indicates that a proper duality-covariant measure will
have to break holomorphicity.

are given by
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provided it is justified to neglect higher genus Fj~; and genus 0,1 Gromov-Witten
instantons. We shall return to this point in section f.3.

3

e In order to try and match (R.26) and (R.12) in more detail, one may change variable
B =7/t in (2.§) and rewrite the exact microscopic result as

O(n, w) = / dt 114 %. (2.28)

On the other hand, it is convenient to change variables in the OSV integral (.24) to
T = ¢ /@0, 79 = —p' /Y, with jacobian d¢de' = 8(p')?dridre /73, leading to
7r(N—1))

exp < =
I 1 —14 2
Qosv(p',q) ~ /dﬁ 4 Ty A (et 2 (2:29)

Despite obvious similarities, it appears unlikely that the two results are equal non-
perturbatively. Indeed, with any natural interpretation of the integration contours
consistent with the quantum mechanics interpretation, the integral (R.29) diverges.

e Just as the perturbative result (R.19), the result (2:26) misses subleading terms in
the Rademacher expansion (R.15). It does not seem possible to interpret any of the
terms with ¢ > 1 as the contribution of a subleading saddle point in either (2.10)
or (R.24). It would be interesting to see if non-holomorphic Poincaré series can be
used to extract these contributions from (P.24).

Despite these difficulties, we find it remarkable that the black hole partition function
in the OSV ensemble, obtained from purely macroscopic considerations, reproduces the
entire asymptotic series exactly to all orders in inverse charge.

2.6 Degeneracies vs. helicity supertrace

If it is to satisfy the second law of thermodynamics, the Bekenstein-Hawking-Wald entropy
should be equal to the logarithm of the total number of micro-states in the regime where
the black hole is formed. On the other hand, the degeneracies of DH states have been
computed at zero heterotic string coupling. In general however, BPS states can appear
and disappear rather chaotically on various loci of the moduli space, by (un)pairing up
into longer multiplets. If the absolute degeneracies at zero coupling can be identified with
a suitable index, it is then possible to ensure that the total number of micro-states does
not change as the coupling is increased (barring the possible crossing of lines of marginal
stability). The only such indices with a well-defined target space interpretation are the
helicity supertraces®

Q, = Tr(-=1)FJ2 (2.30)

where F' is the target-space fermion number and Js is a Cartan generator in the massive
little group in 3+1 dimensions (or, for massless states, the ordinary helicity), and n is an

9See [@], appendices E and G for an extensive review of helicity supertraces.
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even number (2,11 always vanishes by reason of symmetry) . For a given number N
of supersymmetry in 4 dimensions, 2, vanishes automatically in any multiplet, while
Q>0 receives contributions from generic long multiplets. In the window N < n < 2N,
the helicity supertraces (2, receive only contributions from short or intermediate multiplets,
and are therefore unaffected by recombination processes.

For the N = 4 case of interest in this section, the first non-vanishing supertrace is 4,
which receives contributions only from the supergravity multiplet, massless vector multiplet
and short massive multiplets,'®

Qu(sugra) =3,  Qu(vect) — g Qu(57) = ;(2]' F=DY (231)

while the intermediate and long NV = 4 multiplets cancel out. In particular, 4 is unaffected
by possible recombinations of four short multiplets into a longer intermediate multiplet.
Similarly, the helicity supertrace g receives contributions from short and intermediate

multiplets only,

13-15 15 15 :
T Qlvect) ==, () = 8(2]+1)( D%, (2.32)

Qg (sugra) =

ﬁ(% +1)(-1)¥H (2.33)

(') =

and is invariant under recombinations of four intermediate multiplets into a longer one.

In order to compare with the absolute degeneracies (B-(), let us compute the helicity
supertrace of the DH states in the Het(4,24) model. Helicity supertraces are most easily
computed by introducing generating parameters v and v for the left and right moving
components of the space-time helicity .J3 [B6]

Z(v,0) = Tr(—l)Fe%i”J 2mivJg 5 qloglo (2.34)
and computing
= E = +— —5=0Z(v,0). .
M4 nd 4 2midv | 2miop ) VTV

The generating function for helicity supertraces of the Eg x Eg heterotic string on 70 is
simply given by

wEm) 1 7 [573) 0 [35]

H _ (% v 2 2 6,6 2

Z(4,24) (v,0) = 4 9 Z(_l)a+ﬁ+aﬁ ) 12 (HEs[l}) (2.36)
nnlt 24— U Inl

where «, 5 = 0,1 label the four spin structures on the superconformal side, £(v) incorpo-

rates the U(1) charge of the bosons in the two transverse directions,

> (1—q")? 203 sin v
— = 2.
];I 1— q 627rw (1 —q 672mv) 91 (U) ( 37)

10The superscript j indicates the spin Jz of the middle state in the short massive supermultiplet S7.
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Opg[1) is the numerator of the character of the Eg current algebra at level 1,

Ope) = = (05 + 05 + 63) (2.38)

DN | =

and Zg e is the partition function of bosonic zero-modes on T6. By the Riemann iden-
tity, (B.39) can be converted into

Néw 0[] @/2) 4
5(7'2)|f/|(4) [1/2]4 InTiGQ (9mm)” (2.39)

Z(Z,M) (v,0) =

which is recognized as a trace in the Ramond sector only, with an insertion of (—1)”%. Since
the Jacobi theta function 6;(z;7) has a single zero at z = 0, a non-vanishing supertrace

/
is obtained only for n > 4. Taking four v-derivatives and using 6 E;;} (0) = 61(0) =

23, £(0) = 1, the first non-vanishing supertrace is easily computed:

1 2 31
By = —Z7 0 - 2.40
4= 66 ( Es[l}) X 2 2 (2.40)

where the factor 1/, corresponds to the contribution of the zero-mode ps, p3 in the trans-
verse directions. At a generic point, the two factors in the numerator combine into a lattice
sum Zg 22), leading to

1 31

By=—Zgoo X ——. 241
1= den X oo (2.41)
The first factor simply corresponds to the continuous degeneracy due to the momentum
in 4 dimensions, while the second factor is just the partition function of the lattice I'g 22
of electric charges. For any vector () € I'g 22 , we conclude that the helicity supertrace of

states with electric charges () is given by

3 3

Q4(Q) = Sp2u(N) = 32

5 Qabs (Q) (2.42)

where 45 is the absolute degeneracy computed in (B.§) up to an overall numerical factor.
This suggests that, in the case of N = 4 backgrounds, the OSV integral ([.7) may compute
the fourth helicity supertrace of the black hole micro-states.

An immediate problem with this proposal is that it implies that the OSV prescrip-
tion should vanish in the case of “large” black holes, which form intermediate (1/4-BPS)
multiplets of NV = 4 supersymmetry. These states cancel from Q4 and contribute to sixth
helicity supertrace Qg onward. In the case of the Het(4,24) model, Q¢ may be obtained
straightforwardly by taking either 6 v-derivatives, or 4 v-derivatives and 2 v-derivatives,

leading to [5q]

1 152 — Ey
Bg = —Z, _. 2.43
6 7'2 6,22 X 3 7724 ( )

Since the perturbative heterotic spectrum contains no intermediate multiplets, this result
arises from the contributions of the same DH states which contributed to (R.41]). While
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the Rademacher formula does not apply to the non-modular invariant Eisenstein series Fo,

one may simply use the identity
E, d 1

22 _ 2 o 2.44
A qdq A (2.44)

to obtain the asymptotic behavior of the Fourier coefficients of Bg to all orders in 1/N,

15 .
(V) ~ 2 (N + 1)y <47r N— 1) (2.45)
where
1 s _
B6 = —Z6722 Z QG(N)qN 1 . (246)
T2 N=0

In particular, the extra factor of N+1 in () makes it impossible to include a contribution
from Qg to the index relevant for the OSV proposal ([.7) for half-BPS states, since one
would have to modify the integration measure by a ¢ dependent factor. On the other
hand, €y is clearly inadequate for 1/4 BPS states. We conclude that the index computed
by ([.7) must depend on the number of supersymmetries preserved by the BPS states under
consideration.

Before closing this section, let us briefly comment on the case with A/ = 2 supersym-
metry originally envisaged in [[[4]. In this case, the only index protected by supersymmetry
is the second helicity supertrace 3, to which only 1/2 BPS states contribute:

Qy(sugra) = Qo(vect) =1,  Qo(hyper) = =1,  Qu(S9) = (25 + 1)(=1)¥ T, (2.47)

This is the space-time interpretation of the “vectors minus hypers” index introduced from a
world-sheet point of view in [7], since short multiplets with integer (resp. half-integer) spin
j are the massive generalization of the massless hypermultiplet (resp. vector multiplet). In
particular, €5 is invariant under the recombination of a hyper and a vector multiplet into
a long multiplet of N’ = 2. Note however that {25 may change at lines of marginal stability
in moduli space. Since we do not have the freedom to add higher helicity supertraces, we
conjecture that the OSV prescription computes the second helicity supertrace of the N' = 2
black hole micro-states. Evidence for this claim will be given in section fj.

2.7 DH states in type-I1I/K3 x T?

In addition to the heterotic DH states, the (4,24) model also admits DH states on the type-
IIA side, corresponding to fundamental type-II strings with momentum n; and winding
w' along T? (i = 5,6). These can have either left-moving or right-moving excitations,
depending on the sign of n;w’. Since there are now 8 bosonic and 8 fermionic oscillators,
with total central charge ¢ = 12, the degeneracies grow as

SHA ~ 21y /2|nswil. (2.48)

In contrast to the heterotic DH states, these states preserve only 1/4 of the supersymme-
tries, unless n;w’ = 0. According to (R.4)), they have P? = Q? = P - @Q = 0, hence zero
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tree-level entropy. Their helicity supertraces have been computed in [Bf] (eqs. (G.24) and
(G.25)), and vanish identically except for n;w’ = 0:

0(Q) = 366,110 (2.49)
Q6(Q) = 908,,,ui0- (2.50)

This indicates that these intermediate multiplets come in pairs and may combine into
longer multiplets and leave the spectrum.

Since the type-II DH states are charged under the four N' = 2 gravitino multiplets,
the N' = 2 attractor formalism does not apply directly. Nevertheless, by a O(6,22) duality,
they may be mapped to a D0-D2/T? state with charges (qo, q1)-

More generally, we may try and apply the OSV formula ([.7) to purely electrically
charged states in the type-II polarization, with arbitrary electric charges (qo,q1,4s). The
perturbative part of the free-energy ([[.9) vanishes, leaving only the Gromov-Witten in-
stanton series, evaluated at real X4 = (bA/(bO, where it is no longer convergent. The
integral ([.7) is therefore highly singular. Nevertheless, discarding the Gromov-Witten
contribution, ([.7) produces a delta function of the electric charges, in qualitative agree-
ment with the helicity supertraces above.

It should be noticed that similar DH states occur in type-IIA/TS, with A” = 8 super-
symmetry. The first non-trivial helicity supertraces occur at order {219,214, but they are
given by modular forms with positive weight, so that the indexed degeneracies of interme-
diate multiplets grow as a power-law rather than exponentially.

3. Small black holes in N/ = 4 models with reduced rank

In this section, we proceed to compare the macroscopic and microscopic entropy of small
black holes in a variety of string vacua with N' = 4 supersymmetry. While the (4,24)
model discussed in the previous section has been the most studied one in the literature, a
large number of A/ = 4 vacua can be obtained using fermionic [5§, pJ] or orbifold construc-
tions [60—FJ|. The latter has the advantage that a dual description can often be found by
using six-dimensional heterotic/type-II duality and adiabatic arguments [p3, 64, f1]. Each
of these models has a moduli space of the form (R.1]), where the first factor corresponds to
the heterotic dilaton and ny denotes the number of massless abelian gauge fields (including
the graviphoton, but discarding the gauge fields from the two N = 2 gravitino multiplets).
We will denote such vacua as Het(4,ny) or 11(4,ny), assuming that all models with the
same number of vector multiplets belong to the same moduli space. As in the (4,24) case,
the only non-vanishing F-term F; can be extracted from the one-loop amplitude R? ampli-
tude in the type-II model, while the exact degeneracies of small black holes are most easily
determined in the heterotic dual.

3.1 F} in reduced rank type-II models

The topological amplitude F; has been computed in a number of (4,ny) type-II models
in [B1]]. In general, it is given by the holomorphic, T-dependent part of the integral of the
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“new” supersymmetric index on the fundamental domain of the upper half plane [,

_ 2 d2
fR2 / e TTRR )JL+JRJLJRqL0+L0 = _g/ @T By. (3.1)
f

T2

As indicated in the second equality, the supersymmetric index is proportional to the gener-
ating function By of the helicity supertraces Q4 of the perturbative type-II spectrum [B1].
For completeness, we briefly review the CFT construction of these models!! and list the
corresponding supertrace and R? amplitudes:

e The (4,16) model is obtained by starting from type-IIA on K3 x T2 at the T*/Z
orbifold point of K3, and performing a further Z5 orbifold which acts as (—1) on half
of the twisted sectors, and shifts one of the coordinates of T2 by a half-period. The
generating function of the 4-th helicity supertraces is

By =18 Z32+6 Z Zg,lz [Z//ﬂ (3.2)
(h.9)#(0,0)
where
h = —im 1112 (p) 3112
Zg,z [Qg} (T, U§T,7—) = Z e g(p,é)q2HL(p)q2HR(p) (3.3)
peT2,2+%6

is the shifted lattice sum for the Narain lattice of the torus 72. We choose a sym-
metric shift vector ;7 = (1,1)/2 along the first circle, so as to entertain a geometric
description.

e A (4,12) model may be obtained by performing a further Zy orbifold of the (4, 16)
model, which acts as (—1) on a different half of the 16 twisted states, together with a
shift by half a period on the remaining circle in 72. The helicity supertrace generating
function is

Bi=9Z2+3 Y (4 [ia]+ 2 [la] v 28 [2]) . G
(h,9)#(0,0)

e A (4,8) model can be obtained by returning to the I7(4,24) model at the T*/Z,
orbifold point, and by orbifolding by a further Zy which acts as (—1) on all twisted
sectors. The result is

Bi=18Z2-6 Y Zi, [’;jﬂ . (3.5)
(h.9)#(0.0)

In each of these cases, the modular integral (B.1) can be reduced to the (4,24) case by
making use of the following identities,

D — Z,5(T/2,2U) (3.6)

M NIE
o o

(ZQQ[OO} +ZQQ[ ]+ZQQ [OO} +ZQQ[

1YWhile the inclusion of discrete RR fluxes on K3 is required non-perturbatively for level matching [@],
this does not affect the perturbative computation of Fi in these models. Such fluxes do however affect the
BPS spectrum [@]
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1 <222 [99] +222 % +222 [(ﬂ + Zys [8 D = Z55(T/2,U)2) (3.7)

N[=N[= N2 N=

N N[

% (Zzz [09] + Zo [O] + Zos [55] + Zo [ D = Z5o(T/2,(U+1)/2), (338)

where, on the left hand side, all partition functions are evaluated at (7,U). We thus

obtain [p1]]

(4,24) : fre = 24log Ty|n(T)*| ~ 24log Ty — 87Ty + - - -
(4,16) : fre = 161log Ta|n?(T)04(T)| ~ 16log Ty — 47Ty + - - -
(4,12) : fre = 12log Ta|n*(T)03(T)| ~ 121og Ty — 27T + - - -
n(T)°
04(T)?
where T is the Kihler modulus of the T2 covering of the base of the K3 fibration. We
have also indicated the large volume expansion. The leading linear term is proportional to

the size A of the base of the K3 fibration, which differs from T by a power of two. The
logarithmic divergence is proportional to the helicity supertrace Q4 = 3+ (3/2)(ny — 2) of

(4,8) : frz = 8log T

~ 8logTy —4nTy + - - (39)

the massless spectrum. The dots correspond to a finite term, dependent on the details of

the IR cut-off, and a sum of worldsheet instantons. In general, we therefore have
fre =nylogA—8rAy+--- (3.10)

with A = (T,7/2,T/4,T/2) for the four models above. In the heterotic dual, A becomes
the heterotic dilaton S = 6+1iVs/g2. where Vg is the volume of the 6-torus. The term linear
in T is therefore a tree-level term, coming from the compactification of the R? interaction
in the 10-dimensional heterotic string. The type-II worldsheet instantons are interpreted
on the heterotic side as euclidean NS5-branes wrapping 7°°.

3.2 Heterotic duals and exact counting of DH states

Heterotic N/ = 4 models with reduced rank can be obtained by orbifolding the Fg x Eg or
SO(32) ten-dimensional heterotic strings at an enhanced symmetry point, by a symmetry
leaving the right-moving superconformal algebra untouched. In particular, we consider the
following models:

e A (4,16) model obtained by orbifolding the Eg x Eg heterotic string on 7° by the
exchange of the two Fg, combined with a translation on one of the directions of the
torus T°. Equivalently, one may orbifold the SO(32) heterotic string at an SO(16) x
SO(16) point by the exchange of the two SO(16) factors.

e A (4,12) model obtained by orbifolding the SO(32) heterotic string at a SO(8)*
point by the group Z, permuting the four SO(8) factors circularly'? combined with
a translation of order 4 on the torus.

121t is also possible to orbifold by the full permutation group Sy, or the alternate subgroup A4, but the
required action on 72 is more complicated.
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e A (4,10) model obtained by orbifolding the SO(32) heterotic string at a SO(4)8
point by the group Zg permuting the eight SO(4) factors circularly. Viewing SO(4)3
as SU(2)'6, one may also orbifold by Zs and get a (4,9) model.

In each of these models, it is important to include a translation on one of the directions of
the torus 7° so as to give a mass to the twisted sectors, and ensure that the rank of the
gauge group is effectively reduced.

The common property of these models is that they give rise to an enhanced gauge
symmetry with a current algebra at level £ > 1. However, in order to have a type-II dual
with a smooth geometry, one should further break the gauge symmetry to an abelian group

U(1)mv+4,

3.3 A detailed analysis of the Het(4,16) model

Let us now discuss in detail the degeneracies of DH states in the Het(4, 16) model obtained
by orbifolding the Het(4,24) model at a point of enhanced gauge symmetry FEg x Eg. The
Narain lattice of the Het(4,24) model may be decomposed as

Do = Es(—1) @ Eg(—1) @ ITH @ IT%° (3.11)

where IT%! @ I1%° describe the momenta and winding numbers on the 6-torus S x T°.
Accordingly, we shall denote the momentum eigenstates as P = (Py, P», P3, Py). At any
point in the moduli space (R.1)), this vector may be projected into a sum of a left-moving
and a right-moving part,

P =T1I.(P) +IIg(P) (3.12)

where IIg(P) € RS are the 6 central charges of N' = 4 supersymmetry, and Il (P) € R?*?
are the 22 electric charges under the vector multiplets of the Het(4,24) model. While the
charge vector P takes quantized values independent of the moduli, the projections I (P)

and IIg(P) are real numbers depending continuously on the moduli.

