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is correct, it allows one to probe the string theory description of black-hole micro-states

to far greater accuracy than has been possible before. We test this proposal for “small”
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responding perturbative BPS states. We also study the “black hole partition sum” using

general properties of of BPS degeneracies. This complements and extends our earlier work

in [1].
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1. Introduction

One of the distinct successes of string theory is that it explains the statistical origin of the

thermodynamic Bekenstein-Hawking entropy [2 – 4] of certain supersymmetric black holes

in terms of counting of underlying micro-states [5]. This has been particularly successful

in the case of dyonic black holes in string theories with N = 2 supersymmetry in four

dimensions. In the regime of large electric and magnetic charges, these black holes possess a

non-singular horizon with area much larger than the Planck or string scale. For such “large”

black holes, the Bekenstein-Hawking entropy, one quarter of the horizon area in Planck

units, matches the logarithm of the number of micro-states of specific supersymmetric

brane-configurations with the same quantum numbers [6, 7].

For black holes with large but finite area, there are subleading corrections to the

Bekenstein-Hawking formula, due to higher-derivative interactions in the quantum effective

action. The latter alter both the black hole geometry near the horizon, as well as the very

relation between macroscopic entropy and geometry [8, 9]. On the microscopic side, there

are also finite size corrections to the entropy,1 which however depend on the choice of

a statistical ensemble. It is natural to ask whether the successful matching between the

Bekenstein-Hawking entropy and the string theoretical counting of black hole micro-states

continues to hold beyond leading order.

Several advances in recent years have made it possible to address this question. By

generalizing the attractor mechanism for N = 2 black holes, Cardoso, de Wit, and Mo-

haupt (CdWM) computed the Bekenstein-Hawking-Wald (BHW) entropy incorporating

an infinite number of higher derivative F-type interactions [10 – 13]. Revisiting this result,

Ooguri, Strominger and Vafa (OSV) conjectured that the statistical ensemble implicit in

1Following standard practice, we define the entropy as the Legendre transform of the logarithm of the

partition function in a given statistical ensemble.
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the CdWM entropy is a specific mixed ensemble [14], and furthermore that non F-type

interactions can be consistently neglected provided one restricts to a suitable supersym-

metric index on the microscopic side. If correct, this proposal opens the way to a more

detailed comparison of macroscopic and microscopic degeneracies than has been possible

thus far.

For a generic dyonic black hole, such a comparison is hampered by our insufficient

understanding of the dynamics of the D-brane micro-states. The aim of this work is to

identify and analyze a large class of examples where microscopic degeneracies are known

exactly and where a very explicit comparison is possible exactly and to all orders in an

asymptotic expansion. This complements and extends our earlier work [1] where some of

the main results were announced. It should be noted that alternative approaches have been

put forward [15 – 18], relying on different statistical ensembles. It goes beyond the scope

of this paper to relate these two approaches.

1.1 The black hole attractor and the OSV conjecture

In general, the quantum effective admits an infinite series of unknown higher-derivative

corrections, which make it difficult to determine higher-order corrections to the macroscopic

entropy. In type-IIA string theory compactified on a Calabi-Yau three-fold X however,

there exist an infinite series of computable higher-derivative F-term corrections of the form

Fh(X)(−C−)2(T−)2h−2, where −C− and T− denote the anti-self-dual part of the Weyl

tensor and graviphoton field strength, and XI the Kähler moduli of X . The peculiarity of

these interactions is that they can be written as the integral of a chiral density in superspace,

and satisfy certain non-renormalisation properties. In particular, they arise only at genus

h in type-II string theory, and the coefficient Fh(XI) reduces to the genus h vacuum

amplitude in the A-model topological string on X [19, 20]. The Bekenstein-Hawking-Wald

macroscopic entropy of BPS black holes incorporating these interactions was computed by

CdWM in [10 – 13], generalizing the standard tree-level attractor mechanism. As noticed

by the authors of [14], this expression takes a particularly simple form after Legendre

transform with respect to the electric charges,2

SCdWM(pI , qI) = Ftop(pI , φI) + π φIqI , πqI = − ∂

∂φI
Ftop(pI , φI) (1.1)

where

Ftop(pI , φI) := −π Im
[

Ftop

(

pI + iφI , 28
)]

. (1.2)

is proportional to the imaginary part of the all-order topological string vacuum amplitude

Ftop(X,W 2) =
∑∞

h=0 W 2h−2Fh(XI) evaluated at XI = pI + iφI and W 2 = 28. The

attractor equations [22 – 24]

pI = Re(XI) , qI = Re

(

∂Ftop

∂XI

)

(1.3)

controlling the fixed point behavior of the Kähler moduli at the horizon follow naturally

from this procedure [14].

2The generality of this fact has been recently clarified in [21].
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Based on this observation, Ooguri, Strominger and Vafa (OSV) have proposed that

the statistical ensemble implicit in the above Bekenstein-Hawking-Wald entropy has fixed

magnetic charges pI , but fluctuating electric charges qI at a fixed electric potential φI [14]:

ZOSV (pI , φI) := expFOSV (pI , φI) :=
∑

qI∈Λe

Ω(pI , qI) eπφIqI (1.4)

where Ω(pI , qI) denotes the number or possibly a suitable index of micro-states with electric

and magnetic charges qI and pI , and Λe is the lattice of electric charges in the large volume

polarization. Put otherwise, the essence of the proposal [14] is an equality between the

microscopic free energy FOSV in the mixed statistical ensemble (1.4) and the macroscopic

free energy Ftop computed from the higher-derivative F-term interactions,

FOSV (pI , φI) ≡ Ftop(pI , φI) . (1.5)

Using the relation (1.2) between the topological free energy Ftop and the topological string

amplitude Ftop, this equation may be rephrased as a relation between the BPS black hole

degeneracies in type-II on X and the topological string amplitude,

ZOSV (pI , φI) ≡
∣

∣

∣

∣

exp

[

iπ

2
Ftop(pI + iφI , 28)

]∣

∣

∣

∣

2

. (1.6)

Evaluating the sum over charges in the partition function (1.4) by steepest descent, one

indeed finds that the Legendre transform of the entropy is equal to the topological free

energy (1.2), in the limit of large charges.

The proposal (1.5) goes far beyond the large charge regime in which it was motivated,

since it allows in principle to extract the microscopic degeneracies of BPS black holes from

the topological string amplitude by means of an inverse Laplace transform,

Ω(pI , qI) ≡
∫

[dφI ] exp
[

Ftop(pI , φI) + πqIφ
I
]

. (1.7)

A strong form of the conjecture asserts that this equation holds at finite electric and

magnetic charges, provided some yet unknown non-perturbative contributions to the topo-

logical string amplitude are included [14]. A weaker form states that this equality hold

to all orders in an asymptotic expansion in the inverse of the charges [14]. One aim of

our work is make eqs. (1.7), (1.6) more precise and use them to study the degeneracies of

finite charge black holes. Certain proposed nonperturbative corrections to (1.7) have been

explored in [25, 26], but in a rather different context from the examples studied here.

1.2 Small black holes

For this purpose, it is useful to consider cases for which the exact degeneracies of the micro-

states are computable. Using heterotic / type-II duality, this is indeed possible for type-II

black holes which are dual to the heterotic Dabholkar-Harvey (DH) states [27, 28]. Recall

that these are BPS states in the perturbative heterotic spectrum, which exist provided the

conformal field theory contains a compact free boson. The simplest example is provided by
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a state carrying quantized momentum n and winding number w around an internal circle.

The left- and right-moving momenta are given by

qR,L ≡
√

α′

2
(
n

R
± wR

α′ ) , (1.8)

and the vector (qR, qL) belongs to the Narain lattice Γ1,1. Such a state is half-BPS as

long as it is in the right-moving superconformal ground state but it can carry arbitrary

left-moving excitations that satisfy the level-matching

N − 1 =
1

2
(q2

R − q2
L) = nw , (1.9)

where N is the left-moving excitation level. For given charges (n,w), there is a Hagedorn

density Ω(n,w) ∼ exp(4π
√

|nw|) of such states, as a result of the large degeneracy of the

left-moving excitations.

The integers (n,w) can be viewed as the quantized electric charges under the Kaluza-

Klein and Neveu-Schwarz gauge fields gµi and Bµi arising by dimensional reduction along

the circle. The mass M of the state (n,w) saturates the BPS bound

M2 = q2
R =

[

n

R
+

wR

α′

]2

=
n2

R2
+

w2R2

α′2 +
2(N − 1)

α′ (1.10)

where R is the radius of the circle. Provided it does not become degenerate with another

half-BPS state with which it may pair up, the (n,w) state is therefore stable. As the string

coupling gH is increased, the de Broglie - Compton wavelength 1/M of the particle becomes

smaller than its Schwarzschild radius Ml2P , leading to the formation of an extremal black

hole with electric charges (n,w). It is thus tempting to compare the Bekenstein-Hawking

entropy of this black hole with the logarithm of the number of fundamental strings with

the same charges [29 – 33],

SDH = log Ω(n,w) ∼ 4π
√

|nw| . (1.11)

More generally, the black hole charges are characterized by an arbitrary charge vector Q

in the Narain lattice Γ6,22 and the leading entropy of the DH states in that case goes as

SDH ∼ 4π
√

Q2/2.

In contrast with the “large” black holes discussed above, these black holes are singular

solutions of the tree-level supergravity lagrangian [34, 35], where the horizon and the

inner singularity coalesce. Their classical entropy therefore vanishes, as a result of their

carrying only electric charge (in the natural heterotic polarization). While the heterotic

string coupling goes to zero at the singularity, higher-derivative α′ corrections are however

expected to be quite important, and, assuming the singularity is resolved, have been argued

to lead to an entropy of the required order [32]. By including the tree-level R2 correction

to the heterotic effective lagrangian (or, from the type-II point of view, the large volume

limit of the one-loop topological amplitude F1), it was shown recently that the black hole

develops a smooth horizon, with a similar geometry AdS2 × S2 × X as found in the large

black hole case [36, 37] (see [38, 39, 13] for earlier work on this subject). Moreover, the
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Bekenstein-Hawking-Wald entropy, taking into account this R2 correction, matches the

microscopic entropy in leading order, including the precise numerical coefficient [36, 37].

The geometry interpolating between the horizon and infinity has been recently studied

in [15, 40]. For this type of black hole, the four-dimensional heterotic string coupling is of

order g2
H ∼ 1/

√

|nw| at the horizon, so that the area is of the same order as the inverse

tension of the heterotic string l2H = l2P /g2
H at the horizon. We shall thus refer to these

states as “small” black holes, keeping in mind that, for large charges, they are nevertheless

much larger than the Planck scale.

Recently, the OSV conjecture has been tested for small black holes in type IIA string

theory compactified on K3 × T 2, or equivalently, in heterotic string theory on T 6 [37].

Although the original proposal was formulated for N = 2 backgrounds, an extension to the

N = 4 case is simpler to analyze since all gravitational F-terms vanish except F1 [41]. Using

the generalized attractor formalism in [10 – 13], adapted to the N = 4 setting, it was found

that the macroscopic entropy of these small black holes precisely matches the Ramanujan-

Hardy estimate for the number of heterotic BPS states preserving 1/2 supersymmetry [37].

It was also shown that even the sub-leading corrections to the entropy computed using the

OSV proposal match to all orders in an asymptotic expansion. The super-gravity solutions

for these small black holes have been further analyzed in [36, 15, 40, 42].

In this paper, we greatly extend the range of validity of the analysis in [37], by studying

the exact degeneracy of small black holes in a variety of backgrounds with N = 4 super-

symmetry (but a different low-energy spectrum from the “benchmark” K3 × T 2 case), or

with N = 2 supersymmetry (for Calabi-Yau compactifications with a K3 fibration).

1.3 Summary of main results

For the reader’s convenience, we summarize our main results below:

1. On the heterotic side, by standard orbifold techniques, the microscopic degeneracy

of the DH states can be enumerated using modular forms. The leading microscopic

entropy at large charge can be extracted using the Hardy-Ramanujan formula. The

Rademacher formula provides a convenient way to extract subleading corrections: it

expresses the Fourier coefficients of the modular form as a series of modified Bessel

functions, where each term is exponentially suppressed (but nevertheless exponen-

tially growing) with respect to the previous one (see [43] for a review). In particular,

all power corrections to the leading entropy are captured by the first Bessel function

in the Rademacher expansion.

2. Retaining only the perturbative part of the topological amplitude (i.e. discarding the

Gromov-Witten instanton series), and assuming a proper choice of contour, we find

that the integral (1.7) can be computed exactly, both in the large and small black hole

case, and expressed as a modified Bessel function of the first kind. Using the standard

asymptotic expansion of the latter, the leading term is the Bekenstein-Hawking-Wald

entropy SBHW = 4π
√

Q2/2 predicted by the generalized attractor mechanism. In

particular, due to the topological coupling F1, the entropy of small black holes is

– 6 –
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computable and finite, as observed in [37]. In addition, the Bessel function captures

an infinite number of computable corrections in inverse powers of the charges.

3. In a variety of N = 4 and N = 2 models, we find that the integral (1.7), neglecting

the Gromov-Witten instanton series, reproduces precisely the leading Bessel function

in the Rademacher expansion of the degeneracies of heterotic DH states. In other

words, the OSV proposal predicts the correct degeneracies of BPS states, to all

orders in an asymptotic expansion in inverse powers of the charges. In particular, the

leading entropy is correctly reproduced, including the corrections computed in [44].

Importantly, this success relies only on the large volume limit of F1 only (equivalently,

on the heterotic tree-level R2 amplitude).

4. For this all order perturbative agreement to hold, it is important to use the holo-

morphic topological amplitude, which controls the Wilsonian supergravity action,

rather than the non-holomorphic BCOV generating function, which describes the

1PI couplings in the low-energy effective action. This is consistent with the discus-

sion in [45], but in stark contrast with the alternative approaches in [16, 18] (note

however that [45] has proposed a formally equivalent formula, using the holomorphic

rather than real polarization, where non-holomorphic anomalies are likely to play a

role). It is also important to count states with arbitrary angular momentum J , as the

restriction to J = 0 states leads to different subleading terms in the microscopic am-

plitude, which would spoil agreement with the OSV prediction. In other words, the

proper statistical ensemble implicit in the Bekenstein-Hawking-Wald entropy appears

to be an ensemble with zero angular velocity at the horizon, rather than zero angular

momentum. Finally, it is necessary to consider ratios of degeneracies at fixed mag-

netic charge only, in order to cancel a magnetic-charge dependent pre-factor N (p),

which would spoil duality invariance. For p0 6= 0, a more drastic modification is nec-

essary, since, as shown in section 4.4, the pre-factor in general involves both electric

and magnetic charges.

5. The neglect of Gromov-Witten instantons can be rigorously justified in N = 4 cases,

as all instanton corrections are exponentially suppressed. The situation is more subtle

in N = 2 theories: when χ(X ) 6= 0, the series of point-like instantons contribution

becomes strongly coupled in the regime of validity of the Rademacher formula, q̂0 À
Ĉ(p). The strong coupling behavior is controlled, up to a logarithmic term, by

the Mac-Mahon function, which is exponentially suppressed in this regime. Upon

absorbing the logarithmic term into a redefinition of the topological string amplitude

Ψtop → λχ/24Ψtop, one recovers the naive result. As for non-degenerate instantons,

they are exponentially suppressed provided all magnetic charges are non zero. This is

unfortunately not the case for the small black holes dual to the heterotic DH states,

whose Kähler classes are attracted to the boundary of the Kähler cone at the horizon.

In this case, we cannot rigorously justify the neglect of Gromov-Witten contributions.

6. Even in the cases where an all-order agreement is obtained, the OSV formula appears

to fail in reproducing the subleading Bessel functions in the Rademacher expansion

– 7 –
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of the microscopic degeneracies, as those cannot be associated to subleading sad-

dle points in the contour integral (1.7) in any obvious way.3 As a matter of fact,

we encounter serious difficulties in trying to make sense of the formula (1.7) non-

perturbatively. Due to the non-convexity of the free energy F (or, equivalently, the

instability of the mixed thermodynamical ensemble), the convergence of the integral

can only be achieved when the potentials φI take imaginary values. However, at least

for Calabi-Yau threefolds admitting a K3 fibration, the topological string amplitude

Ψtop is an automorphic form, and is very badly behaved at the boundary of moduli

space where the moduli XI become real.

7. On general grounds (e.g. if it is to satisfy the second law of thermodynamics), the

Bekenstein-Hawking-Wald entropy, including all higher-derivative corrections, is ex-

pected to be equal to the logarithm of the total number of micro-states. The trun-

cation to only F-term type higher-derivative corrections is not expected to have a

thermodynamical interpretation, unless non-F-terms do not contribute by some non-

renormalization property.4 On the other hand, the counting of heterotic DH states at

zero string coupling may differ from the actual number of states in the regime where

a black hole is formed, due to the possibility of BPS states pairing up into longer

multiplets. Useful diagnostic tools to determine whether this happens are helicity

supertraces Ωn = Tr(−1)F Jn
3 (where F is the space-time fermion number and J3 one

of the generators of the little-group of a massive particle in 4 dimensions), namely Ω2

for 1/2 BPS states in theories with N = 2 supersymmetry, Ω4 for 1/2 BPS states in

theories with N = 4 and Ω6 for 1/4 BPS states in theories with N = 4. In contrast

to absolute degeneracies, helicity supertraces are invariant under generic variations

of the moduli (except for lines of marginal stability). If cases where the degeneracies

at zero coupling can be identified with an helicity supertrace, one can reasonably as-

sume that they will be equal to the actual number of states in the black hole regime

(barring the unlikely possibility that long multiplets unpair as the coupling is in-

creased). We can then reliably compare them with the macroscopic BHW entropy.5

In some cases however, the helicity supertraces can be exponentially smaller than

the zero-coupling degeneracies,6 and it is difficult to determine the actual number of

states at strong coupling.

8. We find that in cases where the absolute degeneracies are equal to the helicity su-

pertraces, the instanton-deprived OSV proposal appears to work successfully. This

3It was recently proposed that exponentially suppressed contributions should reflect multi-centered black

hole configurations [46].
4See [47] for some recent interesting results in this direction.
5This differs from the interpretation advocated in [14], who propose to identify directly the topological

amplitude with a supersymmetric index. This is a mathematically appealing and logically acceptable

conjecture, but it has no direct bearing on the relation between the BHW entropy and the counting of

black hole micro-states.
6This occurs e.g. in the case of 5D black holes [48], but we shall find numerous other examples in this

work.
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includes 1/2 BPS states in all N = 4 models, as well as BPS states in twisted sec-

tors of N = 2 orbifolds. This suggests that, for this class of BPS black holes, non

F-type higher derivative interactions have no effect, if not on the geometry, at least

on the Bekenstein-Hawking-Wald entropy. It would be very interesting to check such

a non-renormalization explicitly.

9. In cases where it appears to fail, the helicity supertraces are in general exponentially

smaller than their absolute degeneracy, due to cancellations of pairs of DH states.

This occurs in general for (i) untwisted DH states of N = 2 heterotic orbifolds, and

(ii) DH states in N = 4 type-II orbifolds. In case (i), the OSV prediction appears to

agree with the absolute degeneracies of untwisted DH states to leading order ( which

have the same exponential growth as twisted DH states), but not at subleading

order (as the subleading corrections in the untwisted sector are moduli-dependent,

and uniformly smaller than in the twisted sectors). In models where twisted and

untwisted states cannot be distinguished by their charges, the helicity supertrace Ω2

is dominated by the contribution of the twisted sectors, and it may be consistent

to identify it with the l.h.s. of (1.7). The situation in case (ii) is rather different,

since the helicity supertraces grow only as a power rather than exponentially. On the

macroscopic side, R2 interactions are not sufficient to resolve the singular horizon,

and higher derivative interactions are bound to become important.

10. Conversely, one may try to compute the black hole partition function (1.4) from our

knowledge of the microscopic degeneracies, and compare to the proposed answer (1.6).

For some choices of Calabi-Yau manifolds and of magnetic charges, in the infinite

radius limit, the degeneracies are known exactly for arbitrary electric charges, and

this program can be carried out explicitly. Examples of this are D4-D2-D0 bound

states wrapped on a rigid divisor, or D-branes dual to heterotic DH states.

An immediate problem which arises when attempting to compute the partition sum

(1.4) is that it is badly divergent. We solve this by introducing a convenient and

physically natural regulator, namely an additional Boltzmann weight e−αH(p,q), with

H(p, q) the BPS energy of the given charge. This renders the partition function finite

and rigorously justifies various formal manipulations, after which one can send α back

to zero.

Our result is that in these cases, the polynomial part of the resulting free energy

indeed equals the corresponding terms at the right-hand side of (1.6), but with an

additional sum over integral imaginary shifts of the φa on the right hand side. This

ensures periodicity under φa → φa + 2ina, as is required by the definition (1.4). In

fact this summed version of (1.6) is trivially equivalent to the integral form (1.7),

with the φa integration contours running over the entire imaginary axis.

More importantly, we find that at least for these choices of charges, the non-pertur-

bative part of the topological string free energy is not reproduced; the corrections to

the polynomial terms of both sides do not match. This is true even in the limit of

large charges.

– 9 –
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11. Despite the fact that the exact degeneracies are not known in more general cases, one

can extract some information about the general partition function by exploiting large

radius monodromy invariance. These are integral shifts of the NS B-field, acting on

the φa as φa → φa + naφ0. This induces a spectral flow on the electric and magnetic

charges, which leaves the degeneracies unchanged, at least in the large volume limit.

Exploiting this symmetry, we argue that the BPS partition sum does not generate the

full data of the topological amplitude at any finite magnetic charge P . In particular

we show that the φa-dependence of the integrand in (1.7) predicted from monodromy

invariant BPS degeneracies is simply given by a finite sum of gaussians, which is to

be compared to the intricate φa-dependence generated by the Gromov-Witten series

in the topological string free energy. The conjecture might still hold in a suitable

asymptotic sense when P → ∞, because in this case number of independent gaussian

terms will in general go to infinity.

1.4 Outline of the paper

This paper is organized as follows.

In section 2, we illustrate our methods in the simplest example with N = 4 supersym-

metry: type-IIA string theory compactified on K3×T 2, or equivalently, in heterotic string

theory compactified on T 6, extending the analysis in [37].

In section 3, we generalize this analysis to a class of N = 4 models with reduced rank,

obtained as freely acting orbifolds of the IIA/K3 × T 2 or Het/T 6 models.

In section 4, we come to the N = 2 supersymmetric case, for which the OSV conjecture

was originally formulated. After recalling the main features of the topological string am-

plitude, we compute the asymptotic degeneracies predicted by (1.7) for a particular scaling

of the charges.

In section 5, we compare this prediction to the microscopic counting in the perturbative

heterotic description. After discussing several illustrative N = 2 models, we find the

asymptotic degeneracies of DH states for arbitrary asymmetric orbifold of the heterotic

string compactified on T 6.

In section 6, we reverse the approach, construct the partition function in the mixed

thermodynamical ensemble (1.4) from our partial knowledge of the micro-canonical degen-

eracies, and compare the result to the topological string amplitude.

Section 7 contains our conclusions and further comments.

In the appendices, the reader will find a summary of the Rademacher expansion for

the Fourier coefficients of modular forms with negative weight (appendix A), a collection

of useful modular identities (B), an analysis of the degeneracies of the DH states at fixed

angular momentum in the Het/T 6 model (C) and a detailed computation of the degen-

eracies of DH states in N = 4 and N = 2 orbifolds of the SO(32) heterotic string (D), a

detailed analysis of the asymptotic expansion of the Mac-Mahon as well as an observation

on its (non-)modularity (E).
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2. A benchmark N = 4 example: type IIA/K3 × T 2

In this section, we revisit the “benchmark” case of small black holes in type-IIA string

theory compactified on K3 × T 2, or equivalently heterotic string compactified on T 6, first

discussed in [37]. Despite the fact that this model has N = 4 supersymmetry, we shall

be able to apply the N = 2 attractor formalism, provided 4 out of the 28 charges, corre-

sponding to gauge fields in gravitino multiplets of N = 2 supersymmetry, vanish. For this

reason we shall denote this model as the Het/IIA(4, 24), where the first number refers to

the number of supersymmetries in 4 dimensions, and the second to the effective number

of N = 2 vector multiplets, including the graviphoton. More general Het/IIA(4, nV ) com-

pactifications with N = 4 supersymmetry and nV < 24 vector multiplets will be discussed

in section 3 and appendix D.

2.1 Review of heterotic/type-II duality in 4 dimensions

Let us consider the type-IIA string compactified on K3 × T 2. The massless spectrum

consists of the N = 4 supergravity multiplet together with 22 vector multiplets. The

moduli space takes a factorized form

SL(2, R)

U(1)
× SO(6, nV − 2, R)

SO(6) × SO(nV − 2)
(2.1)

with nV = 24, where the first factor corresponds to the Kähler modulus T of T 2, while the

axio-dilaton S, the complex structure modulus U of T 2 and the geometric moduli of K3

sit in the second factor. Points in (2.1) related by an action of the duality group Sl(2, Z)×
O(Γ6,22) are non-perturbatively equivalent. The gauge fields in the 22 vector multiplets

originate from the 3-form gauge field in the ten-dimensional type-IIA string, after reduction

on a basis γa, a = 2 . . . 24 of 2-cycles in H2(K3, R). Accordingly, the electrically charged

states are D2-branes wrapped on 2-cycles γa, and their magnetic counterparts are D4-branes

wrapped on T 2 × γa, with charges (qa, p
a), respectively. On the other hand, the 6 gauge

fields in the N = 4 supergravity multiplet correspond to the ten-dimensional Ramond-

Ramond (RR) 1-form, the 3-form reduced on T 2, the Kalb-Ramond 2-form reduced on

either circle of T 2 and the Kaluza-Klein gauge fields on T 2. The corresponding electric

charges are therefore carried by the D0-brane (denoted by q0), D2-brane wrapped on T 2

(q1), the fundamental string wrapped on S1 ⊂ T 2 (w5, w6) and the momentum states on

T 2 (n5, n6), respectively; the magnetic charges are carried by the D6-brane wrapped on

K3 × T 2 (p0), the D4-brane wrapped on K3 (p1), the NS5-branes wrapped on K3 × S1

(m5,m6) and the Kaluza-Klein monopoles on S1 ⊂ T 2 (k5, k6).

One of the earliest string duality conjectures identifies this model with the heterotic

string compactified on T 6. The massless spectrum is identical, but the Sl(2)/U(1) complex

scalar in the supergravity multiplet is now the heterotic axio-dilaton. The second factor

in (2.1) is identified as the Narain moduli space of the even self-dual compactification

lattice Γ6,22. The 28 charges now correspond to the Cartan subalgebra of the rank 16

ten-dimensional gauge group, the reduction of the Kalb-Ramond two-form on T 6 and

the Kaluza-Klein gauge fields on T 6. Accordingly, the electric charges in the natural
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Het/T 6 IIA/K3 × T 2 Charges

KK/1 NS5/1̂ D0 D2/T 2 q0 q1

KK/2, 3, 4 NS5/2̂, 3̂, 4̂ D2/γa D4/T 2 × γa qa=2,3,4 pa=2,3,4

KK/5, 6 NS5/6, 5 KK/5, 6 F1/6, 5 n5, n6 −w6, w5

F1/1 KKM/1̂ D4/K3 D6/K3 × T 2 p1 p0

F1/2, 3, 4 KKM/2̂, 3̂, 4̂ D2/γa D4/T 2 × γa qa=5,6,7 pa=5,6,7

F1/5, 6 KKM/5̂, 6̂ NS5/6̂, 5̂ KKM/5̂, 6̂ m5,m6 k5, k6

Q1,...,16 HM1,...,16 D2/γa D4/T 2 × γa qa=8,...,23 pa=8,...,23

Table 1: Charge assignment in the Het/IIA(4, 24) model. The vertical columns denote O(6, 22)

vectors. Even and odd columns are related by the Weyl reflection in Sl(2, Z), i.e. S-duality on the

heterotic side or double T-duality on T 2 followed by an exchange of the two circles on the type-

II side. Abbreviations: KK/1= momentum state along S1, NS5/1̂ = NS5-brane wrapped on all

directions except 1, KKM/5̂ =Kaluza-Klein monopole localized in direction 5, HM=H-monopole.

heterotic polarization are carried by the 10-dimensional charged states, the fundamental

string wound around S1 ⊂ T 6 and the momentum states along S1 ⊂ T 6; the corresponding

magnetic charges are carried by H-monopoles, NS5-branes and KK5-monopoles wrapped on

T 5 ⊂ T 6. The precise map can be obtained by applying triality on an SO(4, 4) subgroup

of the SO(4, 20) duality group in 6 dimensions [49], and is displayed in table 1 below.

