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ABSTRACT: We investigate compactifications with duality twists and their relation to orb-
ifolds and compactifications with fluxes. Inequivalent compactifications are classified by
conjugacy classes of the U-duality group and result in gauged supergravities in lower dimen-
sions with nontrivial Scherk-Schwarz potentials on the moduli space. For certain twists,
this mechanism is equivalent to introducing internal fluxes but is more general and can be
used to stabilize some of the moduli. We show that the potential has stable minima with
zero energy precisely at the fixed points of the twist group. In string theory, when the
twist belongs to the T-duality group, the theory at the minimum has an exact CFT de-
scription as an orbifold. We also discuss more general twists by nonperturbative U-duality

transformations.
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1. Introduction

In this paper we investigate compactifications that include duality twists and internal fluxes
and their relation to orbifolds.

Compactification with duality twisting is a generalization of the Scherk-Schwarz mech-
anism in classical supergravity [I-[[[3]. In a typical supergravity theory, there is a non-
compact global symmetry G. In a twisted compactification, one introduces a twist in the
toroidal directions by the global symmetry G. The twisting generates a nontrivial Scherk-
Schwarz potential on the moduli space and for certain twists is equivalent to introducing
internal fluxes of various gauge fields on the torus.

We consider the extension of duality twisting to the full quantum string theory and
discuss the general properties of the resulting Scherk-Schwarz potential. The global sym-
metry G of the low energy effective action is not a symmetry of the quantum theory but is
broken to a discrete U-duality group G(Z) [[4] that acts on the integral lattice of p-brane
charges. Therefore, the twists that can be lifted to string theory must belong to the duality
group G(Z) [§]. This restriction leads to a quantization condition on the mass parameters
appearing in the Scherk-Schwarz potential [f].



As we review in section P.1], the physically inequivalent twists are classified by conju-
gacy classes of G(Z). We analyze the Scherk-Schwarz potential and show that the effective
low energy physics of the compactified theory is completely determined by the conjugacy
class, resolving an apparent paradox. Given a potential on the moduli space, the next
question is whether the potential has any minima and what the structure of the theory is
at these minima.

We will see that the task of finding the minima is simplified considerably by some
elegant group theoretic considerations. We illustrate this point in section P by means
of an explicit example in which the duality twists belong to SL(2,Z) and outline the
generalization to other groups in section [.4. We show that the minima of the Scherk-
Schwarz potential are in one-to-one correspondence with the fixed points in the moduli
space under the action of the twist group. One implication of this result is that for a
compactification twisted by an element of the T-duality group, the theory at a minimum
of the potential has an exact conformal field theory description as an orbifold of a toroidal
compactification. The orbifold theory as usual contains additional twisted sector states
that are not visible in the supergravity analysis. When the twist is not a perturbative
symmetry, there is no CFT construction for such theories, but the supergravity analysis
and the group theoretic considerations concerning the minima of the potential can still be
applicable.

One motivation for this work is its bearing on the stabilization of moduli in string the-
ory. The vacuum manifold of string compactifications is characterized by several moduli
that govern the shape and size of the compactification space as well as the value of the
coupling constant in string theory and correspond to unwanted massless fields in space-
time. There are stringent observational constraints on the presence of such massless scalars
and even in a cosmological context the presence of moduli is problematic [[§]. It is thus
interesting to seek string compactifications with few or no moduli already at the tree level.

A number of apparently unrelated methods have been utilized in the literature for
constructing models with a small number of moduli. Compactifying with duality twists or
internal fluxes is one way to stabilize the moduli. In this framework, the twists or the fluxes
generate a nontrivial potential on the moduli space. As a result, the expectation values
of the moduli fields are fixed at the minima of the potential and many moduli acquire
mass [l-[29]. This mechanism has been used, for example, to construct models where all
complex structure moduli of Calabi-Yau and torus compactifications of type-1I and type-I
compactifications are stabilized [23, Pf]. Another way to stabilize the moduli is to orbifold
the theory by a symmetry that exists only for special values of the moduli [B(]. The moduli
are then fixed to take these special values. In this case, typically there are many additional
massless scalar fields in the twisted sectors. These twisted moduli can in turn be made
massive by including a shift in the orbifolding action. Using this mechanism for certain
special asymmetric orbifolds, it is possible to construct models where all moduli except the
dilaton are stabilized [BI]-[B4].

In this paper we investigate the relation between these various approaches. As we will
see, in many respects compactifications with duality twists and internal fluxes are closely
related to certain orbifolds with shifts.



We review and develop the relevant aspects of compactification with duality twists in
section [] and illustrate the main points in section Bl with an example with SL(2) twists.
We discuss the relation between duality twisting, fluxes, and orbifolds in section #ll and
conclude in section ] with some comments.

2. Compactification with duality twists

2.1 General Formalism

For simplicity, we consider twisted reduction on a circle but these results can be readily
extended to more general toroidal compactifications.

Consider a D + 1 dimensional supergravity (or theory of matter coupled to gravity)
with a global symmetry G. An element g of the symmetry group acts on a generic field
¥ as 1p — g[¢y]. Consider now a dimensional reduction of the theory to D dimensions on
a circle of radius R with a periodic coordinate y ~ y + 2nR. In the twisted reduction,
the fields are not independent of the internal coordinate but are chosen to have a specific

dependence on the circle coordinate y through the ansatz

(', y) = g(y) [(z")] (2.1)

for some y-dependent group element g(y). An important restriction on g(y) is that the
reduced theory in D dimensions should be independent of y. This is achieved by choosing

9(y) = exp (%) (2.2)

for some Lie-algebra element M. The map ¢(y) is not periodic around the circle, but has
a monodromy
M(g) =exp M . (2.3)

The Lie algebra element M generates a one-dimensional subgroup L of G.