Untwisted sector. Now, the Het(4,16) model can be obtained as a Zy orbifold acting

on momentum eigenstates as
g|P1, Py, P3, Py) = ™0 P3| Py Py, Ps, Py) (3.13)

where 26 is the vector (1,1) € ITH! corresponding to the translation by half a period along
the circle. The action on the oscillators is most easily described by diagonalizing the action
of g: 8 left-moving oscillators obtain a negative parity under g, while the remaining left-
moving and all right-moving oscillators have positive parity. Let P*(a) denote a generic
monomial in left-moving creation oscillators, with definite parity 4+ under g.

DH states in the untwisted sector of the Het(4,16) model can be constructed as in-
variant combinations of the DH states of the Het(4,24) model under the orbifold action,

PE() (1P PaPac ) £ 5 P PP ) 019 (3.14)
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where the parity of the oscillators is correlated with that of the zero-modes, and |3) is a
right-moving groundstate.!> The level matching conditions identifies the level N of the
oscillator state P(a) with

1 1 1
N-—-1==-¢%—=-¢% ==-P2. 3.15
2613 2QL B ( )
The DH states (B.14) are thus enumerated by the partition functions
1(1 24> 1,0 1.2 14+6(P)
= 4+ = q2qL(j2qR7 (3.16)
4
2 \ 2t T gl 12122’6 9

where O(P) = ¢>™¥Fs5p p . The last factor in (B16) guarantees that states with Py # P,
are counted twice with 1/2 multiplicity, while states with P, = P, and e?™ = F1 are
dropped out, in agreement with eq. (B.14).

This is not the final answer however, since we need to extract from (B.16) the con-
tribution of states with a given electric charge. Due to the orbifold projection, the only
massless vector multiplets are the linear combinations of the Eg x Eg gauge bosons of the
(4,24) model which are symmetric under exchange of the two factors. Therefore, a state
of the form P(«a)|P1, P, P3, P;) has electric charge

Q(P) = (P + Po; Ps, Py) (3.17)

taking values in the (non self-dual) lattice'#
1
My = Ex <_§> @I & I11°° (3.18)

In particular, the momentum eigenstates (P, — Q, P» + Q, P3, P;) have the same electric
charge Q(P) as (Py, P», P3, Py), for any @ in the Eg root lattice. It can be checked that all
these states have the same central charges IIr on the subspace SO(6,14)/SO(6) x SO(14)
of the moduli space of the Het(4,24) model (R.1) invariant under the orbifold projections.
They therefore have the same mass and electric charge, but differ by the excitation level
N of the oscillators.

In order to extract the exact degeneracy of DH states for a given electric charge @), it
is appropriate to change the basis and decompose the two Eg(—1) charge vectors into their
sum and difference,

Pl—Py=2A—P (3.20)

where X, A both take values in the Eg root lattice, and P is an element of the finite group
Z = A (Eg)/2A,(Eg), of index 28. Expressing the square of the left-moving momentum as

1 1 1\?
H%(E +AY—-A+P, P, Py) = H% <E + 57),2 + §P,P3,P4> +2 (A — 57)) (3.21)

131n the following, we omit the factor of 2* due to the degeneracy of the right-moving groundstate.
10 this expression, (—1/2) indicates that the norm of the Es is multiplied by 1/2, in order to keep the
canonical normalization for the gauge fields.
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we can carry out the sum over the “unphysical charges” A by introducing Eg theta functions
with characteristics:

. 1
Opyap(r) = > AP (3.22)
AEEg(l)

This allows to decompose the Fg(1) @ Eg(1) lattice as a sum of products of shifted Fg(2)
lattices,

Oh(T) = Y O (T)082.p(T). (3.23)

PeEg/2Fs
Note that ©pgy p depends only on the orbit of P under the Weyl group of Eg. It may
be checked that the finite group Z decomposes into three orbits only, corresponding to the
orbit of the fundamental weight of the trivial, adjoint and 3875 representations, of respec-
tive length 1, 120 and 135, respectively. The theta series (B.29) are thus the numerator
of affine characters of Eg at level 2, and can be computed explicitly using free fermion

representations,

Opgio1 = O (27) = 274 (65 + 05 + 14 0307)
1 _
Onsfa,208 = 5 (0305 + 0503) (27) = 27 (65 — 03)
O py(2),3875 = 0305(27) = 27165 (3.24)

where we used the duplication identities (B.14). One may indeed check that (B.23) holds
thanks to the modular identity

‘91228[1} = 91298 2,1 120 91298 [2],248 T 135 ‘91228 [2],3875 - (3.25)

For a fixed electric charge vector 2%+ P, the untwisted DH states (irrespective of their
oscillator level) are thus enumerated by

1Opg,p(1) 1 omis Py 2 o N
5 el T 0P ’” 377779% =q PNZOQ%(N)q (3.26)

where N + Ap = %QQ Notice that the second term on the left-hand side corresponds to
states with charges P = P, hence P = A = 0.

Twisted sector. Let us now analyze the DH states in the twisted sectors. Many details
are easily obtained by taking the modular transform of the partition function with boundary
conditions (1, g). Unlike the untwisted sector, twisted states automatically have P; = P,

however their charges now take values in

1
M, = Eg <_§> © (I 4+ 6) @ I115° (3.27)

This is not a lattice since a sum of two vectors in M; ends up in M. DH states take the
form
PE(a) (1 - em(%P2+(P3+5)2)> PPy +6,P) @ |t) |3) (3.28)
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where |t) is the twisted left-moving ground state, and 8 of the bosonic oscillators in P+ (a)
are half-integer modded. DH states with electric charges Q. = (P; Ps + §, Py) € M; are
now enumerated by the partition function

1 1 A .
5(7712193 * 12194> = Z 2 (3.29)

where the sign is that of —eim(5 P2+ (Pato)? ), and A, = —%, A_ = 0. By the level matching
condition (B.15), N + Ay is equated to the square of the electric charge Q?/2.

Comparison with macroscopic prediction. Having obtained the exact degeneracies
in the untwisted and twisted sectors, we may now extract their asymptotics using the
Rademacher formula (A.3),

15 + 16e2m 859 P e O,

1. [Q2 s [Q2 1, P € Ous

Qabs(Q) - 219 (47T 9 ) +270y (47T 4 -1, P € Ossrs
_oimQ? Q

e , € M,

where QQ € My in the first three cases. Comparing to the general prediction (B.27) for a
N = 2 theory with ny = 16 vectors, we see that the microscopic counting (B-3() matches
the macroscopic entropy to all orders in 1/N, in all sectors. However, the subleading
correction depends on the fine details of the charge vector in the lattice My & M.

Helicity supertraces. Finally, it is useful to check the analysis above against a direct
computation of the helicity supertraces. The partition function of the Fg x Eg heterotic

Z7I'UJ z7r17J3L

string on 7% with an insertion of e is given by

V)E( 0|57 @) 6 |5/3] 0
2@1716)(%17):%WZZ(—D”B*W [ﬁ/2] - {6/2} Z6,6Z {h/z} (3.30)
h?

4 12 e L9/2
where «, 5 = 0,1 run over the four spin structures and h,g = 0,1 run over the four (un-

twisted /twisted, unprojected /unprojected) sectors of the orbifold. In the above expression,
h/2 2 _1qq2 h

Z6.6 [9;2} — Z (_1)9(57p)q2H 2(p+% 0) gz11R(P+39) (3.31)

pels,6

is the partition function for the shifted I's ¢ lattice, and

62 0
0 Eg[1] 0 Eg[1]
Zow [J] = niﬁ (1), Zow [;] - 7788 (27) (3.32)
3 Open) (T i Coins3BEsy (TH+1
2| — 8 _ 2| _ —2im/3 L8
Zeur |:0:| ,,78 (2) ’ Zeur [é:| € —"78 —2 (3.33)

are the orbifold blocks corresponding to the exchange of the two FEg factors. Since the
orbifold acts purely on the right-moving part, the helicity partition function is obtained
just as in the (6,22) case, leading to the helicity supertraces

27277 2266 [Zg} cur {Zﬁ] (3.34)
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By = P < g Eea (] 2en 1] 335

Using the duplication identities (B.14), we obtain

3 1[0y 01 | o10Bs1(27) 0
By = E X 5[ 7724 26,6 [0] +2 WZGﬁ [%] +
9&[1](%) L 9E8[1](T—EL1) 1
+ o2 Z6.6 [3} - WZGﬁ E] (3.36)
where the theta series in the numerator can also be written as
1
Opa (1) = 5 (65 + 05 + 05) (3.37)
Opg)(27) = 27* (65 + 05 + 140507) (3.38)
Or1) <%> = 05+ 05 + 14050, (3.39)
T+1
9Esm<( 5 )> = 0] + 05 —14010; . (3.40)

Using (B.25) above, the untwisted contribution (h = 0) may be rewritten as

Ze [0] + €Zog 9 o494
LA [ } [9198[2]1 2( B2l 4 e 2) +

27-2 = 2 7724 7712

HE 2],248
+ 120 6E8[2},248 X <7;£7i4 > +

0 rg[2),3875
+ 135 6E8[2L3875 X <82["7%> . (341)

Each term in round brackets can now be interpreted as the multiplicity for the DH states in
the conjugacy class Op of My indicated by the Eg character which multiplies it. Similarly,
in the twisted sector we have

1
Z6.6 [2} + €266 [

:| 1 1 T 1 T+1
— x Z 2 2 [911 77129E8[1] (5) - GWHESD] < 5 )} . (3.42)

e=*+1

[SIE NI

This indeed reproduces the result (B.29) above. It is also clear the generating function of
the 6-th helicity supertrace Bg is given by the same partition functions as before, up to a
factor 5(2 — E3)/4.

3.4 General reduced rank models

The agreement found for the (4,16) model of the previous section and the (4,24) model of
section [ can in fact be easily seen to generalize to all freely acting ' = 4 orbifolds of the
heterotic string compactified on T by the following reasoning. In these models, DH states
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can always be constructed in the untwisted sector, by taking an arbitrary excitation of the
left-moving 24 bosons, with appropriate momenta and winding, and ensuring invariance
under the discrete symmetry. If & = 24 — ny is the number of vector fields which are
projected out by the orbifold, the generating function for the absolute degeneracies (or,
equivalently the helicity supertraces €4) of DH states in the untwisted sector will take the
form

|_c1:| n—i + > 9, (3.43)
geG\{1}
where |G| is the order of the orbifold group, Z is the partition of the lattice of charges
which have been projected out, and ©, are the partition function with an insertion of the
generator g € G. Indeed, the k charges are not physical and correspond to internal degrees
of freedom. The first term in (B.43) is a modular form of weight k/2 — 12 = —ny//2 and,
provided the left-moving ground state is invariant under the orbifold, has leading term 1/q.
The Rademacher formula gives a Bessel function of the required order 1 —w = (ny +2)/2,

A 2
QUQ) ~ Lny+2)/2 (47r\/ %) (3.44)

in agreement with the prediction (R:27). The other terms have the same modular weight,
but mix with twisted sectors under modular transformation, and as a result are expo-
nentially suppressed. In the twisted sectors, the generating functions can be obtained by
modular invariance, hence have the same modular weight. Their mixing with the untwisted
terms ©, implies that the leading term in the Rademacher expansion is controlled by the
same pole with A = 1. Thus, the agreement with the OSV prediction (B.27) is expected
to hold for all ' = 4 reduced rank models. This is confirmed by the analysis of other
Het(4,ny) models in appendix [J. As we shall see in section [}, the situation is quite differ-
ent for A" = 2 models, where the leading term in (B.43) is absent in the case of the helicity
supertrace {29, or moduli dependent for absolute degeneracies .-

3.5 A type-II (2,2)/(0,4) dual pair

Let us now turn to a different type-II model, where the degeneracies of DH states can be
computed exactly by using a type-II dual, albeit with unusual (0,4) worldsheet supersym-
metry [66].

Consider type-ITA compactified on the orbifold (7% x T?)/Zy, where the orbifold acts
by a reversal of the coordinates on 7%, times a translation along one circle in 72. Since the
16 twisted sectors obtain a mass due to the shift, the massless spectrum consists of 6 vector
multiplets of N' = 4, together with the gravity multiplet. The moduli space is thus given
by (B1) with ny = 6, where the Si(2) factor corresponds to the Kéhler modulus of 7.
This orbifold can be viewed as a variant of a K3 compactification. We shall denote this
model by (2,2), reflecting the fact that the N/ = 4 supersymmetries in target space arise
from the world-sheet supersymmetry symmetrically between the left and right-movers.

This model was argued to be U-dual to a (4,0) type-ITA model, constructed as the
different orbifold (T* x T?)/Zy by (—1)L (where FY, is the left-moving world-sheet fermion
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number) times a translation along on circle in 72 [B6]. The orbifold gives a mass to all
Ramond-Ramond fields, leaving again 6-+6 vector multiplets of N' = 4. While it has
the same N = 4 supersymmetry, the latter now comes entirely from the right-moving
supercharges on the world-sheet. Just as in the heterotic string, the S1(2) factor in (R.1)
now parameterizes the axio-dilaton. The duality between these (0,4) and (2,2) models is
thus very similar to the usual heterotic/T- type-ITA/K3 x T? duality.

Just as in the heterotic/T° case, DH states of the (0,4) model can be constructed by
exciting the left-movers only, combined with appropriate momenta and winding along 7°°.
Their helicity supertraces have been computed in [B1] (eq. 6.11):

n=d Y ml el s
(h,g)#(0,0)
Be = % Z <H4 {Zﬁ] + Hg Bﬁ]) Z22 B;ﬂ Zy4 (3.46)
(h,9)#(0,0)
where
0 — (0,1
] 04 h 2niz > 9 ( )
Hy [Zg] — 79 771[3] ’ Hg [};;ﬂ = %, (h,g) = (1,0) (3.47)
4 Y2

Note that the contribution of the (h,g) = (0,0) sector vanishes as it has N = 8 super-
symmetry. From these expressions it easy to disentangle the contributions of the various
sectors: the degeneracies of DH states in the untwisted sector are generated by

1605 —0f 165

5 7712 or 5@ (348)

depending whether the momentum along the shifted circle in T is even or odd, respectively.
Those in the twisted sector are given by the same expressions for odd and even momentum,

respectively. In either case, the degeneracies grow as

3 R 2
Q= 5Qaps ~ 3 25 15(277\/%), (3.49)

hence have half the entropy of the DH states in the heterotic (4,24) model. As in that
model, the helicity supertrace {Jg originates entirely from 1/2-BPS DH states, and the
perturbative string spectrum contains no intermediate multiplets.

Let us now turn to the type-II (2, 2) side, and see if this entropy may be accounted for
by higher derivative interactions. The R? amplitude in the (2,2) model has been obtained
by a one-loop computation in [B1] (section 6.1):

fr2 = 8log Ty |04(T)|* (3.50)

where we use the same normalization as in (B.9). In contrast to the other N' = 4 type-
II model considered in this section, this amplitude contains only worldsheet instantons
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(except for the logarithmic term), and vanishes in the large volume limit 7" — ¢oo. This is
in agreement with the fact that, on the (0,4) side, the tree-level higher-derivative corrections
start at order R?* corrections, as expected for an orbifold of type-IIA. In particular, the
geometry remains singular, and the OSV formula appears to be unable to reproduce the
microscopic entropy in (B:49). It would be interesting to see if R? corrections can resolve
the singularity.

Finally, let us note that the (2,2) model also has purely electric DH states, analogous
to the states discussed in section P.7. Their helicity supertraces have been computed in [F]]
(eq. 6.4). In contrast to the type ITA/K?3 x T? case, the 1/4-BPS states do not entirely
cancel from the helicity supertraces, instead the latter are given by modular forms of
positive weight,

Bi=12 Y Zy [Z;ﬂ , (3.51)
(h.9)£(0.0)

Bg = ? Z <4 + Hy Bﬁ] + H, B;SD Zoo B;ﬂ (3.52)
(h9)£(0.0)

where

h/2
i [V2] = 63— 68, (hg) = (10) (353)
05— 05,  (h,g) =(1,1).

Depending on the sign of Q?, the helicity supertrace Qg of 1/4-BPS states is generated by
either Hy or Hy in (B.51]). Since the modular weight of the counting function is positive,
the helicity supertrace {2g grows as a power of the charges, rather than exponentially. In
contrast, absolute degeneracies are counted by the same functions as in (B.4§), hence have
an entropy of order 2m/Q?/2. Just as in the type-II/K3 x T? case, it would be interesting
to understand how these states acquire a smooth horizon.

4. Macroscopic predictions for extremal black holes degeneracies in N = 2
models

In this section, we return to the realm of N' = 2 supersymmetry, where the OSV con-
jecture was originally formulated, and extract the degeneracies of extremal black holes as
predicted by the conjectural relation ([.7). We start in Subsection [L.]] by reviewing the
relation between the generalized prepotential and the topological string amplitude. We
then evaluate ([.7) for large black holes with no D6-brane charge (p® = 0), in particular
scaling limits of the charges. The case of small black holes in K3-fibrations is discussed
in Subsection [.d. Finally, in Subsection [4 we compute the integral ([L.4) for arbitrary
D6-brane charge, for tree-level prepotentials of the form F = X' X*C,, X?/X°. This is a
special example of the Legendre invariant prepotentials discussed in [67].
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4.1 Generalized prepotential and the topological string amplitude

As we recalled in the introduction, N' = 2 supergravity admits an infinite series of higher-
derivative corrections which can be written as integral of a chiral density in A/ = 2 super-

space,
/d46 F(XTW?) = /d46 iFh(XA)WQh (4.1)
h=0
= Ltree + Z Fh(XA)(ici)Q(T7)2hi2 +oe (42)
h=1

where X/ (I =0...ny — 1) are the homogeneous superfields for the vector multiplets, W
is the N = 2 Weyl superfield, with W? = (T~)2 +--- + 04(~C7)?, and the ellipses denote
other interactions related by supersymmetry (see e.g. [@] for a review of this formalism). In
the above expression, “C~ denotes the anti-self-dual part of the Weyl tensor, T~ the anti-
self-dual part of the graviphoton field-strength. For h = 0, one recovers the two-derivative
N = 2 lagrangian controlled by the prepotential Fy(X7')

For N' = 2 models obtained by compactifying type-ITA string theory on a Calabi-Yau
three-fold, it can be shown that the only contribution to the (TC~)?(T~)?"~2 coupling (or
its on-shell equivalent (~R™)2(T7)%"=2) occurs at genus h, and reduces to a vacuum am-
plitude in the A-model topological string, obtained from the (2,2) superconformal sigma
model on X by a topological twist [69, RQ]. In general, it includes non-holormophic con-
tributions from massless states propagating in the loops. The holomorphic topological
string amplitude is defined as an asymptotic expansion in the topological string coupling
near some large radius limit (i.e. in a neighborhood of a point of maximal unipotent mon-
odromy). It includes perturbative contributions!® at genus 0 and 1, together with an
infinite sum of world-sheet instanton contributions at arbitrary genera,

. 2 3 .
2T) et PC — T A 4 Fow (M g) (4.3)

Fiop = ==32 12

where A is the topological string coupling,'® t4 = 64 + ir4 with 74 > 0 are the complex-
ified Kéhler moduli on a basis ¥4 of Hy(X,Z) (A = 1,...,ny — 1), Capc are the triple

intersection numbers Capc = fx JaJpJdeo, con = fX Jaco(THOX), and

Fgw()\,q) = Z Nhﬁ qﬁ )\2h72 (4.4&)
h>03
1 ' d\ 2h—2
= Z nga (2 sin 7) q® . (4.4b)
h>0.3.d>1

is the Gromov-Witten instanton sum. Here § = $%4y4 runs over effective curves with
prezt, ¢f = eQmﬂAtA, and Nj, g are the (rational) Gromov-Witten invariants. In the

1511 general one should allow for an extra quadratic polynomial in ¢t* with real coefficients. These terms
can be reabsorbed by a change of variable and do not play any role in our discussion.
16In the notations of [E], A2 = fgfop.
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second line we have used the identity of Gopakumar and Vafa to rewrite Fgy in terms of
integral BPS invariants ng
The precise relation between the topological string amplitude and the generalized pre-

potential is

T x4 T W\?
Fiop(t*,A) = EFSUGRA(XA,Wz), th = <0 A= (ZF) (4.5)

leading to the standard supergravity normalization!”