In particular, the SO(6, 22) vectors Q,P of electric and magnetic charges in the natural

heterotic polarization are related to the type-II charges by

Q = (q0, p
1, qa, n5, n6,m

5,m6) (2.2)

P = (−q1, p
0, Cabp

b,−w6, w5, k5, k6) (2.3)

with SO(6, 22) invariant inner products

Q2 = 2q0p
1 + qaC

abqb + 2mini (2.4a)

P 2 = −2q1p
0 + paCabp

b + 2εijw
ikj (2.4b)

Q · P = p0q0 − p1q1 + paqa + nik
j + εijm

iwj . (2.4c)

The heterotic polarization is therefore obtained from the type-II large volume polarization

by applying electric-magnetic duality to the (D4/K3,D2/T2) and (F1, NS5/K3 × S1)

pairs.

2.2 Small black holes and DH states in the Het(4, 24) model

The tree-level Bekenstein-Hawking entropy for generic BPS black holes in models with

N = 4 supersymmetry is given by

SBH = π
√

(P · P )(Q · Q) − (P · Q)2 (2.5)

in the natural heterotic polarization, such that P,Q transform as a doublet of SO(6, nV −2)

vectors under Sl(2) [50]. We shall be interested in black holes which are dual to perturbative

heterotic states, with vanishing magnetic charge P = 0, hence zero tree-level entropy. In
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particular, let us consider a type-IIA state with q0 D0-brane charge and p1 D4-brane charge.

This is dual to a fundamental heterotic string with momentum n = q0 and winding w = p1

along one circle in T 6. As we reviewed in section 2.1, DH heterotic states with these

charges can be obtained by tensoring the ground state of the right-moving superconformal

theory with a level N excitation of the 24 left-moving bosons, provided the level matching

condition N − 1 = nw is satisfied. The number of distinct DH states with fixed charges

(n,w) is thus Ω(n,w) = p24(N), where p24(N) is the number of partitions on N into

the sum of 24 integers (up to an overall factor of 16 corresponding to the size of short

N = 4 multiplets, which we will always drop). Accordingly, the generating function of the

degeneracies of DH states is

∞
∑

N=0

p24(N)qN−1 =
1

∆(q)
, (2.6)

where ∆(q) is Jacobi’s discriminant function

∆(q) = η24(q) = q

∞
∏

n=1

(1 − qn) . (2.7)

It should be noted that the partition function for the degeneracies of the D0−D4 system can

be obtained without resorting to the dual heterotic formulation, either by computing the

Euler number of the Hilbert scheme of K3, or by enumerating genus g curves in K3 [51, 52].

Nevertheless, the heterotic description will prove very useful in more complicated examples.

Notice that the type-IIA model on K3×T 2 also has DH states with zero tree-level entropy,

but those are in general 1/4-BPS. We shall return to them in 2.7.

2.3 Asymptotic degeneracies and the Rademacher formula

In order to determine the asymptotic density of states at large N −1 = nw, it is convenient

to extract d(N) from the partition function (2.6) by an inverse Laplace transform,

p24(N) =
1

2πi

∫ ε+iπ

ε−iπ
dβ eβ(N−1) 16

∆(e−β)
. (2.8)

where the contour C runs from ε−iπ to ε+iπ, parallel to the imaginary axis. One may now

take the high temperature limit ε → 0, and use the modular property of the discriminant

function (see appendix B)

∆(e−β) =

(

β

2π

)−12

∆(e−4π2/β) . (2.9)

As e−4π2/β → 0, we can approximate ∆(q) ∼ q and write the integral as

p24(N) =
16

2πi

∫

C
dβ

(

β

2π

)12

e
β(N−1)+4π2

β . (2.10)

This integral may be evaluated by steepest descent: the saddle point occurs at β =

2π/
√

N − 1, leading to the characteristic exponential growth p24(N) ∼ exp (4π
√

nw) for

the degeneracies.
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To calculate the sub-leading terms systematically in an asymptotic expansion at large-

N , one may recognize that (2.10) is proportional to the integral representation of a modified

Bessel function,

Iν(z) =
(z

2

)ν 1

2πi

∫ ε+i∞

ε−i∞

dt

tν+1
e(t+z2/4t) :=

1

2π

( z

4π

)ν
Îν(z) . (2.11)

In order to reach (2.11) from (2.10), notice however that one should extend the contour

C to the whole line ε + iR. While this would have lead to an infinite multiplicative factor

in (2.8) (a Dirac delta at integer N rather than a Kronecker delta), this is no longer a

problem in (2.10), where periodicity under β → β + 2πi has been broken. We thus obtain

p24(N) ∼ 24 Î13

(

4π
√

N − 1
)

. (2.12)

Using the asymptotic expansion of Îν(z) at large z (see e.g. [53])

Îν(z) ∼ ez

√
2

( z

4π

)−ν− 1
2

[

1 − (µ − 1)

8z
+

(µ − 1)(µ − 32)

2!(8z)2
− (µ − 1)(µ − 32)(µ − 52)

3!(8z)3
+ . . .

]

,

(2.13)

where µ = 4ν2, we can thus compute the subleading corrections to the microscopic entropy

of DH states,

log Ω(n,w) ∼ 4π
√

|nw| − 27

4
log |nw| + 15

2
log 2 − 675

32π
√

|nw|
− 675

28π2|nw| − · · · (2.14)

This is however not the complete asymptotic expansion of Ω(n,w) at large charge: indeed,

there are exponentially suppressed corrections to (2.12) which can be computed by using

the general Rademacher expansion formula for the Fourier coefficients of modular forms

with weight w < 0 (see appendix A). For the case at hand, we have

Ω(n,w) = 24
∞
∑

c=1

c−14 Kl(nw + 1,−1; c) Î13

(

4

c
π
√

|nw|
)

(2.15)

where Kl(N,−1; c) are the Kloosterman sums defined in (A.6), which are uniformly

bounded by |c|. Although each term is exponentially suppressed with respect to the previ-

ous one in the sum, they all become large at large charge.

2.4 Generalized attractor formalism for N = 4 and leading entropy

Now, we would like to compute the black hole degeneracies from the macroscopic side. Since

the attractor formalism is tailored for N = 2 supergravity, one should first decompose the

spectrum under an N = 2 subalgebra. The N = 4 supergravity multiplet consists of

the N = 2 supergravity multiplet with its graviphoton gauge field, two N = 2 gravitino

multiplets with 2 abelian gauge fields each, and one N = 2 vector multiplet. In addition,

each N = 4 vector multiplet decomposes into one vector and one hypermultiplet of N = 4.

The gauge fields from the N = 2 gravitino multiplets have different couplings from the

rest of the N = 2 vectors and we will restrict to black holes which are neutral with respect
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to them. In terms of N = 2 multiplets, the spectrum of type-IIA/K3 × T 2 has therefore

nV = 24 abelian gauge fields. In order to evaluate the generalized prepotential F (XA,W 2)

which governs the N = 2 supersymmetric couplings of these 24 gauge fields, recall the

following:

i) The tree-level topological amplitude F0 is fixed by the triple intersection product

on H2(K3 × T 2). We choose a basis of two-cycles with γ1 = H2(T 2) and γa=2,23 a

basis of H2(K3). The triple intersection product vanishes except between γ1 and two

2-cycles γa, γb in H2(K3), where it equals the signature (3, 19) intersection product

Cab

ii) The topological amplitude F1 has been computed in [41], and can be obtained as the

holomorphic part of the R2 amplitude at one-loop,

fR2 = 24 log(T2|η(T )|4) (2.16)

where T,U denote the Kähler and complex structure moduli of the torus T 2. From

the heterotic point of view, this result can be interpreted as NS5-brane instanton

corrections to the tree-level heterotic R2 amplitude [41].

iii) All higher topological amplitudes Fh for h > 1 vanish for models with N = 4 su-

persymmetry. Indeed, the type-II dilaton is part of the second factor in (2.1), and a

non-vanishing Fh amplitude would be inconsistent with SO(6, nV − 2) duality.

We therefore obtain the generalized prepotential

F (XI ,W 2) = −1

2

23
∑

a,b=2

Cab
XaXbX1

X0
− W 2

128πi
log ∆(q) (2.17)

where T = X1/X0 and q = e2πiT . The appearance of the same discriminant function ∆(q)

as in the heterotic result (2.6) is at this stage coincidental.7

We may now apply the N = 2 attractor formalism summarized in section 1.1 to the

heterotic DH states (n,w), or equivalently to bound states of p1 = w D4-branes wrapping

K3 with q0 = n D0-branes. Since this does not cause any additional complications, we shall

allow arbitrary electric charges q0, qi=2..23, as long as q1 = 0 and the only non-vanishing

magnetic charge is p1. Under these assumptions, the black hole free energy (1.2) reduces

to

F(φI , pI) = −π

2
Cab

φaφbp1

φ0
− log |∆(q)|2 (2.18)

where

q = exp

[

2π

φ0

(

p1 + iφ1
)

]

. (2.19)

7The two are however related by the following chain of arguments: the R2 coupling is related by mirror

symmetry to a (∇2S)2 coupling, where S is the type-IIA axio-dilaton [20]. The latter can be computed

from a 1-loop amplitude on the heterotic side, which produces both a 1-loop log(U2|η(U)|4) contribution

in type-IIA, and a series of D-instanton contributions on K3 × S1; the latter are governed by the Fourier

coefficients of 1/∆(q), in agreement with the partition function of the D0 − D4 system [54].
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According to (1.1), the Bekenstein-Hawking-Wald entropy is simply obtained by performing

a Legendre transform over all electric potentials φI , I = 0, . . . , 23. The Legendre transform

over φa=2..23 sets φa = (φ0/p1)Cabqb, where Cab is the inverse of the matrix Cab. We will

check a posteriori that in the large charge limit, it is consistent to approximate ∆(q) ∼ q,

whereby all dependence on φ1 disappears. We thus obtain

SBHW ∼ Extrφ0

[

−π

2

Cabqaqb

p1
φ0 + 4π

p1

φ0
+ πφ0q0

]

(2.20)

The extremum of the bracket lies at

φ0
∗ =

1

2

√

−p1

q̂0
, q̂0 := q0 +

1

2p1
Cabqaqb (2.21)

so that at the horizon the Kähler class ImT ∼
√

−p1q̂0 is very large, justifying our as-

sumption. Evaluating (2.20) at the extremum, we find

SBH ∼ 4π

√

Q2

2
, Q2 = 2p1q0 + Cabqaqb (2.22)

in agreement with the leading exponential behavior in (2.14), including the precise numer-

ical factor. Note that this result is independent of the OSV conjecture, and relies only on

the classical attractor mechanism in the presence of higher-derivative corrections. This ob-

servation, first made in [37], indicates that the tree-level R2 coupling in the effective action

of the heterotic string on T 6 (or, equivalently, large volume limit of the 1-loop R2 coupling

in type-IIA/K3 × T 2) is sufficient to cloak the singularity of the small black hole behind

a smooth horizon. This is in fact confirmed by a study of the corrected geometry [36, 40].

Furthermore, the fact that the correct numerical factor is reproduced from R2 interactions

alone indicates that, in contrast to general expectations based on the form of the tree-level

metric [15], further higher-derivative interactions do not correct the Bekenstein-Hawking-

Wald entropy (although they may still correct the actual solution). It would be interesting

to understand the origin of this non-renormalization.

2.5 Testing the OSV formula

We are now ready to test the proposal (1.7) and evaluate the inverse Laplace transform of

exp(F) with respect to the electric potentials,

ΩOSV (pI , qI) =

∫

dφ0 dφ1 d22φa 1

|∆(q)|2 exp

[

−π

2
Cab

φaφbp1

φ0
+ πφ0q0 + πφaqa

]

. (2.23)

Due to the non-definite signature of Cab, the integral over φa diverges for real values. This

may be avoided by rotating the integration contour to ε + iR for all φ’s. The integral over

φa is now a gaussian, leading to

ΩOSV (pI , qI) =

∫

dφ0 dφ1

(

φ0

p1

)11 1

|∆(q)|2 exp

(

−1

2

Cabqaqb

p1
φ0 + q0φ

0

)

(2.24)
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where we dropped numerical factors and used the fact that det C = 1. Unfortunately,

for imaginary φ0, φ1, q is a pure phase, and ∆(q) is ill-defined. The asymptotics of Ω is

independent of the details of the contour, as long as it selects the correct classical saddle

point (2.21) at large charge. Approximating again ∆(q) ∼ q, we find the quantum version

of (2.20),

ΩOSV (pI , qI) =

∫

dφ0 dφ1

(

φ0

p1

)11

exp

(

−1

2

Cabqaqb

p1
φ0 − 4π

p1

φ0
+ q0φ

0

)

. (2.25)

The integral over φ1 superficially leads to an infinite result. However, since the free energy

is invariant under φ1 → φ1 + φ0, it is natural to restrict the integration to a single period

[0, φ0], leading to an extra factor of φ0 in (2.25). The integral over φ0 is now of Bessel type,

leading to

ΩOSV (pI , qI) = (p1)2Î13

(

4π

√

Q2

2

)

(2.26)

in impressive agreement with the microscopic result (2.12) at all orders in 1/Q.

While this result is encouraging, it however indicates that (1.7) should interpreted with

some care:

• The extra factor of (p1)2 in eq. (2.26) is inconsistent with O(Γ6,22) duality, which

requires the exact degeneracies to be a function of Q2 only. This indicates that

the integration measure implicit in (1.7) is not the trivial euclidean measure. Given

the wave function interpretation of eFtop [55], one attractive possibility would be

to normalize it — alas, it appears to be severely non-normalizable. For lack of a

proper understanding of this integration measure, we are thus forced to consider

ratios Ω(p, q)/Ω(p, q′) only.8

• In order to obtain the modified Bessel function with the correct index, note that it

was crucial to discard the non-holomorphic correction proportional to log T2 in F1

(keeping this correction would have resulted in an index 19 rather than 13, spoiling

the agreement with the microscopic result (2.12)). In addition, it was important

to compare to the degeneracies of DH states with arbitrary angular momentum J

(degeneracies of DH states with J = 0 are computed in appendix C, and lead to a

Bessel function with index 29/2 and a different intercept).

• The “all order” result (2.26) depends only on the number of N = 2 vector multiplets,

as well as on the leading large volume behavior of F1 ∼ q/(128πi). By heterotic/type-

II duality, this term is mapped to a tree-level R2 interaction on the heterotic side,

which is in fact universal. We thus conclude that in all N = 2 models which admit

a dual heterotic description, the degeneracies of small black holes predicted by (1.7)

are given by

ΩOSV (pI , qI) ∝ ÎnV +2

2

(

4π

√

Q2

2

)

, (2.27)

8The analysis of the p0 6= 0 case in section 4.4 indicates that a proper duality-covariant measure will

have to break holomorphicity.
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provided it is justified to neglect higher genus Fh>1 and genus 0,1 Gromov-Witten

instantons. We shall return to this point in section 4.3.

• In order to try and match (2.26) and (2.12) in more detail, one may change variable

β = π/t in (2.8) and rewrite the exact microscopic result as

Ω(n,w) =

∫

dt t−14 exp
(

πnw
t

)

∆ (e−4πt)
. (2.28)

On the other hand, it is convenient to change variables in the OSV integral (2.24) to

τ1 = φ1/φ0, τ2 = −p1/φ0, with jacobian dφ0dφ1 = 8(p1)2dτ1dτ2/τ
3
2 , leading to

ΩOSV (pI , qI) ∼
∫

dτ1 dτ2 τ−14
2

exp
(

π(N−1)
τ2

)

|∆ (e−2πτ2+2πiτ1) |2 . (2.29)

Despite obvious similarities, it appears unlikely that the two results are equal non-

perturbatively. Indeed, with any natural interpretation of the integration contours

consistent with the quantum mechanics interpretation, the integral (2.29) diverges.

• Just as the perturbative result (2.12), the result (2.26) misses subleading terms in

the Rademacher expansion (2.15). It does not seem possible to interpret any of the

terms with c > 1 as the contribution of a subleading saddle point in either (2.10)

or (2.24). It would be interesting to see if non-holomorphic Poincaré series can be

used to extract these contributions from (2.24).

Despite these difficulties, we find it remarkable that the black hole partition function

in the OSV ensemble, obtained from purely macroscopic considerations, reproduces the

entire asymptotic series exactly to all orders in inverse charge.

2.6 Degeneracies vs. helicity supertrace

If it is to satisfy the second law of thermodynamics, the Bekenstein-Hawking-Wald entropy

should be equal to the logarithm of the total number of micro-states in the regime where

the black hole is formed. On the other hand, the degeneracies of DH states have been

computed at zero heterotic string coupling. In general however, BPS states can appear

and disappear rather chaotically on various loci of the moduli space, by (un)pairing up

into longer multiplets. If the absolute degeneracies at zero coupling can be identified with

a suitable index, it is then possible to ensure that the total number of micro-states does

not change as the coupling is increased (barring the possible crossing of lines of marginal

stability). The only such indices with a well-defined target space interpretation are the

helicity supertraces9

Ωn = Tr(−1)F Jn
3 (2.30)

where F is the target-space fermion number and J3 is a Cartan generator in the massive

little group in 3+1 dimensions (or, for massless states, the ordinary helicity), and n is an

9See [56], appendices E and G for an extensive review of helicity supertraces.
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even number (Ω2n+1 always vanishes by reason of symmetry) . For a given number N
of supersymmetry in 4 dimensions, Ωn<N vanishes automatically in any multiplet, while

Ωn≥2N receives contributions from generic long multiplets. In the window N ≤ n ≤ 2N ,

the helicity supertraces Ωn receive only contributions from short or intermediate multiplets,

and are therefore unaffected by recombination processes.

For the N = 4 case of interest in this section, the first non-vanishing supertrace is Ω4,

which receives contributions only from the supergravity multiplet, massless vector multiplet

and short massive multiplets,10

Ω4(sugra) = 3 , Ω4(vect) =
3

2
, Ω4(S

j) =
3

2
(2j + 1)(−1)2j (2.31)

while the intermediate and long N = 4 multiplets cancel out. In particular, Ω4 is unaffected

by possible recombinations of four short multiplets into a longer intermediate multiplet.

Similarly, the helicity supertrace Ω6 receives contributions from short and intermediate

multiplets only,

Ω6(sugra) =
13 · 15

4
, Ω6(vect) =

15

8
, Ω6(S

j) =
15

8
(2j + 1)3(−1)2j , (2.32)

Ω6(I
j) =

45

4
(2j + 1)(−1)2j+1 (2.33)

and is invariant under recombinations of four intermediate multiplets into a longer one.

In order to compare with the absolute degeneracies (2.6), let us compute the helicity

supertrace of the DH states in the Het(4,24) model. Helicity supertraces are most easily

computed by introducing generating parameters v and v̄ for the left and right moving

components of the space-time helicity J3 [56]

Z(v, v̄) = Tr(−1)F e2πivJR
3 e2πiv̄JL

3 qL0qL̄0 (2.34)

and computing

Bn(q, q̄) =
∑

ΩnqL0 q̄L̄0 =

(

∂

2πi∂v
+

∂

2πi∂v̄

)n

|v=v̄=0Z(v, v̄) . (2.35)

The generating function for helicity supertraces of the E8 × E8 heterotic string on T 6 is

simply given by

ZH
(4,24)(v, v̄) =

ξ(v)ξ̄(v̄)

τ2|η|4
1

2

∑

α,β

(−1)α+β+αβ
θ̄

[

α/2
β/2

]

(v̄)θ̄3
[

α/2
β/2

]

η̄4

Z6,6

|η|12
(

θE8[1]

)2
(2.36)

where α, β = 0, 1 label the four spin structures on the superconformal side, ξ(v) incorpo-

rates the U(1) charge of the bosons in the two transverse directions,

ξ(v) =

∞
∏

n=1

(1 − qn)2

(1 − qne2πiv)(1 − qne−2πiv)
=

2η3 sin πv

θ1(v)
(2.37)

10The superscript j indicates the spin J3 of the middle state in the short massive supermultiplet Sj .
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θE8[1] is the numerator of the character of the E8 current algebra at level 1,

θE8[1] =
1

2

(

θ8
3 + θ8

4 + θ8
2

)

(2.38)

and Z6,6 is the partition function of bosonic zero-modes on T 6. By the Riemann iden-

tity, (2.36) can be converted into

ZH
(4,24)(v, v̄) =

ξ(v)ξ̄(v̄)

τ2|η|4
θ̄4

[

1/2
1/2

]

(v̄/2)

η̄4

Z6,6

|η|12
(

θE8[1]

)2
(2.39)

which is recognized as a trace in the Ramond sector only, with an insertion of (−1)JR . Since

the Jacobi theta function θ1(z; τ) has a single zero at z = 0, a non-vanishing supertrace

is obtained only for n ≥ 4. Taking four v̄-derivatives and using θ
[

1/2
1/2

]′
(0) = θ′1(0) =

2πη3, ξ(0) = 1, the first non-vanishing supertrace is easily computed:

B4 =
1

τ2
Z6,6

(

θE8[1]

)2 × 3

2

1

η24
(2.40)

where the factor 1/τ2 corresponds to the contribution of the zero-mode p2, p3 in the trans-

verse directions. At a generic point, the two factors in the numerator combine into a lattice

sum Z(6,22), leading to

B4 =
1

τ2
Z6,22 ×

3

2

1

η24
. (2.41)

The first factor simply corresponds to the continuous degeneracy due to the momentum

in 4 dimensions, while the second factor is just the partition function of the lattice Γ6,22

of electric charges. For any vector Q ∈ Γ6,22 , we conclude that the helicity supertrace of

states with electric charges Q is given by

Ω4(Q) =
3

2
p24(N) =

3

32
Ωabs(Q) (2.42)

where Ωabs is the absolute degeneracy computed in (2.6) up to an overall numerical factor.

This suggests that, in the case of N = 4 backgrounds, the OSV integral (1.7) may compute

the fourth helicity supertrace of the black hole micro-states.

An immediate problem with this proposal is that it implies that the OSV prescrip-

tion should vanish in the case of “large” black holes, which form intermediate (1/4-BPS)

multiplets of N = 4 supersymmetry. These states cancel from Ω4 and contribute to sixth

helicity supertrace Ω6 onward. In the case of the Het(4, 24) model, Ω6 may be obtained

straightforwardly by taking either 6 v̄-derivatives, or 4 v̄-derivatives and 2 v-derivatives,

leading to [56]

B6 =
1

τ2
Z6,22 ×

15

8

2 − E2

η24
. (2.43)

Since the perturbative heterotic spectrum contains no intermediate multiplets, this result

arises from the contributions of the same DH states which contributed to (2.41). While
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the Rademacher formula does not apply to the non-modular invariant Eisenstein series E2,

one may simply use the identity
E2

η24
= −q

d

dq

1

η24
(2.44)

to obtain the asymptotic behavior of the Fourier coefficients of B6 to all orders in 1/N ,

Ω6(N) ∼ 15

8
(N + 1)Î13

(

4π
√

N − 1
)

(2.45)

where

B6 =
1

τ2
Z6,22

∞
∑

N=0

Ω6(N)qN−1 . (2.46)

In particular, the extra factor of N+1 in (2.45) makes it impossible to include a contribution

from Ω6 to the index relevant for the OSV proposal (1.7) for half-BPS states, since one

would have to modify the integration measure by a q dependent factor. On the other

hand, Ω4 is clearly inadequate for 1/4 BPS states. We conclude that the index computed

by (1.7) must depend on the number of supersymmetries preserved by the BPS states under

consideration.

Before closing this section, let us briefly comment on the case with N = 2 supersym-

metry originally envisaged in [14]. In this case, the only index protected by supersymmetry

is the second helicity supertrace Ω2, to which only 1/2 BPS states contribute:

Ω2(sugra) = Ω2(vect) = 1 , Ω2(hyper) = −1 , Ω2(S
j) = (2j + 1)(−1)2j+1 . (2.47)

This is the space-time interpretation of the “vectors minus hypers” index introduced from a

world-sheet point of view in [57], since short multiplets with integer (resp. half-integer) spin

j are the massive generalization of the massless hypermultiplet (resp. vector multiplet). In

particular, Ω2 is invariant under the recombination of a hyper and a vector multiplet into

a long multiplet of N = 2. Note however that Ω2 may change at lines of marginal stability

in moduli space. Since we do not have the freedom to add higher helicity supertraces, we

conjecture that the OSV prescription computes the second helicity supertrace of the N = 2

black hole micro-states. Evidence for this claim will be given in section 5.

2.7 DH states in type-II/K3× T 2

In addition to the heterotic DH states, the (4, 24) model also admits DH states on the type-

IIA side, corresponding to fundamental type-II strings with momentum ni and winding

wi along T 2 (i = 5, 6). These can have either left-moving or right-moving excitations,

depending on the sign of niw
i. Since there are now 8 bosonic and 8 fermionic oscillators,

with total central charge c = 12, the degeneracies grow as

SIIA
DH ∼ 2π

√

2|niwi| . (2.48)

In contrast to the heterotic DH states, these states preserve only 1/4 of the supersymme-

tries, unless niw
i = 0. According to (2.4), they have P 2 = Q2 = P · Q = 0, hence zero
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tree-level entropy. Their helicity supertraces have been computed in [56] (eqs. (G.24) and

(G.25)), and vanish identically except for niw
i = 0:

Ω4(Q) = 36 δniwi,0 (2.49)

Ω6(Q) = 90 δniwi,0 . (2.50)

This indicates that these intermediate multiplets come in pairs and may combine into

longer multiplets and leave the spectrum.

Since the type-II DH states are charged under the four N = 2 gravitino multiplets,

the N = 2 attractor formalism does not apply directly. Nevertheless, by a O(6, 22) duality,

they may be mapped to a D0-D2/T 2 state with charges (q0, q1).

More generally, we may try and apply the OSV formula (1.7) to purely electrically

charged states in the type-II polarization, with arbitrary electric charges (q0, q1, qa). The

perturbative part of the free-energy (1.2) vanishes, leaving only the Gromov-Witten in-

stanton series, evaluated at real XA = φA/φ0, where it is no longer convergent. The

integral (1.7) is therefore highly singular. Nevertheless, discarding the Gromov-Witten

contribution, (1.7) produces a delta function of the electric charges, in qualitative agree-

ment with the helicity supertraces above.

It should be noticed that similar DH states occur in type-IIA/T 6, with N = 8 super-

symmetry. The first non-trivial helicity supertraces occur at order Ω12,Ω14, but they are

given by modular forms with positive weight, so that the indexed degeneracies of interme-

diate multiplets grow as a power-law rather than exponentially.

3. Small black holes in N = 4 models with reduced rank

In this section, we proceed to compare the macroscopic and microscopic entropy of small

black holes in a variety of string vacua with N = 4 supersymmetry. While the (4,24)

model discussed in the previous section has been the most studied one in the literature, a

large number of N = 4 vacua can be obtained using fermionic [58, 59] or orbifold construc-

tions [60 – 62]. The latter has the advantage that a dual description can often be found by

using six-dimensional heterotic/type-II duality and adiabatic arguments [63, 64, 61]. Each

of these models has a moduli space of the form (2.1), where the first factor corresponds to

the heterotic dilaton and nV denotes the number of massless abelian gauge fields (including

the graviphoton, but discarding the gauge fields from the two N = 2 gravitino multiplets).