It has been seen in explicit examples that Scherk-Schwarz reduction of a supergravity
gives rise to a gauged supergravity; see e.g. [B, [l, [0, [L], [3]. Tt is easy to see that this must
always be the case. Consider a field ¥ in the D + 1 dimensional theory that transforms
in some representation of G as 6y = eM1) where € is an infinitesimal parameter and M
is the matrix representation of the element M. It is straightforward to show that on
twisted dimensional reduction to D dimensions, the derivative of v is replaced by the
gauge covariant derivative Vi = dip + AM1p, where A is the 1-form gauge potential arising
from the Kaluza-Klein reduction of the metric on the circle. This follows from demanding
general coordinate invariance under transformations of the form y — y + dy(z) where z
are the coordinates of the noncompact D-dimensional spacetime. We thus obtain a gauged
supergravity where L has become a local symmetry whose gauge field is the Kaluza-Klein
vector potential. The gauged supergravity has fermion mass terms and modifications of
the fermion supersymmetry transformations which are linear in the mass matrix M, and
a scalar potential (discussed below) which is quadratic in M. If any other vector fields in
the theory are singlets under G, then the gauge group is the one-dimensional group L (or



strictly speaking the product of L with the gauge group for the other vector fields, which
is abelian in most of the examples of interest here). However, if there are n other abelian
gauge fields A° (a,b =1,...,n) transforming in some representation of G, §A® = M A,
then the gauge group is the semi-direct product of L with U(1)" with generators t,,t, and
structure constants fyab = — fayb = Mba, where t, is the generator corresponding to the
Kaluza-Klein vector field and all other structure constants vanish.

The Scherk-Schwarz ansatz (R.1) breaks the global symmetry G' down to the subgroup
that commutes with g(y). Acting with a general constant element h in G will change the
twist to hg(y)h~! and would seem to give a new theory. However, this theory is related to
the original one via the field redefinition ¢ — h[¢] for all fields v, so that the two choices of

g(y) in the same conjugacy class give equivalent reductions related by field-redefinitions [f].

The map ¢(y) is a local section of a principal fiber bundle over the circle with fiber
G and monodromy M(g) in G. Such a bundle is constructed from I x G, where I is the
interval [0,27R], by gluing the ends of the interval together with a twist of the fibers by
the monodromy M. Two such bundles with monodromy in the same G-conjugacy class

are equivalent.

In classical supergravity, any twist in G is allowed, but in M-theory, the twists must
belong to the duality group G(Z) and thus the inequivalent twisted reductions will be
classified by the conjugacy classes of the discrete group G(Z) [f]. Monodromies in G(Z)
related by G conjugation define theories with equivalent actions, but in general the action
of G changes the charge lattice. For a fixed charge lattice, the equivalent classes of theories
are defined by the classes of G(Z) monodromy related by G(Z) conjugation [B].

Note that in performing twisted reductions, it is not necessary that the potential have
any critical points, or that the theory have a solution which is flat space or (anti-) de Sitter
space in D dimensions. For example, in the twisted reduction of IIB supergravity in [Eﬂ
the resulting D = 9 theory has a potential without critical points and so has no Minkowski
or maximally symmetric vacua. However, it does have half-supersymmetric domain wall
solutions, which can be lifted to solutions of the 10-dimensional IIB theory, as can any
other solution of the D = 9 theory. This is a typical situation, and it is useful to discuss
reduction in generality without specifying a D-dimensional solution.

Going around the circle many times generates twists that are powers of the monodromy
M. We will refer to the discrete abelian subgroup of G(Z) generated by the monodromy
M as the twist group of the bundle. If the order of the twist group is a finite integer n, then
the n-fold cover of this fiber bundle is trivial because all twists can be completely undone
around a larger circle. That is, with the ansatz (P.1]) and (R.2) and twist group Z,, if the
range of y is extended to run from 0 to 27nR, then the n-fold cover of the original circle is
the circle with the identification y ~ y + 27nR and the monodromy for this covering circle
is the identity, as M™ = 1.

As we explain in section P.3, the low energy effective action of the gauged supergravity
in D dimensions is completely determined by the mass matrix M for a given monodromy
M. This leads to an apparent paradox. It is clear from eq. (R.3) that a given monodromy
matrix can arise in general from infinitely many different mass matrices M [B]. As the



bundle space is determined completely by the monodromy, different choices of M with the
same M should give equivalent theories. On the other hand, as the mass matrix M appears
explicitly in the gauged supergravity action, different choices of M would appear to give
different theories. For example, in the case of trivial reduction with M = 1, there are
infinitely many mass matrices M satisfying e™ = 1, each of which would give a different
supergravity action. We describe in the next subsection how this ambiguity is resolved.

2.2 An ambiguity

Consider the example of a complex scalar field ¢ reduced on a circle with coordinate y with
the identification y ~ y 4+ 27 R. For a trivial reduction, one has the mode expansion

o(x,y) =Y ™ (x), (2.4)

n

giving an infinite set of fields ¢, (x) in the reduced theory with mass m, x n/R, so that
¢o is a massless field and the other modes are massive Kaluza-Klein modes. If the original
theory is invariant under U(1) phase rotations ¢ — €’®¢, one can include a U(1) twist in
the reduction, so that the 1 x 1 mass matrix is M = im/R for some real number m, with
monodromy M = 2™ Then the twisted mode sum becomes

$a,y) =Y TIRG, () (2.5)

so that the new modes ¢, (z) have mass 77, o« (n+m)/R. Clearly, if m is an integer, then
the two mode sums are equivalent, with ¢, = Ontm, and the full Kaluza-Klein spectra are
the same, as one would expect from the fact that both reductions have monodromy matrix
M = 1. However, in the twisted case the mass matrix is non-trivial. This means that if
one reduces and then truncates to the n = 0 sector, one is left with a single scalar field
$o(x) with mass m/R, with different masses for different choices of integer m. In this way,
one could truncate the Kaluza-Klein spectrum to any one of the massive modes ¢,, = b0
instead of the usual choice ¢g. Similarly, two non-integral choices of mass m = m1,m = mo
which differ by an integer would give equivalent Kaluza-Klein spectra, but if one truncated
to the n = 0 sector, one would obtain distinct truncations.

This applies more generally. The twisted compactifications are classified by the mon-
odromy matrices, up to conjugation. Different choices of mass matrix which give equivalent
monodromies will give equivalent Kaluza-Klein spectra, but can give distinct truncations
to the ‘zero-mode’ sector (the analogue of the n = 0 sector in the example above whose
only dependence on the extra coordinates comes from the twist). These different trunca-
tions will give different potentials as they depend on the mass matrix explicitly. However,
in deriving low-energy effective physics, it is important to choose the truncation to the
lightest fields. In the example above, the tower of Kaluza-Klein fields gz;n(x) have mass
My, < (n +m)/R and one could truncate to a single scalar for any given value of n. How-
ever, the lightest scalar is for that value of n which minimizes |m + n| and in deriving the
effective low-energy physics, it is important to choose that value of n if one truncates, so
that the effective theory describes the lightest states.