Fsugra = _ECABCi o e wvao (46)

1 XAXPXC W2euxt X ™ N W\

X0 64 24 X0  (2mi)3 h64 '

It is important to note that the sum in (f.4H) contains degenerate instanton contri-

butions, with 8 = 0. Those occur only at genus 0, and are controlled by the single BPS
invariant nJ = —(1/2)x(X), where y is the Euler number of X:

1

FO) = =010 = 03 G @)

where the second equality defines the Mac-Mahon function f(\). g%g/ admits an asymp-

totic expansion at weak topological coupling,

1 ’Bgn 4‘ (277, + 3)
Fleg — = A2 K — A2n+2 + Boy, 4.

where the “constant” K is computed in appendix ,

1 2mi 1

K—EIOgT—ﬁC( ) E’YE (4-9)

In equation (.§) above, the O(1/A?) term corresponds to the famous contribution to the
prepotential coming from the reduction of the tree-level R* coupling in 10 dimensions [[(],

and the coefficient of A\2"t2

is the Euler character of the moduli space of genus n + 2,
as computed in [71]. The “constant” K depends logarithmically on A, hence cannot be
attributed to any order in the genus expansion. Nevertheless, it follows from a careful
analysis of the weak coupling behavior of f()\), which is analytic for Im A # 0. This term
is usually dropped in the topological string literature, but will play an important role in
the analysis of the black hole degeneracies below.

Instead, for N = 2 backgrounds obtained by compactifying the heterotic string on
K3 x T?, the higher-derivative coupling (~C~)?(T)**~2 for any h receives contributions
at 1-loop already [J] (as well as tree-level for h = 0,1). In fact, using heterotic-type-II
duality, this is a powerful way to compute the Gromov-Witten invariants of compact K3-
fibered Calabi-Yau three-folds, at least for effective curves 3 lying only in the K3 fiber [[7J]
(see [[[4] for recent progress).

"The factor of proportionality relating A and W/X° can be obtained by demanding the correct auto-
morphic result for ITA/K3 x T2.

,34,



Finally, let us note that by expanding the parenthesis in (§.4H) in binomial series and
summing term by term over d, we may rewrite

Fow = Z Z kn% log(1 — e**) — Zné log(1 —¢%) +
B k=1 B
2h—2

+ 33 (e <2h€— 2) s log <1 N qﬁez‘(h—l—l)A> (4.10)

R>2 B 1=0

hence obtaining exp(Fgy ) as an infinite product [, ff]. Unfortunately, for A > 2 the infi-
nite product is in general divergent, falling short of providing a non-perturbative definition
of the topological string amplitude.

4.2 Large black holes with p° =0

Let us now turn to the evaluation of the integral ([.7), for large black holes, with non-zero
entropy at the classical level. Since their entropy at large charges is already well reproduced
by the tree-level prepotential, it is natural to expect that Gromov-Witten instantons can
be neglected, at least in some large charge regime. Under this assumption (to which we
shall return below), and restricting to p® = 0 for simplicity (see [f7 for a discussion of the
p® # 0 case), the free energy ([[J) reads

7 C(p) | 7 Can(p)s "

pert — _ 4.11
where we use the standard notation
Cap(p) = Capcp©, C(p) = Capcp™pPp”, C(p) = C(p) + caap™.  (4.12)

Note in particular that, in this limit, the only effect of higher derivative corrections is to
replace C(p) — C(p).

We further assume that the measure [d¢]| is the standard euclidean measure, extending
over the infinite real axis or some deformation thereof. The integral over ¢4 is therefore
gaussian, with a peak at

¢t = —C*B(p)ape° . (4.13)

Due to the indefinite signature of the quadratic form Cyp(p), it is well defined only upon
rotating the contour of integration so that ¢~ /A 0 ~ eFm/4. Proceeding formally, we find

A 0 (26777 7 C(p) 040
Q(p”,qa) ~ /d¢ [det Cap(p)|172 exp <_EW + 7P q > (4.14)

where C4P(p) is the inverse matrix of C4p(p) and

1

do=qo — §QACAB(Z7)QB (4.15)
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is invariant under unipotent monodromies. The integral over ¢° is now of Bessel type, with

SEEY _gj(op) : (4.16)

When ¢y < 0, the action at the saddle point is real, and equal to

So = 277\/—0(?@0 . (4.17)

Provided the saddle point is actually selected by the contour integral, we thus find that
the formula ([[.7) predicts

a saddle point at

1 2\ 2 (p)d
Qp™, qa) ~ £ det Cop(p)| /2 (@) w1, <27r —C(Zé)q°> (4.18)
where 1
v= E(nv +1). (4.19)
Using the asymptotic expansion (R.13), we thus find
1
log Q(p™, qa) ~ So — 5 (ny + 1) log(So/47) — log N'(p) + - -- (4.20)

2

where N (p) is the p-dependent prefactor in ({.1§), and the ellipses denote an infinite num-
ber of calculable power-suppressed contributions. The first term in this equation reproduces
the classic result of [[[] (generalized to ¢4 # 0), which was successfully matched to the
microscopic counting based on Mb-branes wrapping a 4-cycle in X.

Let us now discuss the validity of our assumptions. Since this has already been dis-
cussed in [fl], we shall be brief:

e Upon scaling all electric and magnetic charges to infinity (but keeping p° = 0), the
topological coupling A\ = 47/(i¢}) at the saddle point goes to zero, hence all higher
derivative corrections can be neglected. However, the Kéahler classes at the saddle
point Im t4 = pA/¢? stay of order 1, so it is not legitimate to drop the Gromov-Witten
instantons.

o If all p4 # 0 (but p° = 0), it is possible to stay at weak topological coupling and get
rid of the Gromov-Witten instantons by scaling ¢° faster than p#. In this case, the
leading correction to the entropy comes from the tree-level ¢(3) term in ([£.§), which
perturbs the saddle point. This predicts a correction'® to the Bekenstein-Hawking

S(p™,q4) = 2m\/=C(p)do/6 + %% 4o (4.21)

which still grows like a power of the charges.

entropy

18 A similar correction was computed in [ﬁ], without taking into account the contrubution from the
measure.
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e On the microscopic side, the leading entropy is well reproduced from the M5-brane
conformal field theory when the Ramanujan-Hardy formula is applicable, i.e. when
P> C (p). In this regime, the topological coupling at the saddle point is strong,
although the Kahler classes can still be taken to be large. This means that non-
degenerate Gromov-Witten instantons could be neglected, provided the BPS invari-
ants grow sufficiently slowly. However, the series of degenerate instantons is strongly
coupled, and one should instead use the Gopakumar-Vafa representation in terms of
the Mac-Mahon function, which is exponentially suppressed at large coupling. The
log A term in ({£9) implies an extra factor (¢°)X(*)/24 in ({:14), which would affect the
index of the Bessel function in ([.19). Since ([.14) will be further supported by the
microscopic analysis, we propose to modify by hand the definition of the topological
string amplitude Wy, into

iop := N/ Dy, (4.22)

More generally, it would be interesting to have a better understanding of the inte-

gration measure in ([L.7).

To summarize, provided the OSV conjecture ([[.7) holds, the infinite number of power-
suppressed corrections encapsulated in the Bessel function ([l.1§) can be trusted in the
strong coupling regime ¢° > C (p), provided the Gopakumar-Vafa infinite product is con-
vergent.

Regrettably,'® there are no examples where the degeneracies of large black holes are
known exactly. In principle the index 23 should be computable from a (0,4) sigma model
described in [4, [d], presumably from the elliptic genus of this model. While the sigma
model is rather complicated, and has not been well investigated we should note that from
the Rademacher expansion it is clear that the leading exponential asymptotics of negative
weight modular forms depends on very little data. Essentially all that enters is the order
of the pole and the negative modular weight. There are ¢;, = C(p) +c2-p = C'(p) real
left-moving bosons. Since the sigma model is unitary, the relevant modular form has the
expansion ¢~ ¢%/24 4 ... This gives the order of the pole, and thus we need only know the
modular weight. This in turn depends on the number of left-moving noncompact bosons.
Each noncompact boson contributes w = —% to the modular weight. Now, the sigma model
of [[H4] splits into a product of a relatively simple “universal factor” and a rather complicated
“entropic factor,” as described in [[§]. Little is known about the entropic factor other than
that it is a (0,4) conformal theory with cg = 6k, where k = %C(p) + 1—1202 -p — 1, where
p € H?(X,7Z). The local geometry of the target space was worked out in [@] Based on this
picture we will assume the target space is compact and does not contribute to the modular
weight. (Quite possibly the model is a “singular conformal field theory” in the sense of [[7d]
because the surface in the linear system |p| can degenerate along the discriminant locus. It
is reasonable to model this degeneration using a Liouville theory, as in [79]. If this is the
case we expect the entropic factor to contribute order one modular weight.) The universal

factor is much more explicit. The target is R3 x S1, it has (0,4) supersymmetry with k = 1

¥The remainder of this section is excerpted from @]
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and there are h — 1 (where h = hy ;) compact leftmoving bosons which are N = 4 singlets.
They have momentum in the anti-self-dual part of H'!(X,Z) (anti-self-duality is defined
by the surface in |p|). Since we fix these momenta we obtain w = —2(h — 1). Finally there
are 3 noncompact left-moving bosons describing the center of mass of the black hole in R3.
Thus, the net left-moving modular weight is —(h + 2)/2. Now, applying the Rademacher
expansion in the region |go| > C(p) we find the elliptic genus is proportional to

I, (27r @) (4.23)

with v = %. This is remarkably close to ([E1§) ! Clearly, further work is needed here since
it is likely there are a number of important subtleties in the entropic factor. Nevertheless,
our argument suggests that a deeper investigation of the elliptic genus in this model will lead
to an interesting test of ([.7) (or rather (f.29), since it must be done at strong topological
string coupling) for the case of large black holes.

4.3 Small black holes

We now turn to the case of small black holes with C(p) = 0 but C(p) # 0: these are
singular solutions of the tree-level N' = 2 supergravity lagrangian, but it is expected that
quantum corrections will smooth out the singularity and lead to a bona fide black hole.
For such charges, the matrix C'4p(p) is not invertible and some of the manipulations in the
previous section need to be rethought.

We are particularly interested in the case when X is a K3 fibration over P! admitting
a heterotic dual. In this case, we can divide up the special coordinates so that X!/X0 is
the volume of the base and X?/X° a = 2,...ny — 1 are associated with the (invariant
part of the) Picard lattice of the fiber. The cubic intersection form becomes

1 1 1
—ECABCXAXBXC = —§CabX1XaXb -5 e XX X© (4.24)

where the indices a, b run from 2 to ny — 1, and Cy; is the intersection form of the (invariant
part of the) Picard lattice of the fiber?® The matrix C4p(p) thus takes the form

0 Cabpb
C _ 3 . 4.25
AB (p) <Cabpb plcab + Cabcpc> ( )

We now specialize to heterotic DH states, with charges p° =0, p® =0,a = 2,...,ny — 1,
and q; = 0, with p'qo # 0 and ¢, # 0 for a = 2,...,ny — 1. Using ¢; = 24 for the K3 fiber,
the integral ([.7) now becomes

1 1Ca a b
Q(plaQO,Qa) = /dqbodqbldgba exp <_47Tp_ + TP "9

P S + 7TQ0¢0> - (4.26)

29Notice that Cupe = 0 at tree-level on the heterotic side, but not on the type-II side in general.
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The ¢! dependence disappears from the integrand and one must make a discrete identifi-
cation on 6 = ¢'/¢%. As in the benchmark case in section ], we find that ([L.7) gives

R 1 -
("2 1L, (477\/ [P0 — 52 C ) (4.27)
where the index of the Bessel function is now

v = %(nv +2). (4.28)

Let us now re-discuss the validity of our assumption that Gromov-Witten instantons could
be neglected in the small black hole case. Since C(p) = 0 and Imt* = —p?/¢? at the
saddle point, the attractor values of the Kéahler moduli are necessarily at the boundary
of the Kéhler cone. In principle, one must retain the full worldsheet instanton series (or
rather, its analytic continuation, should it exist.)

Remarkably,?! for A/ = 4 compactifications this is not a problem. In this case, due to
the decoupling between the two factors in (1), Fiop is only a function of a single Kéahler
modulus t!, and moreover x(X) = 0. Hence, at the saddle-point,

1

4p 1 ~
P W ] (1.29

|do]

Thus, whether or not the topological string coupling is strong (|Go| > p') or weak (p! >
|do|) the relevant Kéhler class is large and the Bessel asymptotics (1.27) are justified.

The situation is rather different for N' = 2 compactifications. In this case Fiop is in
general a function of ¢! as well as t* for @ > 2. Thus the computation in ({.26) is not
justified. We stress that the problem is not that the topological string is strongly coupled.
Indeed, for y = 0 examples such as the FHSV example discussed in section .9 below, the
saddlepoint value ([E29) can be taken in the weak coupling regime by taking p' > |do|.
In fact, the difficulty appears to be with the formulation of the integral ([[.7) itself for the
case of charges of small black holes. Recall that we must evaluate

Frop i= —m Im Fiop(p! + i, 256). (4.30)

Since X/ X0 = ¢%/¢ is real, for a > 1, one must evaluate the worldsheet instanton sum
for real values t* = ¢%/#°. For some Calabi-Yau manifolds it is possible to analytically
continue Fj from large radius to small values of Im¢®. However we may use the explicit
results of [B0, BT, which express Fy ~ log ®, where ® is an automorphic form for SO(2, n; Z).
It appears that Imt* = 0 constitutes a natural boundary of the automorphic form ®. Thus,
in the case of K3 fibrations with heterotic duals the formalism of [[[4] becomes singular for
these charges, even at weak topological string coupling.

Remarkably, if we ignore these subtleties, the formula (f.27) turns out to match per-
fectly with the asymptotic expansions of twisted sector DH states, as we show below. For
untwisted sector DH states the asymptotics do not match with either €, nor with s.

21This paragraph is again excerpted from [m]
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4.4 Large black holes with p° # 0

Finally, let us evaluate the integral ([.7) for large black holes with non-zero D6-brane
charge. For simplicity, we restrict ourselves to K3 fibrations with Cyp. = 0. and o4 = 0,22
and, as in previous cases, disregard the Gromov-Witten instanton series. For convenience,
we drop inessential numerical factors. The computation in this section is a special case
of the analysis in [B7, which applies for cubic prepotentials F' = I3(X)/X° which are
invariant under Legendre transform in all variables. When this is not the case, such as in
the STU + U? model, the attractor mechanism is significantly more involved.

From ([L.9), one computes the black hole free energy in the mixed ensemble,

B p0¢1 _p1¢0 1 . 1 = pOpl + ¢0¢1 =
RCOEFaCOE <5¢ B §p2> T () ) (4.31)

where (52 = ¢*PPCh, > = p*p"Cop, ﬁ& = p®Cy¢’, and determines the microcanonical
degeneracies via ([.7). The integral over the potentials ¢“ is still gaussian, leading to

0\2 02y 2
[(0")? + (6")%]9% + [(P°)? + (¢°)?]8° — 2(p"p" + ¢°9")Pq
P [ 2(p1¢¥ — pYol) *
+qo¢” + quﬂ (4.32)

where @ = ¢,C®q, and p§ = p®qq. In order to compute the integral over ¢°, ¢!, let us
change variables to

p’cosha = /(p9)2 + (¢°)2 (4.33)
")y = ('¢° — p"e"(3* — P°qn) (4.34)

with jacobian d¢'d¢'/(dzdy) = (p°)? coshz/(p? — 2p°q1)/2. The argument of the expo-
nential in (4.323) becomes

B2cosh?z A
y+ ————— + —sinhx 4.35
4(p°)2y  p° (4.35)
where
A=—p'p"+ " q +p'a1 + PO (4.36)
B = /(52— 2p°q1) [(p!)2p? + (p°)2q2 — 2p°p'pg) . (4.37)

Together with the above det, this gives

ny,—4 2—n 32 ‘h2 A
(P°)% (7% — 2p°q1) E /(cosh )ty 2 “ exp <y + ﬁ + 0 Sinhx) dx dy. (4.38)

22The case c2,1 # 0,c2.4 = 0 can be obtained by shifting ﬁz — ﬁQ + %62,1 in the equations below.
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The integral over y is of Bessel type, leading to

2 0, \ 3
ny (P*=2p°q1) 2 - A B
()2 <T> /(cosh 2)™ " Lexp [}E sinh x} Inv274 <F coshz | dr. (4.39)

In the limit where all charges are scaled to infinity at the same rate, the integral ({.3§)
may be evaluated by saddle point approximation: the saddle lies at

A 1 B?
o_ A g A1+7> 4.40
¢ So ¢ p°So < b P2 —2p%q; (4.40)

Sp = ]%\/32 myvy (4.41)

In particular, the Kahler moduli at the saddle point are given by

ot —ple? 25,

where

Imt! = = = 4.42

P2+ (@2 7 - 2%, (142
0 ra a 10
a Pt —po So (o 0 (0 ab 1a>

I - — 7 _ =2 -9 — . 4.4

mt T ()~ B (0* = 20°q1) (p"C%qp — p'p (4.43)
Including the fluctuation determinant, we obtain

Qosv(p.q) ~ B2(5 = 2p°q1) "™ /255 " exp(sp) (4.44)

The leading entropy Sp in (f.41) agrees with the general result in [B3]. Using ([£36), it may
be rewritten as

S = \/(p°)2q3 +2p°q14? + 2p°qo (P a1 + Pq) + (a1 — P7)? — 2ptqop? — p?¢®  (4.45)

where 72 = p"Copp’, @ = ¢aC™q and pg = pqe. Defining Q = (qo,p',qs) and P =
(p°, —q1,p?), this is recognized as the familiar discriminant

S=V(P-P)Q-Q) —(P-Q). (4.46)

One may check that the result (f£.44) agrees with ([.20) in the limit p° — 0, using the fact
that det(Cap(p)) = (p")"2p%, C(p) = 3p'p°.