We will denote such vacua as Het(4, nV ) or II(4, nV ), assuming that all models with the

same number of vector multiplets belong to the same moduli space. As in the (4,24) case,

the only non-vanishing F-term F1 can be extracted from the one-loop amplitude R2 ampli-

tude in the type-II model, while the exact degeneracies of small black holes are most easily

determined in the heterotic dual.

3.1 F1 in reduced rank type-II models

The topological amplitude F1 has been computed in a number of (4, nV ) type-II models

in [61]. In general, it is given by the holomorphic, T -dependent part of the integral of the
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“new” supersymmetric index on the fundamental domain of the upper half plane [41],

fR2 =

∫

F

d2τ

τ2
TrRR(−1)JL+JRJLJRqL0+L̄0 = −2

3

∫

F

d2τ

τ2
B4 . (3.1)

As indicated in the second equality, the supersymmetric index is proportional to the gener-

ating function B4 of the helicity supertraces Ω4 of the perturbative type-II spectrum [61].

For completeness, we briefly review the CFT construction of these models11 and list the

corresponding supertrace and R2 amplitudes:

• The (4, 16) model is obtained by starting from type-IIA on K3 × T 2 at the T 4/Z2

orbifold point of K3, and performing a further Z2 orbifold which acts as (−1) on half

of the twisted sectors, and shifts one of the coordinates of T 2 by a half-period. The

generating function of the 4-th helicity supertraces is

B4 = 18 Z2,2 + 6
∑

(h,g)6=(0,0)

Zδ1
2,2

[

h/2
g/2

]

(3.2)

where

Zδ
2,2

[

h/2
g/2

]

(T,U ; τ, τ̄ ) =
∑

p∈Γ2,2+ h
2
δ

e−iπg(p,δ)q
1
2
Π2

L(p)q̄
1
2
Π2

R(p) (3.3)

is the shifted lattice sum for the Narain lattice of the torus T 2. We choose a sym-

metric shift vector δ1 = (1, 1)/2 along the first circle, so as to entertain a geometric

description.

• A (4, 12) model may be obtained by performing a further Z2 orbifold of the (4, 16)

model, which acts as (−1) on a different half of the 16 twisted states, together with a

shift by half a period on the remaining circle in T 2. The helicity supertrace generating

function is

B4 = 9Z2,2 + 3
∑

(h,g)6=(0,0)

(

Zδ1
2,2

[

h/2
g/2

]

+ Zδ2
2,2

[

h/2
g/2

]

+ Zδ1+δ2
2,2

[

h/2
g/2

])

. (3.4)

• A (4, 8) model can be obtained by returning to the II(4, 24) model at the T 4/Z2

orbifold point, and by orbifolding by a further Z2 which acts as (−1) on all twisted

sectors. The result is

B4 = 18 Z2,2 − 6
∑

(h,g)6=(0,0)

Zδ
2,2

[

h/2
g/2

]

. (3.5)

In each of these cases, the modular integral (3.1) can be reduced to the (4, 24) case by

making use of the following identities,

1

2

(

Z2,2

[

00
00

]

+ Z2,2

[

00
1
2
0

]

+ Z2,2

[

1
2
0

00

]

+ Z2,2

[

1
2
0

1
2
0

])

= Z2,2(T/2, 2U) (3.6)

11While the inclusion of discrete RR fluxes on K3 is required non-perturbatively for level matching [63],

this does not affect the perturbative computation of F1 in these models. Such fluxes do however affect the

BPS spectrum [65].
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1

2

(

Z2,2

[

00
00

]

+ Z2,2

[

00
0 1

2

]

+ Z2,2

[

0 1
2

00

]

+ Z2,2

[

0 1
2

0 1
2

])

= Z2,2(T/2, U/2) (3.7)

1

2

(

Z2,2

[

00
00

]

+ Z2,2

[

00
1
2

1
2

]

+ Z2,2

[

1
2

1
2

00

]

+ Z2,2

[

1
2

1
2

1
2

1
2

])

= Z2,2(T/2, (U + 1)/2) , (3.8)

where, on the left hand side, all partition functions are evaluated at (T,U). We thus

obtain [61]

(4, 24) : fR2 = 24 log T2|η(T )4| ∼ 24 log T2 − 8πT2 + · · ·
(4, 16) : fR2 = 16 log T2|η3(T )θ4(T )| ∼ 16 log T2 − 4πT2 + · · ·
(4, 12) : fR2 = 12 log T2|η2(T )θ2

4(T )| ∼ 12 log T2 − 2πT2 + · · ·

(4, 8) : fR2 = 8 log T2

∣

∣

∣

∣

η(T )6

θ4(T )2

∣

∣

∣

∣

∼ 8 log T2 − 4πT2 + · · · (3.9)

where T is the Kähler modulus of the T 2 covering of the base of the K3 fibration. We

have also indicated the large volume expansion. The leading linear term is proportional to

the size A of the base of the K3 fibration, which differs from T by a power of two. The

logarithmic divergence is proportional to the helicity supertrace Ω4 = 3 + (3/2)(nV − 2) of

the massless spectrum. The dots correspond to a finite term, dependent on the details of

the IR cut-off, and a sum of worldsheet instantons. In general, we therefore have

fR2 = nV log A − 8πA2 + · · · (3.10)

with A = (T, T/2, T/4, T/2) for the four models above. In the heterotic dual, A becomes

the heterotic dilaton S = θ+iV6/g
2
s . where V6 is the volume of the 6-torus. The term linear

in T2 is therefore a tree-level term, coming from the compactification of the R2 interaction

in the 10-dimensional heterotic string. The type-II worldsheet instantons are interpreted

on the heterotic side as euclidean NS5-branes wrapping T 6.

3.2 Heterotic duals and exact counting of DH states

Heterotic N = 4 models with reduced rank can be obtained by orbifolding the E8 × E8 or

SO(32) ten-dimensional heterotic strings at an enhanced symmetry point, by a symmetry

leaving the right-moving superconformal algebra untouched. In particular, we consider the

following models:

• A (4, 16) model obtained by orbifolding the E8 × E8 heterotic string on T 6 by the

exchange of the two E8, combined with a translation on one of the directions of the

torus T 6. Equivalently, one may orbifold the SO(32) heterotic string at an SO(16)×
SO(16) point by the exchange of the two SO(16) factors.

• A (4, 12) model obtained by orbifolding the SO(32) heterotic string at a SO(8)4

point by the group Z4 permuting the four SO(8) factors circularly12 combined with

a translation of order 4 on the torus.

12It is also possible to orbifold by the full permutation group S4, or the alternate subgroup A4, but the

required action on T 2 is more complicated.
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• A (4, 10) model obtained by orbifolding the SO(32) heterotic string at a SO(4)8

point by the group Z8 permuting the eight SO(4) factors circularly. Viewing SO(4)8

as SU(2)16, one may also orbifold by Z16 and get a (4, 9) model.

In each of these models, it is important to include a translation on one of the directions of

the torus T 6 so as to give a mass to the twisted sectors, and ensure that the rank of the

gauge group is effectively reduced.

The common property of these models is that they give rise to an enhanced gauge

symmetry with a current algebra at level k > 1. However, in order to have a type-II dual

with a smooth geometry, one should further break the gauge symmetry to an abelian group

U(1)nV +4.

3.3 A detailed analysis of the Het(4, 16) model

Let us now discuss in detail the degeneracies of DH states in the Het(4, 16) model obtained

by orbifolding the Het(4, 24) model at a point of enhanced gauge symmetry E8 ×E8. The

Narain lattice of the Het(4, 24) model may be decomposed as

Γ6,22 = E8(−1) ⊕ E8(−1) ⊕ II1,1 ⊕ II5,5 (3.11)

where II1,1 ⊕ II5,5 describe the momenta and winding numbers on the 6-torus S1 × T 5.

Accordingly, we shall denote the momentum eigenstates as P = (P1, P2, P3, P4). At any

point in the moduli space (2.1), this vector may be projected into a sum of a left-moving

and a right-moving part,

P = ΠL(P ) + ΠR(P ) (3.12)

where ΠR(P ) ∈ R
6 are the 6 central charges of N = 4 supersymmetry, and ΠL(P ) ∈ R

22

are the 22 electric charges under the vector multiplets of the Het(4, 24) model. While the

charge vector P takes quantized values independent of the moduli, the projections ΠL(P )

and ΠR(P ) are real numbers depending continuously on the moduli.

Untwisted sector. Now, the Het(4, 16) model can be obtained as a Z2 orbifold acting

on momentum eigenstates as

g|P1, P2, P3, P4〉 = e2πiδ·P3 |P2, P1, P3, P4〉 (3.13)

where 2δ is the vector (1, 1) ∈ II1,1 corresponding to the translation by half a period along

the circle. The action on the oscillators is most easily described by diagonalizing the action

of g: 8 left-moving oscillators obtain a negative parity under g, while the remaining left-

moving and all right-moving oscillators have positive parity. Let P±(α) denote a generic

monomial in left-moving creation oscillators, with definite parity ± under g.

DH states in the untwisted sector of the Het(4, 16) model can be constructed as in-

variant combinations of the DH states of the Het(4, 24) model under the orbifold action,

P±(α)

(

|P1, P2, P3, P4〉 ± e2πiδ·P3 |P2, P1, P3, P4〉
)

⊗ |s̃〉 (3.14)
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where the parity of the oscillators is correlated with that of the zero-modes, and |s̃〉 is a

right-moving groundstate.13 The level matching conditions identifies the level N of the

oscillator state P(α) with

N − 1 =
1

2
q2
R − 1

2
q2
L =

1

2
P 2 . (3.15)

The DH states (3.14) are thus enumerated by the partition functions

1

2

(

1

η24
± 24

η12ϑ4
2

)

∑

II22,6

q
1
2
q2
L q̄

1
2
q2
R

1 ± Θ(P )

2
(3.16)

where Θ(P ) = e2πiδP3δP1,P2 . The last factor in (3.16) guarantees that states with P1 6= P2

are counted twice with 1/2 multiplicity, while states with P1 = P2 and e2πiδP3 = ∓1 are

dropped out, in agreement with eq. (3.14).

This is not the final answer however, since we need to extract from (3.16) the con-

tribution of states with a given electric charge. Due to the orbifold projection, the only

massless vector multiplets are the linear combinations of the E8 × E8 gauge bosons of the

(4, 24) model which are symmetric under exchange of the two factors. Therefore, a state

of the form P(α)|P1, P2, P3, P4〉 has electric charge

Q(P ) := (P1 + P2;P3, P4) (3.17)

taking values in the (non self-dual) lattice14

M0 = E8

(

−1

2

)

⊕ II1,1 ⊕ II5,5 (3.18)

In particular, the momentum eigenstates (P1 − Q,P2 + Q,P3, P4) have the same electric

charge Q(P ) as (P1, P2, P3, P4), for any Q in the E8 root lattice. It can be checked that all

these states have the same central charges ΠR on the subspace SO(6, 14)/SO(6)× SO(14)

of the moduli space of the Het(4, 24) model (2.1) invariant under the orbifold projections.

They therefore have the same mass and electric charge, but differ by the excitation level

N of the oscillators.

In order to extract the exact degeneracy of DH states for a given electric charge Q, it

is appropriate to change the basis and decompose the two E8(−1) charge vectors into their

sum and difference,

P1 + P2 = 2Σ + P (3.19)

P1 − P2 = 2∆ − P (3.20)

where Σ,∆ both take values in the E8 root lattice, and P is an element of the finite group

Z = Λr(E8)/2Λr(E8), of index 28. Expressing the square of the left-moving momentum as

Π2
L(Σ + ∆,Σ − ∆ + P, P3, P4) = Π2

L

(

Σ +
1

2
P,Σ +

1

2
P, P3, P4

)

+ 2

(

∆ − 1

2
P

)2

(3.21)

13In the following, we omit the factor of 24 due to the degeneracy of the right-moving groundstate.
14In this expression, (−1/2) indicates that the norm of the E8 is multiplied by 1/2, in order to keep the

canonical normalization for the gauge fields.
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we can carry out the sum over the “unphysical charges” ∆ by introducing E8 theta functions

with characteristics:

ΘE8[2],P(τ) :=
∑

∆∈E8(1)

e2πiτ(∆− 1
2
P)2 . (3.22)

This allows to decompose the E8(1) ⊕ E8(1) lattice as a sum of products of shifted E8(2)

lattices,

θ2
E8[1]

(τ) =
∑

P∈E8/2E8

θE8[2],P(τ)θE8[2],P(τ) . (3.23)

Note that ΘE8[2],P depends only on the orbit of P under the Weyl group of E8. It may

be checked that the finite group Z decomposes into three orbits only, corresponding to the

orbit of the fundamental weight of the trivial, adjoint and 3875 representations, of respec-

tive length 1, 120 and 135, respectively. The theta series (3.22) are thus the numerator

of affine characters of E8 at level 2, and can be computed explicitly using free fermion

representations,

θE8[2],1 = θE8[1](2τ) = 2−4
(

θ8
3 + θ8

4 + 14 θ4
3θ

4
4

)

θE8[2],248 =
1

2

(

θ6
3θ

2
2 + θ6

2θ
2
3

)

(2τ) = 2−4
(

θ8
3 − θ8

4

)

θE8[2],3875 = θ4
3θ

4
2(2τ) = 2−4θ8

2 (3.24)

where we used the duplication identities (B.14). One may indeed check that (3.23) holds

thanks to the modular identity

θ2
E8[1]

= θ2
E8[2],1

+ 120 θ2
E8[2],248 + 135 θ2

E8[2],3875 . (3.25)

For a fixed electric charge vector 2Σ+P, the untwisted DH states (irrespective of their

oscillator level) are thus enumerated by

1

2

ΘE8[2],P(τ)

η24
+

1

2
δP,0e

2πiδ·P3
24

η12ϑ4
2

:= q∆P

∞
∑

N=0

Ωu
P(N)qN (3.26)

where N + ∆P = 1
2Q2. Notice that the second term on the left-hand side corresponds to

states with charges P1 = P2, hence P = ∆ = 0.

Twisted sector. Let us now analyze the DH states in the twisted sectors. Many details

are easily obtained by taking the modular transform of the partition function with boundary

conditions (1, g). Unlike the untwisted sector, twisted states automatically have P1 = P2,

however their charges now take values in

M1 = E8

(

−1

2

)

⊕ (II1,1 + δ) ⊕ II5,5 (3.27)

This is not a lattice since a sum of two vectors in M1 ends up in M0. DH states take the

form

P±(α)
(

1 ∓ eiπ( 1
2
P 2+(P3+δ)2)

)

|P ;P3 + δ, P4〉 ⊗ |t〉 ⊗ |s̃〉 (3.28)
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where |t〉 is the twisted left-moving ground state, and 8 of the bosonic oscillators in P±(α)

are half-integer modded. DH states with electric charges Qe = (P ;P3 + δ, P4) ∈ M1 are

now enumerated by the partition function

1

2

(

1

η12ϑ4
4

± 1

η12ϑ4
3

)

:= q∆±

∞
∑

N=0

Ωt
±(N)qN (3.29)

where the sign is that of −eiπ( 1
2
P 2+(P3+δ)2), and ∆+ = −1

2 ,∆− = 0. By the level matching

condition (3.15), N + ∆± is equated to the square of the electric charge Q2/2.

Comparison with macroscopic prediction. Having obtained the exact degeneracies

in the untwisted and twisted sectors, we may now extract their asymptotics using the

Rademacher formula (A.5),

Ωabs(Q) =
1

2
Î9

(

4π

√

Q2

2

)

+ 2−6Î9

(

4π

√

Q2

4

)



















15 + 16e2πiP3·δ , P ∈ O1

1 , P ∈ O248

−1 , P ∈ O3875

−eiπQ2
, Q ∈ M1



















+ · · ·

where Q ∈ M0 in the first three cases. Comparing to the general prediction (2.27) for a

N = 2 theory with nV = 16 vectors, we see that the microscopic counting (3.30) matches

the macroscopic entropy to all orders in 1/N , in all sectors. However, the subleading

correction depends on the fine details of the charge vector in the lattice M0 ⊕ M1.

Helicity supertraces. Finally, it is useful to check the analysis above against a direct

computation of the helicity supertraces. The partition function of the E8 × E8 heterotic

string on T 6 with an insertion of eiπvJR
3 eiπv̄JL

3 is given by

ZH
(4,16)(v, v̄) =

ξ(v)ξ̄(v̄)

4τ2|η|4
∑

h,g

∑

α,β

(−1)α+β+αβ
θ̄
[

α/2
β/2

]

(v̄) θ̄3
[

α/2
β/2

]

(0)

η̄4

Z6,6

|η|12 Zcur

[

h/2
g/2

]

(3.30)

where α, β = 0, 1 run over the four spin structures and h, g = 0, 1 run over the four (un-

twisted/twisted, unprojected/unprojected) sectors of the orbifold. In the above expression,

Z6,6

[

h/2
g/2

]

=
∑

p∈Γ6,6

(−1)g(δ,p)q
1
2
Π2

L(p+ h
2
δ)q̄

1
2
Π2

R(p+ h
2
δ) (3.31)

is the partition function for the shifted Γ6,6 lattice, and

Zcur

[

0
0

]

=
θ2
E8[1]

η16
(τ) , Zcur

[

0
1
2

]

=
θE8[1]

η8
(2τ) (3.32)

Zcur

[

1
2
0

]

=
θE8[1]

η8

(τ

2

)

, Zcur

[

1
2
1
2

]

= e−2iπ/3 θE8[1]

η8

(

τ + 1

2

)

(3.33)

are the orbifold blocks corresponding to the exchange of the two E8 factors. Since the

orbifold acts purely on the right-moving part, the helicity partition function is obtained

just as in the (6, 22) case, leading to the helicity supertraces

B4 =
3

2τ2η8
× 1

2

∑

h,g

Z6,6

[

h/2
g/2

]

Zcur

[

h/2
g/2

]

(3.34)
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B6 =
15(2 − E2)

8τ2η8
× 1

2

∑

h,g

Z6,6

[

h/2
g/2

]

Zcur

[

h/2
g/2

]

. (3.35)

Using the duplication identities (B.14), we obtain

B4 =
3

2τ2
× 1

2

[

θ2
E8[1]

η24
Z6,6

[

0
0

]

+ 24 θE8[1](2τ)

θ4
2 η12

Z6,6

[

0
1
2

]

+

+
θE8[1](

τ
2 )

θ4
4 η12

Z6,6

[

1
2
0

]

−
θE8[1](

τ+1
2 )

θ4
3 η12

Z6,6

[

1
2
1
2

]

]

(3.36)

where the theta series in the numerator can also be written as

θE8[1](τ) =
1

2

(

θ8
3 + θ8

4 + θ8
2

)

(3.37)

θE8[1](2τ) = 2−4
(

θ8
3 + θ8

4 + 14 θ4
3θ

4
4

)

(3.38)

θE8[1]

(

τ

2

)

= θ8
3 + θ8

2 + 14 θ4
3θ

4
2 (3.39)

θE8[1]

(

(τ + 1)

2

)

= θ8
4 + θ8

2 − 14 θ4
4θ

4
2 . (3.40)

Using (3.25) above, the untwisted contribution (h = 0) may be rewritten as

3

2τ2
×

∑

ε=±1

Z6,6

[

0
0

]

+ εZ6,6

[

0
1
2

]

2

[

θE8[2],1 ×
1

2

(

θE8[2],1

η24
+ ε

24ϑ4
2

η12

)

+

+ 120 θE8[2],248 ×
(

θE8[2],248

2η24

)

+

+ 135 θE8[2],3875 ×
(

θE8[2],3875

2η24

)

]

. (3.41)

Each term in round brackets can now be interpreted as the multiplicity for the DH states in

the conjugacy class OP of M0 indicated by the E8 character which multiplies it. Similarly,

in the twisted sector we have

3

2τ2
×

∑

ε=±1

Z6,6

[

1
2
0

]

+ εZ6,6

[

1
2
1
2

]

2

1

2

[

1

θ4
4 η12

θE8[1]

(τ

2

)

− ε
1

θ4
3 η12

θE8[1]

(

τ + 1

2

)]

. (3.42)

This indeed reproduces the result (3.29) above. It is also clear the generating function of

the 6-th helicity supertrace B6 is given by the same partition functions as before, up to a

factor 5(2 − E2)/4.

3.4 General reduced rank models

The agreement found for the (4,16) model of the previous section and the (4,24) model of

section 2 can in fact be easily seen to generalize to all freely acting N = 4 orbifolds of the

heterotic string compactified on T 6 by the following reasoning. In these models, DH states
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can always be constructed in the untwisted sector, by taking an arbitrary excitation of the

left-moving 24 bosons, with appropriate momenta and winding, and ensuring invariance

under the discrete symmetry. If k = 24 − nV is the number of vector fields which are

projected out by the orbifold, the generating function for the absolute degeneracies (or,

equivalently the helicity supertraces Ω4) of DH states in the untwisted sector will take the

form

1

|G|





Z

η24
+

∑

g∈G\{1}
Θg



 (3.43)

where |G| is the order of the orbifold group, Z is the partition of the lattice of charges

which have been projected out, and Θg are the partition function with an insertion of the

generator g ∈ G. Indeed, the k charges are not physical and correspond to internal degrees

of freedom. The first term in (3.43) is a modular form of weight k/2 − 12 = −nV /2 and,

provided the left-moving ground state is invariant under the orbifold, has leading term 1/q.

The Rademacher formula gives a Bessel function of the required order 1−w = (nV + 2)/2,

Ωu(Q) ∼ Î(nV +2)/2

(

4π

√

Q2

2

)

(3.44)

in agreement with the prediction (2.27). The other terms have the same modular weight,

but mix with twisted sectors under modular transformation, and as a result are expo-

nentially suppressed. In the twisted sectors, the generating functions can be obtained by

modular invariance, hence have the same modular weight. Their mixing with the untwisted

terms Θg implies that the leading term in the Rademacher expansion is controlled by the

same pole with ∆ = 1. Thus, the agreement with the OSV prediction (2.27) is expected

to hold for all N = 4 reduced rank models. This is confirmed by the analysis of other

Het(4,nV ) models in appendix D. As we shall see in section 5, the situation is quite differ-

ent for N = 2 models, where the leading term in (3.43) is absent in the case of the helicity

supertrace Ω2, or moduli dependent for absolute degeneracies Ωabs.

3.5 A type-II (2,2)/(0,4) dual pair

Let us now turn to a different type-II model, where the degeneracies of DH states can be

computed exactly by using a type-II dual, albeit with unusual (0,4) worldsheet supersym-

metry [66].

Consider type-IIA compactified on the orbifold (T 4 × T 2)/Z2, where the orbifold acts

by a reversal of the coordinates on T 4, times a translation along one circle in T 2. Since the

16 twisted sectors obtain a mass due to the shift, the massless spectrum consists of 6 vector

multiplets of N = 4, together with the gravity multiplet. The moduli space is thus given

by (2.1) with nV = 6, where the Sl(2) factor corresponds to the Kähler modulus of T 2.

This orbifold can be viewed as a variant of a K3 compactification. We shall denote this

model by (2, 2), reflecting the fact that the N = 4 supersymmetries in target space arise

from the world-sheet supersymmetry symmetrically between the left and right-movers.

This model was argued to be U-dual to a (4,0) type-IIA model, constructed as the

different orbifold (T 4×T 2)/Z2 by (−1)FL (where FL is the left-moving world-sheet fermion
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number) times a translation along on circle in T 2 [66]. The orbifold gives a mass to all

Ramond-Ramond fields, leaving again 6+6 vector multiplets of N = 4. While it has

the same N = 4 supersymmetry, the latter now comes entirely from the right-moving

supercharges on the world-sheet. Just as in the heterotic string, the Sl(2) factor in (2.1)

now parameterizes the axio-dilaton. The duality between these (0, 4) and (2, 2) models is

thus very similar to the usual heterotic/T 6- type-IIA/K3 × T 2 duality.

Just as in the heterotic/T 6 case, DH states of the (0,4) model can be constructed by

exciting the left-movers only, combined with appropriate momenta and winding along T 6.

Their helicity supertraces have been computed in [61] (eq. 6.11):

B4 =
3

2

∑

(h,g)6=(0,0)

H4

[

h/2
g/2

]

Z2,2

[

h/2
g/2

]

, (3.45)

B6 =
15

8

∑

(h,g)6=(0,0)

(

H4

[

h/2
g/2

]

+ H6

[

h/2
g/2

])

Z2,2

[

h/2
g/2

]

Z4,4 (3.46)

where

H4

[

h/2
g/2

]

= eiπg θ4
[

h
g

]

η12
, H6

[

h/2
g/2

]

=















θ8
3−θ8

4
2η12 , (h, g) = (0, 1)

θ8
2−θ8

3
2η12 , (h, g) = (1, 0)

θ8
4−θ8

2
2η12 , (h, g) = (1, 1) .

(3.47)

Note that the contribution of the (h, g) = (0, 0) sector vanishes as it has N = 8 super-

symmetry. From these expressions it easy to disentangle the contributions of the various

sectors: the degeneracies of DH states in the untwisted sector are generated by

1

2

θ4
3 − θ4

4

η12
or

1

2

θ4
2

η12
(3.48)

depending whether the momentum along the shifted circle in T 2 is even or odd, respectively.

Those in the twisted sector are given by the same expressions for odd and even momentum,

respectively. In either case, the degeneracies grow as

Ω4 =
3

2
Ωabs ∼ 3 · 25 Î5(2π

√

Q2

2
) , (3.49)

hence have half the entropy of the DH states in the heterotic (4, 24) model. As in that

model, the helicity supertrace Ω6 originates entirely from 1/2-BPS DH states, and the

perturbative string spectrum contains no intermediate multiplets.

Let us now turn to the type-II (2, 2) side, and see if this entropy may be accounted for

by higher derivative interactions. The R2 amplitude in the (2, 2) model has been obtained

by a one-loop computation in [61] (section 6.1):

fR2 = 8 log T2|θ4(T )|4 (3.50)

where we use the same normalization as in (3.9). In contrast to the other N = 4 type-

II model considered in this section, this amplitude contains only worldsheet instantons
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(except for the logarithmic term), and vanishes in the large volume limit T → i∞. This is

in agreement with the fact that, on the (0,4) side, the tree-level higher-derivative corrections

start at order R4 corrections, as expected for an orbifold of type-IIA. In particular, the

geometry remains singular, and the OSV formula appears to be unable to reproduce the

microscopic entropy in (3.49). It would be interesting to see if R4 corrections can resolve

the singularity.

Finally, let us note that the (2,2) model also has purely electric DH states, analogous

to the states discussed in section 2.7. Their helicity supertraces have been computed in [61]

(eq. 6.4). In contrast to the type IIA/K3 × T 2 case, the 1/4-BPS states do not entirely

cancel from the helicity supertraces, instead the latter are given by modular forms of

positive weight,

B4 = 12
∑

(h,g)6=(0,0)

Z2,2

[

h/2
g/2

]

, (3.51)

B6 =
15

2

∑

(h,g)6=(0,0)

(

4 + H2

[

h/2
g/2

]

+ H̄2

[

h/2
g/2

])

Z2,2

[

h/2
g/2

]

(3.52)

where

H2

[

h/2
g/2

]

=















θ4
3 + θ4

4 , (h, g) = (0, 1)

−θ4
2 − θ4

3 , (h, g) = (1, 0)

θ4
2 − θ4

4 , (h, g) = (1, 1) .

(3.53)

Depending on the sign of Q2, the helicity supertrace Ω6 of 1/4-BPS states is generated by

either H2 or H̄2 in (3.51). Since the modular weight of the counting function is positive,

the helicity supertrace Ω6 grows as a power of the charges, rather than exponentially. In

contrast, absolute degeneracies are counted by the same functions as in (3.48), hence have

an entropy of order 2π
√

Q2/2. Just as in the type-II/K3×T 2 case, it would be interesting

to understand how these states acquire a smooth horizon.