2.3 The Scalar Potential

The moduli fields, which we generically denote by ®, are not massless in the reduced theory
in general and there is a nontrivial Scherk-Schwarz potential V' (®) on the moduli space. It
is straightforward to extend the analysis of Scherk and Schwarz [[I] and later generalizations
to obtain an explicit formula for this scalar potential in terms of the mass matrix M. For
the case in which the scalars in D + 1 dimensions take values in a coset G/K (typically G
is a non-compact group with a maximal compact group K) they can be represented by a
vielbein V(z) € G transforming under rigid G transformations and local K transformations
as V — k(x)Vg. Here we will restrict ourselves to the case in which V is a real matrix in a
real representation of G; the generalization to complex representations is straightforward.
The kinetic term is

1
L= —§Tr[V_1DmVV_1DmV] (2.6)

where D,, is a K-covariant derivative with K-connection given in terms of V and its
derivative. In this formulation, the theory has a rigid G symmetry and a local K symmetry.
The local K symmetry can be fixed to remove the unphysical degrees of freedom in V. Let
7 be a constant K-invariant metric (for semi-simple K, it can be taken to be the Cartan-
Killing metric, and for the standard case in which K is compact, a Lie algebra basis can be
chosen so that 7 = 1). Then one can define the K-invariant field H = V!nV transforming
under G as ‘H — ¢g'Hg, so that the kinetic term becomes

L= +%Tr[8mH’16mH] . (2.7)

It is straightforward to show that dimensional reduction on a circle with a twist determined
by the mass matrix M yields a potential in D dimensions given by

V(®) = e Tr[M? + M"H(®)MH ()], (2.8)

where e? is the modulus corresponding to the radius of the circle and a = 6/(D —1)(D —2).
The potential arises from the y-derivatives in eq. (R-7) with the Scherk-Schwarz ansatz
H(®(z),y) = M (y)H(P(z))M(y) with M(y) = exp 2]‘7/{—]%. The matrix M has dimensions
of mass and introduces mass parameters into the theory. This generalizes the results
of (I, §, 0.

One immediate question is whether this potential has any stable minima and which

moduli acquire mass at these minima. In terms of M = VMV~!, the potential becomes
V(®) = e Tr[M? + M'nMn~1]. (2.9)

For a given mass matrix M, the potential depends on the moduli ® that parametrize the
coset through the matrix M (®). The dependence on ¢ is only through the exponential
factor, so the potential will be stationary with respect to variations of ¢ only if V(®) =0,
which requires either a¢ = —oo, or M = M, with

Te[Mo (Mo 4+ n~tMin)) = 0. (2.10)



Let us now restrict to the case in which K is compact and 7 is the identity matrix (e.g.
G =SL(N) and K = SO(N)). Then the potential can be rewritten as

V(®) = %e‘wTr(YQ) (2.11)

where Y is the real symmetric matrix, Y = [M + M?!]. The potential is then manifestly
positive, V(®) > 0 because Y is diagonalizable with real eigenvalues, so that Tr(Y2) is
the sum of the squares of the eigenvalues. It is clear that the potential will vanish at a
point ® = ® in the moduli space if and only if Y vanishes at that point. At such a point
®y at which Y = 0, M(@o) equals a rotation generator M, with M, = —Mé. Moreover,
from the positivity of the potential, the point @ is a global minimum that is stable or
at least marginally stable. Given such an antisymmetric My, the relation My = VoM Vo !
determines the corresponding value V) of the vielbein V at the point & = ®(. To summarize,
the only critical points of the potential for finite ¢ are the stable minima where the potential
vanishes and where M (®) is a rotation generator.

We now derive some general properties of the critical points of this potential which will
play a vital role in understanding the relation between twisted reductions and orbifolds.
We will show that the critical points (or submanifolds) are fixed under the action of the
twist group. The relevant mathematics will be discussed further in section .4 Consider
then the case in which the mass matrix is G-conjugate to a rotation generator r, r = —r?,
so that

M =SS (2.12)

M

for some constant S € G. Then the monodromy M = e is conjugate to a rotation matrix

R = ¢ satisfying R'R = 1,
M=S"'RS. (2.13)

The potential now will have a global minimum at the point ®y in moduli space such that
V(®g) = S because at that point My = 7 and so Y (®g) = 0. At this point, the coset
metric takes the value Hy = S*S. This is invariant under the action of the twist group,
Ho — Hy = MHoM = Hy, as is easily seen using (B13) and R*R = 1. Thus, such a
critical point is a fixed point under the action of the twist group generated by M.

There is a natural action of G on the theory, inherited from the structure of the
D + 1 dimensional theory, but it is not a symmetry in D dimensions, as the mass terms
and potential are not invariant under G (although they are preserved by a subgroup).
Acting with G is a field redefinition, and there are two situations to consider. First, if
the D + 1 dimensional theory is a field theory with a global G symmetry (e.g. a classical
supergravity), then the field redefinition from acting with G takes the D-dimensional theory
to an equivalent theory, written in terms of different variables. The second case is that in
which the D + 1 dimensional theory has only a G(Z) symmetry (as in string theory or M-
theory compactifications, or in a classical Kaluza-Klein reduction on T" where the massive
Kaluza-Klein modes break the low-energy SL(n,R) to SL(n,Z)). If there is a charge lattice
acted on by G and preserved by the subgroup G(Z), then for a fixed charge lattice, only
field redefinitions from the action of G(Z) will lead to equivalent theories.



Since G acts transitively on the coset, any point on the coset ®; can be moved to any
other point ®{ by right multiplication of the vielbein by some element U € G, V(®() —
V(®)) = V(®o)U. Under this action, the twist M will go to M’ = U~'MU, changing
the potential to a new one. If ®; was a critical point of the original potential, then @y is
a critical point of the new one. In the first situation in which G is a symmetry in D + 1
dimensions, this action of G is a field redefinition and leads to an equivalent theory and
by acting with G, any given critical point ®y can be moved to any desired point in moduli
space ®(. In the second situation in which the original theory only has a G(Z) symmetry,
acting with G in general takes the theory to an inequivalent one, but acting with G(Z)
leads to an equivalent theory. Thus acting with G can move a critical point to any desired
point in moduli space, but in general changes the theory. Acting with G(Z) will take the
theory to a physically equivalent one, and change the monodromy to another representative
of the same G(Z) conjugacy class. The G(Z) action can be used to move any critical point
to one in a fundamental domain G(Z)\G/K of the moduli space. However, then acting
with G to move it to another point in the same fundamental domain would lead to an
inequivalent theory.