On the other hand, it is important to note that the prefactors in ([f.44), which follow
from using a trivial integration measure for the electric potentials ¢’ in ([[.7), are not

consistent with T-duality. This problem may be cured by using an appropriate integration
measure such as

~ _ d¢dg' dg* F+mqioa
Qosv(p,q) = / | X0y +2(Tm £1)2(Im t2Clyy, I £0) v /2 e

(4.47)

where, as usual, X! = p! +i¢! and t4 = X4/X°. To 1-loop order, this does not change
the location of the saddle point ([.4), but simply removes the offending factors in (f.44),
leading to

Qosv(p,q) ~ Sy ™ 7% exp(Sp) . (4.48)
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For p® = 0, the measure in (f.47) reduces to the flat integration measure used in (f.14), up
to an overall factor [C(p)]? which depends on the magnetic charges only. However, there
is no guarantee that this prescription will be consistent with T-duality at higher orders.

The measure (J.4§) is obviously not the only choice which removes the non-duality
invariant factors in ([44). In particular, as shown in [67] the following measure

Qosv(p,q) = / dg’de'dp® | X2 (Im ¢')(rv —9/2 Fmat e (4.49)

has the remarkable effect of rendering the one-loop approximation to the integral exact,
leading to the manifestly duality invariant result

Qosv(p,q) = I12(So) ~ Sy " exp(So) - (4.50)

Note however that it does not reduce to the constant measure when p® = 0, and it would
therefore spoil agreement with the microscopic counting of DH states. At any rate, irre-
spective of the choice of measure, it is clear that a duality-invariant measure can no longer
be holomorphic for p® # 0. It would be very desirable to have a deeper understanding of
the integration measure implicit in ([[.7).

Finally, let us discuss the validity of the assumption that Gromov-Witten instantons
can be neglected. If we scale all electric and magnetic charges uniformly by s, the entropy
Sp scales as s2, the topological coupling A ~ 1/|X°| as 1/s while the Kihler classes Imt 4
are fixed. The ¢(3)(X?)? term in ([L.§) is however comparable to the leading entropy Sy,
so that its effect cannot be neglected. It is therefore necessary to scale the charges (p°, qo)
and (pA,qA) differently if one is to neglect the Gromov-Witten instanton contributions.
One option is to take g4 > p° > (qo,pA). In this regime, the Kahler classes Imt4 grow
to infinity as \/qa/pY, while the coupling A = Im(1/X°) can be made arbitrarily small (in
fact zero when gy = p? = 0), so that Gromov-Witten instantons can indeed be neglected.

5. Microscopic counting of DH states in N = 2 models

In this section, we compute the microscopic degeneracies of perturbative DH states in het-
erotic models with A/ = 2 supersymmetry in four dimensions, which are dual to small black
holes in type-II string theory compactified on a Calabi-Yau three-fold X. In section p.]|
and p.2, we discuss the Fg x Eg heterotic string compactified on K3 with standard, respec-
tively symmetric embedding of the spin connection in the gauge group. In section f.3, we
turn to the FHSV model, which can be viewed as a A/ = 2 analogue of the N/ = 4 models
with reduced rank discussed in section [J. In section .4, we obtain a formula which applies
to all asymmetric orbifolds of the heterotic string, with A" = 2 or A/ = 4 supersymmetry.

5.1 Het/K3 x T? with standard embedding

A simple class of heterotic models with A/ = 2 supersymmetry can be obtained by compact-
ifying the Eg x Eg heterotic string on K3, and identifying the spin connection on K3 with
the gauge connection for one of the Eg factors. The corresponding conformal field theory
is most easily constructed at the Zo orbifold point of K3, where the orbifold generator acts
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as —1 on the four coordinates of T* (as well as their right-moving superpartners), and as
a shift (%, %, 0%) in the charge lattice of one of the Eg factors. This gives a N' = 2 model
with 628 hypermultiplets transforming as a

4(1,1,1) + 8(1,56,1) + (1,56,2) + 32(1,1,2) (5.1)

representation of the Fg x E7 x SU(2) x U(1)? gauge symmetry. In particular, Ny — Ny =
388 — 628 = —240. This model is part of a large network of N' = 2 vacua which can be
reached by a sequence of fundamental or adjoint Higgsing transitions [BJ]. Of particular
interest are the vacua with abelian gauge symmetry, which can be dual to compactifications
of type-1I string theory on a smooth Calabi-Yau threefold. At a generic point in the moduli
space of K3, the SU(2) factor is Higgsed, leaving 10 charged hypers in the 56 of E; and
65 neutral hypermultiplets, for the same value of the index Ny — Ng = —240. Going
to the Coulomb branch of Fg reduces the gauge symmetry to E7; x U(1)!2, with index
Ny — Ny = —480. Further higgsing the E7 factor reduces the gauge symmetry to U(1)!2
with 492 neutral hypers, a (12,492) model in the notation of [8J]. This model has been
argued to be dual to type-II on an hypersurface in WP1471712728742 [B3. Instead, one may
go to the Coulomb branch of E; and obtain a (19,65) model, with 19 vector multiplets
and 65 neutral hypers. However, we could also consider going to the Coulomb branch of
the original Eg x E7 x SU(2) x U(1)* gauge symmetry, leading to a (20,4) model with 20
abelian vectors and 4 neutral hypers.

Let us now consider the degeneracies of DH states in the original model with unbroken
Eg x E7 x SU(2) x U(1)* gauge symmetry. The helicity generating partition function is
obtained straightforwardly as

19 7
T2|77| 2 h,g=0  a,b=0 n
A 01,1007, 10°13)
or 2 1
X@Z(M)[%] * 3 > el L9 Opqn) (5.2)
it 2 4 Ui °
where Z(y Z) are the orbifold blocks of the T*/Zy orbifold,
4
0] _ R/2] _ 2
Z(4,) [0] = Zsa, Z(44) [9/2} = r - . (5.3)
01, 210 |1 2|7
1-4 144

The sum over spin structures a,b can as usual be performed by using the Riemann iden-
tity (B.1(). Taking two v derivatives and setting v = v = 0, the generating function for
the second helicity supertraces is thus

1¢ 22201 1 o yth  y=h vy
By = 9 Z ﬂg[ ]ﬂ x5 Z 0152,10052,10°(] (5.4)
g Ton'80[,2,10(,2,]  Tae=0 2 27
2 2

where the prime indicates that the untwisted, unprojected sector h = g = 0 has to be
omitted.
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In order to read off the degeneracies of DH states with prescribed electric charges from
this expression, it is convenient to go to a general point in the vector multiplet moduli
space. This depends on the phase under consideration:

e in the (12,492) model above, where the gauge symmetry is broken to U(1)!2 the
two factors Zs 2 and O combine into a the partition function Z3 19 of the charge
lattice 19 @ Eg at a general point in the SO(2,10)/S0O(2) x SO(10) moduli space.
Using (B.1() and (B-I7), the sum over h, g simplifies to

_ %210 Es

By .
T2 7724

(5.5)

We thus deduce that the indexed degeneracies of DH states in this phase are given
by the coefficients of

N=0

where N — 1 = Q2. By the Rademacher formula, the degeneracies grow as

0(Q) ~ I (m/?) (5.7)

in agreement with the general prediction ({.27) with ny = 12.

e in the (20,4) model above, the two factors Z3 2 and 0, [;) combine with the eight theta
series in the numerator into a a vector of partition functions 22,189[2'] of a lattice

11272 D (Eg U (Eg + 5)) @ Eg (58)

at a general point in its moduli space. The helicity supertrace can be decomposed

into four sectors,

Zoaslol + Zoasli] . Zoaslil — Zoasfil
2 “ 2 “

 Zoslo) + Zoaslo) . Zeaslo) — 22,1800

9By =

5 Py 5 F_ (5.9)
with 202 2002 2
030 0363 + 6

F, = % Fy = 2‘(7?;#44) (5.10)

We thus find that the second helicity supertraces of DH states are enumerated by a
different generating function in each conjugacy class of the lattice (5.§). The asymp-

Q5(Q) ~ In <4w\/ §Q2> (5.11)

totics are given by
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05 (Q) ~ In <47T\/ %Q2> : (5.12)

In particular, the indexed degeneracies in the untwisted sector are exponentially
smaller than in the twisted sector. Only the latter coincide with the macroscopic
prediction ([.27) with ny = 20. As we shall see, this is in fact a generic feature of
N = 2 orbifolds where twisted states can be distinguished from untwisted ones by
their charges.

e Similarly, in the (19,65) model, the Z > and 0p,;) combine with 7 out of the 8 theta
functions in the numerator, into the partition function of a signature (2,17) lattice.
The second helicity supertraces in the various sectors are generated by

B 0303 (03 + 04)

Fy=——gr—, F:
u 7724

_ 030303 + 02) £ 03(04 + )
7724 .

(5.13)

Again, using the Rademacher formula, we find agreement with the macroscopic pre-
diction (f.27) with ny = 19 in the twisted sectors, but not in the untwisted one.

From the above discussion, it is thus clear that the degeneracies of DH states depend
on the phase under consideration: as a vector field become massive, black holes which
used to carry different charges under this field are no longer distinguishable, leading to
an increase of the entropy at fixed charges under massless charges. The total number of
states is however conserved. In particular, the same argument as in section B.4 shows
that the modular weight of the generating function of the second helicity supertrace at
fixed charges is directly correlated to the rank of the charge lattice, in agreement with the
relation 1 —w = (ny 4 2)/2. The numerical factor in the leading entropy however depends
on the sector of consideration, and is typically smaller in the untwisted sector. As we
shall discuss in more detail in section p.d in the context of the FHSV model, the absolute
degeneracies are however much larger, as the result of large cancellations between massive
vector and hypermultiplets.

5.2 Het/K3 x T? with symmetric embedding

In general, one may construct A/ = 2 heterotic backgrounds by embedding the spin con-
nection into the sum of two rank 2 bundles with ¢y = 12 in each Eg factor. This admits a
simple conformal field theory description as a Zo X Zso orbifold, where the first generator
acts as in the standard embedding case, and the second acts purely by a shift along one
direction of T as well as a vector (3, %,09) in the other Eg factor [B4]. This results in a
model with E; x SU(2) x F7 x SU(2) x U(1)* gauge symmetry and hypermultiplets in

4(56,1;1,1) +4(1,1;56,1) + 16(1,2;1,1) 4+ 16(1,1;1,2).. (5.14)

This model has Ny — Ny = —244 and can be completely Higgsed into a (4,244) model, dual
to type-1I string theory on I/VP2141’2’8’12 with Euler number y = —480 [B3. The helicity
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partition function at the orbifold point reads

_a _a _ath _ a—h

= 1 1 1 012](v)0[3101,2, 10,2, ]

_ Ew)(v) 1 1 1 atbiab 3 30 e

Z—wgz 5 2. 52 (=1 = X (5.15)
h,g=0 h’,g’=0 a,b=0

orb %v%/ e 6 3 4/42rh/ W/gh/ 6 %/
Zo Z(4,4)[%;%/] L 0[%10[%]0 G 9[5,;9,]9[6/ .10 [%,]

PE FE X 92 Z n® X 92 Z 7

7,6=0 v ,6'=0

In this expression, ZEZ Ijl) ] denotes the orbifold block corresponding to a torus 7% with

—
[SSENT
o[ w3

twist (h, g) on the 4 directions and shift (1, ¢’) along, say, the first circle. It is non-vanishing

only for (h',¢") = (0,0) or (h,g) = (0,0) or (h,g) = (I/,¢'). In the latter case, it reduces
h

to the orbifold block Zé’i i) [ é ] with twist only. In particular, despite appearances, one may

check that the construction is symmetric under exchange of the two FEg. By using the

Riemann identity and (B.16),(IB.17), it is again possible to simplify the helicity supertrace

into
B — Zo2 EyFg
2= 24
T2 M

Degeneracies of DH states from this equation can be extracted in the same way as before.

(5.16)

The result is simplest in the “maximally Higgsed” phase of the (4,244) model, where the
4 U(1) charges correspond to the T2 lattice: the generating function for second helicity
supertraces of DH states is simply

o

ELE 1
L= (V)N == 240+ - (5.17)
n N=0 1

0(Q) ~ I3 (m/ %CP) (5.18)

in full agreement with (f£.27) for ny = 4. As before, one may unhiggs this model and

with asymptotics

increase the rank of the gauge group: in all cases the indexed degeneracies are counted by
modular forms of weight w = —ny/2, and agree with (£.27) in the twisted sectors only.

5.3 The (2,12) FHSV model

The FHSV model introduced in [BJ] is one of the simplest and best understood examples
of heterotic/type-IT duality with A/ = 2 symmetry. On the type-II side, it consists of an
orbifold of type-ITIA string theory on K3 x T2 by the Enriques involution on K3 times a
reversal of T2 — a close cousin of the (4,16) model. Its dual description may be formulated
as a Zs orbifold of the Eg x FEg heterotic string on T% x T?, where the orbifold acts by
exchanging the two Eg factors.?? In terms of the momentum lattice

Te00 = Fs(—1) ® Eg(—1) @ I1*? @ IT** (5.19)

Z3We slightly deviate from the action in [@]7 reversing the coordinates on T, and translating one of the
circles in T2, which exchanges two I'g1 and reverses a T2; the two constructions are expected to be on the
same moduli space.
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the action on the momenta is therefore
9|P1, Py, Ps, Py) = ¥ 15| Py, Py, Py, —Py) (5.20)

where 2§ is the vector (1,0,1,0) € I1%? corresponding to the translation by half a period
along the first circle.

Diagonalizing the action of g on the oscillators, there are 12 untwisted and 12 twisted
left-moving bosons, and 4 twisted and 4 untwisted right-moving NV = 1 multiplets. De-
noting by (er,er) the parity of the left and right moving oscillators under the orbifold
action, massless states with parity (+,+) correspond to hypermultiplets, while massless
states with parity (—, —) correspond to vector multiplets as well as the graviphoton. The
massless spectrum therefore consists of 12 hypermultiplets, 11 vectors multiplets and the
gravity multiplet, with tree-level moduli space

SO(4,12,R) SO(2,10,R)
SO() x SO(12) * SO(2) x SO(10)

(5.21)

where the first (resp. second) factor is parameterized by the scalar fields in the hyper-
multiplets (resp. vector multiplets). In fact, it can be shown that there are no quantum
corrections to the moduli space metric, and that (p.21]) is the exact quantum moduli space,
up to global identifications [BY]. At any point on the vector multiplet moduli space, a
vector P of the lattice (f.19) may be projected into a sum II1(P) + IIgz(P) in R?*? @ RS,
The linear combination

7 = M§L(P) + il1%(P) (5.22)

is the complex central charge Z of the NV = 2 algebra, while the remaining components
H‘;’%’4’5’6(P) are the remnants of the central charges of the N/ = 4 supersymmetry, which is
broken by the twist on 7%. By the same reasoning as in section B.3, the 22 left-moving
charges I1; (P) decompose into 12 electric charges

QP) = (P1+ Py Ps) (5.23)

under the gauge fields in the vector multiplets, taking values in the signature (2, 10) non-self
dual lattice 1
Ao = Es(—5) @ I7%? (5.24)

while the remaining 10 are “unphysical charges” under gauge fields which have been pro-
jected out.

Untwisted sector. Now, candidate DH states in the untwisted sector can be con-
structed as

PE(a) - (ypl, Py, P, Py) & €209 |py Py P, —P4>> ® [N* (5.25)

where P*(a) denotes a generic monomial in the left-moving creation oscillators, with defi-
nite parity & under the orbifold action g, and |f )* denotes the right-moving ground states
transforming as 8, ® 8 under the transverse so(8) rotations in ten-dimensions, with definite
parity under g. Unlike the (4,16) model, the states (5.2) are BPS only if they saturate
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the BPS bound M? = |Z|?, i.e. I(P) = 0 for i = 3,4,5,6. More formally, this condition

may be written as

Ir(P)* = Hr(Q(P))*. (5.26)

Note that this condition explicitly depends on the values of the vector multiplet moduli
space. For P, # 0, it is only obeyed on a codimension one submanifold of the vector moduli
space, providing an example of the “chaotic BPS states” mentioned in the introduction.
As we shall see shortly, these states always come in a vector multiplet / hypermultiplet
pair and cancel from the helicity supertrace Q2. On the other hand, states (5.25) with
Py = 0 are always BPS. In order to enumerate the DH states (f.2), let us introduce the
partition function

1 1
As —T% (Lxg)= Y ¢ @ m,, (P)2 (1= O(P)) (5.27)
11226

A

where the projection operator Ily,s(P) is = 1 when (p.24) is satisfied, and = 0 otherwise,
and
O(P) = dp, p,e™ %6, (5.28)

incorporates the fact that states with P; = Py, Py = 0 and 2™ = 11 are dropped out,
while those we P; # P or Py # 0 are counted twice with 1/2 multiplicity, just as in (B.1§).
Note that IIj,s(P)O(P) = O(P).

In addition, let us introduce the partition functions of the left-moving oscillator exci-
tations P*(a),

By = Try,. (14 g)gbogho = -~ & 2N ¢ i di(N)g"™ (5.29)
. Hosc 2 2 n24 77619(23 * e + ° °

The partition function for DH states (5.25) with positive parity for the right-moving ground
state is thus

25
Zp=AyBy+AB_=_— Y @2lgaiRIl,,(P) + S5 D 29329 O (P)
P611226 V2 PeI22.6
(5.30)
while, for DH states with negative right-moving parity, it is
1 142 102 25 142 102
ZV:A+B,+A,B+_—— > qrrgirIl My (P) — — g2 g29R O (P).
Pelr226 2P611226
(5.31)

Generalizing the terminology from the massless sectors, and consistent with the definition
in [f7), we shall refer to the states of the first type (5.3() as “massive hypermultiplets”,
and states of the second type (p.31)) as “massive vector multiplets”. Taking the difference,
we find the index

By=Zn—2v=—5 3 q29Lq2 RO (P). (5.32)
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The notation anticipates the fact, to be demonstrated shortly, that this index indeed co-
incides with second helicity supertrace. The chaotic BPS states thus cancel out from (s,
leaving only states with P; = P» and Py = 0. For these states, the indexed degeneracies

are thus counted by
26 _
98 = > dL (V)" (5.33)
2

Using the Rademacher formula, this is given asymptotically by
d“(N) ~ 2771 (277 N 1) . (5.34)

Note that the argument of the Bessel function is one half of its usual value, in agreement
with the fact that unbroken A/ = 4 supersymmetry in the untwisted sector leads to drastic
cancellations in the index .