4. Macroscopic predictions for extremal black holes degeneracies in N = 2

models

In this section, we return to the realm of N = 2 supersymmetry, where the OSV con-

jecture was originally formulated, and extract the degeneracies of extremal black holes as

predicted by the conjectural relation (1.7). We start in Subsection 4.1 by reviewing the

relation between the generalized prepotential and the topological string amplitude. We

then evaluate (1.7) for large black holes with no D6-brane charge (p0 = 0), in particular

scaling limits of the charges. The case of small black holes in K3-fibrations is discussed

in Subsection 4.3. Finally, in Subsection 4.4 we compute the integral (1.7) for arbitrary

D6-brane charge, for tree-level prepotentials of the form F = X1XaCabX
b/X0. This is a

special example of the Legendre invariant prepotentials discussed in [67].
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4.1 Generalized prepotential and the topological string amplitude

As we recalled in the introduction, N = 2 supergravity admits an infinite series of higher-

derivative corrections which can be written as integral of a chiral density in N = 2 super-

space,

∫

d4θ F (XI ,W 2) =

∫

d4θ

∞
∑

h=0

Fh(XA)W 2h (4.1)

= Ltree +

∞
∑

h=1

Fh(XA)(−C−)2(T−)2h−2 + · · · (4.2)

where XI (I = 0 . . . nV − 1) are the homogeneous superfields for the vector multiplets, W

is the N = 2 Weyl superfield, with W 2 = (T−)2 + · · · + θ4(−C−)2, and the ellipses denote

other interactions related by supersymmetry (see e.g. [68] for a review of this formalism). In

the above expression, −C− denotes the anti-self-dual part of the Weyl tensor, T− the anti-

self-dual part of the graviphoton field-strength. For h = 0, one recovers the two-derivative

N = 2 lagrangian controlled by the prepotential F0(X
I)

For N = 2 models obtained by compactifying type-IIA string theory on a Calabi-Yau

three-fold, it can be shown that the only contribution to the (−C−)2(T−)2h−2 coupling (or

its on-shell equivalent (−R−)2(T−)2h−2) occurs at genus h, and reduces to a vacuum am-

plitude in the A-model topological string, obtained from the (2, 2) superconformal sigma

model on X by a topological twist [69, 20]. In general, it includes non-holormophic con-

tributions from massless states propagating in the loops. The holomorphic topological

string amplitude is defined as an asymptotic expansion in the topological string coupling

near some large radius limit (i.e. in a neighborhood of a point of maximal unipotent mon-

odromy). It includes perturbative contributions15 at genus 0 and 1, together with an

infinite sum of world-sheet instanton contributions at arbitrary genera,

Ftop = − i(2π)3

6λ2
CABCtAtBtC − iπ

12
c2AtA + FGW (λ, q) (4.3)

where λ is the topological string coupling,16 tA = θA + irA with rA > 0 are the complex-

ified Kähler moduli on a basis γA of H2(X , Z) (A = 1, . . . , nV − 1), CABC are the triple

intersection numbers CABC =
∫

X JAJBJC , c2A =
∫

X JAc2(T
1,0X ), and

FGW (λ, q) =
∑

h≥0,β

Nh,β qβ λ2h−2 (4.4a)

=
∑

h≥0,β,d≥1

nh
β

1

d

(

2 sin
dλ

2

)2h−2

qdβ . (4.4b)

is the Gromov-Witten instanton sum. Here β = βAγA runs over effective curves with

βA ∈ Z
+, qβ := e2πiβAtA , and Nh,β are the (rational) Gromov-Witten invariants. In the

15In general one should allow for an extra quadratic polynomial in ta with real coefficients. These terms

can be reabsorbed by a change of variable and do not play any role in our discussion.
16In the notations of [14], λ2 = −g2

top.
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second line we have used the identity of Gopakumar and Vafa to rewrite FGW in terms of

integral BPS invariants nh
β.

The precise relation between the topological string amplitude and the generalized pre-

potential is

Ftop(tA, λ) =
iπ

2
FSUGRA(XA,W 2) , tA =

XA

X0
, λ2 =

(

π

4

W

X0

)2

(4.5)

leading to the standard supergravity normalization17

Fsugra = −1

6
CABC

XAXBXC

X0
− W 2

64

c2A

24

XA

X0
− X02

(2πi)3

∑

h,β

Nh,βqβ

(

πW

4X0

)2h

. (4.6)

It is important to note that the sum in (4.4b) contains degenerate instanton contri-

butions, with β = 0. Those occur only at genus 0, and are controlled by the single BPS

invariant n0
0 = −(1/2)χ(X ), where χ is the Euler number of X :

F deg
GW (λ) = −1

2
χ(X )f(λ) := −1

2
χ(X )

∞
∑

d=1

1

d

1

(2 sin dλ
2 )2

(4.7)

where the second equality defines the Mac-Mahon function f(λ). F deg
GW admits an asymp-

totic expansion at weak topological coupling,

F deg
GW = −1

2
χ(X )

[

λ−2ζ(3) + K −
∞

∑

n=0

λ2n+2 |B2n+4|
(2n + 4)!

(2n + 3)

(2n + 2)
B2n+2

]

(4.8)

where the “constant” K is computed in appendix E,

K =
1

12
log

2πi

λ
− 1

2π2
ζ ′(2) +

1

12
γE . (4.9)

In equation (4.8) above, the O(1/λ2) term corresponds to the famous contribution to the

prepotential coming from the reduction of the tree-level R4 coupling in 10 dimensions [70],

and the coefficient of λ2n+2 is the Euler character of the moduli space of genus n + 2,

as computed in [71]. The “constant” K depends logarithmically on λ, hence cannot be

attributed to any order in the genus expansion. Nevertheless, it follows from a careful

analysis of the weak coupling behavior of f(λ), which is analytic for Imλ 6= 0. This term

is usually dropped in the topological string literature, but will play an important role in

the analysis of the black hole degeneracies below.

Instead, for N = 2 backgrounds obtained by compactifying the heterotic string on

K3 × T 2, the higher-derivative coupling (−C−)2(T−)2h−2 for any h receives contributions

at 1-loop already [72] (as well as tree-level for h = 0, 1). In fact, using heterotic-type-II

duality, this is a powerful way to compute the Gromov-Witten invariants of compact K3-

fibered Calabi-Yau three-folds, at least for effective curves β lying only in the K3 fiber [73]

(see [74] for recent progress).

17The factor of proportionality relating λ and W/X0 can be obtained by demanding the correct auto-

morphic result for IIA/K3 × T 2.
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Finally, let us note that by expanding the parenthesis in (4.4b) in binomial series and

summing term by term over d, we may rewrite

FGW =
∑

β

∞
∑

k=1

k n0
β log(1 − eikλ) −

∑

β

n1
β log(1 − qβ) +

+
∑

h≥2

∑

β

2h−2
∑

l=0

(−1)h+l

(

2h − 2

`

)

nh
β log

(

1 − qβei(h−1−l)λ
)

(4.10)

hence obtaining exp(FGW ) as an infinite product [75, 76]. Unfortunately, for h ≥ 2 the infi-

nite product is in general divergent, falling short of providing a non-perturbative definition

of the topological string amplitude.

4.2 Large black holes with p0 = 0

Let us now turn to the evaluation of the integral (1.7), for large black holes, with non-zero

entropy at the classical level. Since their entropy at large charges is already well reproduced

by the tree-level prepotential, it is natural to expect that Gromov-Witten instantons can

be neglected, at least in some large charge regime. Under this assumption (to which we

shall return below), and restricting to p0 = 0 for simplicity (see [67] for a discussion of the

p0 6= 0 case), the free energy (1.2) reads

Fpert = −π

6

Ĉ(p)

φ0
+

π

2

CAB(p)φAφB

φ0
(4.11)

where we use the standard notation

CAB(p) = CABCpC , C(p) = CABCpApBpC , Ĉ(p) = C(p) + c2ApA . (4.12)

Note in particular that, in this limit, the only effect of higher derivative corrections is to

replace C(p) → Ĉ(p).

We further assume that the measure [dφ] is the standard euclidean measure, extending

over the infinite real axis or some deformation thereof. The integral over φA is therefore

gaussian, with a peak at

φA
∗ = −CAB(p)qBφ0 . (4.13)

Due to the indefinite signature of the quadratic form CAB(p), it is well defined only upon

rotating the contour of integration so that φA/
√

φ0 ∼ e±iπ/4. Proceeding formally, we find

Ω(pA, qA) ∼
∫

dφ0 (2φ0)
nV −1

2

|detCAB(p)|1/2
exp

(

−π

6

Ĉ(p)

φ0
+ πφ0q̂0

)

(4.14)

where CAB(p) is the inverse matrix of CAB(p) and

q̂0 = q0 −
1

2
qACAB(p)qB (4.15)
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is invariant under unipotent monodromies. The integral over φ0 is now of Bessel type, with

a saddle point at

φ0
∗ = ±

√

−Ĉ(p)

6q̂0
. (4.16)

When q̂0 < 0, the action at the saddle point is real, and equal to

S0 = 2π

√

− Ĉ(p)q̂0

6
. (4.17)

Provided the saddle point is actually selected by the contour integral, we thus find that

the formula (1.7) predicts

Ω(pA, qA) ∼ ±1

2
|det Cab(p)|−1/2

(

Ĉ(p)

6

)ν

× Îν

(

2π

√

− Ĉ(p)q̂0

6

)

(4.18)

where

ν =
1

2
(nV + 1) . (4.19)

Using the asymptotic expansion (2.13), we thus find

log Ω(pA, qA) ∼ S0 −
1

2
(nV + 1) log(S0/4π) − logN (p) + · · · (4.20)

where N (p) is the p-dependent prefactor in (4.18), and the ellipses denote an infinite num-

ber of calculable power-suppressed contributions. The first term in this equation reproduces

the classic result of [44] (generalized to qA 6= 0), which was successfully matched to the

microscopic counting based on M5-branes wrapping a 4-cycle in X .

Let us now discuss the validity of our assumptions. Since this has already been dis-

cussed in [1], we shall be brief:

• Upon scaling all electric and magnetic charges to infinity (but keeping p0 = 0), the

topological coupling λ = 4π/(iφ0
∗) at the saddle point goes to zero, hence all higher

derivative corrections can be neglected. However, the Kähler classes at the saddle

point Im tA = pA/φ0
∗ stay of order 1, so it is not legitimate to drop the Gromov-Witten

instantons.

• If all pA 6= 0 (but p0 = 0), it is possible to stay at weak topological coupling and get

rid of the Gromov-Witten instantons by scaling q̂0 faster than pA. In this case, the

leading correction to the entropy comes from the tree-level ζ(3) term in (4.8), which

perturbs the saddle point. This predicts a correction18 to the Bekenstein-Hawking

entropy

S(pA, qA) = 2π

√

−Ĉ(p)q̂0/6 +
ζ(3)χ(X )

96π2

Ĉ(p)

q̂0
+ · · · (4.21)

which still grows like a power of the charges.

18A similar correction was computed in [77], without taking into account the contrubution from the

measure.
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• On the microscopic side, the leading entropy is well reproduced from the M5-brane

conformal field theory when the Ramanujan-Hardy formula is applicable, i.e. when

q̂0 À Ĉ(p). In this regime, the topological coupling at the saddle point is strong,

although the Kähler classes can still be taken to be large. This means that non-

degenerate Gromov-Witten instantons could be neglected, provided the BPS invari-

ants grow sufficiently slowly. However, the series of degenerate instantons is strongly

coupled, and one should instead use the Gopakumar-Vafa representation in terms of

the Mac-Mahon function, which is exponentially suppressed at large coupling. The

log λ term in (4.9) implies an extra factor (φ0)χ(X )/24 in (4.14), which would affect the

index of the Bessel function in (4.19). Since (4.14) will be further supported by the

microscopic analysis, we propose to modify by hand the definition of the topological

string amplitude Ψtop into

Ψ̃top := λχ/24Φtop . (4.22)

More generally, it would be interesting to have a better understanding of the inte-

gration measure in (1.7).

To summarize, provided the OSV conjecture (1.7) holds, the infinite number of power-

suppressed corrections encapsulated in the Bessel function (4.18) can be trusted in the

strong coupling regime q̂0 À Ĉ(p), provided the Gopakumar-Vafa infinite product is con-

vergent.

Regrettably,19 there are no examples where the degeneracies of large black holes are

known exactly. In principle the index Ω2 should be computable from a (0, 4) sigma model

described in [44, 78], presumably from the elliptic genus of this model. While the sigma

model is rather complicated, and has not been well investigated we should note that from

the Rademacher expansion it is clear that the leading exponential asymptotics of negative

weight modular forms depends on very little data. Essentially all that enters is the order

of the pole and the negative modular weight. There are cL = C(p) + c2 · p = Ĉ(p) real

left-moving bosons. Since the sigma model is unitary, the relevant modular form has the

expansion q−cL/24 + · · · . This gives the order of the pole, and thus we need only know the

modular weight. This in turn depends on the number of left-moving noncompact bosons.

Each noncompact boson contributes w = −1
2 to the modular weight. Now, the sigma model

of [44] splits into a product of a relatively simple “universal factor” and a rather complicated

“entropic factor,” as described in [78]. Little is known about the entropic factor other than

that it is a (0, 4) conformal theory with cR = 6k, where k = 1
6C(p) + 1

12c2 · p − 1, where

p ∈ H2(X , Z). The local geometry of the target space was worked out in [78]. Based on this

picture we will assume the target space is compact and does not contribute to the modular

weight. (Quite possibly the model is a “singular conformal field theory” in the sense of [79]

because the surface in the linear system |p| can degenerate along the discriminant locus. It

is reasonable to model this degeneration using a Liouville theory, as in [79]. If this is the

case we expect the entropic factor to contribute order one modular weight.) The universal

factor is much more explicit. The target is R
3×S1, it has (0, 4) supersymmetry with k = 1

19The remainder of this section is excerpted from [1].
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and there are h− 1 (where h = h1,1) compact leftmoving bosons which are N = 4 singlets.

They have momentum in the anti-self-dual part of H1,1(X , Z) (anti-self-duality is defined

by the surface in |p|). Since we fix these momenta we obtain w = −1
2(h− 1). Finally there

are 3 noncompact left-moving bosons describing the center of mass of the black hole in R
3.

Thus, the net left-moving modular weight is −(h + 2)/2. Now, applying the Rademacher

expansion in the region |q̂0| À Ĉ(p) we find the elliptic genus is proportional to

Îν

(

2π

√

|q̂0|Ĉ(p)

6

)

(4.23)

with ν = h+4
2 . This is remarkably close to (4.18) ! Clearly, further work is needed here since

it is likely there are a number of important subtleties in the entropic factor. Nevertheless,

our argument suggests that a deeper investigation of the elliptic genus in this model will lead

to an interesting test of (1.7) (or rather (4.22), since it must be done at strong topological

string coupling) for the case of large black holes.

4.3 Small black holes

We now turn to the case of small black holes with C(p) = 0 but Ĉ(p) 6= 0: these are

singular solutions of the tree-level N = 2 supergravity lagrangian, but it is expected that

quantum corrections will smooth out the singularity and lead to a bona fide black hole.

For such charges, the matrix CAB(p) is not invertible and some of the manipulations in the

previous section need to be rethought.

We are particularly interested in the case when X is a K3 fibration over P1 admitting

a heterotic dual. In this case, we can divide up the special coordinates so that X1/X0 is

the volume of the base and Xa/X0, a = 2, . . . nV − 1 are associated with the (invariant

part of the) Picard lattice of the fiber. The cubic intersection form becomes

−1

6
CABCXAXBXC = −1

2
CabX

1XaXb − 1

6
CabcX

aXbXc (4.24)

where the indices a, b run from 2 to nV −1, and Cab is the intersection form of the (invariant

part of the) Picard lattice of the fiber20 The matrix CAB(p) thus takes the form

CAB(p) =

(

0 Cabp
b

Cabp
b p1C̃ab + Cabcp

c

)

. (4.25)

We now specialize to heterotic DH states, with charges p0 = 0, pa = 0, a = 2, . . . , nV − 1,

and q1 = 0, with p1q0 6= 0 and qa 6= 0 for a = 2, . . . , nV − 1. Using c1 = 24 for the K3 fiber,

the integral (1.7) now becomes

Ω(p1, q0, qa) =

∫

dφ0dφ1dφa exp

(

−4π
p1

φ0
+

π

2

p1Cabφ
aφb

φ0
+ πq0φ

0

)

. (4.26)

20Notice that Cabc = 0 at tree-level on the heterotic side, but not on the type-II side in general.
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The φ1 dependence disappears from the integrand and one must make a discrete identifi-

cation on θ = φ1/φ0. As in the benchmark case in section 2, we find that (1.7) gives

(p1)2 Îν

(

4π

√

|p1q0 −
1

2
qaC̃abqb|

)

(4.27)

where the index of the Bessel function is now

ν =
1

2
(nV + 2) . (4.28)

Let us now re-discuss the validity of our assumption that Gromov-Witten instantons could

be neglected in the small black hole case. Since C(p) = 0 and Im ta = −pa/φ0
∗ at the

saddle point, the attractor values of the Kähler moduli are necessarily at the boundary

of the Kähler cone. In principle, one must retain the full worldsheet instanton series (or

rather, its analytic continuation, should it exist.)

Remarkably,21 for N = 4 compactifications this is not a problem. In this case, due to

the decoupling between the two factors in (2.1), Ftop is only a function of a single Kähler

modulus t1, and moreover χ(X ) = 0. Hence, at the saddle-point,

φ0
∗ = −

√

4p1

|q̂0|
Im t1 =

1

2

√

p1|q̂0| . (4.29)

Thus, whether or not the topological string coupling is strong (|q̂0| À p1) or weak (p1 À
|q̂0|) the relevant Kähler class is large and the Bessel asymptotics (4.27) are justified.

The situation is rather different for N = 2 compactifications. In this case Ftop is in

general a function of t1 as well as ta for a ≥ 2. Thus the computation in (4.26) is not

justified. We stress that the problem is not that the topological string is strongly coupled.

Indeed, for χ = 0 examples such as the FHSV example discussed in section 5.3 below, the

saddlepoint value (4.29) can be taken in the weak coupling regime by taking p1 À |q̂0|.
In fact, the difficulty appears to be with the formulation of the integral (1.7) itself for the

case of charges of small black holes. Recall that we must evaluate

Ftop := −π ImFtop(pI + iφI , 256) . (4.30)

Since Xa/X0 = φa/φ0 is real, for a > 1, one must evaluate the worldsheet instanton sum

for real values ta = φa/φ0. For some Calabi-Yau manifolds it is possible to analytically

continue F0 from large radius to small values of Im ta. However we may use the explicit

results of [80, 81], which express F1 ∼ log Φ, where Φ is an automorphic form for SO(2, n; Z).

It appears that Im ta = 0 constitutes a natural boundary of the automorphic form Φ. Thus,

in the case of K3 fibrations with heterotic duals the formalism of [14] becomes singular for

these charges, even at weak topological string coupling.

Remarkably, if we ignore these subtleties, the formula (4.27) turns out to match per-

fectly with the asymptotic expansions of twisted sector DH states, as we show below. For

untwisted sector DH states the asymptotics do not match with either Ωabs nor with Ω2.

21This paragraph is again excerpted from [1].
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4.4 Large black holes with p0 6= 0

Finally, let us evaluate the integral (1.7) for large black holes with non-zero D6-brane

charge. For simplicity, we restrict ourselves to K3 fibrations with Cabc = 0. and c2A = 0,22

and, as in previous cases, disregard the Gromov-Witten instanton series. For convenience,

we drop inessential numerical factors. The computation in this section is a special case

of the analysis in [67], which applies for cubic prepotentials F = I3(X)/X0 which are

invariant under Legendre transform in all variables. When this is not the case, such as in

the STU + U3 model, the attractor mechanism is significantly more involved.

From (1.2), one computes the black hole free energy in the mixed ensemble,

F =
p0φ1 − p1φ0

(p0)2 + (φ0)2

(

1

2
~φ2 − 1

2
~p2

)

− p0p1 + φ0φ1

(p0)2 + (φ0)2

(

~p~φ
)

(4.31)

where ~φ2 = φaφbCab, ~p
2 = papbCab, ~p~φ = paCabφ

b, and determines the microcanonical

degeneracies via (1.7). The integral over the potentials φa is still gaussian, leading to

ΩOSV (p, q) =

∫

dφ0dφ1

(

(p0)2 + (φ0)2

p0φ1 − p1φ0

)

nV −2

2

×

× exp

[

[(p1)2 + (φ1)2]~p2 + [(p0)2 + (φ0)2]~q2 − 2(p0p1 + φ0φ1)~p~q

2(p1φ0 − p0φ1)
+

+ q0φ
0 + q1φ

1

]

(4.32)

where ~q2 = qaC
abqb and ~p~q = paqa. In order to compute the integral over φ0, φ1, let us

change variables to

p0 cosh x =
√

(p0)2 + (φ0)2 (4.33)

(p0)2y = (p1φ0 − p0φ1)(~p2 − p0q1) (4.34)

with jacobian dφ0dφ1/(dxdy) = (p0)2 cosh x/(~p2 − 2p0q1)/2. The argument of the expo-

nential in (4.32) becomes

y +
B2 cosh2 x

4(p0)2y
+

A

p0
sinh x (4.35)

where

A = −p1~p2 + p0(p0q0 + p1q1 + ~p~q) (4.36)

B =
√

(~p2 − 2p0q1) [(p1)2~p2 + (p0)2~q2 − 2p0p1~p~q] . (4.37)

Together with the above det, this gives

(p0)2(~p2 − 2p0q1)
nV −4

2

∫

(cosh x)h y
2−nV

2 exp

(

y +
B2 cosh2 x

4(p0)2y
+

A

p0
sinhx

)

dx dy . (4.38)

22The case c2,1 6= 0, c2,a = 0 can be obtained by shifting ~p2 → ~p2 + 1
3
c2,1 in the equations below.
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The integral over y is of Bessel type, leading to

(p0)
nV
2

(

~p2 − 2p0q1

B

)

nV −4

2
∫

(cosh x)nV −1 exp

[

A

p0
sinhx

]

InV −4

2

(

B

p0
cosh x

)

dx . (4.39)

In the limit where all charges are scaled to infinity at the same rate, the integral (4.38)

may be evaluated by saddle point approximation: the saddle lies at

φ0 =
A

S0
, φ1 =

1

p0S0

(

Ap1 +
B2

~p2 − 2p0q1

)

(4.40)

where

S0 =
1

p0

√

B2 − A2 . (4.41)

In particular, the Kähler moduli at the saddle point are given by

Im t1 = =
p0φ1 − p1φ0

(p0)2 + (φ0)2
=

2S0

~p2 − 2p0q1
(4.42)

Im ta = =
p0φa − paφ0

(p0)2 + (φ0)2
=

S0

B2

(

~p2 − 2p0q1

)

(

p0Cabqb − p1pa
)

. (4.43)

Including the fluctuation determinant, we obtain

ΩOSV (p, q) ∼ B2(~p2 − 2p0q1)
(nV −4)/2S

−(nV +2)/2
0 exp(S0) . (4.44)

The leading entropy S0 in (4.41) agrees with the general result in [82]. Using (4.36), it may

be rewritten as

S =
√

(p0)2q2
0 + 2p0q1~q2 + 2p0q0(p1q1 + ~p~q) + (p1q1 − ~p~q)2 − 2p1q0~p2 − ~p2~q2 (4.45)

where ~p2 = paCabp
b, ~q2 = qaC

abqb and ~p~q = paqa. Defining Q = (q0, p
1, qa) and P =

(p0,−q1, p
a), this is recognized as the familiar discriminant

S =
√

(P · P )(Q · Q) − (P · Q)2 . (4.46)

One may check that the result (4.44) agrees with (4.20) in the limit p0 → 0, using the fact

that det(CAB(p)) = (p1)h−2~p2, C(p) = 3p1~p2.

On the other hand, it is important to note that the prefactors in (4.44), which follow

from using a trivial integration measure for the electric potentials φI in (1.7), are not

consistent with T-duality. This problem may be cured by using an appropriate integration

measure such as

Ω̃OSV (p, q) =

∫

dφ0dφ1dφa

|X0|nV +2(Im t1)2(Im taCab Im tb)nV /2
eF+πqAφA (4.47)

where, as usual, XI = pI + iφI and tA = XA/X0. To 1-loop order, this does not change

the location of the saddle point (4.42), but simply removes the offending factors in (4.44),

leading to

Ω̃OSV (p, q) ∼ S
−(nV +2)/2
0 exp(S0) . (4.48)
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For p0 = 0, the measure in (4.47) reduces to the flat integration measure used in (4.14), up

to an overall factor [C(p)]2 which depends on the magnetic charges only. However, there

is no guarantee that this prescription will be consistent with T-duality at higher orders.

The measure (4.48) is obviously not the only choice which removes the non-duality

invariant factors in (4.44). In particular, as shown in [67] the following measure

Ω̂OSV (p, q) =

∫

dφ0dφ1dφa |X0|−2 (Im t1)(nV −4)/2 eF+πqAφA (4.49)

has the remarkable effect of rendering the one-loop approximation to the integral exact,

leading to the manifestly duality invariant result

Ω̂OSV (p, q) = Î1/2(S0) ∼ S−1
0 exp(S0) . (4.50)

Note however that it does not reduce to the constant measure when p0 = 0, and it would

therefore spoil agreement with the microscopic counting of DH states. At any rate, irre-

spective of the choice of measure, it is clear that a duality-invariant measure can no longer

be holomorphic for p0 6= 0. It would be very desirable to have a deeper understanding of

the integration measure implicit in (1.7).

Finally, let us discuss the validity of the assumption that Gromov-Witten instantons

can be neglected. If we scale all electric and magnetic charges uniformly by s, the entropy

S0 scales as s2, the topological coupling λ ∼ 1/|X0| as 1/s while the Kähler classes Im tA
are fixed. The ζ(3)(X0)2 term in (4.8) is however comparable to the leading entropy S0,

so that its effect cannot be neglected. It is therefore necessary to scale the charges (p0, q0)

and (pA, qA) differently if one is to neglect the Gromov-Witten instanton contributions.

One option is to take qA À p0 À (q0, p
A). In this regime, the Kähler classes Im tA grow

to infinity as
√

qA/p0, while the coupling λ = Im(1/X0) can be made arbitrarily small (in

fact zero when q0 = pA = 0), so that Gromov-Witten instantons can indeed be neglected.

5. Microscopic counting of DH states in N = 2 models

In this section, we compute the microscopic degeneracies of perturbative DH states in het-

erotic models with N = 2 supersymmetry in four dimensions, which are dual to small black

holes in type-II string theory compactified on a Calabi-Yau three-fold X . In section 5.1

and 5.2, we discuss the E8 ×E8 heterotic string compactified on K3 with standard, respec-

tively symmetric embedding of the spin connection in the gauge group. In section 5.3, we

turn to the FHSV model, which can be viewed as a N = 2 analogue of the N = 4 models

with reduced rank discussed in section 3. In section 5.4, we obtain a formula which applies

to all asymmetric orbifolds of the heterotic string, with N = 2 or N = 4 supersymmetry.