The distinction between these two situations will be important later when we discuss
orbifolds in section f]. Different points in the moduli space where different orbifold theories
are possible can be moved to each other by G transformations and would appear to be
equivalent in the naive low-energy analysis unless we correctly incorporate the integrality
of charges as above by allowing only G(Z) transformations.

3. Examples with SL(2) Twists

We now illustrate the main ingredients of this construction by means of an example of a
standard reduction on T? followed by a twisted reduction on S'. Reducing first on the T2
gives a theory whose symmetries include the mapping class group SL(2,Z) of the torus.
One can then reduce further on the circle with a twist that belongs to this SL(2,Z). This
example will also prepare the background for establishing the connection with orbifolds,

and is closely related to the IIB compactifications considered in [, B, [0} B, [T} [3].

3.1 Pure Gravity

Consider first a theory of pure gravity with Einstein-Hilbert action in D 4 3 dimensions.
Dimensionally reducing on T? gives a theory in D+ 1 dimensions whose massless spectrum
contains the graviton, two Kaluza-Klein gauge bosons and three scalar fields coming from
the moduli of the torus. The area of the torus e¥ parametrizes Rt and the complex
structure 7 of the torus parametrizes SL(2,7Z)\ SL(2,R)/SO(2). The SL(2,Z) is the group
of large diffeomorphisms of the torus and is a discrete gauge symmetry.

The truncated massless theory in D + 1 dimensions now has SL(2, R) global symmetry
and we can consider the reduction on a further circle to D dimensions with an SL(2,R)
twist. There are three distinct twisted reductions corresponding to the three distinct
SL(2,R) conjugacy classes [§]. These are the hyperbolic, elliptic and parabolic SL(2,R)



conjugacy classes, represented by the monodromy matrices

e 0 cosm sinm 1 m
g e = 3 = .1
M < 0 em>’ M <—sinm cosm) My (O 1) (3:1)

respectively, generated by the matrices

we( 0) (5 0) we() e

and each class is specified by a single coupling constant or mass parameter m.

For each of these theories the Scherk-Schwarz potential (P.§) takes a simple form.
The scalars ¥, 7 = 7 + im2 take values in GL(2,R)/SO(2) and can be represented by
the GL(2,R) matrix V with a local SO(2) invariance removing one of the four degrees of
freedom of V. Then H = V'V can be given in terms of ¢, 7 as H = eV H(7) where

1 1 T1
ao=— (1 ) 33

and the potential is given by
V(r) = e Te[M? + M'H(r)MH (1)]. (3.4)

Note that the potential is independent of 1. For the elliptic twisting with monodromy M.,
the potential has a minimum at 7 = ¢ giving a Minkowski vacuum. For the parabolic case,
the potential is proportional to m?e®*?® where 79 = ¢~ ® and and b is a constant, and so
the only critical points are when a¢ + b® = —oo. For finite ¢, this corresponds to 7 = oo,
representing a degenerate torus. The hyperbolic case has no critical points on the upper
half plane.

The SL(2,R) global symmetry of the massless reduction is broken down to an SL(2,7Z)
subgroup if the massive Kaluza-Klein states are kept. For the reduction of the full Kaluza-
Klein theory including the massive states, therefore, the monodromy must belong to
SL(2,Z). The SL(2,Z) conjugacy classes have been analyzed in [B6, B7. For any con-
jugacy class M, —M and £M~! also represent conjugacy classes, so for each M in the
following list, there are also conjugacy classes —M and =M L.

Apart from the trivial class M = 1, there are four conjugacy classes that generate
twist groups of finite order

-1 0 0 1 0 1 1 1
o= (g h) e (5 4) =G g)e e ()
(3.5)
The matrices Mgy, M3, My, Mg respectively generate Zo, Zs, Z4, Z¢ subgroups of SL(2,7Z)
and the subscript gives the order of the subgroup. The monodromies Mg, My, Mg are all
in the elliptic conjugacy class of SL(2,R) with |Tr(M)| < 2.
The monodromies in the parabolic and hyperbolic conjugacy classes all generate twist
groups of infinite order. There are an infinite number of parabolic SL(2,7Z) conjugacy
classes with Tr(M) = 2, represented by T™:

Mn:<é?> (3.6)

with a distinct conjugacy class for each integer n.



There are an infinite number of hyperbolic SL(2,Z) conjugacy classes with |Tr(M)| >

My, = (_”1 é) (3.7)

for integers n with |n| > 3, together with sporadic monodromies M(t) of trace ¢

(1) saw-(L D). -t 2)

M(13):<i 131>, M(14):Gj 123>,... (3.9)

and this gives the complete list of sporadic classes for 3 <t < 15.

2, represented by

The mass matrices corresponding to the monodromies (B.5) and (B.€) are given by

1 1 2 1
M2 - 7TA71 0 A7 M3 = 2—7T ) M4 = z 0 )
10 33 \—2 -1 2\ 1 0

Mﬁ_%<_12 _21> MTn:<8 g) (3.9)

where A is an arbitrary SL(2, R) matrix.

The ambiguity discussed in section section arises here from the infinitely many so-
lutions of the equation eM = 1 given by M =27 (0 n —n 0). This ambiguity does not
affect the full physical spectrum and in (@) we have chosen, for each monodromy, a simple
representative for the mass matrix from the infinite number of possible choices. Note that
after accounting for this ambiguity, the mass matrices for the monodromies Mg, My, Mg
are uniquely determined but there are still an infinite number of mass matrices Mo, char-
acterized by the arbitrary matrix A, that all give rise to the same monodromy Ms. Note
that changing A is an SL(2,R) conjugation and so a field redefinition in the truncated
theory in which the Kaluza-Klein modes are absent and the D + 1 dimensional theory has
an SL(2,R) symmetry, but for the full theory it changes the theory unless it is an SL(2,Z)
conjugation. We shall return to the role of A in our discussion of orbifolds. Each of the
mass matrices (B.9) is SL(2,R)-conjugate to the mass matrix M, in (B:3), M,, = U~ MU
and so the corresponding potentials each have a unique critical point at which V' = 0, and
this is located at the image of 7 = ¢ under the action of the SL(2,R) transformation U.