Chaotic BPS states. While the BPS states cancel from the index 9, it is nevertheless
of interest to investigate their degeneracies, and exhibit their dependence on the moduli.
Let us therefore consider the sum

1
Zu+2Zv=— 3. ahgikll,(P). (5.35)

24
K Pelr22:6

Now, as in the (4,16) case, we need to rewrite (b.35) as a partition for the physical charges
Q = (Py + P3; P3). Let us therefore change basis to

P+ P,=25+7P (5.36)
P—P,=2A-7P (5.37)

where S, A both take values in the Eg root lattice, and P is an element of the finite group
Z = Ay (Eg)/2A, (Eg). When II;,s(P) = 1, it is easy to check that

1
1L(P)? ~ I, (Q(P)? = ~2(A — 2P)? - P}. (5.39)
This allows to rewrite (5.39) into

1 1 1
Zn+2v = =1y @O @I £y g) (5.39)
Qe

where Fg(q) is a sum over “unphysical charges”,

Folg) = 3 g B2PP 2 PiT, (S + A, S— A+ P, P, Py). (5.40)
AEE8[1]7P4EII4’4

Now, for generic moduli II;,, # 0 only for A = 0,P = 0, Py = 0, so that

Fola) =dpo- (5.41)
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At special moduli however, Fg(g) will be a non-trivial theta series. E.g., at the Eg x Eg
enhanced symmetry point with generic (non-rational) moduli for 774#, the BPS condition
puts Py = 0, however allows A, P to be purely leftmoving, leading to

_1
Fole)= > ¢B 2 =0ppp(1). (5.42)
AcEg(+1)

The absolute degeneracies of the DH states, counted by

1

arfole) == D AP (N)gN A (5.43)

will thus have different asymptotics at different points in moduli space,
s (N) ~ 1, (47r N— A) (5.44)

where the index of the Bessel function will be v = 13 for generic moduli, ¥ = 9 at moduli
where (5.49) is valid, and may take other values at different loci. Since the index v controls
the logarithmic correction to the entropy, the latter would in general depend on the moduli.
Note that in all cases, the index €25 is exponentially suppressed with respect to the absolute
number of BPS states in the untwisted sector.

Twisted sectors. Let us now briefly turn to the BPS states in the twisted sector of the
FHSV model. By a modular transformation, it is easy to see that the electric charges for
twisted sectors is

1
A1 = Eg <—§> & (112’2 + 6) (545)
DH states take the form
P () (1 ¥ eiﬂ<%P2+<PS+5>2>) |P; P +0) @ |t) @ |3) (5.46)

where |t) denotes one of the 20 twisted left-moving ground states, and |3) one of the 26 x 23
twisted right-moving ground states, in the Neveu-Schwarz or Ramond sector. DH states
with electric charges Q. = (P; Py) € A1 are now enumerated by the partition function

l iiQ_G ._ZQt (N) N-At (547)
2 oo = pag ) = 2 '

where the sign is that of —e”(%PQHPP’J”s)Q), and Ay = +1/4. Using the Rademacher
formula we obtain the asymptotics

QL (N) = 21, (47n/N = Ai> - (5.48)

Comparing with the macroscopic prediction (R.27) with ny = 12, we find agreement to
all orders in inverse charges. As in previous cases, the prescription ([.) however fails to

reproduce the “non-perturbative” corrections in (p.4§).
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Degeneracies vs. helicity supertraces Finally, let us rederive the above results using
the formalism of helicity partition functions. By the same reasoning as in (P.36), the
helicity partition function of the FHSV model reads

h h
_ ZyP 2| Zoo |2
INERIOHGE! 474 H ey H
ZH (v,5) = 2D 2 Zewe 12| x
riisv (v, ) Ta[n|* Qth I nf* 2
_ |« _ |« _ | a=h _ | a=h
e Gt G Cd e G A G
X = —1)“ @ 5.49
where X
Za3 H = D (1O g it (5.50)
2
pell?:?2

is the partition function for T2 orbifolded by a translation by the order 2 vector 6,

[SIEENIE
SISV

2

2} = Y @MiWghe (5.51)
6]]44
orb & |77|12
a4 H = 6T (h,g) # (0,0) (5.52)
6 [% 3}9[
212

Ir

are the partition functions of the orbifold T%/Zy, and Z.,, is the same as in (B:33). The
sum over spin structures can be performed using the Riemann identity, leaving

ovg 23| (g |2t5 | (o
5 (5)9 %_% (5)9 %_,_% (5)
ZFHSV Z 7.2‘77’4 774 X
h h
affaf] |
L ) e |2 5.53)
STt >

The leading trace comes at order v2, and does not receive any contribution from the
(h,g) = (0,0) sector, which has A = 4 supersymmetry:

1 16 al
By=—— Za2 |3 r
STy D, N H [

h
2 ] (5.54)
(h,9)#(0,0) O 2

or, equivalently,

[N NIE

1
16 9Eg[1](27)Z2,2 [%] HES[H(%)ZZ? [8] HES[H(TTH)ZQQ [

JE— + —
273 103 10} 003

By = ] . (5.55)

Identifying the numerators as the partition functions for the lattice Ag and A;, we directly
obtain the degeneracies (f.33) and (F.47). The contribution of the chaotic states can be
exhibited by looking at the fourth helicity supertrace €24.
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5.4 General N = 2 asymmetric orbifolds

Having described the FHSV model in detail, it is not too difficult to compute the degen-
eracies of DH states for arbitrary asymmetric orbifolds of the heterotic string on the torus
TS by a discrete group I'. We assume that the constraints level matching and anomaly
cancellation are satisfied, which still leaves a large class of possibilities. For simplicity we
will focus on the index of DH states in the untwisted sector. We discuss the twisted sector
states briefly at the end of this section.

Let I' is a discrete group, with an embedding R : I' — O(22) x O(6). The orbifold
group acts by shifts so that the action on momentum vectors is

glP) = WP R(g)P) . (5.56)
In R?26 with metric Diag(+1%2, —15) we can diagonalize the rotational part of R(g) as
R(g) = R(61(9)) @ --- & R(611(9)) ® R(2601(9)) ® R(6:(9)) © R(83(9)) (5.57)

where R(6) is the usual 2 x 2 rotation matrix

[ cos(27f) sin(270)
k(9) = <— sin(276) cos(2779)> ' (5:58)

We will sometimes denote 0;(g) = r;(g9)/N where N = |I'|. N’ = 2 supersymmetry requires
that 61 + 03 + 03 = 0 mod 1 so that their exists a complex combination Z of the charges
Iz (p) which is invariant under T', and which can be identified as the ' = 2 central charge.

The moduli are the boosts in O(22,6) commuting with the image R(I"). We consider
embeddings A C R?26 of 17?26 and let A(g) denote the sublattice of vectors fixed by the
group element g.

DH states in the untwisted sector are contained in the subspace of the 1-string Hilbert
space of the form

Hosc,L ® Hmom ® ﬂgnd . (559)

As already stressed in the FHSV model, even after imposing the level matching constraints,
it is still necessary to insert a projection Ily,s on states which satisfy the BPS condition

2 = |Z|?. The DH states can therefore be enumerated by introducing the partition
function for the momenta,

Terom <U2( ) Z qépzq%PQ 2WZ5(9)PHBPS(P) (560)
PeA(g

where U;(g) is the representation of g in each of the factor spaces, and for the left-moving
oscillators in the 22 internal directions,

11 .
TrHosc,L <U1( )qHy2J3> _ H —277( )Sln ﬂﬁj(g) (5.61)
j= 19[ +€()}(O;T)
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where we understand that 217 sin 70 (g) 1
—2n(1)sin7h;(g
! A VAN (5.62)

2 . n
’ [%wj(g)] (057)

if 0;(g) = 0. The contribution of the right-movers as well as the left-moving bosons in the

transverse directions can be written as

%%(—1)a+b+ab9 [i (v) H 0 E@i(g)] (0)

sinﬂéi
_[1 )
612 -|(0

ia)o

The sum over spin structures can be carried out by using the generalized Riemann iden-
tity (B.1J). In the supersymmetric case, this reduces to

w11

1=1,2,3
The ground state contribution is therefore

In particular, the zeroth and first helicity supertraces vanish, while

(5.63)

(5.64)

f E—éi(g)} (v/2) |

N[ N[

i) @2

NJI»—‘ [SIE

Qy = 2(sin 76(g))? (5.66)

where 05 = 0,6, = —f5 := 6 mod 1.

Now let us discuss the charge lattice. Suppose that k pairs of left-moving bosons are
fixed for all g € T'. Together with the 2 right-moving directions in the plane of 65 we have a
plane Q C R?26 of signature (2k,2). The vector-multiplet moduli come from the SO(2k, 2)
rotations in this plane. The number of U(1) vector fields is ny = 2k + 2. The projection of
A into the plane Q defines the charge lattice (in the untwisted sector) My. Let p: A — M
be the projection. States in the untwisted sector are labelled by P € I1?*% but we only
want to discuss degeneracies at a fixed Q € My. Using the BPS condition P2 = Q%, we

may rewrite:

3 g PEqaPhe2m D PI g oo (P) = 3 2929 F, (q) (5.67)
PeA(g) QEMy
where
Fooly= > qpPirQieridar (5.68)

PeA(g),p(P)=Q
The function (5.6§) is actually very simple in many important cases. For example if A(g) C
My, which is typical if the fixed space under the group element g coincides with Q then
we simply have F,0o(q) = e2™9(9)Q " For this reason it is useful to distinguish between
“minimal twists”, which leave only the subspace Q invariant (i.e. 0 < 6;(g) <1 for j > k)
and nonminimal twists. For nonminimal twists the kernel of ),; will be nontrivial and

Fg.0(q) will be a theta function.
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Putting all this together we find that the degeneracies of untwisted sector BPS states
are given by

04(Q) = e / dr ¢291q2% 2, (5.69)
11—k .
2w = NZ 2+2k [H —2sin70;(g)) ——— |w(9)Fyqlq)  (5.70)
ger ! CIETNI(E))
2+9J(g)

where w(g) is given by

(16 cos 76,1 (g) cos mha(g) cos mh3(g) w=abs
2(sin 70(g))? w=2
w(g) =1 3 (5.71)
b w=4
s
3 —(2— Ey(7)) w=06.

This formula is exact. Now let us determine its asymptotics. The general counting
function appearing in (5.69) is

(1) 2 3tH

=q¢ ! Z Ky(n)q" . (5.72)

1
=190, f/N](UlT) n>0
Together with the functions
24—t H +aJ/N (5.73)
Jj= 119 +b /N](OIT)

with 0 < aj,b; < N, the function K transforms as a matrix of dimension N x N and
modular weight w = ¢ — 12 under the congruence subgroup I'o(N,Z) of Si(2,7Z). In order
to apply the Rademacher formula, one must diagonalize the T" operator in the space spanned
by (b.73). After some computation, we find:

K(n) = |Ag|17w67iw2j(%fej)j17w (477 (n— 1)|Ag|> 4. (5.74)

and
1= k

gi=—14= Za (1-0;(9)), 0<0i(g) <1 (5.75)

is the ground-state energy in the left—moving sector twisted by g. We only get contributions
from g such that Ay < 0. In addition, there are non-perturbative corrections of order

Iy <47T\/(n -1)
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for ¢ such that A, + % < 0, and of order

I w (%W\/(n - 1)|A, + %y) (5.77)

for ¢ > 1. We conclude that the leading asymptotics for the degeneracies of untwisted DH

states from the minimal twists is (w # 6 here):

! 11—k
w3 wlohle) TT (~25inmhi(9)| 8 enim /18, 502) (5.78)

g€l minimal j=1
where
hg) = (_1)(1271%)/2 sjn(27r5(g)Q + sz Hj(g)) k even (5.79)
(—1)(11—]9/2 cos(27‘r6(g)Q + T Zj Hj(g)) k odd.
The prime?* on the sum indicates we only get contributions from ¢ such that A4 < 0. For

nonminimal twists there will be similar contributions as described above. In particular the
index on the Bessel function will be the same, but (5.75) receives an extra nonnegative
contribution from the shift §, and the coefficient |A,[¥+2 is modified (and still positive).
In some examples the leading asymptotics is provided by the minimal twists alone.

It is interesting to compare this with the twisted sectors. Since the sector (1, g) always
mixes with (g, 1) under modular transformation, and since the oscillator groundstate energy
is —1 in the untwisted sector, it is clear that for charges @@ corresponding to states in the
twisted sector the asymptotics will grow like

Tjto (@@) . (5.80)

This is true both for the absolute number of BPS states and for the supertraces. Recall
that k 42 = %(nv +2) for N = 2 compactifications, so we have agreement with ([.2§).

There are some interesting general lessons we can draw from the result (5.79). Due to
the factor h(g) it is possible that the leading I-Bessel functions cancel for certain directions
of Q. Moreover, a general feature of NV = 2 compactifications is that g = 1 does not
contribute to Qs in (f.78). Then, since |Ag| < 1 the degeneracies are exponentially smaller
in the untwisted sector compared to those of the twisted sector. We have seen explicit
examples of this above. In contrast, for N' = 4 compactifications, the g = 1 term does
contribute to 24, which thus has the same growth as in the twisted sector.

One general lesson seems to be that the degeneracies, and even their leading asymp-
totics can be sensitive functions of the “direction” of () in charge space. In general it is
quite possible that the exact BPS degeneracies and their asymptotics will be subtle arith-
metic functions of the charge vector .2° In the physics literature it is taken for granted
that there is a smooth function S : HV**(X,R) — R so that S(sQ) ~ logQ,(sQ) for

24The rest of this section is excerpted from @]
?5Such a phenomenon was conjectured based on other considerations in [E]
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s — 00, but the true situation might actually be much more subtle. The Rademacher ex-
pansion shows that Fourier coefficients of negative weight modular forms have well-defined
asymptotics governed by Bessel functions. On the other hand, by contrast, the Fourier
coefficients a,, of cusp forms of positive weight k& have a lot of “scatter” and can only be
described by a probability distribution for a, /n*~1/2 (see e.g. [B7] for an introduction to
this subject). As we have remarked above, certain supertraces do in fact have expressions
in terms of positive weight forms and we may expect the asymptotics to be expressed in
terms of such probability distributions. It would be very interesting to explore further this
dichotomy for the functions Q. (Q).

6. The black hole partition function

In this section we reconsider the black hole partition function, starting with what is known
about degeneracies of BPS states, and try to reproduce the structure of the topological
string free energy.

Since BPS degeneracies, even counted with signs, depend on the background vector
multiplet moduli ¢4 (due to jumps at marginal stability), one should specify the background
to properly define the partition sum. Furthermore, because the original OSV partition
function (T.4) (henceforth denoted as Zj) does not converge, a regularization needs to be
introduced. We will consider

Za =3 Qp, q) "' -roHBat), (6.1)
q

As we will see below, a suitable and natural choice for H(p,q;t) is the BPS energy. This
introduces additional explicit dependence on ¢, which formally disappears when o — 0.

For definitiveness we will work in the ITA picture. Since the topological string wave
function is defined as an expansion around an infinite radius point, a natural guess is that
we should take Q(p,q) to count the degeneracies in the corresponding large radius limit.
More precisely, we tentatively define

Qoo(p, g3 u) = A Qp,g;t =iRu), (6.2)

where Q(p, q;t) is an appropriate index counting the number of BPS states with charge
(p,q) on a Calabi-Yau with complexified Kihler form B + iw = t4.J4 and v is a fixed real
vector inside the Kéhler cone. Note that this definition of the degeneracies still depends
on the chosen direction u in the Kéhler cone.

For simplicity, we will again mainly consider the case p® = 0 in what follows. In the
R — oo limit, ITA BPS states are then described at vanishing string coupling gs by D4
branes wrapping a divisor S, with D2 and DO branes dissolved into it. For r D4 branes
on a rigid divisor S, the moduli space M of this system is the moduli space of semistable
rank r coherent sheaves on S, with fixed Chern classes ¢;.26 If the divisor is not rigid,

26In the case r = 1, instantons are always pointlike, and M is simply the Hilbert scheme of N = ¢o points
on S. Alternatively, one can turn on a B-field and consider noncommutative instantons, which are smooth
even if r = 1.
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M also includes deformations of S. At gs = 0, BPS ground states are in one to one
correspondence with cohomology classes on M. At finite g5, some of these may be lifted,

but the hyper—vector index €29 will remain invariant.

6.1 Rigid divisors

We first consider a class of examples for which the counting is under good control, namely
rigid divisors S, i.e. h*? = 10 = 0, wrapped by a single D4-brane (so r = 1), with N
DO-branes bound to it. We can always construct at least a noncompact Calabi-Yau X
containing S, namely the canonical line bundle over S. The simplest example is given by
S = P2, in which case X = O(—3) — P2. A compact example is given by a D4 wrapping
an Enriques surface S = K3/Zy in the FHSV Calabi-Yau threefold X = (T? x K3)/Z,.
These branes are dual to the twisted sector DH states in the dual heterotic model described
in section @

For a rigid divisor S, the moduli space My is simply the Hilbert scheme of N points
on S. The number of BPS states dy := dim H*(My) = x(My) is given by the generating

functi
unction .

n(g)x’

Z(q) =q D dng" = (6.3)
N

where x = h11(S) +2 is the Euler characteristic of S. We can also turn on U(1) gauge flux

F on S, which will induce D2 and DO brane charge but will otherwise not affect the moduli

space. Choosing a basis Cy of H?(S,Z) = Pic(S), which pulls back to a basis of Hclf)lct(/l’)

if X is the canonical line bundle over S, we get the following net D2 and D0 brane charges

qr = / JINF (6.4)
S

1 X
=—|N—- | cFANF-= 6.5
w < /S 2 24) (6.5)

1 X
=—(N—-=C"qrq;— = ). 6.6
(= 56 0 - 35) (6.6
Here O/ := (C~H!/ with Cr; := C; - Cj. The electric charges can in general have
nonintegral shifts:

c co(X)- S

qr € ‘;’I+Z, qoe—%—i—z. (6.7)

The class ¢, € H?(S,7Z) defines a spin® structure, and is equivalent, modulo two, to the
second Steifel-Whitney class. This charge quantization law follows from the K-theoretic
formulation of RR charges and is needed to cancel anomalies, both on the brane worldvol-
ume [BY] and on the fundamental string worldsheet [BY]. The magnetic charges are given
by the homology class of S. The Euler characteristic x(S) is determined in terms of these

magnetic charges only:
x=58*+e(X)-S. (6.8)

Using (6.6), we get:

Qoo(pa q; u) = dN:,qOJrécququJerz . (69)
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Note that in this case, the degeneracies are in fact independent of the choice of u. The
partition function ([L.4) becomes

Zy =Y dye "Nt uart g -mdla (6.10)
quI
= Z(e™") 0y(4°, ¢) (6.11)

where Z = 1/nX as in (p.3) and

Oo(¢°, 1) := Y e "5 s molar (6.12)

qr

Convergence of Z requires Re ° < 0. On the other hand C;; has signature (1, ! —1). In
particular the direction q; ~ Crju’ has positive norm squared. Therefore © is divergent.
This signals an instability of the ensemble.