5.1 Het/K3 × T 2 with standard embedding

A simple class of heterotic models with N = 2 supersymmetry can be obtained by compact-

ifying the E8 ×E8 heterotic string on K3, and identifying the spin connection on K3 with

the gauge connection for one of the E8 factors. The corresponding conformal field theory

is most easily constructed at the Z2 orbifold point of K3, where the orbifold generator acts
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as −1 on the four coordinates of T 4 (as well as their right-moving superpartners), and as

a shift (1
2 , 1

2 , 06) in the charge lattice of one of the E8 factors. This gives a N = 2 model

with 628 hypermultiplets transforming as a

4(1, 1, 1) + 8(1, 56, 1) + (1, 56, 2) + 32(1, 1, 2) (5.1)

representation of the E8 ×E7 ×SU(2)×U(1)4 gauge symmetry. In particular, NV −NH =

388 − 628 = −240. This model is part of a large network of N = 2 vacua which can be

reached by a sequence of fundamental or adjoint Higgsing transitions [83]. Of particular

interest are the vacua with abelian gauge symmetry, which can be dual to compactifications

of type-II string theory on a smooth Calabi-Yau threefold. At a generic point in the moduli

space of K3, the SU(2) factor is Higgsed, leaving 10 charged hypers in the 56 of E7 and

65 neutral hypermultiplets, for the same value of the index NV − NH = −240. Going

to the Coulomb branch of E8 reduces the gauge symmetry to E7 × U(1)12, with index

NV − NH = −480. Further higgsing the E7 factor reduces the gauge symmetry to U(1)12

with 492 neutral hypers, a (12, 492) model in the notation of [83]. This model has been

argued to be dual to type-II on an hypersurface in WP 4
1,1,12,28,42 [83]. Instead, one may

go to the Coulomb branch of E7 and obtain a (19, 65) model, with 19 vector multiplets

and 65 neutral hypers. However, we could also consider going to the Coulomb branch of

the original E8 × E7 × SU(2) × U(1)4 gauge symmetry, leading to a (20,4) model with 20

abelian vectors and 4 neutral hypers.

Let us now consider the degeneracies of DH states in the original model with unbroken

E8 × E7 × SU(2) × U(1)4 gauge symmetry. The helicity generating partition function is

obtained straightforwardly as

Z(v, v̄) =
ξ(v)ξ̄(v)

τ2|η|4
1

2

1
∑

h,g=0

1

2

1
∑

a,b=0

(−1)a+b+ab
θ̄[

a
2
b
2

](v)θ̄[
a
2
b
2

]θ̄[
a+h

2
b+g
2

]θ̄[
a−h

2
b−g
2

]

η̄4
×

×Z2,2

|η|4
Zorb

(4,4)[
h
2
g
2
]

|η|8 × 1

2

1
∑

γ,δ=0

θ[
γ+h

2
δ+g
2

]θ[
γ−h

2
δ−g
2

]θ6[
γ
2
δ
2

]

η8
× θE8[1] (5.2)

where Zorb
(4,4) are the orbifold blocks of the T 4/Z2 orbifold,

Z(4,4)

[

0
0

]

= Z4,4 , Z(4,4)

[

h/2
g/2

]

=
24

|θ
[

1−h
2

1− g
2

]

θ

[

1+ h
2

1+ g
2

]

|2
. (5.3)

The sum over spin structures a, b can as usual be performed by using the Riemann iden-

tity (B.10). Taking two v̄ derivatives and setting v = v̄ = 0, the generating function for

the second helicity supertraces is thus

B2 =
1

2

′
∑

h,g

Z2,2θE8[1]

τ2η18θ[
1+h
2

1+g
2

]θ[
1−h

2
1−g
2

]
× 1

2

1
∑

γ,δ=0

θ[
γ+h

2
δ+g
2

]θ[
γ−h

2
δ−g
2

]θ6[
γ
2
δ
2

] (5.4)

where the prime indicates that the untwisted, unprojected sector h = g = 0 has to be

omitted.
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In order to read off the degeneracies of DH states with prescribed electric charges from

this expression, it is convenient to go to a general point in the vector multiplet moduli

space. This depends on the phase under consideration:

• in the (12, 492) model above, where the gauge symmetry is broken to U(1)12, the

two factors Z2,2 and θE8[1] combine into a the partition function Z2,10 of the charge

lattice II2,2 ⊕ E8 at a general point in the SO(2, 10)/SO(2) × SO(10) moduli space.

Using (B.16) and (B.17), the sum over h, g simplifies to

B2 =
Z2,10

τ2

E6

η24
. (5.5)

We thus deduce that the indexed degeneracies of DH states in this phase are given

by the coefficients of

E6

η24
=

∞
∑

N=0

Ω(N)qN−1 =
1

q
− 480 − · · · (5.6)

where N − 1 = Q2. By the Rademacher formula, the degeneracies grow as

Ω2(Q) ∼ Î7

(

4π

√

Q2

2

)

(5.7)

in agreement with the general prediction (4.27) with nV = 12.

• in the (20,4) model above, the two factors Z2,2 and θE8[1] combine with the eight theta

series in the numerator into a a vector of partition functions Z2,18θ[hg ] of a lattice

II2,2 ⊕ (E8 ∪ (E8 + δ)) ⊕ E8 (5.8)

at a general point in its moduli space. The helicity supertrace can be decomposed

into four sectors,

τ2B2 =
Z2,18[

0
0] + Z2,18[

0
1]

2
Fu − Z2,18[

0
0] − Z2,18[

0
1]

2
Fu −

−Z2,18[
1
0] + Z2,18[

1
0]

2
F+ − Z2,18[

1
0] − Z2,18[

1
0]

2
F− (5.9)

with

Fu =
θ2
3θ

2
4

η24
F± =

θ2
2(θ

2
3 ± θ2

4)

η24
. (5.10)

We thus find that the second helicity supertraces of DH states are enumerated by a

different generating function in each conjugacy class of the lattice (5.8). The asymp-

totics are given by

Ωu
2(Q) ∼ Î11

(

4π

√

3

8
Q2

)

(5.11)
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Ω±
2 (Q) ∼ Î11

(

4π

√

1

2
Q2

)

. (5.12)

In particular, the indexed degeneracies in the untwisted sector are exponentially

smaller than in the twisted sector. Only the latter coincide with the macroscopic

prediction (4.27) with nV = 20. As we shall see, this is in fact a generic feature of

N = 2 orbifolds where twisted states can be distinguished from untwisted ones by

their charges.

• Similarly, in the (19,65) model, the Z2,2 and θE8[1] combine with 7 out of the 8 theta

functions in the numerator, into the partition function of a signature (2, 17) lattice.

The second helicity supertraces in the various sectors are generated by

Fu =
θ2
3θ

2
4(θ3 + θ4)

η24
, F± =

θ2
2(θ

2
3(θ3 + θ2) ± θ2

4(θ4 + θ2))

η24
. (5.13)

Again, using the Rademacher formula, we find agreement with the macroscopic pre-

diction (4.27) with nV = 19 in the twisted sectors, but not in the untwisted one.

From the above discussion, it is thus clear that the degeneracies of DH states depend

on the phase under consideration: as a vector field become massive, black holes which

used to carry different charges under this field are no longer distinguishable, leading to

an increase of the entropy at fixed charges under massless charges. The total number of

states is however conserved. In particular, the same argument as in section 3.4 shows

that the modular weight of the generating function of the second helicity supertrace at

fixed charges is directly correlated to the rank of the charge lattice, in agreement with the

relation 1−w = (nV + 2)/2. The numerical factor in the leading entropy however depends

on the sector of consideration, and is typically smaller in the untwisted sector. As we

shall discuss in more detail in section 5.3 in the context of the FHSV model, the absolute

degeneracies are however much larger, as the result of large cancellations between massive

vector and hypermultiplets.

5.2 Het/K3 × T 2 with symmetric embedding

In general, one may construct N = 2 heterotic backgrounds by embedding the spin con-

nection into the sum of two rank 2 bundles with c2 = 12 in each E8 factor. This admits a

simple conformal field theory description as a Z2 × Z2 orbifold, where the first generator

acts as in the standard embedding case, and the second acts purely by a shift along one

direction of T 4 as well as a vector (1
2 , 1

2 , 06) in the other E8 factor [84]. This results in a

model with E7 × SU(2) × E7 × SU(2) × U(1)4 gauge symmetry and hypermultiplets in

4(56, 1; 1, 1) + 4(1, 1; 56, 1) + 16(1, 2; 1, 1) + 16(1, 1; 1, 2) . (5.14)

This model has NV −NH = −244 and can be completely Higgsed into a (4,244) model, dual

to type-II string theory on WP 1,1,2,8,12
24 with Euler number χ = −480 [83]. The helicity
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partition function at the orbifold point reads

Z =
ξ(v)ξ̄(v)

τ2|η|4
1

2

1
∑

h,g=0

1

2

1
∑

h′,g′=0

1

2

1
∑

a,b=0

(−1)a+b+ab
θ̄[

a
2
b
2

](v)θ̄[
a
2
b
2

]θ̄[
a+h

2
b+g
2

]θ̄[
a−h

2
b−g
2

]

η̄4
× (5.15)

×Z2,2

|η|4
Zorb

(4,4)[
h
2
; h′

2
g
2
; g′

2

]

|η|8 × 1

2

1
∑

γ,δ=0

θ[
γ+h

2
δ+g
2

]θ[
γ−h

2
δ−g
2

]θ6[
γ
2
δ
2

]

η8
× 1

2

1
∑

γ′,δ′=0

θ[
γ′+h′

2
δ′+g′

2

]θ[
γ′−h′

2
δ′−g′

2

]θ6[
γ′

2
δ′

2

]

η8
.

In this expression, Zorb
(4,4)[

h
2
; h′

2
g
2
; g′

2

] denotes the orbifold block corresponding to a torus T 4 with

twist (h, g) on the 4 directions and shift (h′, g′) along, say, the first circle. It is non-vanishing

only for (h′, g′) = (0, 0) or (h, g) = (0, 0) or (h, g) = (h′, g′). In the latter case, it reduces

to the orbifold block Zorb
(4,4)[

h
2
g
2
] with twist only. In particular, despite appearances, one may

check that the construction is symmetric under exchange of the two E8. By using the

Riemann identity and (B.16),(B.17), it is again possible to simplify the helicity supertrace

into

B2 =
Z2,2

τ2

E4E6

η24
(5.16)

Degeneracies of DH states from this equation can be extracted in the same way as before.

The result is simplest in the “maximally Higgsed” phase of the (4,244) model, where the

4 U(1) charges correspond to the T 2 lattice: the generating function for second helicity

supertraces of DH states is simply

E4E6

η24
=

∞
∑

N=0

Ω2(N)qN−1 =
1

q
− 240 + · · · (5.17)

with asymptotics

Ω2(Q) ∼ −Î3

(

4π

√

1

2
Q2

)

(5.18)

in full agreement with (4.27) for nV = 4. As before, one may unhiggs this model and

increase the rank of the gauge group: in all cases the indexed degeneracies are counted by

modular forms of weight w = −nV /2, and agree with (4.27) in the twisted sectors only.

5.3 The (2,12) FHSV model

The FHSV model introduced in [85] is one of the simplest and best understood examples

of heterotic/type-II duality with N = 2 symmetry. On the type-II side, it consists of an

orbifold of type-IIA string theory on K3 × T 2 by the Enriques involution on K3 times a

reversal of T 2 – a close cousin of the (4, 16) model. Its dual description may be formulated

as a Z2 orbifold of the E8 × E8 heterotic string on T 4 × T 2, where the orbifold acts by

exchanging the two E8 factors.23 In terms of the momentum lattice

Γ6,22 = E8(−1) ⊕ E8(−1) ⊕ II2,2 ⊕ II4,4 (5.19)

23We slightly deviate from the action in [85], reversing the coordinates on T 4, and translating one of the

circles in T 2, which exchanges two Γ9,1 and reverses a T 3; the two constructions are expected to be on the

same moduli space.
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the action on the momenta is therefore

g|P1, P2, P3, P4〉 = e2πiδ·P3 |P2, P1, P3,−P4〉 (5.20)

where 2δ is the vector (1, 0, 1, 0) ∈ II2,2 corresponding to the translation by half a period

along the first circle.

Diagonalizing the action of g on the oscillators, there are 12 untwisted and 12 twisted

left-moving bosons, and 4 twisted and 4 untwisted right-moving N = 1 multiplets. De-

noting by (εL, εR) the parity of the left and right moving oscillators under the orbifold

action, massless states with parity (+,+) correspond to hypermultiplets, while massless

states with parity (−,−) correspond to vector multiplets as well as the graviphoton. The

massless spectrum therefore consists of 12 hypermultiplets, 11 vectors multiplets and the

gravity multiplet, with tree-level moduli space

SO(4, 12, R)

SO(4) × SO(12)
× SO(2, 10, R)

SO(2) × SO(10)
(5.21)

where the first (resp. second) factor is parameterized by the scalar fields in the hyper-

multiplets (resp. vector multiplets). In fact, it can be shown that there are no quantum

corrections to the moduli space metric, and that (5.21) is the exact quantum moduli space,

up to global identifications [85]. At any point on the vector multiplet moduli space, a

vector P of the lattice (5.19) may be projected into a sum ΠL(P ) + ΠR(P ) in R
22 ⊕ R

6.

The linear combination

Z = Π1
R(P ) + iΠ2

R(P ) (5.22)

is the complex central charge Z of the N = 2 algebra, while the remaining components

Π3,4,5,6
R (P ) are the remnants of the central charges of the N = 4 supersymmetry, which is

broken by the twist on T 4. By the same reasoning as in section 3.3, the 22 left-moving

charges Πi
L(P ) decompose into 12 electric charges

Q(P ) = (P1 + P2;P3) (5.23)

under the gauge fields in the vector multiplets, taking values in the signature (2, 10) non-self

dual lattice

Λ0 = E8(−
1

2
) ⊕ II2,2 (5.24)

while the remaining 10 are “unphysical charges” under gauge fields which have been pro-

jected out.

Untwisted sector. Now, candidate DH states in the untwisted sector can be con-

structed as

P±(α) ·
(

|P1, P2, P3, P4〉 ± e2πiP3δ|P2, P1, P3,−P4〉
)

⊗ |Ĩ〉± (5.25)

where P±(α) denotes a generic monomial in the left-moving creation oscillators, with defi-

nite parity ± under the orbifold action g, and |Ĩ〉± denotes the right-moving ground states

transforming as 8v⊕8s under the transverse so(8) rotations in ten-dimensions, with definite

parity under g. Unlike the (4, 16) model, the states (5.25) are BPS only if they saturate
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the BPS bound M2 = |Z|2, i.e. Πi
R(P ) = 0 for i = 3, 4, 5, 6. More formally, this condition

may be written as

ΠR(P )2 = ΠR(Q(P ))2 . (5.26)

Note that this condition explicitly depends on the values of the vector multiplet moduli

space. For P4 6= 0, it is only obeyed on a codimension one submanifold of the vector moduli

space, providing an example of the “chaotic BPS states” mentioned in the introduction.

As we shall see shortly, these states always come in a vector multiplet / hypermultiplet

pair and cancel from the helicity supertrace Ω2. On the other hand, states (5.25) with

P4 = 0 are always BPS. In order to enumerate the DH states (5.25), let us introduce the

partition function

A± := TrHP

1

2
(1 ± g) =

∑

II22,6

q
1
2
ΠL(P )2 q̄

1
2
ΠR(P )2Πbps(P )

1

2
(1 ± Θ(P )) (5.27)

where the projection operator Πbps(P ) is = 1 when (5.26) is satisfied, and = 0 otherwise,

and

Θ(P ) = δP1,P2e
2πiP3·δδP4,0 (5.28)

incorporates the fact that states with P1 = P2, P4 = 0 and e2πiδP3 = ∓1 are dropped out,

while those we P1 6= P2 or P4 6= 0 are counted twice with 1/2 multiplicity, just as in (3.16).

Note that Πbps(P )Θ(P ) = Θ(P ).

In addition, let us introduce the partition functions of the left-moving oscillator exci-

tations P±(α),

B± := TrHosc

1

2
(1 ± g)qL0 q̄L̄0 =

1

2

(

1

η24
± 26

η6ϑ6
2

)

:= q−1
∞
∑

N=0

du
±(N)qN . (5.29)

The partition function for DH states (5.25) with positive parity for the right-moving ground

state is thus

ZH = A+B+ + A−B− =
1

2

1

η24

∑

P∈II22,6

q
1
2
q2
L q̄

1
2
q2
RΠbps(P ) +

25

η6ϑ6
2

∑

P∈II22,6

q
1
2
q2
L q̄

1
2
q2
RΘ(P )

(5.30)

while, for DH states with negative right-moving parity, it is

ZV = A+B− + A−B+ =
1

2

1

η24

∑

P∈II22,6

q
1
2
q2
L q̄

1
2
q2
RΠbps(P ) − 25

η6ϑ6
2

∑

P∈II22,6

q
1
2
q2
L q̄

1
2
q2
RΘ(P ) .

(5.31)

Generalizing the terminology from the massless sectors, and consistent with the definition

in [57], we shall refer to the states of the first type (5.30) as “massive hypermultiplets”,

and states of the second type (5.31) as “massive vector multiplets”. Taking the difference,

we find the index

B2 = ZH − ZV =
26

η6ϑ6
2

∑

P∈II22,6

q
1
2
q2
L q̄

1
2
q2
RΘ(P ) . (5.32)
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The notation anticipates the fact, to be demonstrated shortly, that this index indeed co-

incides with second helicity supertrace. The chaotic BPS states thus cancel out from Ω2,

leaving only states with P1 = P2 and P4 = 0. For these states, the indexed degeneracies

are thus counted by

26

η6ϑ6
2

:=
∑

du
±(N)qN−1 . (5.33)

Using the Rademacher formula, this is given asymptotically by

du(N) ∼ 2−7Î7

(

2π
√

N − 1
)

. (5.34)

Note that the argument of the Bessel function is one half of its usual value, in agreement

with the fact that unbroken N = 4 supersymmetry in the untwisted sector leads to drastic

cancellations in the index Ω2.

Chaotic BPS states. While the BPS states cancel from the index Ω2, it is nevertheless

of interest to investigate their degeneracies, and exhibit their dependence on the moduli.

Let us therefore consider the sum

ZH + ZV =
1

η24

∑

P∈II22,6

q
1
2
q2
L q̄

1
2
q2
RΠbps(P ) . (5.35)

Now, as in the (4,16) case, we need to rewrite (5.35) as a partition for the physical charges

Q = (P1 + P2;P3). Let us therefore change basis to

P1 + P2 = 2S + P (5.36)

P1 − P2 = 2∆ − P (5.37)

where S,∆ both take values in the E8 root lattice, and P is an element of the finite group

Z = Λr(E8)/2Λr(E8). When Πbps(P ) = 1, it is easy to check that

ΠL(P )2 − ΠL(Q(P ))2 = −2(∆ − 1

2
P)2 − P 2

4 . (5.38)

This allows to rewrite (5.35) into

ZH + ZV =
1

η24

∑

Q∈Λ0

q
1
2
ΠL(Q)2 q̄

1
2
ΠR(Q)2FQ(q) (5.39)

where FQ(q) is a sum over “unphysical charges”,

FQ(q) =
∑

∆∈E8[1],P4∈II4,4

q−(∆− 1
2
P)2− 1

2
P 2

4 Πbps (S + ∆, S − ∆ + P, P3, P4) . (5.40)

Now, for generic moduli Πbps 6= 0 only for ∆ = 0,P = 0, P4 = 0, so that

FQ(q) = δP,0 . (5.41)
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At special moduli however, FQ(q) will be a non-trivial theta series. E.g., at the E8 × E8

enhanced symmetry point with generic (non-rational) moduli for II4,4, the BPS condition

puts P4 = 0, however allows ∆,P to be purely leftmoving, leading to

FQ(q) =
∑

∆∈E8(+1)

q(∆− 1
2
P)2 = ΘE8[2],P(τ) . (5.42)

The absolute degeneracies of the DH states, counted by

1

η24
FQ(q) =:=

∑

dabs
± (N)qN−∆ (5.43)

will thus have different asymptotics at different points in moduli space,

dabs(N) ∼ Îν

(

4π
√

N − ∆
)

(5.44)

where the index of the Bessel function will be ν = 13 for generic moduli, ν = 9 at moduli

where (5.42) is valid, and may take other values at different loci. Since the index ν controls

the logarithmic correction to the entropy, the latter would in general depend on the moduli.

Note that in all cases, the index Ω2 is exponentially suppressed with respect to the absolute

number of BPS states in the untwisted sector.

Twisted sectors. Let us now briefly turn to the BPS states in the twisted sector of the

FHSV model. By a modular transformation, it is easy to see that the electric charges for

twisted sectors is

Λ1 = E8

(

−1

2

)

⊕ (II2,2 + δ) (5.45)

DH states take the form

P±(α)
(

1 ∓ eiπ( 1
2
P 2+(P3+δ)2)

)

|P ;P3 + δ〉 ⊗ |t〉 ⊗ |s̃〉 (5.46)

where |t〉 denotes one of the 26 twisted left-moving ground states, and |s̃〉 one of the 26×23

twisted right-moving ground states, in the Neveu-Schwarz or Ramond sector. DH states

with electric charges Qe = (P ;P4) ∈ Λ1 are now enumerated by the partition function

1

2

(

26

η6ϑ6
4

± 26

η6ϑ6
3

)

:=
∑

Ωt
±(N)qN−∆± (5.47)

where the sign is that of −eiπ( 1
2
P 2+(P3+δ)2), and ∆± = ±1/4. Using the Rademacher

formula we obtain the asymptotics

Ωt
±(N) = 2Î7

(

4π
√

N − ∆±
)

+ · · · . (5.48)

Comparing with the macroscopic prediction (2.27) with nV = 12, we find agreement to

all orders in inverse charges. As in previous cases, the prescription (1.6) however fails to

reproduce the “non-perturbative” corrections in (5.48).
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Degeneracies vs. helicity supertraces Finally, let us rederive the above results using

the formalism of helicity partition functions. By the same reasoning as in (2.36), the

helicity partition function of the FHSV model reads

ZH
FHSV(v, v̄) =

ξ(v)ξ(v̄)

τ2|η|4
1

2

∑

h,g

Zorb
4,4

[

h
2
g
2

]

|η|8
Z2,2

[

h
2
g
2

]

|η|4 Z̄cur

[

h
2
g
2

]

×

×1

2

∑

α,β

(−1)α+β+αβ









θ̄

[

α
2
β
2

]

(v̄)θ̄

[

α
2
β
2

]

(0)θ̄

[

α−h
2

β−g
2

]

(0)θ̄

[

α−h
2

β−g
2

]

(0)

η̄4









(5.49)

where

Z2,2

[

h
2
g
2

]

=
∑

p∈II2,2

(−1)g(δ,p))q
1
2
Π2

L(p+hδ)q̄
1
2
Π2

R(p+hδ) (5.50)

is the partition function for T 2 orbifolded by a translation by the order 2 vector δ,

Zorb
4,4

[

0
0

]

=
∑

p∈II4,4

q
1
2
Π2

L(p)q̄
1
2
Π2

R(p) (5.51)

Zorb
4,4

[

h
2
g
2

]

= 16
|η|12

|θ
[

1
2
+ h

2
1
2
+ g

2

]

θ

[

1
2
−h

2
1
2
− g

2

]

|2
, (h, g) 6= (0, 0) (5.52)

are the partition functions of the orbifold T 4/Z2, and Zcur is the same as in (3.32). The

sum over spin structures can be performed using the Riemann identity, leaving

ZH
FHSV(v, v̄) =

1

2

∑

h,g

ξ(v)ξ(v̄)

τ2|η|4
θ̄2
1(

v̄
2 ) θ̄

[

1
2
−h

2
1
2
− g

2

]

( v̄
2 ) θ̄

[

1
2
+ h

2
1
2
+ g

2

]

( v̄
2 )

η̄4
×

×
Zorb

4,4

[

h
2
g
2

]

|η|8
Z2,2

[

h
2
g
2

]

|η|4 Zcur

[

h
2
g
2

]

. (5.53)

The leading trace comes at order v2, and does not receive any contribution from the

(h, g) = (0, 0) sector, which has N = 4 supersymmetry:

B2 =
1

2τ2 η2

∑

(h,g)6=(0,0)

16

θ

[

1
2
−h

2
1
2
− g

2

]

θ

[

1
2
+ h

2
1
2
+ g

2

]Z2,2

[

h
2
g
2

]

Z̄cur

[

h
2
g
2

]

(5.54)

or, equivalently,

B2 =
16

2τ2









16
θE8[1](2τ)Z2,2

[

0
1
2

]

η6θ6
2

+

θE8[1](
τ
2 )Z2,2

[

1
2
0

]

η6θ6
4

−
θE8[1](

τ+1
2 )Z2,2

[

1
2
1
2

]

η6θ6
3









. (5.55)

Identifying the numerators as the partition functions for the lattice Λ0 and Λ1, we directly

obtain the degeneracies (5.33) and (5.47). The contribution of the chaotic states can be

exhibited by looking at the fourth helicity supertrace Ω4.
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5.4 General N = 2 asymmetric orbifolds

Having described the FHSV model in detail, it is not too difficult to compute the degen-

eracies of DH states for arbitrary asymmetric orbifolds of the heterotic string on the torus

T 6 by a discrete group Γ. We assume that the constraints level matching and anomaly

cancellation are satisfied, which still leaves a large class of possibilities. For simplicity we

will focus on the index of DH states in the untwisted sector. We discuss the twisted sector

states briefly at the end of this section.

Let Γ is a discrete group, with an embedding R : Γ → O(22) × O(6). The orbifold

group acts by shifts so that the action on momentum vectors is

g|P 〉 = e2πiδ(g)·P |R(g)P 〉 . (5.56)

In R
22,6, with metric Diag(+122,−16) we can diagonalize the rotational part of R(g) as

R(g) = R(θ1(g)) ⊕ · · · ⊕ R(θ11(g)) ⊕ R(2θ̃1(g)) ⊕ R(θ̃2(g)) ⊕ R(θ̃3(g)) (5.57)

where R(θ) is the usual 2 × 2 rotation matrix

R(θ) =

(

cos(2πθ) sin(2πθ)

− sin(2πθ) cos(2πθ)

)

. (5.58)

We will sometimes denote θj(g) = rj(g)/N where N = |Γ|. N = 2 supersymmetry requires

that θ̃1 + θ̃2 + θ̃3 ≡ 0 mod 1 so that their exists a complex combination Z of the charges

ΠR(p) which is invariant under Γ, and which can be identified as the N = 2 central charge.

The moduli are the boosts in O(22, 6) commuting with the image R(Γ). We consider

embeddings Λ ⊂ R
22,6 of II22,6, and let Λ(g) denote the sublattice of vectors fixed by the

group element g.

DH states in the untwisted sector are contained in the subspace of the 1-string Hilbert

space of the form

Hosc,L ⊗Hmom ⊗ H̃gnd . (5.59)

As already stressed in the FHSV model, even after imposing the level matching constraints,

it is still necessary to insert a projection Πbps on states which satisfy the BPS condition

M2 = |Z|2. The DH states can therefore be enumerated by introducing the partition

function for the momenta,

TrHmom

(

U2(g)qH q̄H̃

)

=
∑

P∈Λ(g)

q
1
2
P 2

L q̄
1
2
P 2

Re2πiδ(g)P ΠBPS(P ) (5.60)

where Ui(g) is the representation of g in each of the factor spaces, and for the left-moving

oscillators in the 22 internal directions,

TrHosc,L

(

U1(g)qHy2J3

)

=
11
∏

j=1

−2η(τ) sin πθj(g)

θ

[

1
2
1
2
+θj(g)

]

(0; τ)

(5.61)
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where we understand that
−2η(τ) sin πθj(g)

θ

[

1
2
1
2
+θj(g)

]

(0; τ)

→ 1

η2
(5.62)

if θj(g) = 0. The contribution of the right-movers as well as the left-moving bosons in the

transverse directions can be written as

1

2

∑

a,b

(−1)a+b+abθ̄

[

a
2
b
2

]

(v̄)
∏

i=1,3

θ̄

[

a
2
b
2
−θ̃i(g)

]

(0)
sinπθ̃i

θ̄

[

1
2
1
2
−θ̃i

]

(0)

. (5.63)

The sum over spin structures can be carried out by using the generalized Riemann iden-

tity (B.13). In the supersymmetric case, this reduces to

θ̄

[

1
2
1
2

]

(v̄/2)
∏

i=1,2,3

θ̄

[

1
2
1
2
−θ̃i(g)

]

(v̄/2)
sin πθ̃i

θ̄

[

1
2
1
2
−θ̃i(g)

]

(v̄/2)

. (5.64)

The ground state contribution is therefore
(√

y − 1√
y

)

×
∏

i=1,2,3

(√
yeiπθ̃i − 1√

y
e−iπθ̃i

)

. (5.65)

In particular, the zeroth and first helicity supertraces vanish, while

Ω2 = 2(sin πθ̃(g))2 (5.66)

where θ̃3 = 0, θ̃1 = −θ̃2 := θ̃ mod 1.