3.2 Bosonic String

Consider next the bosonic string compactified on T?2. In addition to the metric, we now
also have a dilaton and an antisymmetric tensor among the massless fields. The global
symmetry group is G = O(2,2) and for fixed value of the dilaton, the moduli space of these
compactifications is given by the Narain coset O(2,2;Z)\0(2,2)/0(2) x O(2).

A convenient parametrization of this space is in terms of the complex structure modulus
7 and the complexified Kéahler modulus o. The real part of o is the area of the torus
and the imaginary part is the value of the 2-form field B,,, on the torus. The moduli
space for complex structures is SL(2,Z)\ SL(2,R)/SO(2) as before and the Kéhler modulus
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parametrizes an identical space. The total moduli space is thus
[SL(2,Z)\ SL(2,R)/SO(2) x SL(2,Z)\ SL(2,R)/SO(2)]/Zs . (3.10)

The additional Zs comes from the “parity” element of O(2,2,7Z) with determinant —1.
This element changes the sign of one of the left-moving coordinates of the torus and hence
corresponds to T-duality along that coordinate; it exchanges 7 and ¢ and interchanges the
two SL(2,7Z) factors (see, for example, [BY]).

We can now reduce the theory further on a circle with a duality twist given by a
conjugacy class of G(Z) = [(SL(2,Z)r x SL(2,Z),] % Zs. The subscripts are added to
denote that SL(2,7Z), and SL(2,Z), act on 7 and o respectively. The twists that belong
to the SL(2,Z), factor have already been discussed in the previous subsection; there are
distinct theories corresponding to each of the conjugacy classes of SL(2,Z). The twists by
SL(2,Z), are nongeometric but are conjugate by the Zo T-duality element to SL(2,Z), and
lead to equivalent theories. Twisting simultaneously by elements of the two SL(2) factors
with a mass matrix

M=(M,21)& (1 M,) (3.11)

where M, and M, are mass matrices of SL(2), and SL(2), twists respectively, results in
new theories. As we discuss in section [, these new theories are related to asymmetric

orbifolds.

3.3 Supergravity

For a supergravity with a global symmetry G and local symmetry K, with scalars in G/K
parametrized by V, the fermions are inert under G but transform under K. In a physical
gauge in which the K symmetry is fixed, a G transformation is accompanied by a compen-
sating K transformation which acts on the fermions. Given the low energy action for the
massless bosons, the effective action for the fermions is determined by supersymmetry. Cor-
responding to the nontrivial scalar potential (@), the fermions acquire moduli-dependent
mass terms that are linear in the mass matrix M, and the supersymmetry transformations
of the fermions are modified by terms linear in M.

Consider the Scherk-Schwarz reduction from D + 1 to D dimensions on a circle, in
the formalism in which the local K symmetry is not fixed. For the bosonic sector, the
reduction is specified by the choice of a twist in G. In the fermionic sector, there is a choice
of spin structure for the fermions on the circle (i.e. the possibility of including a twist by
(—=1)F). The fermions can be decomposed into K representations, and in principle it is
possible to choose a different spin structure for each K representation. In addition, there
is the possibility of accompanying this by a twist in K.

Alternatively, one can first choose a physical gauge eliminating the local K symmetry,
and then reduce with a twist in G (which acts on fermions through the compensating
transformation) and a choice of spin structure for each K representation. In the cases that
we have discussed so far, the symmetries include a rigid SL(2,R) C G symmetry and a
local U(1) € K in D+ 1 dimensions. In this case, if we fix the K symmetry completely by
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choosing physical gauge, the SL(2,R) transformation represented by the matrix

A= (Z Z) (3.12)

will act on a fermion A of U(1) charge ¢ by the compensating U(1) transformation

_ q/4
A — (CTJFd) A. (3.13)

ct+d

Here we restrict ourselves to the case in which we twist only by the global group G and
the spin structure is periodic for all fermions. This gives reductions specified by a mass
matrix M which reduce to the standard reduction when M = 0.

In the standard reduction on T? followed by a twisted reduction on S! that we have
considered above, all gravitini become massive at the minima of the scalar potential and the
supersymmetry is completely broken. This can be checked directly, and will become appar-
ent once we make the connection with orbifolds. In the orbifold description, the gravitini
have nontrivial transformations under the twist groups and are thus projected out, so that
there are no massless gravitini in the spectrum and supersymmetry is completely broken. It
is straightforward, however, to construct models with supersymmetric minima by compact-
ifying on higher dimensional tori; we will discuss a simple example in section section |2

3.4 Superstrings

For the heterotic string on T2, there are additional gauge fields and extra moduli from the
Wilson lines. The Narain moduli space is now O(2,18;Z)\0(2,18)/0(2) x O(18). On the
submanifold of this moduli space where all Wilson lines are turned off, the duality symmetry
is again [(SL(2,Z), x SL(2,Z),] x Z2. In this special case, the analysis is similar to that for
the bosonic string. More general reductions twisted by conjugacy classes of the full duality
group O(2,18;Z) are quite interesting and are related to heterotic compactifications with
various magnetic fluxes turned on, as will be discussed elsewhere.

For the type-IIA superstring on T2, the U-duality group is SL(3,7Z) x SL(2,Z). The
SL(3) is a symmetry of the supergravity action and contains SL(2),, while the SL(2) fac-
tor is only a symmetry of the supergravity equations of motion and is the SL(2), factor
considered above. The perturbative T-duality symmetry is [(SL(2,Z), x SL(2,Z),]. Note
that the Zo element corresponding to T-duality along one leg of the torus is no longer a
symmetry because it interchanges type-IIA with type-IIB. The type-IIB superstring com-
pactified on T? gives the same D = 8 theory, but now for IIB it is SL(2), that is contained
in SL(3), while the SL(2) factor that is only a symmetry of the equations of motion is the
geometric symmetry SL(2),. Whereas in the heterotic or bosonic case, twisting by SL(2),
or SL(2), gave equivalent theories related by T-duality, in the type-II case they give rise
to two distinct SL(2) twistings. In the first, the ITA theory is twisted by SL(2),, and this
is T-dual to twisting type-IIB by SL(2),. This results in a theory similar to the bosonic
and the heterotic cases. In the second, the ITA theory is twisted by SL(2),, and this is
T-dual to twisting type-IIB by SL(2),. In this case, the twist is by a symmetry that acts
via duality and is only a symmetry of the equations of motion, not of the action. This
results in some novel features, which will be analyzed in [B9].
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For type-II strings there are other more general possibilities when the twisting is non-
perturbative and the monodromy is an arbitrary element of SL(3,Z) x SL(2,Z). For ex-
ample, the type-I1IB string in D = 10 has a nonperturbative SL(2,7Z), symmetry that acts
on the dilaton-axion field . After reducing on T? this SL(2,7Z), becomes a subgroup of
SL(3,Z) and is conjugate to the perturbative SL(2,Z), discussed above. Therefore, the
SL(2,Z), twists are dual to the SL(2,Z), twists. Even though the group theoretic con-
siderations are identical in the two cases, the realization in terms of perturbative string
modes will be quite different. For example, twists that correspond to turning on NS-NS
fluxes will be conjugate to twists that correspond to turning on R-R fluxes.