A physically natural way to regularize the partition function is to add an energy
dependent Boltzmann factor as in (.1]). More precisely we will take

H(p,q;u) := }%ggo(M(p,q;iRU) — M(p,0;i Ru)), (6.13)

with M (p, ¢;t) the mass in string units of a BPS state with charges p, ¢ at the point ¢ in
moduli space. We subtracted the ¢ = 0 energy to get a finite result in the limit R — oo.
Normalizing v for convenience such that Cyjulu’ := 1, we get

R?| R?
H = li i Rgu! — —| — — 6.14
= —qo + (qru’)?. (6.15)

Alternatively we could have obtained this by simply evaluating the U(1) Yang-Mills action
on S coupled to DO-branes, to which the DBI action reduces in the limit R — oc.
For —Rea < Re ¢’ < Rea, the modified partition sum (f.1]) is convergent:

Zo = Z(e"")) 0,(¢°, ") (6.16)
with
Oa (¢, 1) i= Y e Boa s —mlar (6.17)
qr
gt = (¢" — )" +2aulu’ . (6.18)

The quadratic form g’/ has positive definite real part in the range of ¢° specified above. In
particular, the previously problematic direction q; = Cryu’ now gives g./qrq; = ¢° + o,
which has positive real part. Furthermore, using det C!7/ = (—1)h1’1_1, we get det gl =
(a — gbo)hl’l_l(a + ¢%) and similarly for det Re g’/ by replacing the factors by their real

parts. Note that this is indeed positive.
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Now that we have a convergent expression, we can perform a Poisson resummation

on O©:

Ou(0”.0') =23 (o= ¢°) "2 (a4 ") 73 3 BT AT 2k (g 1)
k:I

with ¢, s as in (B.7) and

= (bo — aC mﬂ[ﬂj (620)

with uy := Cryu’.
Finally, we do a modular transformation on Z = 1/nX:

Z(e™9" =)y = 273 (o — ¢0)§z(e¢g%a) , (6.21)

Combining this with (6.19) and using y = ™! 4+ 2 and the product formula for 1 gives

_¢0 _(bO 1/2 drn N\ —X
Z“:az <Z+¢o> 1;[(1_e¢0—a) %

XZexp( )+ 2g,J(¢f+22k1)(¢J+22kJ)+2 mik! 21> (6.22)

Inverting (B.])), we thus get

Qoo(p, q) — / | d¢0/ 'dqbl ewq¢¢>i+aH(P7Q;u) Za(qbo,gbl;u). (6.23)

Note that the sum over k&’ in (.23) can be dropped by extending the domain of the integrals
over ¢! to (—ioco, +i00). Furthermore, by definition, the expression is independent of «
(and u), so we can take the limit o« — 0, which formally gives

/ d¢0/ d(b f ¢O ( SS;;(?S+WCII¢I¢J+QO¢O+QI¢) (624)
where we used (f.§) to express x in terms of the magnetic charge given by S, and we
defined )

4mn \ —
H) =2 H ( e ) . (6.25)

The integral () is somewhat formal, because of the oscillatory gaussian integral and
the infinite product in (6.25) which is not well behaved on the imaginary axis. From the
above we know however that it is unambiguously defined as the limit @ — 0+ of the same
integral with replacements

20

¢’ —¢"—a, Cry—Cry— o

uruy - (6.26)
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Comparison with the topological string. Comparing to ({.11), we see that the quan-
tity in the exponential in (.24) is exactly the perturbative part of the free energy derived
from the topological string amplitude.?” Let us elaborate a bit on the term quadratic in ¢.
On the topological string side, it corresponds to the term Cy B(bAqﬁB with Cap := Capcp®
and A, B :1,...,bo(X). The integers C'4p give the intersection products of the pullbacks
of a basis of HM!(X) to S. Since h*°(S) = 0, these pullbacks span all of H?(S), and
Cap has rank by(S). Note that in general this can be smaller than by(X). After a suit-
able change of ¢ variables, we can thus rewrite the term Capo?é? as Crs¢'¢’, with
I =1,...,b5(8) and Cy; the intersection form on H?(S) as defined before. The remain-
ing ¢4 with A = bo(S) + 1,...,ba(X) no longer appear in the perturbative part of the
supergravity free energy, and the latter thus reduces to the “S-local” expression in the
exponential in (f.24).

Clearly however, at least for this simple class of wrapped D-branes, the Gromov-Witten
part of the topological string free energy is not generated by the BPS partition sum. In
particular there is no ¢! dependence apart from the quadratic term, whereas typically
the Gromov-Witten series is a very complicated function of the ¢!. The infinite product
in f(¢") looks somewhat like the infinite products appearing in the Gopakumar-Vafa for-
mula (fL.10) for the topological string wave function but actually does not seem to have
any obvious interpretation in this context. It depends only on ¢, so it would have to come
from the homologically trivial worldsheet sector, which however has a quite different form.

At large |qol, the integral is well approximated by a saddle point evaluation, and at
the saddle point, ¢ will be small and negative, so the infinite product in f(¢°) will be
exponentially close to 1. Dropping this factor will therefore merely give exponentially small
deviations from the exact answer. This is not so however for the additional ¢° factor, which
does not appear on the topological string side of the conjecture. On the other hand, we
just saw that Ab := by(X) — ba(S) of the ¢ decouple from the perturbative part of the
free energy on the topological string side. Moreover these ¢# have a natural periodicity
#°, so integrating them out would naturally give an additional factor (¢°)2?. In the FHSV
example with S an Enriques surface, we have Ab = 1, hence for large gy this procedure
leads to complete agreement between microscopic and perturbative macroscopic answers,
up to exponentially suppressed terms. This agrees with what we found in section f.3, and
will hold similarly for more general K3-fibered examples.

However, more generally, it need not be true that Ab = 1. One can easily imagine
simple divisors S of low b9(S) embedded in a Calabi-Yau X with large ba(X). In those
cases the discrepancy by a factor of ¢° cannot be compensated by taking into account the
decoupled integrals. Perhaps a better prescription would therefore be to simply discard
all decoupled integrals, restricting only to the “local” variables, and adding a factor ¢° by
hand as a universal measure contribution.

2TNote that our basis of charges indeed has a cubic prepotential, as assumed in () In such a basis the
electric charges of D4-brane states will in general have nonintegral shifts. By substituting go — no — (c2 -
S)/24 and qr — nr + ¢s,1/2 in accordance with the quantization shifts (@)7 we get the free energy in an
integral basis. The additional terms proportional to the charge shifts correspond to the linear resp. quadratic
terms in the prepotential which indeed generally appear for such a basis.
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It should be noted though that the rigid divisors we are considering here are not ample
(ample divisors have typically many moduli and always give a nondegenerate D 4p). This
implies that the attractor point computed from the perturbative part of the prepotential
will not lie inside the Kahler cone, so there is a priori no reason whatsoever to expect any
agreement between the microscopic degeneracies and the macroscopic prediction computed
with only the perturbative part of the prepotential. The fact that (modulo the small issue
of the ¢¥ factor) there is nevertheless agreement to all orders in 1/|qo| is therefore very
remarkable.

A remark on k-shifts. The expression (.29) for the partition function contains a sum
over shifts labelled by k. This gives Z the required periodicity in ¢*. It is easy to see that
this sum over k-shifts will be a general feature of the partition function if one assumes the
integral form of the conjecture,

Qp,q) ~ / A FIHHF) (6.27)

where the integrations are over the imaginary axis. Indeed, substituting this in ([.4) gives

Zo ~ / dg' ¥ (@) Zemq(d’%f ) (6.28)

q

Assuming ¢ is quantized as ¢ = ¢ + s with ¢ € Z, and using Zq e?miar = N~ §(z — k), this
gives

Zo ~ Z e]-'(¢+2ik)+27ris-k ’ (6.29)

kEZ

which is precisely the k-shift structure found above. Note however that (5.23) does not
contain a sum over k°. This is related to the fact that the integrand in ([5.24) is periodic in
¢° and that the ¢ integral is over one period. In principle, by modifying the integrand, one
could try to convert this again to an integral over the entire imaginary axis, and then the
expression of Z derived from this modified integrand will also contain as sum over £°. In
practice, such modifications do not affect the 1/N expansion of (f.24), since this depends
only on the neighborhood of the saddle point.

6.2 K3 divisors in K3 x T2

The rigid examples considered thus far are rather special. In particular we only considered
the rank » = 1 case. To see if perhaps we reproduce more of the topological string amplitude
in some large 7 limit, we apply the same idea to our basic example, X = K3 x T2, with
r = p! coincident D4-branes on S = K3.

The degeneracies are now given by

. 1
Qoo (P, 90,91, @) = 0y 0P24(N), N =1—qop' + 562- (6.30)

where ¢ € II'¥3. The factor 04,0 arises because in the R — oo limit, there are no
bound states of D-branes with 6 mutually Dirichlet-Neumann directions. This also fits
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with the fact that there is no attractor point when ¢; # 0. At finite R and sufficiently
large ¢ or B-field, BPS states with nonzero q; may appear [00-PJ]. The supergravity
solutions corresponding to those states will be multicentered, decaying at some point when
R — oo [P4-Pg]. Since we are considering the strict limit R — oo here, we do not need to
consider these.

The computation of the partition function is similar to the previous subsection. There
is one new element: in solving the level matching condition for qg, we must ensure integrality
of qo = —I%(N —1—¢?/2). This is easily achieved by inserting a projector:

p—l 0 -
—27 - rl (N=1-3%/2)—7d-q
zo-§j S L) () A V)i (6.31)
Nq k0=0

As before, this sum is divergent, but can again be regularized.?® We will not do this in
detail, but use its existence as justification for the formal manipulations in the following.

Carrying out the sum over N, we get

p'—1 -
Z 77724 ¢0 2Zk0 /p Z ei pl (¢0 2lk0) ¢q . (6.32)
kE0=0 q

Finally, performing a modular transformation on the Dedekind function and a Poisson
resummation over ¢, we obtain the main formula of this subsection:

L — 2ik)? _ampl
= 2 — 2ik%) Z exp(ﬁw — log n** (edﬁ—gik‘))) . (6.33)

2 0 — 2ik0
k0=0 kel3:19 ¢

This is very similar to what we found in section .1, with the addition of a finite sum over

shifts of @Y. We can also write this in integral form:

0 0 p'¢? oa (Bl 0 7
p.q) = / o / a3 oxp( 5o ~tog?! () e +7.3) . (03)
which should be compared to the conjectured
2 1 2m(pl +ipl) 27 (pl —iph) -
p.0)= [ d'detdd exp<2 g;ff logiPt (e T ) —logrPt(e )+QO¢O+<7'¢>

(6.35)
This is similar to the exact expression (B.34), but clearly not quite the same. Working

formally, we can fourier expand the 1/5?* functions in (p.35) and integrate ¢! over (0, ¢").
This gives

4ﬂp1

? _ —
2.0 | d¢°d¢¢°exp<2 B —i—logz pa(n))%e 1)+qo¢0+<7-¢>. (6.36)

ZBecause the D2 charge lattice now has 3 positive norm squared directions, spanned by (w, ReQ, Im Q),
where w is the Kahler form and €2 the holomorphic 2-form on K3, the regularization will involve 2 as well
as w. This is special to cases with A" = 4 supersymmetry.
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Unfortunately, this differs from (p.34)) in that po4(IN) appears squared here, but not so in
the expansion of the 1/n?* in (5.34).

In conclusion, at least for the case of K3, we see that considering arbitrary rank still
does not fully reproduce the topological amplitude.

6.3 General case and monodromy invariance

Despite the arbitrary rank, the K3 case is still somewhat degenerate, insofar as it does not
correspond to a regular, “large” black hole. Unfortunately, exact counting of microstates
of general D4-D2-D0 systems is considerably harder than the cases we considered so far.
However, some information about the form of the partition function can be obtained purely
from monodromy invariance, where the monodromy under consideration is around large
radius, i.e. integral shifts of the B-field.

To make this precise, let us first review the general relation of electric and magnetic
charges to microscopic quantities. The magnetic charge of r coincident D4-branes wrapped
around a divisor S = mAJy is pA = rmA. The D0 and D2 electric charges gy and ga
corresponding to a rank r coherent sheaf with Chern classes ¢; are given by

1
qa = / L*JA A\ <Cl + —TCS> (637)
g 2
A 1 1 S|
qQ = _<2_7" - /S > (cl t3 rcs> ~ 91 rx(S)> (6.38)

with A := / 2rcy + (1 —7)c3 . (6.39)
S

Here ¢ is again the Chern class of a spin® structure on S, as discussed earlier, x(S) =
S3 4+ ¢2(X) - S is the Euler characteristic of S, +* is the pullback map to S, and A is the
Bogomolov discriminant [p7, P§|. For semistable sheaves A > 0. When A is sufficiently
large, the dimension of the sheaf moduli space is d = A — (r2 — 1)x(Og). As before, the
electric charges as defined above in general may have nonintegral shifts. More precisely

re(X)-S

TC&A +Z, o0

2

qa € +7Z. (6.40)

One universal feature of the D-brane moduli space M in the limit R — oo is that it is
invariant under monodromy of the charges around large radius. These monodromies can
be thought of as induced by shifts B — B + n4J4, n € Z. At the level of sheaves, this
corresponds to tensoring with a line bundle, which maps

c1 — 1+ g

and leaves A invariant. The w-stability condition for sheaves is that every subsheaf of
rank 7' and first Chern class ¢] must satisfy ¢} - w/r’ < ¢; - w/r (with w the Kéhler form),
so monodromy does not affect this condition and the BPS spectrum is preserved.?? The

29This is only true for physical BPS states when R = co. At finite R, II-stability is the proper phys-
ical criterion rather than w-stability @, @] For any arbitrarily large but fixed R, Il-stability becomes
qualitatively different from w-stability for sufficiently large charges ga.
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monodromy action on the charges is

.
qo — qo + qan” + §CABnAnB , qa — qa +rCapn®, (6.41)

where Cup = Capcm©. The shift by ¢, in (b-37) is precisely such that the change
in qp is guaranteed to be integral. Invariance of the degeneracies Qo (p,q;u) under this
transformation implies that they will only depend on the monodromy invariant A and a
label s in a finite set giving the value of the D2 charge modulo monodromies. The number
of monodromy inequivalent classes grows with P. Nevertheless, at any finite value of P,
monodromy invariance constrains the ¢*-dependence of the partition sum to be given by
a finite sum of theta functions.

To see this, let us consider the unregularized partition function ([[.4) and work formally
(this can again be regularized and justified as before). We write g4 = s4 + rCapn®,
where s4 parametrizes D2-charges modulo monodromies and n? € Z. Assuming Cap is
nondegenerate, the s 4 take values in a finite set Q of order |det rCap|. Correspondingly,
we decompose the partition sum as

Zo= 3 Quelp.qo,sa +rCapn;u)e @ wretsatetrCann®) (6 49)

qo,54,m4

Using monodromy invariance and shifting go then gives

Zo= > Qoolp,qo—san™ - gCABnAnB  sazu) e a0t tsatotrCann®l (6 43)

q0,5.4,n4

= Z QOO (p7 q67 SA7 u) eiﬂ—[d)oq({)*»d)o(SAnA+%CABnAnB)JF(bASAJF(bAT‘CABnB} (644)
qf,s.a,mA

=) Z.(¢°) 0s(¢", 0. (6.45)
s€Q

In the last line we defined

Z,(6%) =3 Quolp, qo, s.43u) ™0 (6.46)
q0
0
@S(¢07 ¢A) — Z efw[%CABnAanLnA(sA¢0+rCAB¢B)+¢>AsA] . (6.47)
nl

Thus we see that the ¢** dependence of the partition sum is given by a finite sum of theta
functions ©g. After a modular transformation, this could be brought in a form analogous
to (6.33), but in any case, the ¢4 dependence will still be given by a finite sum of theta

30This is guaranteed if S is very ample. In other cases, such as the K3 example studied above, it
may happen that the ga induced on S take values in a linear subspace of the full charge space (because
(2 H?(X) — H?(S) fails to be injective), so the quadratic form Cap will be degenerate. In such cases,
we can restrict to that linear subspace, generically the restricted quadratic form will be invertible, and
essentially all of what follows goes through. If the restricted quadratic form is still degenerate, there will be
an infinite number of monodromy inequivalent classes, and the discussion needs to be changed somewhat.

,64,



functions. Brought in integral form, analogous to (.34), this will give a finite sum of
gaussian functions in the ¢*.

This should be compared to the ¢ dependence of the topological string amplitude
squared, which is given by an intricate series of instanton corrections determined by a
typically infinite set of Gromov-Witten invariants, or by an infinite product determined
by the likewise infinite set of BPS invariants. It is of course very unlikely that this will in
general match a finite set of gaussian functions.

However, when P = rS — oo, the number of these gaussian terms goes to infinity.
Therefore, this result does not contradict the weaker form of the conjecture, i.e. asymptot-
ically for P — oo.

Clearly, more results on exact BPS degeneracies of D-brane systems corresponding to
large black holes would be very useful to make further progress using the approach of this
section.

7. Conclusion

In this work, we have studied the detailed degeneracies of small black holes, using their dual
description as perturbative heterotic BPS states. The comparison with the macroscopic
Bekenstein-Hawking-Wald entropy including the leading R? corrections, and assuming a
mixed statistical ensemble, shows a remarkable agreement to all orders in an asymptotic
expansion in inverse charges, in a large set of models with N’ = 2 and N = 4 supersymme-
try. At the same time, we found apparent discrepancies in special models, where however
the macroscopic computation is not under good control since the moduli are attracted to
the boundary of the Kéahler cone. It would be very interesting to generalize our analysis to
the case of “large” black holes, with non-vanishing entropy at tree-level, where these effects
do not occur. This would require improving our understanding of the effective conformal
field theory which describes the micro-states. It would also be interesting to understand
the relation with other approaches which postulate a statistical ensemble [I§—[§], or more
drastically trade the singular black hole geometry with a sum over smooth geometries [P9.
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A. The Rademacher expansion

Here we state briefly the Rademacher expansion. For more details and information see [&].
Suppose we have a “vector-valued nearly holomorphic modular form,” i.e., a collection
of functions f,(7) which form a finite-dimensional unitary representation of the modular
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group of weight w < 0. Under the standard generators we have

fulr +1) = 80 f,(7) (A1)
i~ 1) = S, (+2)

We assume the f,(7) have no singularities for 7 in the upper half plane, except at the cusps
Q Uioco. We may assume they have an absolutely convergent Fourier expansion

fulT) = g Z F,,(m)q™ w=1,...,r (A.3)

m>0

with F,,(0) # 0 and that the A, are real. We wish to give a formula for the Fourier
coefficients F),(m).
Define:

€+i00

I,(2) = —i(2n)” /

€—100

pv—Lo(t+2%/(41) gy — 27T<4i> I,(2) (A.4)

™

for Re(v) > 0,e > 0, where I,(z) is the standard modified Bessel function of the first kind.