Now let us discuss the charge lattice. Suppose that k pairs of left-moving bosons are

fixed for all g ∈ Γ. Together with the 2 right-moving directions in the plane of θ̃3 we have a

plane Q ⊂ R
22,6 of signature (2k, 2). The vector-multiplet moduli come from the SO(2k, 2)

rotations in this plane. The number of U(1) vector fields is nV = 2k +2. The projection of

Λ into the plane Q defines the charge lattice (in the untwisted sector) M0. Let ρ : Λ → M0

be the projection. States in the untwisted sector are labelled by P ∈ II22,6 but we only

want to discuss degeneracies at a fixed Q ∈ M0. Using the BPS condition P 2
R = Q2

R, we

may rewrite:
∑

P∈Λ(g)

q
1
2
P 2

L q̄
1
2
P 2

Re2πiδ(g)P ΠBPS(P ) =
∑

Q∈M0

q
1
2
Q2

L q̄
1
2
Q2

RFg,Q(q) (5.67)

where

Fg,Q(q) =
∑

P∈Λ(g),ρ(P )=Q

q
1
2
(P 2

L−Q2
L)e2πiδ(g)P . (5.68)

The function (5.68) is actually very simple in many important cases. For example if Λ(g) ⊂
M0, which is typical if the fixed space under the group element g coincides with Q then

we simply have Fg,Q(q) = e2πiδ(g)·Q. For this reason it is useful to distinguish between

“minimal twists”, which leave only the subspace Q invariant (i.e. 0 < θj(g) < 1 for j > k)

and nonminimal twists. For nonminimal twists the kernel of Qel will be nontrivial and

Fg,Q(q) will be a theta function.
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Putting all this together we find that the degeneracies of untwisted sector BPS states

are given by

Ωw(Q) = e4πQ2
R

∫

dτ1 q
1
2
Q2

L q̄
1
2
Q2

RZω (5.69)

Zw =
1

N

∑

g∈Γ

1

η2+2k

[

11−k
∏

j=1

(−2 sin πθj(g))
η

ϑ[
1
2

1
2
+θj(g)

](|τ)

]

w(g)Fg,Q(q) (5.70)

where w(g) is given by

w(g) =



































16 cos πθ̃1(g) cos πθ̃2(g) cos πθ̃3(g) w=abs

2(sin πθ̃(g))2 w=2

3

2
w=4

15

8
(2 − E2(τ)) w=6 .

(5.71)

This formula is exact. Now let us determine its asymptotics. The general counting

function appearing in (5.69) is

K(τ) =
1

η24−3t

t
∏

j=1

1

ϑ[
1
2

1
2
+rj/N

](0|τ)
= q−1

∑

n≥0

Kg(n)qn . (5.72)

Together with the functions

1

η24−3t

t
∏

j=1

1
2

ϑ[
1
2
+aj/N

1
2
+bj/N

](0|τ)
(5.73)

with 0 ≤ aj , bj < N , the function K transforms as a matrix of dimension N × N and

modular weight w = t − 12 under the congruence subgroup Γ0(N, Z) of Sl(2, Z). In order

to apply the Rademacher formula, one must diagonalize the T operator in the space spanned

by (5.73). After some computation, we find:

K(n) = |∆g|1−we−iπ
P

j(
1
2
−θj)Î1−w

(

4π
√

(n − 1)|∆g|
)

+ · · · (5.74)

and

∆g := −1 +
1

2

11−k
∑

j=1

θj(g)(1 − θj(g)) , 0 < θj(g) < 1 (5.75)

is the ground-state energy in the left-moving sector twisted by g. We only get contributions

from g such that ∆g < 0. In addition, there are non-perturbative corrections of order

Î1−w

(

4π

√

(n − 1)

∣

∣

∣

∣

∆g +
`

N

∣

∣

∣

∣

)

(5.76)
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for ` such that ∆g + `
N < 0, and of order

Î1−w

(

4

c
π

√

(n − 1)|∆g +
`

N
|
)

(5.77)

for c > 1. We conclude that the leading asymptotics for the degeneracies of untwisted DH

states from the minimal twists is (w 6= 6 here):

1

4N

′
∑

g∈Γ,minimal

w(g)h(g)

11−k
∏

j=1

(−2 sin πθj(g))|∆g |k+2Îk+2(4π

√

|∆g|
1

2
Q2) (5.78)

where

h(g) =

{

(−1)(12−k)/2 sin
(

2πδ(g)Q + π
∑

j θj(g)
)

k even

(−1)(11−k)/2 cos
(

2πδ(g)Q + π
∑

j θj(g)
)

k odd .
(5.79)

The prime24 on the sum indicates we only get contributions from g such that ∆g < 0. For

nonminimal twists there will be similar contributions as described above. In particular the

index on the Bessel function will be the same, but (5.75) receives an extra nonnegative

contribution from the shift δ, and the coefficient |∆g|k+2 is modified (and still positive).

In some examples the leading asymptotics is provided by the minimal twists alone.

It is interesting to compare this with the twisted sectors. Since the sector (1, g) always

mixes with (g, 1) under modular transformation, and since the oscillator groundstate energy

is −1 in the untwisted sector, it is clear that for charges Q corresponding to states in the

twisted sector the asymptotics will grow like

Îk+2

(

4π

√

1

2
Q2

)

. (5.80)

This is true both for the absolute number of BPS states and for the supertraces. Recall

that k + 2 = 1
2 (nV + 2) for N = 2 compactifications, so we have agreement with (4.28).

There are some interesting general lessons we can draw from the result (5.78). Due to

the factor h(g) it is possible that the leading I-Bessel functions cancel for certain directions

of Q. Moreover, a general feature of N = 2 compactifications is that g = 1 does not

contribute to Ω2 in (5.78). Then, since |∆g| < 1 the degeneracies are exponentially smaller

in the untwisted sector compared to those of the twisted sector. We have seen explicit

examples of this above. In contrast, for N = 4 compactifications, the g = 1 term does

contribute to Ω4, which thus has the same growth as in the twisted sector.

One general lesson seems to be that the degeneracies, and even their leading asymp-

totics can be sensitive functions of the “direction” of Q in charge space. In general it is

quite possible that the exact BPS degeneracies and their asymptotics will be subtle arith-

metic functions of the charge vector Q.25 In the physics literature it is taken for granted

that there is a smooth function S : Heven(X , R) → R so that S(sQ) ∼ log Ωw(sQ) for

24The rest of this section is excerpted from [1].
25Such a phenomenon was conjectured based on other considerations in [86].
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s → ∞, but the true situation might actually be much more subtle. The Rademacher ex-

pansion shows that Fourier coefficients of negative weight modular forms have well-defined

asymptotics governed by Bessel functions. On the other hand, by contrast, the Fourier

coefficients an of cusp forms of positive weight k have a lot of “scatter” and can only be

described by a probability distribution for an/n(k−1)/2 (see e.g. [87] for an introduction to

this subject). As we have remarked above, certain supertraces do in fact have expressions

in terms of positive weight forms and we may expect the asymptotics to be expressed in

terms of such probability distributions. It would be very interesting to explore further this

dichotomy for the functions Ωw(Q).

6. The black hole partition function

In this section we reconsider the black hole partition function, starting with what is known

about degeneracies of BPS states, and try to reproduce the structure of the topological

string free energy.

Since BPS degeneracies, even counted with signs, depend on the background vector

multiplet moduli tA (due to jumps at marginal stability), one should specify the background

to properly define the partition sum. Furthermore, because the original OSV partition

function (1.4) (henceforth denoted as Z0) does not converge, a regularization needs to be

introduced. We will consider

Zα :=
∑

q

Ω(p, q) eπqiφ
i−παH(p,q;t) . (6.1)

As we will see below, a suitable and natural choice for H(p, q; t) is the BPS energy. This

introduces additional explicit dependence on t, which formally disappears when α → 0.

For definitiveness we will work in the IIA picture. Since the topological string wave

function is defined as an expansion around an infinite radius point, a natural guess is that

we should take Ω(p, q) to count the degeneracies in the corresponding large radius limit.

More precisely, we tentatively define

Ω∞(p, q;u) := lim
R→∞

Ω(p, q; t = iR u) , (6.2)

where Ω(p, q; t) is an appropriate index counting the number of BPS states with charge

(p, q) on a Calabi-Yau with complexified Kähler form B + iω = tAJA and u is a fixed real

vector inside the Kähler cone. Note that this definition of the degeneracies still depends

on the chosen direction u in the Kähler cone.

For simplicity, we will again mainly consider the case p0 = 0 in what follows. In the

R → ∞ limit, IIA BPS states are then described at vanishing string coupling gs by D4

branes wrapping a divisor S, with D2 and D0 branes dissolved into it. For r D4 branes

on a rigid divisor S, the moduli space M of this system is the moduli space of semistable

rank r coherent sheaves on S, with fixed Chern classes ci.
26 If the divisor is not rigid,

26In the case r = 1, instantons are always pointlike, and M is simply the Hilbert scheme of N = c2 points

on S. Alternatively, one can turn on a B-field and consider noncommutative instantons, which are smooth

even if r = 1.
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M also includes deformations of S. At gs = 0, BPS ground states are in one to one

correspondence with cohomology classes on M. At finite gs, some of these may be lifted,

but the hyper−vector index Ω2 will remain invariant.

6.1 Rigid divisors

We first consider a class of examples for which the counting is under good control, namely

rigid divisors S, i.e. h2,0 = h1,0 = 0, wrapped by a single D4-brane (so r = 1), with N

D0-branes bound to it. We can always construct at least a noncompact Calabi-Yau X
containing S, namely the canonical line bundle over S. The simplest example is given by

S = P2, in which case X = O(−3) → P2. A compact example is given by a D4 wrapping

an Enriques surface S = K3/Z2 in the FHSV Calabi-Yau threefold X = (T 2 × K3)/Z2.

These branes are dual to the twisted sector DH states in the dual heterotic model described

in section 5.3.

For a rigid divisor S, the moduli space MN is simply the Hilbert scheme of N points

on S. The number of BPS states dN := dim H∗(MN ) = χ(MN ) is given by the generating

function

Z(q) := q−χ/24
∑

N

dNqN =
1

η(q)χ
, (6.3)

where χ = h1,1(S)+2 is the Euler characteristic of S. We can also turn on U(1) gauge flux

F on S, which will induce D2 and D0 brane charge but will otherwise not affect the moduli

space. Choosing a basis CI of H2(S, Z) = Pic(S), which pulls back to a basis of H1,1
cpct(X )

if X is the canonical line bundle over S, we get the following net D2 and D0 brane charges

qI =

∫

S
JI ∧ F (6.4)

q0 = −
(

N −
∫

S

1

2
F ∧ F − χ

24

)

(6.5)

= −
(

N − 1

2
CIJqIqJ − χ

24

)

. (6.6)

Here CIJ := (C−1)IJ with CIJ := CI · CJ . The electric charges can in general have

nonintegral shifts:

qI ∈ cs,I

2
+ Z , q0 ∈ −c2(X) · S

24
+ Z . (6.7)

The class cs ∈ H2(S, Z) defines a spinc structure, and is equivalent, modulo two, to the

second Steifel-Whitney class. This charge quantization law follows from the K-theoretic

formulation of RR charges and is needed to cancel anomalies, both on the brane worldvol-

ume [88] and on the fundamental string worldsheet [89]. The magnetic charges are given

by the homology class of S. The Euler characteristic χ(S) is determined in terms of these

magnetic charges only:

χ = S3 + c2(X) · S . (6.8)

Using (6.6), we get:

Ω∞(p, q;u) = dN=−q0+
1
2
CIJqIqJ+ χ

24
. (6.9)
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Note that in this case, the degeneracies are in fact independent of the choice of u. The

partition function (1.4) becomes

Z0 =
∑

N,qI

dN e−πφ0(−N+ 1
2
CIJqIqJ+ χ

24
)−πφIqI (6.10)

= Z(eπφ0
)Θ0(φ

0, φI) (6.11)

where Z = 1/ηχ as in (6.3) and

Θ0(φ
0, φI) :=

∑

qI

e−πφ0 1
2
CIJqIqJ−πφIqI . (6.12)

Convergence of Z requires Reφ0 < 0. On the other hand CIJ has signature (1, h1,1−1). In

particular the direction qI ∼ CIJuJ has positive norm squared. Therefore Θ is divergent.

This signals an instability of the ensemble.

A physically natural way to regularize the partition function is to add an energy

dependent Boltzmann factor as in (6.1). More precisely we will take

H(p, q;u) := lim
R→∞

(

M(p, q; iR u) − M(p, 0; iR u)
)

, (6.13)

with M(p, q; t) the mass in string units of a BPS state with charges p, q at the point t in

moduli space. We subtracted the q = 0 energy to get a finite result in the limit R → ∞.

Normalizing u for convenience such that CIJuIuJ := 1, we get

H = lim
R→∞

(∣

∣

∣

∣

q0 + iR qIu
I − R2

2

∣

∣

∣

∣

− R2

2

)

(6.14)

= −q0 + (qIu
I)2 . (6.15)

Alternatively we could have obtained this by simply evaluating the U(1) Yang-Mills action

on S coupled to D0-branes, to which the DBI action reduces in the limit R → ∞.

For −Reα < Reφ0 < Re α, the modified partition sum (6.1) is convergent:

Zα = Z(eπ(φ0−α))Θα(φ0, φI) (6.16)

with

Θα(φ0, φI) :=
∑

qI

e−
π
2
gIJ

α qIqJ−πφIqI (6.17)

gIJ
α := (φ0 − α)CIJ + 2α uIuJ . (6.18)

The quadratic form gIJ
α has positive definite real part in the range of φ0 specified above. In

particular, the previously problematic direction qI = CIJuJ now gives gIJ
α qIqJ = φ0 + α,

which has positive real part. Furthermore, using detCIJ = (−1)h
1,1−1, we get det gIJ

α =

(α − φ0)h
1,1−1(α + φ0) and similarly for detRe gIJ

α by replacing the factors by their real

parts. Note that this is indeed positive.
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Now that we have a convergent expression, we can perform a Poisson resummation

on Θ:

Θα(φ0, φI) = 2
h1,1

2 (α − φ0)−
h1,1

−1
2 (α + φ0)−

1
2

∑

kI

e
π
2
gα

IJ(φI+2ikI)(φJ +2ikJ)+2πikI
cs,I
2 , (6.19)

with cs,I as in (6.7) and

gα
IJ =

1

φ0 − α
CIJ +

2α

α2 − φ02 uIuJ (6.20)

with uI := CIJuJ .

Finally, we do a modular transformation on Z = 1/ηχ:

Z(eπ(φ0−α)) = 2−
χ
2 (α − φ0)

χ
2 Z(e

4π

φ0−α ) . (6.21)

Combining this with (6.19) and using χ = h1,1 + 2 and the product formula for η gives

Zα =
α − φ0

2

(

α − φ0

α + φ0

)1/2
∏

n

(

1 − e
4πn

φ0−α

)−χ

×

×
∑

kI

exp

(

− π χ

6(φ0 − α)
+

π

2
gα
IJ(φI + 2ikI)(φJ + 2ikJ ) + 2πikI cs,I

2

)

. (6.22)

Inverting (6.1), we thus get

Ω∞(p, q) =

∫ i

−i
dφ0

∫ i

−i
dφI eπqiφi+αH(p,q;u) Zα(φ0, φI ;u) . (6.23)

Note that the sum over kI in (6.22) can be dropped by extending the domain of the integrals

over φI to (−i∞,+i∞). Furthermore, by definition, the expression is independent of α

(and u), so we can take the limit α → 0, which formally gives

Ω∞(p, q) =

∫ i

−i
dφ0

∫ i∞

−i∞
dφI f(φ0)e

π
(

−S3+c2·S

6φ0 + 1
2φ0 CIJφIφJ+q0φ0+qIφI

)

, (6.24)

where we used (6.8) to express χ in terms of the magnetic charge given by S, and we

defined

f(φ0) :=
φ0

2i

∏

n

(

1 − e
4πn

φ0

)−χ(S)

. (6.25)

The integral (6.24) is somewhat formal, because of the oscillatory gaussian integral and

the infinite product in (6.25) which is not well behaved on the imaginary axis. From the

above we know however that it is unambiguously defined as the limit α → 0+ of the same

integral with replacements

φ0 → φ0 − α , CIJ → CIJ − 2α

α + φ0
uIuJ . (6.26)
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Comparison with the topological string. Comparing to (4.11), we see that the quan-

tity in the exponential in (6.24) is exactly the perturbative part of the free energy derived

from the topological string amplitude.27 Let us elaborate a bit on the term quadratic in φ.

On the topological string side, it corresponds to the term CABφAφB with CAB := CABCpC

and A,B : 1, . . . , b2(X ). The integers CAB give the intersection products of the pullbacks

of a basis of H1,1(X ) to S. Since h2,0(S) = 0, these pullbacks span all of H2(S), and

CAB has rank b2(S). Note that in general this can be smaller than b2(X ). After a suit-

able change of φ variables, we can thus rewrite the term CABφAφB as CIJφIφJ , with

I = 1, . . . , b2(S) and CIJ the intersection form on H2(S) as defined before. The remain-

ing φA with A = b2(S) + 1, . . . , b2(X ) no longer appear in the perturbative part of the

supergravity free energy, and the latter thus reduces to the “S-local” expression in the

exponential in (6.24).

Clearly however, at least for this simple class of wrapped D-branes, the Gromov-Witten

part of the topological string free energy is not generated by the BPS partition sum. In

particular there is no φI dependence apart from the quadratic term, whereas typically

the Gromov-Witten series is a very complicated function of the φI . The infinite product

in f(φ0) looks somewhat like the infinite products appearing in the Gopakumar-Vafa for-

mula (4.10) for the topological string wave function but actually does not seem to have

any obvious interpretation in this context. It depends only on φ0, so it would have to come

from the homologically trivial worldsheet sector, which however has a quite different form.

At large |q0|, the integral is well approximated by a saddle point evaluation, and at

the saddle point, φ0 will be small and negative, so the infinite product in f(φ0) will be

exponentially close to 1. Dropping this factor will therefore merely give exponentially small

deviations from the exact answer. This is not so however for the additional φ0 factor, which

does not appear on the topological string side of the conjecture. On the other hand, we

just saw that ∆b := b2(X ) − b2(S) of the φA decouple from the perturbative part of the

free energy on the topological string side. Moreover these φA have a natural periodicity

φ0, so integrating them out would naturally give an additional factor (φ0)∆b. In the FHSV

example with S an Enriques surface, we have ∆b = 1, hence for large q0 this procedure

leads to complete agreement between microscopic and perturbative macroscopic answers,

up to exponentially suppressed terms. This agrees with what we found in section 5.3, and

will hold similarly for more general K3-fibered examples.

However, more generally, it need not be true that ∆b = 1. One can easily imagine

simple divisors S of low b2(S) embedded in a Calabi-Yau X with large b2(X ). In those

cases the discrepancy by a factor of φ0 cannot be compensated by taking into account the

decoupled integrals. Perhaps a better prescription would therefore be to simply discard

all decoupled integrals, restricting only to the “local” variables, and adding a factor φ0 by

hand as a universal measure contribution.

27Note that our basis of charges indeed has a cubic prepotential, as assumed in (4.11). In such a basis the

electric charges of D4-brane states will in general have nonintegral shifts. By substituting q0 → n0 − (c2 ·

S)/24 and qI → nI + cs,I/2 in accordance with the quantization shifts (6.7), we get the free energy in an

integral basis. The additional terms proportional to the charge shifts correspond to the linear resp. quadratic

terms in the prepotential which indeed generally appear for such a basis.
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It should be noted though that the rigid divisors we are considering here are not ample

(ample divisors have typically many moduli and always give a nondegenerate DAB). This

implies that the attractor point computed from the perturbative part of the prepotential

will not lie inside the Kähler cone, so there is a priori no reason whatsoever to expect any

agreement between the microscopic degeneracies and the macroscopic prediction computed

with only the perturbative part of the prepotential. The fact that (modulo the small issue

of the φ0 factor) there is nevertheless agreement to all orders in 1/|q0| is therefore very

remarkable.

A remark on k-shifts. The expression (6.22) for the partition function contains a sum

over shifts labelled by k. This gives Z the required periodicity in φA. It is easy to see that

this sum over k-shifts will be a general feature of the partition function if one assumes the

integral form of the conjecture,

Ω(p, q) ∼
∫

dφ eπq·φ+F(φ) , (6.27)

where the integrations are over the imaginary axis. Indeed, substituting this in (1.4) gives

Z0 ∼
∫

dφ′ eF(φ′)
∑

q

e2πiq(φ−φ′

2i
) . (6.28)

Assuming q is quantized as q = q̄ + s with q̄ ∈ Z, and using
∑

q̄ e2πiq̄x =
∑

k δ(x − k), this

gives

Z0 ∼
∑

k∈Z

eF(φ+2ik)+2πis·k , (6.29)

which is precisely the k-shift structure found above. Note however that (6.22) does not

contain a sum over k0. This is related to the fact that the integrand in (6.24) is periodic in

φ0 and that the φ0 integral is over one period. In principle, by modifying the integrand, one

could try to convert this again to an integral over the entire imaginary axis, and then the

expression of Z derived from this modified integrand will also contain as sum over k0. In

practice, such modifications do not affect the 1/N expansion of (6.24), since this depends

only on the neighborhood of the saddle point.

6.2 K3 divisors in K3 × T 2

The rigid examples considered thus far are rather special. In particular we only considered

the rank r = 1 case. To see if perhaps we reproduce more of the topological string amplitude

in some large r limit, we apply the same idea to our basic example, X = K3 × T 2, with

r = p1 coincident D4-branes on S = K3.

The degeneracies are now given by

Ω∞(p, q0, q1, ~q;u) = δq1,0 p24(N) , N = 1 − q0p
1 +

1

2
~q2 . (6.30)

where ~q ∈ II19,3. The factor δq1,0 arises because in the R → ∞ limit, there are no

bound states of D-branes with 6 mutually Dirichlet-Neumann directions. This also fits
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with the fact that there is no attractor point when q1 6= 0. At finite R and sufficiently

large ~q or B-field, BPS states with nonzero q1 may appear [90 – 93]. The supergravity

solutions corresponding to those states will be multicentered, decaying at some point when

R → ∞ [94 – 96]. Since we are considering the strict limit R → ∞ here, we do not need to

consider these.

The computation of the partition function is similar to the previous subsection. There

is one new element: in solving the level matching condition for q0, we must ensure integrality

of q0 = − 1
p1 (N − 1 − ~q2/2). This is easily achieved by inserting a projector:

Z0 =
∑

N,~q

1

p1

p1−1
∑

k0=0

e
−2πi k0

p1 (N−1−~q2/2)
p24(N) e

π φ0

p1 (N−1−~q2/2)−π~φ·~q
. (6.31)

As before, this sum is divergent, but can again be regularized.28 We will not do this in

detail, but use its existence as justification for the formal manipulations in the following.

Carrying out the sum over N , we get

Z0 =
1

p1

p1−1
∑

k0=0

η−24(eπ(φ0−2ik0)/p1
)
∑

~q

e
− π

p1 (φ0−2ik0)~q2−π~φ·~q
. (6.32)

Finally, performing a modular transformation on the Dedekind function and a Poisson

resummation over ~q, we obtain the main formula of this subsection:

Z0 =
1

2i(p1)2

p1−1
∑

k0=0

(φ0 − 2ik0)
∑

~k∈II3,19

exp

(

π

2

p1(~φ − 2i~k)2

φ0 − 2ik0
− log η24

(

e
4πp1

φ0−2ik0

)

)

. (6.33)

This is very similar to what we found in section 6.1, with the addition of a finite sum over

shifts of φ0. We can also write this in integral form:

Ω(p, q) =
1

2i(p1)2

∫ ip1

−ip1

dφ0

∫ i∞

−i∞
d~φ φ0 exp

(

π

2

p1~φ2

φ0
− log η24

(

e
4πp1

φ0

)

+q0φ
0 +~q · ~φ

)

, (6.34)

which should be compared to the conjectured

Ω(p, q)
?
=

∫

dφ0dφ1d~φ exp

(

π

2

p1~φ2

φ0
−log η24

(

e
2π(p1+iφ1)

φ0

)

−log η24
(

e
2π(p1

−iφ1)

φ0

)

+q0φ
0+~q·~φ

)

.

(6.35)

This is similar to the exact expression (6.34), but clearly not quite the same. Working

formally, we can fourier expand the 1/η24 functions in (6.35) and integrate φ1 over (0, φ0).

This gives

Ω(p, q)
?
=

∫

dφ0d~φ φ0 exp

(

π

2

p1~φ2

φ0
+ log

∑

n

(

p24(n)
)2

e
4πp1

φ0 (n−1)
+ q0φ

0 + ~q · ~φ

)

. (6.36)

28Because the D2 charge lattice now has 3 positive norm squared directions, spanned by (ω, ReΩ, ImΩ),

where ω is the Kähler form and Ω the holomorphic 2-form on K3, the regularization will involve Ω as well

as ω. This is special to cases with N = 4 supersymmetry.
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Unfortunately, this differs from (6.34) in that p24(N) appears squared here, but not so in

the expansion of the 1/η24 in (6.34).

In conclusion, at least for the case of K3, we see that considering arbitrary rank still

does not fully reproduce the topological amplitude.

6.3 General case and monodromy invariance

Despite the arbitrary rank, the K3 case is still somewhat degenerate, insofar as it does not

correspond to a regular, “large” black hole. Unfortunately, exact counting of microstates

of general D4-D2-D0 systems is considerably harder than the cases we considered so far.

However, some information about the form of the partition function can be obtained purely

from monodromy invariance, where the monodromy under consideration is around large

radius, i.e. integral shifts of the B-field.

To make this precise, let us first review the general relation of electric and magnetic

charges to microscopic quantities. The magnetic charge of r coincident D4-branes wrapped

around a divisor S = mAJA is pA = rmA. The D0 and D2 electric charges q0 and qA

corresponding to a rank r coherent sheaf with Chern classes ci are given by

qA =

∫

S
ι∗JA ∧

(

c1 +
1

2
r cs

)

(6.37)

q0 = −
(

∆

2r
−

∫

S

1

2r

(

c1 +
1

2
r cs

)2

− 1

24
r χ(S)

)

(6.38)

with ∆ :=

∫

S
2rc2 + (1 − r)c2

1 . (6.39)

Here cs is again the Chern class of a spinc structure on S, as discussed earlier, χ(S) =

S3 + c2(X) · S is the Euler characteristic of S, ι∗ is the pullback map to S, and ∆ is the

Bogomolov discriminant [97, 98]. For semistable sheaves ∆ ≥ 0. When ∆ is sufficiently

large, the dimension of the sheaf moduli space is d = ∆ − (r2 − 1)χ(OS). As before, the

electric charges as defined above in general may have nonintegral shifts. More precisely

qA ∈ r cs,A

2
+ Z , q0 ∈ −r c2(X) · S

24
+ Z . (6.40)

One universal feature of the D-brane moduli space M in the limit R → ∞ is that it is

invariant under monodromy of the charges around large radius. These monodromies can

be thought of as induced by shifts B → B + nAJA, nA ∈ Z. At the level of sheaves, this

corresponds to tensoring with a line bundle, which maps

c1 → c1 + rnAι∗JA

and leaves ∆ invariant. The ω-stability condition for sheaves is that every subsheaf of

rank r′ and first Chern class c′1 must satisfy c′1 · ω/r′ < c1 · ω/r (with ω the Kähler form),

so monodromy does not affect this condition and the BPS spectrum is preserved.29 The

29This is only true for physical BPS states when R = ∞. At finite R, Π-stability is the proper phys-

ical criterion rather than ω-stability [91, 92]. For any arbitrarily large but fixed R, Π-stability becomes

qualitatively different from ω-stability for sufficiently large charges qA.
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monodromy action on the charges is

q0 → q0 + qAnA +
r

2
CABnAnB , qA → qA + rCABnB , (6.41)

where CAB := CABCmC . The shift by cs in (6.37) is precisely such that the change

in q0 is guaranteed to be integral. Invariance of the degeneracies Ω∞(p, q;u) under this

transformation implies that they will only depend on the monodromy invariant ∆ and a

label s in a finite set giving the value of the D2 charge modulo monodromies. The number

of monodromy inequivalent classes grows with P . Nevertheless, at any finite value of P ,

monodromy invariance constrains the φA-dependence of the partition sum to be given by

a finite sum of theta functions.