Note that the D = 7 theory obtained by twisting with an element of the SL(2,7Z)
can also be obtained by first reducing the IIB theory on a circle with an SL(2,Z) ) twist
M to D =9, and then performing a standard reduction on T?. Thus, the D = 7 theories
obtained by twisting with SL(2,7Z), are precisely the T? reductions of the D = 9 theories
of B, 10, B, [, [3 and have a very similar structure. The D = 9 theory can be thought of
as F-theory compactified on a T? bundle over S! with monodromy M B

4. Orbifolds, duality twists, and fluxes

Given a theory with a discrete symmetry X, its orbifold is obtained by gauging the sym-
metry. The Hilbert space of the orbifold consists of states of the original theory that are
invariant under X, together with new twisted string states that are closed up to a nontrivial
X transformation. We will be interested in orbifolds of strings compactified on T? x S'.
For special values of the torus modulus, the torus will be invariant under a discrete Z,, sym-
metry of finite order n = 2,3,4 or 6. For such a torus, the orbifold group X = Z,, relevant
for our purpose is generated by a Z,, generator of the torus symmetry group accompanied
by an order n shift along the circle.

4.1 Bosonic string

Let us first consider orbifolds of the bosonic string where the discrete rotation is geometric
and acts symmetrically on the left-moving and right-moving coordinates of the torus. To
see what geometric rotations are allowed, let z be the complex coordinate of T? with
the identifications z ~ z +1 ~ z 4+ 7, where 7 is the complex structure modulus of the
torus. For what follows, the Kéhler modulus can be arbitrary so the over-all scale of the
torus is not important. Associated with the torus is a lattice of points in the complex
plane, {z = m + n7}, for arbitrary integers m and n. Now, a rotation in the complex
plane becomes a symmetry of the torus only if it is a symmetry of the lattice. A Zo
rotation through 7 that takes z to —z is a symmetry of all lattices. Additional symmetries
are possible for special lattices (i.e. for special values of 7) given by the crystallographic
classification [[i0]. A square lattice with 7 = i has an enhanced Z4 symmetry generated
by the rotations z — €™/2z and a hexagonal lattice with 7 = €2™/3 has an enhanced Zg
symmetry generated by z — e™/3z with a Zs subgroup generated by z — e27/3z. The

only possible discrete rotation symmetries of the torus are Zo, Zs, Z4, Z¢-
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The orbifold action for our purposes will be one of these Z,, rotations of a torus at a
special value of the modulus with a simultaneous order n shift along the circle of radius nR
for n = 2,3,4,6. Note that the list of allowed orbifold rotations is in one-to—one correspon-
dence with the list of twist groups generated by the monodromies Mo, M3, My, Mg that
we encountered earlier in a rather different context. We now explain the relation between
the orbifolds and the twisted reductions.

It is clear that all of the above orbifolds can be viewed as twisted reductions. The
group SL(2,7Z) of large diffeomorphisms of T? has a natural action on the lattice defining
the torus and the 7Z,, symmetry of a special lattice is a subgroup of SL(2,Z) that leaves
the lattice invariant. Conjugation by SIL(2,7Z) gives a physically equivalent rotation and
thus again there is a dependence only on conjugacy classes. If the circle has radius r and
coordinate y ~ y + 27r, then the orbifolded theory is identified under the action of a Z,,
rotation accompanied by a shift y — y+ 277 /n. This is equivalent to the twisted reduction
on a circle of radius R = r/n with a twist by the Z,, generator. Since the orbifold satisfies
the string equations of motion with vanishing ground state energy at tree level, the Scherk-
Schwarz potential must have a stable (or marginally stable) minimum with zero energy at
this point.

The converse is more interesting and less obvious. Compactification with a dual-
ity twist is more general than the orbifold construction in certain respects because it
can be carried out without restricting the moduli to special values and the moduli can
have nontrivial variation along the circle and in the D-dimensional spacetime. More-
over, we can twist by any monodromy, giving distinct theories for each of the infinite
number of conjugacy classes listed in section B The orbifold, on the other hand, is
possible only for special values of the moduli where the lattice admits a symmetry and
the class of allowed orbifold rotations is finite. As we now discuss, the connection be-
tween the two is provided by the Scherk-Schwarz potential. The minima of the potential
occur precisely at the fixed points in the coset space SL(2)/SO(2) under the action of
the twist group, and these are precisely the points in moduli space where orbifolding is
possible.

Consider first the parabolic and the hyperbolic conjugacy classes of SL(2,Z). Mon-
odromies in these conjugacy classes generate twist groups of infinite order and have no
fixed points on the upper half plane with 7 strictly positive and finite. As discussed in
section [J, the Scherk-Schwarz potential has no stable minima with 79 strictly positive and
finite in these cases, consistent with the fact that there is no standard orbifold formulation
in this situation.