Then we have:

(e 9] T

F,(n) = ZZCU’_QKK(TL, v, m, [t; c) Z F,,(m) x

c=1p=1 m+A, <0

- 4
X‘m—l—AM‘liwIl_w [%\/‘W+AM’(H+AV):| . (A5)

The coefficients K¢(n,v, m, u;c) are generalized Kloosterman sums, defined as

Kitn,vsm, pie) = Y e2TeEAIN (g, ) te2miEm &) (A.6)
0<d<c;dNe=1

where
Yed = (Z (ad ;1)/ C) (A7)

is an element of Si(2,Z) and M(v) its matrix representation. For ¢ = 1 in particular, we
have:

Ké(n,v,m,p;c=1) = SV_M1 . (A.8)

The series ([A.F) is convergent. Moreover the asymptotics of I,, for large Re(z) is given by

o7 _ _ _ a2 _ a2y, _ K2
)~ [i - (M821)+(N 2}()&)2 ) (u 1)(;@3)2(# )] (A.9)

where p = 412,
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B. Modular cornucopia

In this section, we collect definitions and useful identities of modular forms. The Jacobi
theta function is defined by3!

Ln—a)? 2ri(v—b)(n—a
Ol (v]r) =D gz Zrilv=bin=a), (B.1)
nez

where a, b are real and ¢ = €™, It satisfies the modular properties

OI(elr +1) = DG, (of7) (B2)
01 (£1- 1) = =gl aln). (8.3

The Jacobi-Erderlyi theta functions are the values at half periods,

et = o[ et ontin) =0 2o,
0
1

B = 0o a0

} (2]7). (B.4)

In particular,
1 .
61<3 —;> = iv/—ire™ /70, (v, 7). (B.5)

)
T

The Dedekind n function is defined as

M"

n(r) =q= [JQ-q"). (B.6)
n=1

It satisfies the modular property

. (—%) = V(). (B.7)

It is related to the Jacobi-Erderlyi theta functions by the identities

0
%61(?})’@:0 =27 773(7')

02(0|7)03(0|7)04(0|7) = om3 .

—~
&
°3

~—

The Riemann identity allows to carry out sums over spin structures,

1 4 a
% Z (—1)atb+ab Ha[z}(vi) = —H 61 (v}), (B.10)

where

/

1 1
vi = 5(—01 + vy + v3 + v4), Vg = 5(”1 — vz +v3 + v4), (B.11)

31This differs from the definition in [@] by a factor of 2 in the characteristics.
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/ 1 /

1
1)3:5(@1—1—1)2—03—1-114)7 vy = 5(v1 +va +v3 —vg). (B.12)

5(
A generalized form holds provided )", h; =, 9; =0

% Zl: (-1 a+b+abH9{b+gz} ;) = ﬁg[l gl} (B.13)

a,b=0 =1

The Jacobi and Dedekind function satisfy the following “doubling identities”:

B 11C0) P U1 o) QPN 1) )
bolr) = T () = e ur) = 5 (B.14a)
0(27) = iz 62(r) — 02(r), (27 = \f 62(r) + 62(r) (B.14b)
04(27) = \/03(1)04(7), n(27) = 2723023 (7)(05(r)04 (7)) /0 (B.14c)

@(%) = /205 (1)03(1) 03<1> = \/03(r) + 62(7) (B.14d)
(5) = Vo - 50 <> 27106}/ () (0 (7) (B.14¢)
6 <7‘2H> = % /205(7) ( > 03 (7 )+292( ) (B.14f)
&<r§w:: 03(r) — i63(7) C' >_2”6M9/(M%(WMﬂW6(BM@

3

(2T)n< > ( )> e 2437 (B.14h)

Another convenient set of modular forms are the Eisenstein series,

12 4 = ng"
Ey = _iwaT logn =1 24321 T—g (B.15)
E :1(198+198+198):1+240 EOO n’q" (B.16)
I 4\ (94 4\ (94 4 _
Es = 5 (92 +93) (93 +93) (91— 02) =1 504§j1_q (B.17)

E4 and Eg have modular weight 4 and 6, and generate the ring of modular forms under
Sl(2,Z). E, is not a proper modular form as it transforms inhomogeneously under the
modular group.

It is also useful to define the following function

_ I (1-¢")° _ sinmo Y
5(’0) - H (1 _ qneZWiv)(l _ qne—Zﬂ'iv) T 191(11)) : (B18)

n=1

which often appears in generating functions of helicity supertraces. Its first v-derivatives

at v =0 are )

§0=1,  £O)=0, N0)=-F01-E). (B.19)
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C. Counting J =0 DH states in the (4,24) model

Although there do not exist regular BPS spherically symmetric spinning black hole solutions
of the tree-level supergravity, heterotic DH states in general may carry angular momentum
J. It is conceivable that these states correspond to multi-centered black holes, or require
the inclusion of higher derivative corrections. In this section, we examine the degeneracies
of DH states in Het/T® with a prescribed value of the angular momentum .J, and show that
the restriction to DH states with J = 0 leads to different subleading corrections for the
entropy as compared to the case where all values of the angular momentum are summed
over. This suggests that the statistical ensemble implicit in the Bekenstein-Hawking-Wald
entropy allows for arbitrary fluctuations of the angular momentum, at vanishing potential
Q) conjugate to J.

Let us start by recalling that the angular momentum of DH states arises from bosonic
and fermionic oscillators in the two non-compact coordinates transverse to the light-cone.
Right-moving oscillators map one state to another in the same supersymmetry multiplet
(unless they break the BPS property), so the angular momentum of the highest weight state
of a given multiplet arises from left-movers only. Introducing a parameter v conjugate to
the left-moving helicity J3L of the highest weight, the partition function of DH states is

given by
3 sin v

()01 (vs7)

Using 67(0) = 2773, this reproduces (.41) when v = 0. The right-hand side of this
equation may be viewed ([C.1)) as the character of the trivial representation of affine S1(2),

Qu(v,q) = Te[(Jf) e E gLogho) = (C.1)

and decomposed into contributions of fixed U(1) charge using a generalization of the Kac-

Peterson formula,

2

2q1/8 sin v > i — T i
ng(z)kzmz Z XMk (7). (C.2)

The SI(2,R) level k string functions &30 have been computed in [Lod, [L0T] and read

oo _ dmE iy N 12 (2fom| +1)n—2ml]
e = 1+(1+qm)2(—1)nq2n T (C.3)

n=1

(Notice that the level k does not affect the spectrum, except for an overall shift.) This allows
us to extract the partition function of states of given left-moving helicity m = hy > 0,

3 _1_m?4=0 3 m m - n, L[n2+2m+1)n
Zna(m,q) = orq* "% g = g (q +(14¢™) > (—1)"g2l e+ }>- (C4)

n=1

Since each multiplet of spin J contributes 2J + 1 states with m ranging from —J to J, one
can obtain the partition function of given angular momentum J by

Zspin(J> Q) = Zhel(Ja Q) - Zhel(J + LQ) . (C5)
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Using ([C.3), this may be rewritten as

3 Sy A n
Zspin(J,q) = pyen <1+q +(2+¢" +q U Z(_1) g3n*+ @7+ }> (C.6)
n=1
In particular, for J = 0, we find Zgpin(0,q) = 7%4 - So(q) where
So(q) =1-3¢+¢*+3¢° —¢° =3¢+ --- (1+3) Y (~1)rgz D=1 (C.7)
n=1

Working out ([C.5) at low levels, we obtain (up to an overall factor of 3/2)

J=0:q¢"1+ 21 + 253¢q + 2255¢> + 16446¢> + - - -
J=1: 1 + 22 + 276¢%> + 2552¢% + ---

C.8
J=2: q +22¢> +217¢ + .- (C-8)
J=3: q? + 22¢3 + -
reproducing the total partition function,
- 3 /(1
Z(q) =Y (2] + 1) Zpin(J, @) = 5 (— + 24 + 324¢ + 3200¢> + 25650¢° + - - > (C.9)
q
J=0

(notice that the degeneracy of each Regge trajectory stabilize to a constant as the excitation
level becomes large, 1,22,277,2576,19574,...)

Let us now extract the asymptotics of the degeneracies Q(J; N). Although the string
functions have modular weight —1/2, their behavior under modular transformations is
ill-understood, so that the Rademacher formula does not apply directly. Relatedly, the
partition function ([C.1) is not a weak Jacobi form. Nevertheless, we may try and obtain
the leading asymptotics by saddle point methods.?? Using ([C.1]) and ([C.§), we have

.2

iL+= 1
Qupin (N, J) = 4i / Cdr / dp e 2N =Dr2im(J+ 5o S TY (C.10)
P g1 0 n21(1) 61 (v, 7)

In this expression, the range of the 7 integration is chosen such that it corresponds to a

small circle around the origin in the ¢ = 2™ variable. Using the modular properties (B.5)

and (B.1) and approximating n(—1/7) ~ §"/%*,601(v/7, —1/7) ~ 2¢*/8sin(mv/7) with § =

e~ 2m/T we obtain
L4 1 )
Qupin(N, J) ~ —2i / T (i / do &2V D74 2 i 2in(g o S (T0)
pin(V: s 0 sin(mo/7)

(C.11)

Rescaling the variables as

x J+1/2

= y=-""Z4, C.12
TTUN 1 N1 Y (C12)

32Degeneracies of strings with prescribed angular momentum were studied in @], for a different scaling
of the charges.
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the integral becomes

. J+i
— 12 sin? mx(y —m 2_)

5%MMﬂ~—%/w@< “ > [ VN-1
N -1 COS(Wy\/m)

. 1 (J+%)2 1.2
2mivN=-1| —z+3+toe—x=5—+37y

(C.13)

Xe

Unfortunately, saddle point methods do not seem to apply straightforwardly, due to the
large oscillations in the denominator. For J = 0, we find numerically that

Qupin(N, J = 0) ~ N73/4eAmVN (C.14)

which is suppressed by O(N~3/2) compared to the all-J result (2.14). In particular, the
success of the OSV conjecture appears to depend on choosing an ensemble where the
angular momentum is free to fluctuate at zero conjugate potential €2 = 0.

D. Other Het(4,ny) and Het(2,ny) models

In this appendix, we discuss other heterotic orbifold models with N = 4 or N = 2 super-
symmetry and reduced rank. We start with a different construction of the (4,16) model
discussed in section B.3, now based on the SO(32) heterotic string in ten dimensions. This

construction can be easily generalized to produce models with rank 12, 10 and 9.

D.1 Another Het(4,16) model

As explained in [[£J], the heterotic string at a point of enhanced symmetry SO(16) x SO(16)
may be obtained by orbifolding the SO(32) heterotic string compactified on S; by a Zs
action g1, which shifts the U(1) charges of 8 out of the 16 left-moving bosons by half a
unit, as well as acts by a translation by half a period along the circle S;. The partition
function is most easily written by decomposing the level 1 characters of SO(32) under
SO(16) x SO(16), using the general formula

Oon = 0,0, + ViV, (D.1)
Van = OnVip + VO, (D.2)
Son = SnSn + CnCh (D.3)
Con = SnCh + CpSp (D.4)

relating the level 1 characters of SO(2n) in the O,V,S,C conjugacy classes to the level
1 characters of SO(n). Either of them are expressed in terms of free fermion partition

functions,

<1O/Z> = % <9§/2 + 92/2> ’ <ZZ> _ % <9£z/2 " (—1'91)"/2) ‘ (D.5)
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In this fashion, the partition function for the Narain lattice I'; 17 at the SO(16) x SO(16)
point can be written as

1 1 1 1 1
e LI > 0] + 5211 m 0303 + 5211 M 0505 + 5211 [

a,b=0,1

N[ N[

] 65608  (D.6)

or, decomposing into the various sectors,

Z9 (016016 + S16516) + Z° (VigVis + C16C16) +
1 1
+23 (016516 + S16016) + Z2 (V16C16 + C16Vi16) (D.7)
where .
ofblnll) e
2

denotes the projected lattice sum in the h-th twisted sector. Compactifying this model
further on ] x T to four dimensions, we may now take a further Z, freely acting orbifold
which exchanges the two SO(16) factors and acts as a translation by half a period on Sj:
the untwisted, unprojected sector contributes

Zs.s 18] + Zo | Zss 18] = Zo |
1 (016016 + S16516) + 1 (VieVie + Ci6Che) +
Lo Lo Lo 1o
wlloal] el
+ 1 (016516 + S16016) 1 (Vi6C16 + C16Vi6) (D.9)

while the untwisted, projected sector reads

oo [§1] 203

11 Z6.6 {83] —Z6,6 [00
22 2
4

11
22
4

[016(27) + S16(27)] +

[‘/16(2T) + 016(27')] .
(D.10)

The twisted, unprojected sector can be obtained by modular S transformation,
0l ol 11
Z6,6 [03] + Z6,6 [00 } Z6,6 [03] — Z6,6 [0202}
0w (3) + 50 (3)] + Vo () + € (5))
1 16 {5 16 {5 1 16 {5 16 {5
(D.11)
and finally, the twisted, projected sector is obtained by a further T transformation,

Zog |°2| + Zog |23
Bl oy )
16 16\ — &~
4 2 2
o} 1
Z66[01]_Z66[11:|
6 loL 6 (11 1 1
T 2 y 22 [Vw(T; >+016<T; >] (D.12)

In order to obtain the degeneracies of states with given electric charges under the diagonal
SO(16), we need to change basis and rewrite the product of level 1 characters in (D.9) into
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a sum of products of Dg = SO(16) level 2 theta functions with characteristics. One may
check that the finite group Dg/2Ds decomposes into 7 orbits, with respective length 1, 1,
1, 1, 56, 140, 56 corresponding to (i) the orbit of the origin (ii) the orbits of one half the
highest weights of the (level 1) V,S,C representations (iii) the orbits of the highest weights
of the (level 2) Ay,A4,A¢ representations, of dimension 120, 1820 and 8008. In cases (i) and
(ii), the theta function with characteristics is simply obtained by doubling the argument
of the level 1 case, i.e.

9D8[2};O(T) = 016(2T) s 9D8[2};V(T) = V16(2T) s etc. (D.l?))

while, in case (iii), an explicit computation shows that

O ps[2);120(T) = %9592(27)7 0 pg[2);1820(T) = %93‘9?‘5(27)7 0ps[21;:8008(T) = %93932,(27)
(D.14)
Generalizing the identity (B.2J), we may now use these theta series to decompose the
product of two level-1 theta series into a sum of products of level-2 theta series:

0% = Ohga10 T Obsp21:0 T Obgi0 + Ogaio +

+56 07,127,120 + 135 0B, 311800 + 56 0, 21,8008 (D.15)
Vit = 20p,2:00D5(21:v + 20p4[21:50Ds 210 +

+56 07,137,120 + 1350 311800 + 56 0, 21,5008 (D.16)
Ste =2 Ops121;00D5121;5 + 2 0pg[2),v0Ds ;0 +

+1120 p 211200 D 2158008 + 135 0211820 (D.17)
CTs = 20p,21,00D4)2):c + 20p4[2:v0Ds[2);5 +

+1120 211200 D 2158008 + 135 00,1800 (D.18)

As in (B.25), we view each term on the right hand side as the product of the partition
function for the lattice of physical electric charges P; + Ps, times the partition function of
the lattice of unphysical electric charges P, — P,. It is the latter which, together with the
partition function of the oscillators, determines the degeneracies of DH states.

In all cases, the level-2 theta series with characteristics are modular forms of weight
4. Taking into account the action on the left-moving bosonic oscillators, we find that the

degeneracies in the untwisted sector are enumerated by

1 (g2 2403
(T (1)

where A is any element in the finite group Dg/2Dg, while those in the twisted sectors are
counted by

1 1 1
N =t =] (D.20)
2 (771279?1 ?71219%)

In particular, the asymptotics are governed by the same formulae (8.3(). As in any N = 4

heterotic models, the absolute degeneracies are equal to (2/3 times) the helicity super-
traces (4.
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D.2 Het(4,12) model

A similar construction as in (D.§) allows to construct the point of enhanced symmetry
SO(8)* of the SO(32) heterotic string: one simply needs to orbifold the heterotic string
compactified on S7 x SY by Zg X Zy, where the two generators g; and go both act by shifting
the U(1) charges of a different set of 8 left-moving bosons (4 of which being common to g;
and ¢2), and by a translation by half a period in either of the two circles. The partition
function of the I'y 13 Narain lattice at the SO(8)* point is therefore

ZD?I = 477%6 |:%Z2,2 [88] me:%’l (916 —|— Z <Z2 9 9304 + Z9 2 [ g] ngg + 2272 [gg] 9;92)
(D.21)

where the sum runs over the 2-digit binary numbers dd = 00,01, 10, 23 [i9]. Using (D),
this may be decomposed into characters of SO(8)4,

Zps = Z8 (O3 + Vi + S5+ C3) +2 [29 + 2%, + 2% ] (O3VF + S3C3) +
11
s e 2bh e 22 4 2 (0 R (st ) +
ol ol 1p 11 ol 11
+4 [Z_"’_ +Z2+ 72, + 7223+ 272 + ii] OgV3S3Cls (D.22)
where
1 hy hg h
zmhhe = 116 <Zz,2 [2 2 ] + €122 [

denotes the projected lattice sum in the (hy,hg) twisted sector of the Zs x Zg orbifold.
The resulting theory can be orbifolded by an element g3 := e of order 4 permuting the four

h h

n1
] +eaZop [2;
2

h

ha hy ho
2 :| + 61622272 [ 2,2 ]) (D.23)

1
2

SIS
m|H
[\>|M

SIS

SO(8) factors cyclically, together with a translation of order 4 along one of the circles in
the torus 7. The partition function in the untwisted sector, with an insertion of an odd

power of the generator is thus given by

o [§] = iy (o BR] 20 [32] 20 1] 20 [£1])
x [Os(47) + Vi(47) + Ss(47) + Cs(47)] (D.24)

with g = 1,3, while for an insertion of e,
1
0 _ 0 000 000
Zoa [{] = 8778(27-){ (22 [i0}] + 203 [{0}] + 200 [of} ] + 203 {1 ]) »
x [03(2r) + V&' (27) + S5 (27) + C3(27)] +
oo {0007 _ & [000
o] 5]
(27
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x [Og(27) 4+ Vg(271)] [Ss(27) 4+ Cs(27)] } (D.25)

and, in the absence of any insertion, Zp, 4 [8] = iZ Di- The twisted sectors can be obtained

ohh hhh
] +Z33 [033] +Z33 [334) X
24 224

as usual by modular transformations, leading to

e—2mig/3 00k
- ]

NSNS
SISIVIE

0
0

SN

Zpy4) [

Os + Vs + Ss + Cs |
x[ R <T+g> (D.26)
n | 4
for h=1,3,9=0,1,2,3,
1 e—2mig/3 1 001 ] 191 0ll 111
g |

2
x [0 + V& + 53+ CF] <T+29/ >+

00k 19l oll 111
+ 3233 [goa | — £33 |50 | — £33 |gaa| — 433 |2aa| ) ¥
4 274 24 224

2
X [Og‘/é + SgCg] <T * g/

2

2 S
T+g/2
x [Os + V3] [Ss + Cs] ( 29/ } (D.27)
for g = 0,2 and
1 e—2mig/3 1 001 191 0ll 111
7oan 1] = Sy (7 ] 2 6] + s e 2 [33))
2
—1)/2
<O+t s+al (2L oo

for g =1,3.