To see this, let us consider the unregularized partition function (1.4) and work formally

(this can again be regularized and justified as before). We write qA = sA + rCABnB,

where sA parametrizes D2-charges modulo monodromies and nB ∈ Z. Assuming CAB is

nondegenerate,30 the sA take values in a finite set Q of order |det rCAB|. Correspondingly,

we decompose the partition sum as

Z0 =
∑

q0,sA,nA

Ω∞(p, q0, sA + rCABnB;u) e−π(φ0q0+φAsA+φArCABnB) . (6.42)

Using monodromy invariance and shifting q0 then gives

Z0 =
∑

q0,sA,nA

Ω∞(p, q0 − sAnA − r

2
CABnAnB, sA;u) e−π[φ0q0+φAsA+φArCABnB ] (6.43)

=
∑

q′0,sA,nA

Ω∞(p, q′0, sA;u) e−π[φ0q′0+φ0(sAnA+ r
2
CABnAnB)+φAsA+φArCABnB ] (6.44)

=
∑

s∈Q
Zs(φ

0)Θs(φ
0, φA) . (6.45)

In the last line we defined

Zs(φ
0) :=

∑

q0

Ω∞(p, q0, sA;u) e−πφ0q0 (6.46)

Θs(φ
0, φA) :=

∑

nI

e−π[ φ0r
2

CABnAnB+nA(sAφ0+rCABφB)+φAsA] . (6.47)

Thus we see that the φA dependence of the partition sum is given by a finite sum of theta

functions Θs. After a modular transformation, this could be brought in a form analogous

to (6.33), but in any case, the φA dependence will still be given by a finite sum of theta

30This is guaranteed if S is very ample. In other cases, such as the K3 example studied above, it

may happen that the qA induced on S take values in a linear subspace of the full charge space (because

ι∗ : H2(X) → H2(S) fails to be injective), so the quadratic form CAB will be degenerate. In such cases,

we can restrict to that linear subspace, generically the restricted quadratic form will be invertible, and

essentially all of what follows goes through. If the restricted quadratic form is still degenerate, there will be

an infinite number of monodromy inequivalent classes, and the discussion needs to be changed somewhat.
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functions. Brought in integral form, analogous to (6.34), this will give a finite sum of

gaussian functions in the φA.

This should be compared to the φA dependence of the topological string amplitude

squared, which is given by an intricate series of instanton corrections determined by a

typically infinite set of Gromov-Witten invariants, or by an infinite product determined

by the likewise infinite set of BPS invariants. It is of course very unlikely that this will in

general match a finite set of gaussian functions.

However, when P = rS → ∞, the number of these gaussian terms goes to infinity.

Therefore, this result does not contradict the weaker form of the conjecture, i.e. asymptot-

ically for P → ∞.

Clearly, more results on exact BPS degeneracies of D-brane systems corresponding to

large black holes would be very useful to make further progress using the approach of this

section.

7. Conclusion

In this work, we have studied the detailed degeneracies of small black holes, using their dual

description as perturbative heterotic BPS states. The comparison with the macroscopic

Bekenstein-Hawking-Wald entropy including the leading R2 corrections, and assuming a

mixed statistical ensemble, shows a remarkable agreement to all orders in an asymptotic

expansion in inverse charges, in a large set of models with N = 2 and N = 4 supersymme-

try. At the same time, we found apparent discrepancies in special models, where however

the macroscopic computation is not under good control since the moduli are attracted to

the boundary of the Kähler cone. It would be very interesting to generalize our analysis to

the case of “large” black holes, with non-vanishing entropy at tree-level, where these effects

do not occur. This would require improving our understanding of the effective conformal

field theory which describes the micro-states. It would also be interesting to understand

the relation with other approaches which postulate a statistical ensemble [15 – 18], or more

drastically trade the singular black hole geometry with a sum over smooth geometries [99].
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A. The Rademacher expansion

Here we state briefly the Rademacher expansion. For more details and information see [43].

Suppose we have a “vector-valued nearly holomorphic modular form,” i.e., a collection

of functions fµ(τ) which form a finite-dimensional unitary representation of the modular
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group of weight w < 0. Under the standard generators we have

fµ(τ + 1) = e2πi∆µfµ(τ) (A.1)

fµ

(

− 1

τ

)

= (−iτ)wSµνfν(τ) . (A.2)

We assume the fµ(τ) have no singularities for τ in the upper half plane, except at the cusps

Q ∪ i∞. We may assume they have an absolutely convergent Fourier expansion

fµ(τ) = q∆µ
∑

m≥0

Fµ(m)qm µ = 1, . . . , r (A.3)

with Fµ(0) 6= 0 and that the ∆µ are real. We wish to give a formula for the Fourier

coefficients Fµ(m).

Define:

Îν(z) = −i(2π)ν
∫ ε+i∞

ε−i∞
t−ν−1e(t+z2/(4t))dt = 2π

(

z

4π

)−ν

Iν(z) (A.4)

for Re(ν) > 0, ε > 0, where Iν(z) is the standard modified Bessel function of the first kind.

Then we have:

Fν(n) =

∞
∑

c=1

r
∑

µ=1

cw−2K`(n, ν,m, µ; c)
∑

m+∆µ<0

Fµ(m) ×

×|m + ∆µ|1−w Î1−w

[

4π

c

√

|m + ∆µ|(n + ∆ν)

]

. (A.5)

The coefficients K`(n, ν,m, µ; c) are generalized Kloosterman sums, defined as

Kl(n, ν;m,µ; c) :=
∑

0<d<c;d∧c=1

e2πi d
c
(n+∆ν)M(γc,d)

−1
νµ e2πi a

c
(m+∆µ) (A.6)

where

γc,d =

(

a (ad − 1)/c

c d

)

(A.7)

is an element of Sl(2, Z) and M(γ) its matrix representation. For c = 1 in particular, we

have:

K`(n, ν,m, µ; c = 1) = S−1
νµ . (A.8)

The series (A.5) is convergent. Moreover the asymptotics of Iν for large Re(z) is given by

Iν(z) ∼ ez

√
2πz

[

1 − (µ − 1)

8z
+

(µ − 1)(µ − 32)

2!(8z)2
− (µ − 1)(µ − 32)(µ − 52)

3!(8z)3
+ · · ·

]

, (A.9)

where µ = 4ν2.
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B. Modular cornucopia

In this section, we collect definitions and useful identities of modular forms. The Jacobi

theta function is defined by31

θ[ab ](v|τ) =
∑

n∈Z

q
1
2
(n−a)2e2πi(v−b)(n−a) , (B.1)

where a, b are real and q = e2πiτ . It satisfies the modular properties

θ[ab ](v|τ + 1) = e−iπa(a−1)θ[a
a+b− 1

2

](v|τ) (B.2)

θ[ab ]

(

v

τ
| − 1

τ

)

= e2iπab+iπ v2

τ θ[ab ](v|τ) . (B.3)

The Jacobi-Erderlyi theta functions are the values at half periods,

θ1(z|τ) = θ

[ 1
2
1
2

]

(z|τ) , θ2(z|τ) = θ

[ 1
2

0

]

(z|τ) ,

θ3(z|τ) = θ

[

0

0

]

(z|τ) , θ4(z|τ) = θ

[

0
1
2

]

(z|τ) . (B.4)

In particular,

θ1

(

v

τ
,−1

τ

)

= i
√
−iτeiπv2/τθ1(v, τ) . (B.5)

The Dedekind η function is defined as

η(τ) = q
1
24

∞
∏

n=1

(1 − qn) . (B.6)

It satisfies the modular property

η

(

−1

τ

)

=
√
−iτη(τ) . (B.7)

It is related to the Jacobi-Erderlyi theta functions by the identities

∂

∂v
θ1(v)|v=0 = 2π η3(τ) (B.8)

θ2(0|τ)θ3(0|τ)θ4(0|τ) = 2η3 . (B.9)

The Riemann identity allows to carry out sums over spin structures,

1

2

1
∑

a,b=0

(−1)a+b+ab
4

∏

i=1

θ

[ a
2
b
2

]

(vi) = −
4

∏

i=1

θ1(v
′
i) , (B.10)

where

v′1 =
1

2
(−v1 + v2 + v3 + v4) , v′2 =

1

2
(v1 − v2 + v3 + v4) , (B.11)

31This differs from the definition in [56] by a factor of 2 in the characteristics.
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v′3 =
1

2
(v1 + v2 − v3 + v4) , v′4 =

1

2
(v1 + v2 + v3 − v4) . (B.12)

A generalized form holds provided
∑

i hi =
∑

i gi = 0:

1

2

1
∑

a,b=0

(−1)a+b+ab
4

∏

i=1

θ

[

a+hi
2

b+gi
2

]

(vi) = −
4

∏

i=1

θ

[

1−hi
2

1−gi
2

]

(v′i) . (B.13)

The Jacobi and Dedekind function satisfy the following “doubling identities”:

θ2(τ) =
2[η(2τ)]2

η(τ)
, θ3(τ) = e

iπ
12

[η( τ+1
2 )]2

η(τ)
, θ4(τ) =

[η( τ
2 )]2

η(τ)
(B.14a)

θ2(2τ) =
1√
2

√

θ2
3(τ) − θ2

4(τ) , θ3(2τ) =
1√
2

√

θ2
3(τ) + θ2

4(τ) (B.14b)

θ4(2τ) =
√

θ3(τ)θ4(τ) , η(2τ) = 2−2/3θ
2/3
2 (τ)(θ3(τ)θ4(τ))1/6 (B.14c)

θ2

(

τ

2

)

=
√

2θ2(τ)θ3(τ) , θ3

(

τ

2

)

=
√

θ2
3(τ) + θ2

2(τ) (B.14d)

θ4

(

τ

2

)

=
√

θ2
3(τ) − θ2

2(τ) , η

(

τ

2

)

= 2−1/6θ
2/3
4 (τ)(θ2(τ)θ3(τ))1/6 (B.14e)

θ2

(

τ + 1

2

)

= e
iπ
8

√

2θ2(τ)θ4(τ) , θ3

(

τ + 1

2

)

=
√

θ2
4(τ) + iθ2

2(τ) (B.14f)

θ4

(

τ + 1

2

)

=
√

θ2
4(τ) − iθ2

2(τ) , η

(

τ + 1

2

)

= 2−1/6 e
iπ
24 θ

2/3
3 (τ)(θ2(τ)θ4(τ))1/6 (B.14g)

η(2τ) η

(

τ

2

)

η

(

(τ + 1)

2

)

= e−iπ/24η3(τ) . (B.14h)

Another convenient set of modular forms are the Eisenstein series,

E2 =
12

iπ
∂τ log η = 1 − 24

∞
∑

n=1

nqn

1 − qn
, (B.15)

E4 =
1

2

(

ϑ8
2 + ϑ8

3 + ϑ8
4

)

= 1 + 240

∞
∑

n=1

n3qn

1 − qn
, (B.16)

E6 =
1

2

(

ϑ4
2 + ϑ4

3

) (

ϑ4
3 + ϑ4

4

) (

ϑ4
4 − ϑ4

2

)

= 1 − 504
∞

∑

n=1

n5qn

1 − qn
. (B.17)

E4 and E6 have modular weight 4 and 6, and generate the ring of modular forms under

Sl(2, Z). E2 is not a proper modular form as it transforms inhomogeneously under the

modular group.

It is also useful to define the following function

ξ(v) =
∞
∏

n=1

(1 − qn)2

(1 − qne2πiv)(1 − qne−2πiv)
=

sin πv

π

ϑ′
1

ϑ1(v)
. (B.18)

which often appears in generating functions of helicity supertraces. Its first v-derivatives

at v = 0 are

ξ(0) = 1 , ξ′(0) = 0 , ξ(2)(0) = −π2

3
(1 − E2) . (B.19)
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C. Counting J = 0 DH states in the (4, 24) model

Although there do not exist regular BPS spherically symmetric spinning black hole solutions

of the tree-level supergravity, heterotic DH states in general may carry angular momentum

J . It is conceivable that these states correspond to multi-centered black holes, or require

the inclusion of higher derivative corrections. In this section, we examine the degeneracies

of DH states in Het/T 6 with a prescribed value of the angular momentum J , and show that

the restriction to DH states with J = 0 leads to different subleading corrections for the

entropy as compared to the case where all values of the angular momentum are summed

over. This suggests that the statistical ensemble implicit in the Bekenstein-Hawking-Wald

entropy allows for arbitrary fluctuations of the angular momentum, at vanishing potential

Ω conjugate to J .

Let us start by recalling that the angular momentum of DH states arises from bosonic

and fermionic oscillators in the two non-compact coordinates transverse to the light-cone.

Right-moving oscillators map one state to another in the same supersymmetry multiplet

(unless they break the BPS property), so the angular momentum of the highest weight state

of a given multiplet arises from left-movers only. Introducing a parameter v conjugate to

the left-moving helicity JL
3 of the highest weight, the partition function of DH states is

given by

Ω4(v, q) = Tr[(JR
3 )4eiπvJL

3 qL0 q̄L̄0] =
3 sin πv

η21(τ)θ1(v; τ)
. (C.1)

Using θ′1(0) = 2πη3, this reproduces (2.41) when v = 0. The right-hand side of this

equation may be viewed (C.1) as the character of the trivial representation of affine Sl(2)k,

and decomposed into contributions of fixed U(1) charge using a generalization of the Kac-

Peterson formula,

χ0
Sl(2)k

=
2q1/8 sin πv

θ1(v, τ)
=

∞
∑

m=−∞
e2πimvq−

m2

k ĉj=0
m (τ) . (C.2)

The Sl(2, R) level k string functions ĉj=0
m have been computed in [100, 101] and read

ĉj=0
m =

q|m|+ m2

k

q−1/8η3

(

1 + (1 + q|m|)
∞
∑

n=1

(−1)nq
1
2
[n2+(2|m|+1)n−2|m|]

)

. (C.3)

(Notice that the level k does not affect the spectrum, except for an overall shift.) This allows

us to extract the partition function of states of given left-moving helicity m = hL > 0,

Zhel(m, q) =
3

η21
q−

1
8
−m2

k
ĉj=0
m =

3

2η24

(

qm + (1 + qm)

∞
∑

n=1

(−1)nq
1
2
[n2+(2m+1)n]

)

. (C.4)

Since each multiplet of spin J contributes 2J + 1 states with m ranging from −J to J , one

can obtain the partition function of given angular momentum J by

Zspin(J, q) = Zhel(J, q) − Zhel(J + 1, q) . (C.5)
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Using (C.3), this may be rewritten as

Zspin(J, q) =
3

2η24

(

1 + qJ + (2 + qJ + q−(J+1))

∞
∑

n=1

(−1)nq
1
2
[n2+(2J+1)n]

)

(C.6)

In particular, for J = 0, we find Zspin(0, q) = 1
η24 · S0(q) where

S0(q) = 1 − 3q + q2 + 3q3 − q5 − 3q6 + · · · = 2 + (1 + 3q)

∞
∑

n=1

(−1)nq
1
2
n(n+1)−1 . (C.7)

Working out (C.5) at low levels, we obtain (up to an overall factor of 3/2)

J = 0 : q−1 + 21 + 253q + 2255q2 + 16446q3 + · · ·
J = 1 : 1 + 22q + 276q2 + 2552q3 + · · ·
J = 2 : q + 22q2 + 277q3 + · · ·
J = 3 : q2 + 22q3 + · · ·

(C.8)

reproducing the total partition function,

Z(q) =

∞
∑

J=0

(2J + 1)Zspin(J, q) =
3

2

(

1

q
+ 24 + 324q + 3200q2 + 25650q3 + · · ·

)

(C.9)

(notice that the degeneracy of each Regge trajectory stabilize to a constant as the excitation

level becomes large, 1, 22, 277, 2576, 19574, . . .)

Let us now extract the asymptotics of the degeneracies Ω(J ;N). Although the string

functions have modular weight −1/2, their behavior under modular transformations is

ill-understood, so that the Rademacher formula does not apply directly. Relatedly, the

partition function (C.1) is not a weak Jacobi form. Nevertheless, we may try and obtain

the leading asymptotics by saddle point methods.32 Using (C.1) and (C.5), we have

Ωspin(N,J) = 4i

∫ iL+ 1
2

iL− 1
2

dτ

∫ 1

0
dv e−2πi(N−1)τ+2iπ(J+ 1

2
)v sin2 πv

η21(τ) θ1(v, τ)
(C.10)

In this expression, the range of the τ integration is chosen such that it corresponds to a

small circle around the origin in the q = e2πiτ variable. Using the modular properties (B.5)

and (B.7) and approximating η(−1/τ) ∼ q̃1/24, θ1(v/τ,−1/τ) ∼ 2q1/8 sin(πv/τ) with q̃ =

e−2πi/τ , we obtain

Ωspin(N,J) ∼ −2i

∫ iL+ 1
2

iL− 1
2

dτ(−iτ)11
∫ 1

0
dv e−2πi(N−1)τ+ 2πi

τ
+iπ v2

τ
+2iπ(J+ 1

2
)v sin2(πv)

sin(πv/τ)
.

(C.11)

Rescaling the variables as

τ =
x√

N − 1
, v = −J + 1/2√

N − 1
+ xy (C.12)

32Degeneracies of strings with prescribed angular momentum were studied in [31], for a different scaling

of the charges.
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the integral becomes

Ωspin(N,J) ∼ −2i

∫

dxdy

( −ix√
N − 1

)12 sin2
[

πx(y − π
J+ 1

2√
N−1

)
]

cos(πy
√

N − 1)
×

×e
2πi

√
N−1

„

−x+ 1
x
+x

(J+1
2 )2

N−1
+ 1

2
xy2

«

. (C.13)

Unfortunately, saddle point methods do not seem to apply straightforwardly, due to the

large oscillations in the denominator. For J = 0, we find numerically that

Ωspin(N,J = 0) ∼ N−33/4e4π
√

N (C.14)

which is suppressed by O(N−3/2) compared to the all-J result (2.14). In particular, the

success of the OSV conjecture appears to depend on choosing an ensemble where the

angular momentum is free to fluctuate at zero conjugate potential Ω = 0.

D. Other Het(4, nV ) and Het(2, nV ) models

In this appendix, we discuss other heterotic orbifold models with N = 4 or N = 2 super-

symmetry and reduced rank. We start with a different construction of the (4, 16) model

discussed in section 3.3, now based on the SO(32) heterotic string in ten dimensions. This

construction can be easily generalized to produce models with rank 12, 10 and 9.

D.1 Another Het(4, 16) model

As explained in [49], the heterotic string at a point of enhanced symmetry SO(16)×SO(16)

may be obtained by orbifolding the SO(32) heterotic string compactified on S1 by a Z2

action g1, which shifts the U(1) charges of 8 out of the 16 left-moving bosons by half a

unit, as well as acts by a translation by half a period along the circle S1. The partition

function is most easily written by decomposing the level 1 characters of SO(32) under

SO(16) × SO(16), using the general formula

O2n = OnOn + VnVn (D.1)

V2n = OnVn + VnOn (D.2)

S2n = SnSn + CnCn (D.3)

C2n = SnCn + CnSn (D.4)

relating the level 1 characters of SO(2n) in the O,V,S,C conjugacy classes to the level

1 characters of SO(n). Either of them are expressed in terms of free fermion partition

functions,

(

On

Vn

)

=
1

2

(

θ
n/2
3 ± θ

n/2
4

)

,

(

Sn

Cn

)

=
1

2

(

θ
n/2
2 ± (−iθ1)

n/2
)

. (D.5)
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In this fashion, the partition function for the Narain lattice Γ1,17 at the SO(16) × SO(16)

point can be written as

1

4
Z1,1

[

0
0

]





∑

a,b=0,1

θ16 [ab ]



 +
1

2
Z1,1

[

0
1
2

]

θ8
3θ

8
4 +

1

2
Z1,1

[

1
2
0

]

θ8
2θ

8
3 +

1

2
Z1,1

[

1
2
1
2

]

θ8
2θ

8
4 (D.6)

or, decomposing into the various sectors,

Z0
+ (O16O16 + S16S16) + Z0

− (V16V16 + C16C16) +

+Z
1
2
+ (O16S16 + S16O16) + Z

1
2
− (V16C16 + C16V16) (D.7)

where

Z
h/2
± =

1

2

(

Z1,1

[

h/2
0

]

± Z1,1

[

h/2
1
2

])

(D.8)

denotes the projected lattice sum in the h-th twisted sector. Compactifying this model

further on S′
1 ×T 4 to four dimensions, we may now take a further Z2 freely acting orbifold

which exchanges the two SO(16) factors and acts as a translation by half a period on S′
1:

the untwisted, unprojected sector contributes

Z6,6

[

00
00

]

+ Z6,6

[

00
1
2
0

]

4
(O16O16 + S16S16) +

Z6,6

[

00
00

]

− Z6,6

[

00
1
2
0

]

4
(V16V16 + C16C16) +

+

Z6,6

[

1
2
0

00

]

+ Z6,6

[

1
2
0

1
2
0

]

4
(O16S16 + S16O16)

Z6,6

[

1
2
0

00

]

− Z6,6

[

1
2
0

1
2
0

]

4
(V16C16 + C16V16) (D.9)

while the untwisted, projected sector reads

Z6,6

[

00
0 1

2

]

+ Z6,6

[

00
1
2

1
2

]

4
[O16(2τ) + S16(2τ)] +

Z6,6

[

00
0 1

2

]

− Z6,6

[

00
1
2

1
2

]

4
[V16(2τ) + C16(2τ)] .

(D.10)

The twisted, unprojected sector can be obtained by modular S transformation,

Z6,6

[

0 1
2

00

]

+ Z6,6

[

1
2

1
2

00

]

4

[

O16

(τ

2

)

+ S16

(τ

2

)]

+

Z6,6

[

0 1
2

00

]

− Z6,6

[

1
2

1
2

00

]

4

[

V16

(τ

2

)

+ C16

(τ

2

)]

(D.11)

and finally, the twisted, projected sector is obtained by a further T transformation,

Z6,6

[

0 1
2

0 1
2

]

+ Z6,6

[

1
2

1
2

1
2

1
2

]

4

[

O16

(

τ + 1

2

)

+ S16

(

τ + 1

2

)]

+

+

Z6,6

[

0 1
2

0 1
2

]

− Z6,6

[

1
2

1
2

1
2

1
2

]

4

[

V16

(

τ + 1

2

)

+ C16

(

τ + 1

2

)]

. (D.12)

In order to obtain the degeneracies of states with given electric charges under the diagonal

SO(16), we need to change basis and rewrite the product of level 1 characters in (D.9) into
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a sum of products of D8 = SO(16) level 2 theta functions with characteristics. One may

check that the finite group D8/2D8 decomposes into 7 orbits, with respective length 1, 1,

1, 1, 56, 140, 56 corresponding to (i) the orbit of the origin (ii) the orbits of one half the

highest weights of the (level 1) V,S,C representations (iii) the orbits of the highest weights

of the (level 2) Λ2,Λ4,Λ6 representations, of dimension 120, 1820 and 8008. In cases (i) and

(ii), the theta function with characteristics is simply obtained by doubling the argument

of the level 1 case, i.e.

θD8[2];O(τ) = O16(2τ) , θD8[2];V (τ) = V16(2τ) , etc. (D.13)

while, in case (iii), an explicit computation shows that

θD8[2];120(τ) =
1

2
θ2
2θ

6
3(2τ) , θD8[2];1820(τ) =

1

2
θ4
2θ

4
3(2τ) , θD8[2];8008(τ) =

1

2
θ6
2θ

2
3(2τ)

(D.14)

Generalizing the identity (3.23), we may now use these theta series to decompose the

product of two level-1 theta series into a sum of products of level-2 theta series:

O2
16 = θ2

D8[2];O + θ2
D8[2];O + θ2

D8[2];O + θ2
D8[2];O

+

+56 θ2
D8[2];120 + 135 θ2

D8[2];1820 + 56 θ2
D8[2];8008 (D.15)

V 2
16 = 2 θD8[2];OθD8[2];V + 2 θD8[2];SθD8[2];C +

+56 θ2
D8[2];120 + 135 θ2

D8[2];1820 + 56 θ2
D8[2];8008 (D.16)

S2
16 = 2 θD8[2];OθD8[2];S + 2 θD8[2];V θD8[2];C +

+112 θD8[2];120θD8[2];8008 + 135 θ2
D8[2];1820 (D.17)

C2
16 = 2 θD8[2];OθD8[2];C + 2 θD8[2];V θD8[2];S +

+112 θD8[2];120θD8[2];8008 + 135 θ2
D8[2];1820 . (D.18)

As in (3.25), we view each term on the right hand side as the product of the partition

function for the lattice of physical electric charges P1 + P2, times the partition function of

the lattice of unphysical electric charges P1 − P2. It is the latter which, together with the

partition function of the oscillators, determines the degeneracies of DH states.

In all cases, the level-2 theta series with characteristics are modular forms of weight

4. Taking into account the action on the left-moving bosonic oscillators, we find that the

degeneracies in the untwisted sector are enumerated by

1

4

(

θD8[2],λ

η24
± δ0,P

24θ4
2

η12

)

(D.19)

where λ is any element in the finite group D8/2D8, while those in the twisted sectors are

counted by
1

2

(

1

η12ϑ4
4

± 1

η12ϑ4
3

)

. (D.20)

In particular, the asymptotics are governed by the same formulae (3.30). As in any N = 4

heterotic models, the absolute degeneracies are equal to (2/3 times) the helicity super-

traces Ω4.
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D.2 Het(4, 12) model

A similar construction as in (D.6) allows to construct the point of enhanced symmetry

SO(8)4 of the SO(32) heterotic string: one simply needs to orbifold the heterotic string

compactified on S′
1×S′′

2 by Z2×Z2, where the two generators g1 and g2 both act by shifting

the U(1) charges of a different set of 8 left-moving bosons (4 of which being common to g1

and g2), and by a translation by half a period in either of the two circles. The partition

function of the Γ2,18 Narain lattice at the SO(8)4 point is therefore

ZD4
4

=
1

4η16

[

1

2
Z2,2

[

00
00

]

∑

a,b=0,1

θ16 [ab ] +
∑

dd

(

Z2,2

[

00
dd

]

θ8
3θ

8
4 + Z2,2

[

dd
00

]

θ8
2θ

8
3 + Z2,2

[

dd
dd

]

θ8
2θ

8
4

)

]

(D.21)

where the sum runs over the 2-digit binary numbers dd = 00, 01
2 , 1

20, 1
2

1
2 [49]. Using (D.1),

this may be decomposed into characters of SO(8)4,

ZD4
4

= Z00
++

(

O4
8 + V 4

8 + S4
8 + C4

8

)

+ 2
[

Z00
+− + Z00

−+ + Z00
−−

] (

O2
8V

2
8 + S2

8C2
8

)

+

+

[

Z
0 1

2
++ + Z

1
2
0

++ + Z
1
2

1
2

++ + Z
1
2

1
2

−− + Z
1
2
0

+− + Z
0 1

2
−+

]

(

O2
8 + V 2

8

) (

S2
8 + C2

8

)

+

+4

[

Z
0 1

2
−− + Z

0 1
2

−− + Z
1
2
0

−+ + Z
1
2

1
2

−+ + Z
0 1

2
+− + Z

1
2

1
2

+−

]

O8V8S8C8 (D.22)

where

Zh1h2
ε1ε2 =

1

4η16

(

Z2,2

[

h1
2

h2
2

0 0

]

+ ε1Z2,2

[

h1
2

h2
2

1
2

0

]

+ ε2Z2,2

[

h1
2

h2
2

0 1
2

]

+ ε1ε2Z2,2

[

h1
2

h2
2

1
2

1
2

])

(D.23)

denotes the projected lattice sum in the (h1, h2) twisted sector of the Z2 × Z2 orbifold.