Monodromies in the elliptic conjugacy classes of SL(2,7Z) generate twists of finite order.
As they are SL(2, R)-conjugate to a rotation, they must have a fixed point. In fact, it follows
from a theorem given in section [[.4] that any finite order subgroup of G(Z) always has a fixed
point on G/K for any non-compact semi-simple G with K its maximal compact subgroup.
Moreover, together with the discussion in section P.3 this implies that the Scherk-Schwarz
potential for a given elliptic monodromy has a stable minimum precisely at this fixed point.
We now check these facts by hand for the simple case of SL(2) by explicitly finding the

minima of the potential for the mass matrices given by (B.9).
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When G = SL(2), the vielbein can always be written in the physical gauge as an upper
triangular matrix with the parametrization

V(r) = % (é 2) (4.1)

so that the metric H = V'V takes the canonical form (B.J). (That this can always be
done is seen most easily by using the Iwasawa decomposition of a general SL(2) matrix as
a product kV where k is an SO(2) matrix and V is an upper triangular matrix and then
fixing the physical gauge to gauge away k.) In this parametrization, given an arbitrary
mass matrix M = (—d bc d) in the Lie algebra of SL(2,R), the matrix M = VMV~ is
given by

i — 1 /1 7 —d b T, —m\ 1 (—drn+cnm dr+b— e +dn
- 5 \0 7 c d 0 1 N To 0722 —cT1To + dmo '
(4.2)
Now we have seen in section P.3, the potential can be written in the form

Vir) = %ewTr(Y?) (4.3)

where Y is a real symmetric matrix, Y = [M + M?!]. Therefore, for a given mass matrix
M, a minimum occurs precisely for those values of 7 for which the corresponding Y matrix
vanishes. The Y matrices corresponding to the four mass matrices in (B.9) for the elliptic
conjugacy classes are given by

Vo — —dry + cT1T2 dri +b—cm? + en? +dm
2= d7'1+b—c7'12+67'22+d7'1 —cTim + dmy

47 Ty — 2T Ty 1+712—722—Tl
Y3 = ( 2 2 =2Y¥s

3V3m \1+ 77 —m° -1 —To + 27172

T —2717o 1—|—7'12 —722
Y, = — . 4.4
4 279 <1—|—T12—7'22 2717 ( )

Note that in the matrix Y5, the three real numbers b, c,d are subject to the constraint
d?> + bc = —n? and thus it depends effectively on only two parameters. This follows from
the fact that the mass matrix My in (B.9) depends on an arbitrary SL(2, R) matrix A and
is an arbitrary trace-less matrix whose determinant equals 72.

Now, the minima of the potential can be readily found. The matrices Y3 and Yg
vanish only at 7 = exp (7i/3) and thus for twists by the monodromies M3 and Mg, the
minimum of the potential ([L.3]) occurs precisely at points where a Z3 and Zg orbifold action
is possible. Similarly the matrix Yy vanishes only at 7 = ¢ and thus for the monodromy
My the potential has a minimum precisely where a Z4 orbifold is possible.

For the conjugacy class Mo, the position at which the matrix Y5 vanishes depends on
the choice of the numbers b, ¢, d in (f.4)), corresponding to the choice of the SL(2, R) matrix
Ain (B.9). Choosing A =1, d = 0,b = —c, Y, vanishes at 7 = i. Now conjugating with
U € SL(2,R) gives A = U and can be used to move the point at which Y5 vanishes to any
desired point in moduli space. Changing A in this way changes the compactified theory
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unless A € SL(2,Z), and this SL(2,Z) redundancy can be used to move the critical point
into a fundamental domain. This freedom is consistent with the fact that a Zs orbifold is
possible for all values of 7 and is a consequence of the fact that the orbifold twist in this
case belongs to the center of the duality group.

We can understand the existence and the location of these minima more succinctly
following the discussion section in a way that will be generalized to other twist groups
in section [.4. Every monodromy M,, of finite order n has |Tr(M,)| < 2 and is in the
elliptic SL(2,R) conjugacy class M,,, so that it is conjugate to the rotation matrix M,
given in (3.1), for some value of the angle of rotation m. Moreover, since (M,)" = 1,
the angle must be m = % for some integer N. The monodromies in (3.5) are in fact
conjugate to the rotation matrix R,,, where R,, is the SO(2) rotation through 2%, i.e. there
exists a (constant) SL(2,R) matrix S,, such that

Sy MpS;t =R, (4.5)

Note that given an S, that solves this equation, left-multiplication by an arbitrary SO(2)
matrix k gives another matrix S/, = kS, that also solves this equation. We can use
this gauge freedom to bring all matrices S,, to an upper triangular form. For the cases
n = 2,3,4,6, the matrices .5,, are given by

10 2 (1 1
prng g = == p— . 4.
Sy =V, Sy (O 1>, S3 = Sg \/§<0 ﬁ) (4.6)

2

Note that Sy is an arbitrary SL(2,R) upper triangular matrix V' because My depends on
an arbitrary SL(2,R) matrix A which can written as a product A = kV where k is an
SO(2) matrix.

For these monodromies, the mass matrix M, can be chosen (using the ambiguity
discussed in section P.7) so that after this conjugation it becomes the rotation generator

4 2r (0 -1
SpM,S,, " = — <1 0 ) . (4.7)
We have seen in section that for such a mass matrix, the Scherk-Schwarz potential has
a global minimum at V = 5, at which the potential vanishes, and that this is a fixed point
under the action of the twist group generated by M,,.

We thus conclude that for an elliptic duality twist M,, € SL(2,Z),, the critical points
of the Scherk-Schwarz potential are precisely at the fixed points of the twist. The potential
vanishes at the minimum and the theory at the minimum is a symmetric orbifold of the
type discussed above using the twist group generated by M, accompanied by a shift.

Orbifolds with twisted boundary conditions around toroidal directions have been con-
sidered before, for example, in [f1], B0, 2], 3], usually with boundary conditions that break
supersymmetry. Our analysis illuminates the place of such orbifold conformal field theories
in the string configuration space. If we climb up the Scherk-Schwarz potential from the
minimum, the string equations of motion will no longer be satisfied and there would be
no CFT description of the theory because we have perturbed the CFT by an irrelevant
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perturbation. Nevertheless, from the spacetime point of view, it is a mild way of going
off-shell with operators that correspond to massive fields in spacetime with masses of order
of the inverse radius of the circle and our analysis gives the off-shell potential.

Duality twists that belong to SL(2,Z),, are related to the one above by a T-duality along
one of the legs of the torus. The most general case when we twist by an arbitrary element
of O(2,2;7Z) would therefore twist the coordinate and the T-dual coordinate independently
of each other. The minima of the potential in this case would be described by the most
general order n asymmetric orbifold with an asymmetric rotation of the torus accompanied
by a shift along the circle.