In order to extract the degeneracies of states of given electric charge under the invariant
(level 4) SO(8), one may work in two steps. Let us first assume that the four charge vectors
Py, ... Py are in the root lattice of Dy, as in the first term of () We decompose

P +P3=2%+7P, P+ Py =2 +7P (D.29)
Pl—P;=2A-7P, Py— P =2N -7 (D.30)

where P, P’ take value in the finite group Ds/2Dy4. Next we further decompose

L+ =28+ P (D.31)
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»-¥ =20" P (D.32)
where P” € D,/2F,. Since the physical charge is
Q=P +P+P+P,=45"+2P"+ P+ P, (D.33)

we obtain the degeneracies of DH states with a given charge (Q by summing over A, A/,
A" P, P, P" at fixed values of ¥/ and 9§y = P”/2 + (P + P’)/4 in the discrete group
D4/4Dy. For the other terms in ([D.22), the same decomposition holds, upon shifting P,
P’, or P” by 2\ where X is in the weight lattice of Dy. Decomposing the square of the
charge vector as

4 2 2 7 N 2
1 1 P PP
2 _ _ = I = n
;lPi _2<A 27?> +2<A 273> +4<A 5 2 > +

P+P?
4

+4 (2” + ik + (D.34)
5 :

we see that the partition function of the Narain lattice 'y 15 at the SO(8)* point may be
written as a sum of products of two level 2 theta series

. 1
Opap(r) = . =emra=sPr (D.35)
A€EDy(1)

times two level 4 theta series,

B 1
Op,gp(r) = Y =emma-aPr (D.36)
AED4(1)

corresponding to sums over the lattice vectors A, A’ A” ¥" respectively. Under this de-
composition, the last factor can be viewed as the partition function for the physical charges.
In order to compute the required theta series, note that D,/2D, decomposes into
five orbits, of respective length 1,1,1,1,12: (i) the zero orbit (ii) the orbit of one half the
highest weights of the V| S, C irreps and (iii) the orbit of the highest weight of the adjoint
representation A. The corresponding level 2 theta series are given by
9D4[2};O(T) = 08(27') y 0[)4[2];‘/(7') = %(27’) s (D37)
1
0D4[2];S(T) - 58(27-)7 6D4[2];C(T) - 08(27-)7 0D4[2};A(T) = §6§9§(QT) : (D38)
These can then be used to decompose the product of two identical level 1 theta series
according to
2 2 2 4 4 2
O3 = 0p,1210 + 0Dupv + g 218 + Ogpa0 + 120D 21,0 (D-39)
Ve = 20p,1100p.21v + 204125941210 — 1207904 (D.40)

as well as the relations which follow from ([D.4Q) by triality.
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The level 4 theta series ([D.3¢)) can now be obtained by repeating this procedure twice.
They fall into 5 x 5 orbits of the Weyl group, corresponding to the two-stage decomposition
D,/ADy = (Dy/2Dy) x 2D4/ADy. The theta series corresponding to P = 4\ where \ is
the highest weight of the O, S, C,V, A representations are simply obtained from (D.37) by
doubling the argument 7 — 27.

Using the duplication identities in appendix [B, one may rewrite the partition functions
of the oscillators in the untwisted sector as

1 24 1 24
S( )\t 02 _ 9209 8 8 12 (D.41)
P (r)nt(4r) (05— 07)0an n®(r)n®(2r)  On
We thus find that the degeneracies in the untwisted sector are enumerated by
1 9 9 / 0 — / "
73773l773”eD4/2D47>\ /rl
P+P'+2P"+A=P,
Op,[2,p(27) 2!
:|:(50,'p 60 'P’(SO )\24477 :|:(507'p 60 2 60 'P”(S)\O — 5 < | -
) ) 9421,'712 ) ) ) 92(9§ _ 9%)7]9

The three terms behaves as

I (M@) e <4m / %Q2/2> I <4m / §Q2/2> (D.43)

respectively, so that the degeneracies are dominated by the untwisted, unprojected contri-
bution.

In the sector twisted by the order 2 element e?, the momenta automatically have
A =P =0and A’ = P' = 0 but one still needs to sum over the unphysical charges A”
using the level 2 identities (D.39) with 7 — 7/2. Using the duplication identities

2 4
1 2 1 2 (D.44)
()t (r/2) 00T nS(r)nd(r/2)  Oin* '
we find that the degeneracies are given by
1 1 1 1 1
- -+ —— HD 2 7)//(7'/2) + 60773// <— + —> . (D45)
92 (77121921 771279§> 8[2], nt093 ~ ploy2

3

Finally, in the sectors twisted by the order 4 element e or e, one may rewrite the

partition functions for the twisted oscillators as

1 _ 24
B(rnt(dr) (03 — 03)0an°
1 B 1 1 e/
B(rmt (5) (03— 63)0an" " pd(r)mt (TF) (63 — i63)03n°
: 1 e 7 1 e (D.46)
B (rmt (552) (65 +65)0an° S (rmt (552) (67 +i63)04°
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We thus find that the degeneracies are enumerated by

1 1 1 1 1
- D .47
4 ((eg — 62)0,4n° te (62 — i62)03n° e (62 + 62)0,1° tes (62 + ieg)egn%)) (D-47)

where, depending on the moding of the momenta along the three circles, (ei,€2,€3) is
any vector in (1,1,1),(—¢,—1,4),(—1,1,—1), (i, —1, —i), (the corresponding ground state
dimensions are A = 3/8,1/8,—1/8, A = —3/8, respectively.)

In all sectors, applying the Rademacher formula we find that the degeneracies grow

Qaps(Q) = 294(62) ~ I <4W@> +- (D.48)

The exponentially suppressed corrections however depend sensitively on the details of the

uniformly as

charges.

D.3 A Het(2,8) model

Let us now consider an N’ = 2 variant of the (4,12) model. We start from the SO(32)
heterotic string on 72 at the point of enhanced symmetry SO(8)*, further compactify on
a square 1%,

Tgo0 = Dy(—1) @ Dy(—1) @ Dy(—1) @ Dy(—1) @ I1*? @ IT** (D.49)
and perform a Z* orbifold acting on the momenta as
g|Py, Py, P3, Py, Ps, Ps) = ™75 | Py, Py, Py, Py, Ps, R(g) Ps) (D.50)

where R(g) acts by a Z, rotation in a two-plane inside 7%, breaking the supersymmetry to
N = 2. The degeneracies can be obtained easily from the (4,12) model by dropping the
untwisted, unprojected sector and multiplying by n?* times the partition function of four
Z4-twisted left-moving bosons (the contribution of the right-moving bosons is absorbed
into the helicity supertrace). The orbifold blocks for four Zs-twisted chiral bosons can be
obtained by the following simple trick: Consider the orbifold of 4 x 4 = 16 chiral bosons by
cyclic permutations of the four blocks of four. The partition function with one insertion of
the Z4 generator is 1/7%(47). On the other hand, diagonalizing the oscillators, it should be
the product of four untwisted, four Zs-twisted boson and eight Z4-twisted chiral bosons:

i~ i (A 2]) w3

hence
2
n”(27) 10> 2n
Zy [g] =2 [%] =3 =4 2 2 = 1 ’ (D.52)
1 1 n?(47) 05 — 03 p [%} (0l7)
4
The other orbifold blocks can be obtained by modular transformations,
1 a1 _ nP((r+9)/2)
Zy|ls| =24 |8 =272 D.53
i[i] =2l -2 (D53
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2y =22, 7y -0 Z“{é]:%ﬁ?(?)’ (D.54)

(T +1)/2) /2 772 T+1)/2)
Using the same notation as in the (4,12) model, we thus find that the second helicity

N NI
SN
N[N

supertraces {29 in the untwisted sector are generated by

9D4[2] fp//(QT) 26
——2 "~ 4 0. p Ig.p Opr . D.56
93776 0,P 00,P’ OP" 0 92(9?2’ — 92)37’]9 ( )

1
—So.p 0 pr 26
16 0,P 90,P

Importantly, the untwisted unprojected term does not contribute, due to its extended
N = 4 supersymmetry. The second term grows as

Iy <4m / 136@2 /2) (D.57)

and is suppressed with respect to the first.
Finally, in the sector twisted by the order 2 element, we find that the second helicity
supertraces are generated by

1/ 1 1 1 1
3 <n6—192 + 6196> Opg[2),p(7/2) + G0 <774—193i = 774—19§> : (D.58)

The degeneracies from the second term grow as

Is <4m / §Q2/2> . (D.59)

Finally, in the sectors twisted by the order 4 element e or e3, we find that the second
helicity supertraces are enumerated by

1 1 1 1
+e , +e te€3 :
\/ (9?2’ — 9%)394779 \/ (92 — 195)393779 \/(Hg + 9%)394779 \/(92 + 195)393779

where (€1, €9,€3) is any vector in (1,1,1),(—i,—1,7),(—1,1,-1),(¢,—1,—i),. The corre-
sponding ground state energies are A = 3/8,1/8,—1/8, A = —3/8 respectively. In these

(D.60)

four cases, the second helicity supertraces grow as
Is (477\/622/2) . (D.61)

E. Some properties of the Mac-Mahon function

In this section, we derive some properties of the Mac-Mahon function

A) = anog(l —q") (E.1)
n=1
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with ¢ = ™. This is an entire function of A in the upper half plane. Taylor-expanding

the logarithm and carrying out the sum over n, it may be rewritten as
oo
1 1
FN=> FICESvh (E.2)

We would like to derive the asymptotic expansion for A — 0.
Let us recall the standard argument. From the standard expansion

xr xT B2n 2n

—1-Z= —n E.3
e — 1 2+Z(2n)!x (E-3)

n>1

in terms of the Bernoulli numbers B,,, we get

1 1 2n —1
—_—— = — " Bon(—1)" g2, E.4
@sn@/2)? 2 T ; @y (D" (E-4)

Note that By, = (—=1)""1|Ba,|.
If we substitute (E.4) into ([E.J) and exchange the sum on n and d we find the series

-2 = (2n = 1)[Ban| \ 95— 2n—3
A <(3)+;—(2n)! A <§d ) (E.5)

Note that the sums on d are infinite. While one may try and define them for n # 1 by
zeta function regularization, the n = 1 term is still infinite. If we simply discard the n =1

term and use this regularization we get

—2 _ — \2n+2 |Bantal (2”+3)B E
ATC(3) nz;))\ Gn+ 1) @ng2) e (E.6)

Using the relations between Bernoulli numbers and Rieman zeta functions,

_ :_BQQ—Q — (_ g+132922g71ﬂ'29
¢(3—2g) ((29) = (-1) 2

29 -2’
valid for g > 2, g > 1, respectively, one recovers the standard result in the topological

(E.7)

string literature.

However the manipulation used above is not valid. One way to see it is that an entire
function such as f(A) cannot possibly have an infinite term A°C(1) in its asymptotics.
Nevertheless, the amazing agreement between the coefficients of the terms A\2? with the
integrals on moduli space [71]] and with the predictions of heterotic/type-II duality [[73]
suggest the higher terms are indeed correct. This will prove to be the case.

One valid way to derive the asymptotics is to proceed as follows. We use the series

1 1 1
. _ls (E.8)
sin(rz) w2 1% (x4 n)?
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Substituting into ([E.2), the double sum on n, d is absolutely convergent. We can therefore
exchange the sum on n,d. Defining z := A/(27) we have

f(A)_ 2 4W222ddz+n (E-9)

ns£0 d=1

Define
9(2) 471'2 szdz—l—n (E.10)

n#0 d=1

In order to study the z — 0 asymptotics, we should apply the Poisson summation formula
to the sum on d.

Care is however needed due to the incomplete summation on d. While the Poisson
summation formula as usually stated applies to continuous functions, we wish to apply it
to the function

1
f(a) = { z(zz +n)? v=t (E.11)
0 r<1.

This falls off nicely at infinity, but has a discontinuity at x = 1.

Suppose, generally, that f(x) has a discontinuity at x = 1. The standard procedure
to prove the Poisson formula is to construct the periodic function F(x) =), f(z +n),
expand it in Fourier series, F'(z) =, F,e2™m and evaluate at © = 0. For piecewise
continuous functions, the Fourier series only converges to the average 1(F(0+) + F(0—))

at points of discontinuity. If f(x) =0 for x < 1 then we get

D+ f(d) Z/ X f () (E.12)
d=2

LeZ

Taking this into account we have the Poisson summation formula

c- 1 o2t
= T dr. E.13
;d(dz—l—n)Q Qz—i-n +£€ZZ/ ﬂcz—i-n) * (E-13)

Now we write g(z) = go(2) + g1(2) where

90(2) = g Z( o /100 mda@> (F.14)

n(2) = 15 ZZ/ e?mite ern) —dz. (E.15)

n#0 £#£0

To compute the integrals we write

1 z n 1 z d|1 x 1
x(xz +n)? n(zz+n)2  an?  (zz4+n)n?  dx '

n? gﬂ:z+n+n(:cz+n)

(E.16)
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Let us analyze first go(z). The integral on x is elementary and we get:

1 1 1
9o(2) 4W22< 21 ) ﬁ[log(l/z)—log(z_i_n)] _n(z—i—n))' (E.17)

Expanding the various terms and recalling that z = A\/(27) we find

' 108; n? \2 | Bon+a| 1 1
= 1 nt2 g E.18
90(x) = 33 >\ 772 Z Z s gi\" T3 gz B8

or, equivalently,

1 27T’i BQ 4 1 1

Now we turn to ([E.I6). We can write g; as a sum of three terms:

gl(z) = hl + ho + hs (E20)
hi(z) == — ZZ / e2mits L —dx (E.21)
4n ;éo = "
ho(z) = Z Z / R — (E.22)
o, #0 rz+n
hs(z) = Z Z / i p— (E.23)
bzt (xz + n)

The first term, hq is just a constant in z, but is only convergent when we group together the
¢ and —/ terms in the sum. The integral can be computed in terms of the cosine integral
function Ci(z) defined in [[07] 5.2.27:

hi = 4772 3 / 2 cos( 271&6 =—— Z Ci(2n?) . (E.24)

Since Ci(27z) ~ 1/(27x)? for large integer x, the sum over £ converges. Indeed, hy = 1—127E
where vg is the Euler-Mascharoni constant.
For the second term we use the identity 5.1.28 in [[[02]:

[e'e} . 1 1 .
/ 2rile dx = e~ 2mit0/2) g, < — Qm'g<1 + 2)) ) (E.25)
1 Tz +n z z

Note that z has a nonzero imaginary part so the argument of the exponential integral, and
the denominator in the integral is never zero even if n is negative (E; is a variant of the
exponential integral). Then we use the asymptotic expansion AS 5.1.51 to get

oo

& . 1 1 (—=1)%s!
2milx
—dx ~ — . E.26
/1 c vz tn ;) (—2mil(1 +n/z))s+! (E-26)
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For z pure imaginary, z — 0, say, this is in the valid range for the expansion. Now we sum
over £ and get:

e e}

Z/ Q2rite L Z )*|Bak-2| 22k+21k . (E.27)
prrd ﬂ:z—l—n P 2kz+2 (z + n)2k+
Taking a derivative with respect to n gives
S [t S (D Bopgal — (B.29)
o (xz + n) = (2 + n)2k+3

Next we expand the denominators in a power series in z/n and include the sum over n. In

this way we get:

o0 n
Bopia| 1 2n +2
hy ~ — S p2nt2 1 Bonta B E.29
2 Z 2n+4)!2n+2Z 2% +2) 2t (E-29)
z 2n+4,z(2k+2 (E.30)

Now, the Bernoulli polynomial By, (z) =3, (Z) Brpax"Fat x = 1is B,(1) = (—=1)"B,, so
we may simplify

o
o ont2 |Bantal (2n+3 2n + 3
b Bt ). B3

Putting it all together, the asymptotics for f(A) for A — 0 in the upper half-plane are

, R |Bonia| (20 +3) 2mi 1
fON) ~A72¢(3) — Z)\2n+2 G ) (T 2) Bopi2 + log <~ —C (2) + E-
(E.32)
This differs from the standard expression by the last three terms. While the constant is
not so important, the logarithmic term is indeed important.
We close this section by an observation which hints at possibly interesting modular

properties of the Mac-Mahon function. By analogy with the Dedekind 7 function, let us

compute
d 0 n2qn
E =—qg—f(\) = E.33
()= —a g ) = 30 1 (£.3)
n=1
where ¢ = €2™7 = ¢™* (the reason for this notation will become clear shortly). Expanding

the denominators, we obtain
— 2 N __ 2 _mn
S S e S S S A
N=1 \n|N n=1m=1

Now we use the identity

1 p(1+p)
Z(n—{—z) = dim 3(1— p)3 (E.35)

ne”
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2miz

where p = ™%, This allows to rewrite

B)=25> > m (E.36)

m=1n=—00

While this expression is similar to the usual modular invariant Eisenstein series Fo,, it is
important to note that, due to the restriction m > 0, E3 is not modular invariant. Instead,
its orbit under SI(2,7Z) is an infinite family of functions

1 1
EPa) _ E - E.
3 (7) 4473 (n+mt)3 (E.37)
(m,n)EZ,pm+ng>0

In particular, E3(7) = E(1) = Eél’o) (1) is mapped under 7 — —1/7 to E?Eo’l)(T) which

does not admit a g-expansion. Indeed, f(\) at A — 0 is not exponentially suppressed but
rather consists of an infinite power series, as discussed above.
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