The resulting theory can be orbifolded by an element g3 := e of order 4 permuting the four

SO(8) factors cyclically, together with a translation of order 4 along one of the circles in

the torus T 4. The partition function in the untwisted sector, with an insertion of an odd

power of the generator is thus given by

ZD4[4]

[

0
g
4

]

=
1

16η4(4τ)

(

Z3,3

[

000
00 g

4

]

+ Z3,3

[

000
1
2
0 g

4

]

+ Z3,3

[

000
0 1

2
g
4

]

+ Z3,3

[

000
1
2

1
2

g
4

])

×

× [O8(4τ) + V8(4τ) + S8(4τ) + C8(4τ)] (D.24)

with g = 1, 3, while for an insertion of e2,

ZD4[4]

[

0
1
2

]

=
1

8η8(2τ)

{

1

2

(

Z3,3

[

000
00 1

2

]

+ Z3,3

[

000
1
2
0 1

2

]

+ Z3,3

[

000
0 1

2
1
2

]

+ Z3,3

[

000
1
2

1
2

1
2

])

×

×
[

O2
8(2τ) + V 2

8 (2τ) + S2
8(2τ) + C2

8 (2τ)
]

+

+
(

3Z3,3

[

000
00 1

2

]

− Z3,3

[

000
1
2
0 1

2

]

− Z3,3

[

000
0 1

2
1
2

]

− Z3,3

[

000
1
2

1
2

1
2

])

×
× [O8(2τ)V8(2τ) + S8(2τ)C8(2τ)] +

+

(

Z3,3

[

0 1
2
0

00 1
2

]

+ Z3,3

[

0 1
2
0

0 1
2

1
2

]

+ Z3,3

[

1
2
00

00 1
2

]

+ Z3,3

[

1
2
00

1
2
0 1

2

]

+

+ Z3,3

[

1
2

1
2
0

00 1
2

]

+ Z3,3

[

1
2

1
2
0

1
2

1
2

1
2

])

×
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× [O8(2τ) + V8(2τ)] [S8(2τ) + C8(2τ)]

}

(D.25)

and, in the absence of any insertion, ZD4[4]

[

0
0

]

= 1
4ZD4

4
. The twisted sectors can be obtained

as usual by modular transformations, leading to

ZD4[4]

[

h
4
g
4

]

=
e−2πig/3

16

(

Z3,3

[

00h
4

00 g
4

]

+ Z3,3

[

h
2
0h

4
g
2
0 g

4

]

+ Z3,3

[

0h
2

h
4

0 g
2

g
4

]

+ Z3,3

[

h
2

h
2

h
4

g
2

g
2

g
4

])

×

×
[

O8 + V8 + S8 + C8

η4

](

τ + g

4

)

(D.26)

for h = 1, 3, g = 0, 1, 2, 3,

ZD4[4]

[

1
2
g
4

]

=
e−2πig/3

8η8
(

τ+g/2
2

)

{

1

2

(

Z3,3

[

00 1
2

00 g
4

]

+ Z3,3

[

1
2
0 1

2
g
2
0 g

4

]

+ Z3,3

[

0 1
2

1
2

0 g
2

g
4

]

+ Z3,3

[

1
2

1
2

1
2

g
2

g
2

g
4

])

×

×
[

O2
8 + V 2

8 + S2
8 + C2

8

]

(

τ + g/2

2

)

+

+

(

3Z3,3

[

00 1
2

00 g
4

]

− Z3,3

[

1
2
0 1

2
g
2
0 g

4

]

− Z3,3

[

0 1
2

1
2

0 g
2

g
4

]

− Z3,3

[

1
2

1
2

1
2

g
2

g
2

g
4

])

×

× [O8V8 + S8C8]

(

τ + g/2

2

)

+

+

(

Z3,3

[

00 1
2

0 g+1
2

g
4

]

+ Z3,3

[

0 1
2

1
2

0 g+1
2

0

]

+ Z3,3

[

00 1
2

g+1
2

0 g
4

]

+

+ Z3,3

[

1
2
0 1

2
g+1
2

00

]

+ Z3,3

[

00 1
2

g+1
2

g+1
2

g
4

]

+ Z3,3

[

1
2

1
2

1
2

g+1
2

g+1
2

0

])

×

× [O8 + V8] [S8 + C8]

(

τ + g/2

2

)}

(D.27)

for g = 0, 2 and

ZD4[4]

[

1
2
g
4

]

=
e−2πig/3

8η4
(

τ+(g−1)/2
2

)

{

1

2

(

Z3,3

[

00 1
2

00 g
4

]

+ Z3,3

[

1
2
0 1

2
g
2
0 g

4

]

+ Z3,3

[

0 1
2

1
2

0 g
2

g
4

]

+ Z3,3

[

1
2

1
2

1
2

g
2

g
2

g
4

])

× [O8 + V8 + S8 + C8]

(

τ + (g − 1)/2

2

)}

(D.28)

for g = 1, 3.

In order to extract the degeneracies of states of given electric charge under the invariant

(level 4) SO(8), one may work in two steps. Let us first assume that the four charge vectors

P1, . . . P4 are in the root lattice of D4, as in the first term of (D.22). We decompose

P1 + P3 = 2Σ + P , P2 + P4 = 2Σ′ + P ′ (D.29)

P1 − P3 = 2∆ − P , P2 − P4 = 2∆′ − P ′ (D.30)

where P,P ′ take value in the finite group D4/2D4. Next we further decompose

Σ + Σ′ = 2Σ′′ + P ′′ (D.31)
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Σ − Σ′ = 2∆′′ − P ′′ (D.32)

where P ′′ ∈ D4/2E4. Since the physical charge is

Q = P1 + P2 + P3 + P4 = 4Σ′′ + 2P ′′ + P + P ′ , (D.33)

we obtain the degeneracies of DH states with a given charge Q by summing over ∆, ∆′,
∆′′, P, P ′, P ′′ at fixed values of Σ′′ and ¶0 = P ′′/2 + (P + P ′)/4 in the discrete group

D4/4D4. For the other terms in (D.22), the same decomposition holds, upon shifting P,

P ′, or P ′′ by 2λ where λ is in the weight lattice of D4. Decomposing the square of the

charge vector as

4
∑

i=1

P 2
i = 2

(

∆ − 1

2
P

)2

+ 2

(

∆′ − 1

2
P ′

)2

+ 4

(

∆′′ − P ′′

2
+

P − P ′

4

)2

+

+4

(

Σ′′ +
P ′′

2
+

P + P ′

4

)2

(D.34)

we see that the partition function of the Narain lattice Γ2,18 at the SO(8)4 point may be

written as a sum of products of two level 2 theta series

ΘD4[2],P(τ) :=
∑

∆∈D4(1)

= e2πiτ(∆− 1
2
P)2 (D.35)

times two level 4 theta series,

ΘD4[4],P(τ) :=
∑

∆∈D4(1)

= e4πiτ(∆− 1
4
P)2 (D.36)

corresponding to sums over the lattice vectors ∆,∆′,∆′′,Σ′′ respectively. Under this de-

composition, the last factor can be viewed as the partition function for the physical charges.

In order to compute the required theta series, note that D4/2D4 decomposes into

five orbits, of respective length 1,1,1,1,12: (i) the zero orbit (ii) the orbit of one half the

highest weights of the V, S,C irreps and (iii) the orbit of the highest weight of the adjoint

representation A. The corresponding level 2 theta series are given by

θD4[2];O(τ) = O8(2τ) , θD4[2];V (τ) = V8(2τ) , (D.37)

θD4[2];S(τ) = S8(2τ) , θD4[2];C(τ) = C8(2τ) , θD4[2];A(τ) =
1

2
θ2
2θ

2
3(2τ) . (D.38)

These can then be used to decompose the product of two identical level 1 theta series

according to

O2
8 = θ2

D4[2];O
+ θ2

D4[2];V
+ θ4

D8[2];S + θ4
D8[2];C

+ 12 θ2
D8[2];A (D.39)

V 2
8 = 2 θD4[2];OθD4[2];V + 2 θD4[2];SθD4[2];C − 12 θ2

D8[2];A (D.40)

as well as the relations which follow from (D.40) by triality.
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The level 4 theta series (D.36) can now be obtained by repeating this procedure twice.

They fall into 5×5 orbits of the Weyl group, corresponding to the two-stage decomposition

D4/4D4 = (D4/2D4) × 2D4/4D4. The theta series corresponding to P = 4λ where λ is

the highest weight of the O,S,C, V,A representations are simply obtained from (D.37) by

doubling the argument τ → 2τ .

Using the duplication identities in appendix B, one may rewrite the partition functions

of the oscillators in the untwisted sector as

1

η8(τ)η4(4τ)
=

24

(θ2
3 − θ2

4)θ2η9
,

1

η8(τ)η8(2τ)
=

24

θ4
2η

12
. (D.41)

We thus find that the degeneracies in the untwisted sector are enumerated by

1

16

∑

P,P ′,P ′′∈D4/2D4,λ
P+P ′+2P ′′+λ=P0

(

θD4[2],P+2λθD8[2],P ′+2λθD4[4],−P+P ′+2P ′′

η24
± (D.42)

± δ0,P δ0,P ′δ0,λ24 θD4[2],P ′′(2τ)

θ4
2η

12
± δ0,P δ0,P ′ δ0,P ′′δλ,0

24

θ2(θ2
3 − θ2

4)η
9

)

.

The three terms behaves as

Î7

(

4π

√

Q2

2

)

, Î7

(

4π

√

1

2
Q2/2

)

, Î7

(

4π

√

3

8
Q2/2

)

(D.43)

respectively, so that the degeneracies are dominated by the untwisted, unprojected contri-

bution.

In the sector twisted by the order 2 element e2, the momenta automatically have

∆ = P = 0 and ∆′ = P ′ = 0 but one still needs to sum over the unphysical charges ∆′′

using the level 2 identities (D.39) with τ → τ/2. Using the duplication identities

1

η8(τ)η4(τ/2)
=

22

θ2
4η

10
,

1

η8(τ)η8(τ/2)
=

24

θ4
4η

12
(D.44)

we find that the degeneracies are given by

1

2

(

1

η12ϑ4
4

± 1

η12ϑ4
3

)

θD8[2],P ′′(τ/2) + δ0,P ′′

(

1

η10ϑ2
4

± 1

η10ϑ2
3

)

. (D.45)

Finally, in the sectors twisted by the order 4 element e or e3, one may rewrite the

partition functions for the twisted oscillators as

1

η8(τ)η4(4τ)
=

24

(θ2
3 − θ2

4)θ2η9

1

η8(τ)η4
(

τ
4

) =
1

(θ2
3 − θ2

2)θ4η9
,

1

η8(τ)η4
(

τ+1
4

) =
eiπ/12

(θ2
4 − iθ2

2)θ3η9

1

η8(τ)η4
(

τ+2
4

) =
eiπ/6

(θ2
3 + θ2

2)θ4η9
,

1

η8(τ)η4
(

τ+3
4

) =
eiπ/4

(θ2
4 + iθ2

2)θ4η9
. (D.46)
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We thus find that the degeneracies are enumerated by

1

4

(

1

(θ2
3 − θ2

2)θ4η9
+ ε1

1

(θ2
4 − iθ2

2)θ3η9
+ ε2

1

(θ2
3 + θ2

2)θ4η9
+ ε3

1

(θ2
4 + iθ2

2)θ3η9

)

(D.47)

where, depending on the moding of the momenta along the three circles, (ε1, ε2, ε3) is

any vector in (1, 1, 1), (−i,−1, i), (−1, 1,−1), (i,−1,−i), (the corresponding ground state

dimensions are ∆ = 3/8, 1/8,−1/8,∆ = −3/8, respectively.)

In all sectors, applying the Rademacher formula we find that the degeneracies grow

uniformly as

Ωabs(Q) =
2

3
Ω4(Q) ∼ Î7

(

4π

√

Q2

2

)

+ · · · (D.48)

The exponentially suppressed corrections however depend sensitively on the details of the

charges.

D.3 A Het(2, 8) model

Let us now consider an N = 2 variant of the (4, 12) model. We start from the SO(32)

heterotic string on T 2 at the point of enhanced symmetry SO(8)4, further compactify on

a square T 4,

Γ6,22 = D4(−1) ⊕ D4(−1) ⊕ D4(−1) ⊕ D4(−1) ⊕ II2,2 ⊕ II4,4 (D.49)

and perform a Z
4 orbifold acting on the momenta as

g|P1, P2, P3, P4, P5, P6〉 = e2πiδ·P5 |P2, P3, P4, P1, P5, R(g)P6〉 (D.50)

where R(g) acts by a Z4 rotation in a two-plane inside T 4, breaking the supersymmetry to

N = 2. The degeneracies can be obtained easily from the (4, 12) model by dropping the

untwisted, unprojected sector and multiplying by η4 times the partition function of four

Z4-twisted left-moving bosons (the contribution of the right-moving bosons is absorbed

into the helicity supertrace). The orbifold blocks for four Z4-twisted chiral bosons can be

obtained by the following simple trick: Consider the orbifold of 4×4 = 16 chiral bosons by

cyclic permutations of the four blocks of four. The partition function with one insertion of

the Z4 generator is 1/η4(4τ). On the other hand, diagonalizing the oscillators, it should be

the product of four untwisted, four Z2-twisted boson and eight Z4-twisted chiral bosons:

1

η4(4τ)
=

1

η4(τ)
× 22η2(τ)

θ2
2(τ)

×
(

Z4

[

0
1
4

])2
(D.51)

hence

Z4

[

0
1
4

]

= Z4

[

0
3
4

]

=
η2(2τ)

η2(4τ)
= 4

√

ηθ2

θ2
3 − θ2

4

=
2η

θ

[

1
2
1
4

]

(0|τ)

. (D.52)

The other orbifold blocks can be obtained by modular transformations,

Z4

[

1
4
g
4

]

= Z4

[

3
4
g
4

]

= 2
η2((τ + g)/2)

η2((τ + g)/4)
, (D.53)
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Z4

[

0
0

]

=
Z4,4

η4
, Z4

[

0
1
2

]

=
η4(τ)

η4(2τ)
, Z4

[

1
2
0

]

= 4
η4(τ)

η4(τ/2)
, (D.54)

Z4

[

1
2
1
4

]

= 2
η2(τ)

η2(τ/2)
, Z4

[

1
2
1
2

]

= 4
η4(τ + 1)

η4((τ + 1)/2)
, Z4

[

1
2
3
4

]

= 2
η2(τ + 1)

η2((τ + 1)/2)
. (D.55)

Using the same notation as in the (4,12) model, we thus find that the second helicity

supertraces Ω2 in the untwisted sector are generated by

1

16
δ0,P δ0,P ′ 26 θD4[2],P ′′(2τ)

θ6
2η

6
± δ0,P δ0,P ′ δP ′′,0

26

√

θ2(θ2
3 − θ2

4)
3η9

. (D.56)

Importantly, the untwisted unprojected term does not contribute, due to its extended

N = 4 supersymmetry. The second term grows as

Î5

(

4π

√

3

16
Q2/2

)

(D.57)

and is suppressed with respect to the first.

Finally, in the sector twisted by the order 2 element, we find that the second helicity

supertraces are generated by

1

2

(

1

η6ϑ6
4

± 1

η6ϑ6
3

)

θD8[2],P ′′(τ/2) + δ0,P ′′

(

1

η4ϑ4
4

± 1

η4ϑ4
3

)

. (D.58)

The degeneracies from the second term grow as

Î5

(

4π

√

2

3
Q2/2

)

. (D.59)

Finally, in the sectors twisted by the order 4 element e or e3, we find that the second

helicity supertraces are enumerated by

1
√

(θ2
3 − θ2

2)
3θ4η9

+ε1
1

√

(θ2
4 − iθ2

2)
3θ3η9

+ε2
1

√

(θ2
3 + θ2

2)
3θ4η9

+ε3
1

√

(θ2
4 + iθ2

2)
3θ3η9

(D.60)

where (ε1, ε2, ε3) is any vector in (1, 1, 1), (−i,−1, i), (−1, 1,−1), (i,−1,−i),. The corre-

sponding ground state energies are ∆ = 3/8, 1/8,−1/8,∆ = −3/8 respectively. In these

four cases, the second helicity supertraces grow as

Î5

(

4π
√

Q2/2
)

. (D.61)

E. Some properties of the Mac-Mahon function

In this section, we derive some properties of the Mac-Mahon function

f(λ) :=

∞
∑

n=1

n log(1 − qn) (E.1)
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with q = einλ. This is an entire function of λ in the upper half plane. Taylor-expanding

the logarithm and carrying out the sum over n, it may be rewritten as

f(λ) =
∞

∑

d=1

1

d

1

(2 sin dλ
2 )2

. (E.2)

We would like to derive the asymptotic expansion for λ → 0.

Let us recall the standard argument. From the standard expansion

x

ex − 1
= 1 − x

2
+

∑

n≥1

B2n

(2n)!
x2n (E.3)

in terms of the Bernoulli numbers Bn, we get

1

(2 sin(x/2))2
=

1

x2
+

∑

n≥1

2n − 1

(2n)!
B2n(−1)n−1x2n−2 . (E.4)

Note that B2n = (−1)n−1|B2n|.
If we substitute (E.4) into (E.2) and exchange the sum on n and d we find the series

λ−2ζ(3) +

∞
∑

n=1

(2n − 1)|B2n|
(2n)!

λ2n−2

(

∑

d≥1

d2n−3

)

. (E.5)

Note that the sums on d are infinite. While one may try and define them for n 6= 1 by

zeta function regularization, the n = 1 term is still infinite. If we simply discard the n = 1

term and use this regularization we get

λ−2ζ(3) −
∞

∑

n=0

λ2n+2 |B2n+4|
(2n + 4)!

(2n + 3)

(2n + 2)
B2n+2 . (E.6)

Using the relations between Bernoulli numbers and Rieman zeta functions,

ζ(3 − 2g) = −B2g−2

2g − 2
, ζ(2g) = (−1)g+1 B2g2

2g−1π2g

(2g)!
(E.7)

valid for g ≥ 2, g ≥ 1, respectively, one recovers the standard result in the topological

string literature.

However the manipulation used above is not valid. One way to see it is that an entire

function such as f(λ) cannot possibly have an infinite term λ0ζ(1) in its asymptotics.

Nevertheless, the amazing agreement between the coefficients of the terms λ≥2 with the

integrals on moduli space [71] and with the predictions of heterotic/type-II duality [73]

suggest the higher terms are indeed correct. This will prove to be the case.

One valid way to derive the asymptotics is to proceed as follows. We use the series

1

sin2(πx)
=

1

π2

∑

n∈Z

1

(x + n)2
. (E.8)
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Substituting into (E.2), the double sum on n, d is absolutely convergent. We can therefore

exchange the sum on n, d. Defining z := λ/(2π) we have

f(λ) =
ζ(3)

λ2
+

1

4π2

∑

n 6=0

∞
∑

d=1

1

d(dz + n)2
. (E.9)

Define

g(z) =
1

4π2

∑

n 6=0

∞
∑

d=1

1

d(dz + n)2
. (E.10)

In order to study the z → 0 asymptotics, we should apply the Poisson summation formula

to the sum on d.

Care is however needed due to the incomplete summation on d. While the Poisson

summation formula as usually stated applies to continuous functions, we wish to apply it

to the function

f(x) :=







1

x(xz + n)2
x ≥ 1

0 x < 1 .
(E.11)

This falls off nicely at infinity, but has a discontinuity at x = 1.

Suppose, generally, that f(x) has a discontinuity at x = 1. The standard procedure

to prove the Poisson formula is to construct the periodic function F (x) =
∑

n∈Z
f(x + n),

expand it in Fourier series, F (x) =
∑

m∈Z
F̂me2πimx, and evaluate at x = 0. For piecewise

continuous functions, the Fourier series only converges to the average 1
2(F (0+) + F (0−))

at points of discontinuity. If f(x) = 0 for x < 1 then we get

1

2
f(1) +

∞
∑

d=2

f(d) =
∑

`∈Z

∫ ∞

1
e2πi`xf(x)dx . (E.12)

Taking this into account we have the Poisson summation formula

∞
∑

d=1

1

d(dz + n)2
=

1

2(z + n)2
+

∑

`∈Z

∫ ∞

1
e2πi`x 1

x(xz + n)2
dx . (E.13)

Now we write g(z) = g0(z) + g1(z) where

g0(z) :=
1

4π2

∑

n 6=0

(

1

2(z + n)2
+

∫ ∞

1

1

x(xz + n)2
dx

)

(E.14)

g1(z) :=
1

4π2

∑

n 6=0

∑

` 6=0

∫ ∞

1
e2πi`x 1

x(xz + n)2
dx . (E.15)

To compute the integrals we write

1

x(xz + n)2
= − z

n(xz + n)2
+

1

xn2
− z

(xz + n)n2
=

d

dx

[

1

n2
log

x

xz + n
+

1

n(xz + n)

]

.

(E.16)

– 81 –



J
H
E
P
1
0
(
2
0
0
5
)
0
9
6

Let us analyze first g0(z). The integral on x is elementary and we get:

g0(z) =
1

4π2

∑

n 6=0

(

1

2(z + n)2
+

1

n2

[

log(1/z) − log(
1

z + n
)
]

− 1

n(z + n)

)

. (E.17)

Expanding the various terms and recalling that z = λ/(2π) we find

g0(z) =
1

12
log

2π

λ
+

iπ

24
+

1

4π2

∑

n≥1

log n2

n2
+

∞
∑

n=0

λ2n+2 |B2n+4|
(2n + 4)!

(

n +
1

2
− 1

2n + 2

)

(E.18)

or, equivalently,

g0(z) =
1

12
log

2πi

λ
− 1

2π2
ζ ′(2) +

∞
∑

n=0

λ2n+2 |B2n+4|
(2n + 4)!

(

n +
1

2
− 1

2n + 2

)

. (E.19)

Now we turn to (E.16). We can write g1 as a sum of three terms:

g1(z) = h1 + h2 + h3 (E.20)

h1(z) :=
1

4π2

∑

n 6=0

∑

` 6=0

1

n2

∫ ∞

1
e2πi`x 1

x
dx (E.21)

h2(z) := − 1

4π2

∑

n 6=0

∑

` 6=0

z

n2

∫ ∞

1
e2πi`x 1

xz + n
dx (E.22)

h3(z) := − 1

4π2

∑

n 6=0

∑

` 6=0

z

n

∫ ∞

1
e2πi`x 1

(xz + n)2
dx . (E.23)

The first term, h1 is just a constant in z, but is only convergent when we group together the

` and −` terms in the sum. The integral can be computed in terms of the cosine integral

function Ci(x) defined in [102] 5.2.27:

h1 =
1

4π2

π2

3

∞
∑

`=1

∫ ∞

1
2 cos(2π`x)

dx

x
= −1

6

∞
∑

`=1

Ci(2π`) . (E.24)

Since Ci(2πx) ∼ 1/(2πx)2 for large integer x, the sum over ` converges. Indeed, h1 = 1
12γE

where γE is the Euler-Mascharoni constant.

For the second term we use the identity 5.1.28 in [102]:

∫ ∞

1
e2πi`x 1

xz + n
dx =

1

z
e−2πi`(n/z)E1

(

− 2πi`

(

1 +
n

z

))

. (E.25)

Note that z has a nonzero imaginary part so the argument of the exponential integral, and

the denominator in the integral is never zero even if n is negative (E1 is a variant of the

exponential integral). Then we use the asymptotic expansion AS 5.1.51 to get

∫ ∞

1
e2πi`x 1

xz + n
dx ∼ 1

z

∞
∑

s=0

(−1)ss!

(−2πi`(1 + n/z))s+1
. (E.26)
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For z pure imaginary, z → 0, say, this is in the valid range for the expansion. Now we sum

over ` and get:

∑

` 6=0

∫ ∞

1
e2πi`x 1

xz + n
dx ∼

∞
∑

k=0

(−1)k|B2k+2|
2k + 2

z2k+1

(z + n)2k+2
. (E.27)

Taking a derivative with respect to n gives

∑

` 6=0

∫ ∞

1
e2πi`x 1

(xz + n)2
dx ∼

∞
∑

k=0

(−1)k|B2k+2|
z2k+1

(z + n)2k+3
. (E.28)

Next we expand the denominators in a power series in z/n and include the sum over n. In

this way we get:

h2 ∼ −
∞
∑

n=0

λ2n+2 |B2n+4|
(2n + 4)!

1

2n + 2

n
∑

k=0

(

2n + 2

2k + 2

)

B2k+2 (E.29)

h3 ∼ −
∞
∑

n=0

λ2n+2 |B2n+4|
(2n + 4)!

n
∑

k=0

(

2n + 2

2k + 2

)

B2k+2 . (E.30)

Now, the Bernoulli polynomial Bn(x) =
∑n

k=0

(n
k

)

Bkx
n−kat x = 1 is Bn(1) = (−1)nBn so

we may simplify

h2 + h3 ∼ −
∞
∑

n=0

λ2n+2 |B2n+4|
(2n + 4)!

(

2n + 3

2n + 2
B2n+2 +

2n + 3

2n + 2
n

)

. (E.31)

Putting it all together, the asymptotics for f(λ) for λ → 0 in the upper half-plane are

f(λ) ∼ λ−2ζ(3) −
∞

∑

n=0

λ2n+2 |B2n+4|
(2n + 4)!

(2n + 3)

(2n + 2)
B2n+2 +

1

12
log

2πi

λ
− 1

2π2
ζ ′(2) +

1

12
γE .

(E.32)

This differs from the standard expression by the last three terms. While the constant is

not so important, the logarithmic term is indeed important.

We close this section by an observation which hints at possibly interesting modular

properties of the Mac-Mahon function. By analogy with the Dedekind η function, let us

compute

E3(τ) := −q
d

dq
f(λ) =

∞
∑

n=1

n2qn

1 − qn
(E.33)

where q = e2πiτ = einλ (the reason for this notation will become clear shortly). Expanding

the denominators, we obtain

E3(τ) =

∞
∑

N=1





∑

n|N
n2



 qN =

∞
∑

n=1

∞
∑

m=1

n2qmn =

∞
∑

m=1

qm(1 + qm)

(1 − qm)3
. (E.34)

Now we use the identity
∑

n∈Z

1

(n + z)3
= 4iπ3 p(1 + p)

(1 − p)3
(E.35)
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where p = e2πiz . This allows to rewrite

E3(τ) =
1

4iπ3

∞
∑

m=1

∞
∑

n=−∞

1

(n + mτ)3
. (E.36)

While this expression is similar to the usual modular invariant Eisenstein series E2n, it is

important to note that, due to the restriction m > 0, E3 is not modular invariant. Instead,

its orbit under Sl(2, Z) is an infinite family of functions

E
(p,q)
3 (τ) =

1

4iπ3

∑

(m,n)∈Z,pm+nq>0

1

(n + mτ)3
. (E.37)

In particular, E3(τ) = E(τ) = E
(1,0)
3 (τ) is mapped under τ → −1/τ to E

(0,1)
3 (τ) which

does not admit a q-expansion. Indeed, f(λ) at λ → 0 is not exponentially suppressed but

rather consists of an infinite power series, as discussed above.
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