The possible asymmetric rotations can be easily classified [B3] and are given by the
automorphisms of the lorentzian lattice I'>? for special values of the moduli that are left
fixed by the twists. There are fixed planes for the cases that we have already discussed
when the T-duality twist acts only on 7 or only on . There are also fixed points in
the general case that have more symmetry. For example, the point ¢ = 4,7 = ¢ has an
enhanced (Z4 X Z4) X Zo symmetry, the point ¢ = 7 = p with p = ¢™/3 has an enhanced
Zy symmetry and the point 0 = i, 7 = p (or vice versa) has a Zj, symmetry which acts
quasicrystallographically [BI]] on the lattice. At any of these points in the moduli space, a Z,
subgroup of the symmetry can be combined with an order n shift to obtain an asymmetric
orbifold. This orbifold would describe the theory at the minimum of the potential in the
corresponding Scherk-Schwarz reduction, with mass matrix of the form (B.11)).

4.2 Superstrings

In the case of superstrings, the action of the orbifold rotation must be lifted to spacetime
fermions. Consider, for example, a T? reduction along the X® and X* directions. The
torus coordinate z can be written as X% + iX?, and the Z, rotations discussed in the
previous section are generated by elements exp (27miJgg/n) where Jgg is the generator of
rotations in the 89 plane. When spacetime fermions are present, the eigenvalues of Jgg are
half-integral and exp (27iJgg) = (—1)f where F is the fermion number; as a result these
rotations now generate Zo,, groups of order 2n. For odd n, an order n symmetry generated
by exp (2miJgg/n)(—1)" is also possible. We suppose there is a further circular direction
X7 say, and orbifold by these transformations combined with the appropriate shifts in the
X7 coordinate.

These orbifolds break supersymmetry completely because in the light cone Green-
Schwarz formalism (with X®, XY both transverse coordinates), no components of Spin(8)
spinors are left invariant by the rotation in the 89 plane. When the radius of the X7 circle
is of string scale, all these models contain tachyons in the twisted sector and are unstable.
However, for a large enough circle there will be no tachyons and the twisted states will
be very massive. This is the regime in which one can compare the orbifolds with the
supergravity analysis of compactifications with duality twists given in the previous sections.

The above applies to orbifolds based on subgroups of SL(2,Z),. For the heterotic
string, the ones based on SL(2,7Z), are related by T-duality and are very similar. For
the type-ITA string, orbifolds by subgroups of SL(2,Z), are distinct from orbifolds by
subgroups of SL(2,7Z), and are T-dual to orbifolds of type-IIB by subgroups of SL(2,7Z).
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When the duality twist does not belong to the T-duality group then the theory at the
minimum of the Scherk-Schwarz potential cannot be described by a perturbative orbifold,
but the supergravity analysis of section P and section [J is still applicable. For example, in
the supergravity analysis the twists that correspond to turning on Ramond-Ramond fluxes
are on the same footing as those that correspond to turning on NS-NS fluxes (see below for
a discussion of fluxes in this context). The group theoretic considerations of this and the
previous sections can be equally well applied to such nonperturbative twists, in particular
for finding the minima of the Scherk-Schwarz potential.

For the standard reduction on T? followed by a twisted reduction on S! of type-1IB,
all nonperturbative twists belong to SL(3). If we restrict attention to the nonperturbative
SL(2,Z),, then the considerations are similar to those for SL(2,Z),. The monodromy Mo
actually corresponds to a perturbative symmetry Q(—1)fZ where (2 is orientation reversal
and F, is the left-moving fermion number [[i4]. Therefore, modding out by this symmetry
gives rise to a perturbative orientifold. The orientifold has no orientifold planes or D-branes
because of the shift along the circle. The M3, My, Mg twists are nonperturbative and the
Scherk-Schwarz potential will fix the dilaton-axion field A to either i or e™/3 where the string
would be strongly coupled. The classical analysis given here can still be reliable in such
situations in the spirit of F-theory [iJ], especially if the theory at the minimum preserves
enough supersymmetry. Since this SL(2,Z), is conjugate to SL(2,Z), by an element of
SL(3) we expect that the theories at the minima with nonperturbative twists will be dual
to the perturbative orbifolds discussed above by using the adiabatic argument [[[6].

It is easy to construct models with unbroken supersymmetries by compactifying on
higher tori of dimensions 2N and choosing a duality twist that is a subgroup of SU(NV).
The resulting orbifold theory at the minimum then has SU(NN) holonomy and preserves
some number of supersymmetries. As a simple example that illustrates this point, consider
type-IIB on a T* x S'. We take the twists to be in SL(4,Z) which is the group of large
diffeomorphisms of T#. The simplest nontrivial conjugacy class is the element —1 that
generates a twist group of order two. Because it is a twist of finite order, the Scherk-
Schwarz potential will have a stable minimum and the Zo symmetry of the orbifold theory
at the minimum is generated by the reflection of all coordinates of T* accompanied by a
half-shift along the circle. Note that without the half-shift, the T*/Zy orbifold would have
given us a K3 and we would have obtained a standard type-IIB compactification on K3 x S!
to five dimensions with sixteen unbroken supersymmetries. When the orbifolding action
includes the half-shift, one would still obtain a theory in five dimensions with sixteen
supersymmetries, but all twisted states will now be massive. In particular, the vector
multiplets that come from the sixteen fixed points of the reflection on T# will now be
massive thereby stabilizing all moduli that belong to these multiplets as well as the moduli
in the untwisted sector that are projected out by the orbifolding.

4.3 Relation to turning on fluxes

In this subsection we explain the relation between the twisted reductions and compactifi-
cations with internal fluxes.
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The toroidal compactification on T? followed by this twisted reduction on an S! is
equivalent to reducing on a three-manifold B which is the total space of the torus bundle
over a circle with metric

ds% = (2 R)%dy® + Tﬁ;|dx1 + 7(y)dzs)? (4.8)
where the fiber is a T? with real periodic coordinates x1,z2, 2; ~ x; + 1, constant area
modulus A and complex structure 7(y), which depends on the coordinate y. The twisted
reduction on the circle with the ansatz 7(y) = 74, associated with a particular torus
bundle B is precisely the compactification on the three dimensional total space B [f]. For
the parabolic conjugacy class, 7(y) = 71 +i72 + ny where m is the integral mass parameter
in (B.), and 71, 72 are independent of y, ;. Then the metric is

ds% = (2mR)2dy? + Ti;(dml + A)? + Arydi’ (4.9)
where A = (11 + ny)dze. The total space can also be regarded as a circle bundle over a
2-torus , with fiber coordinate x1, base space coordinates y, x5 and connection 1-form A
and first Chern number n. We thus see that the parabolic conjugacy class M7, corresponds
to turning on n units of magnetic flux of the Kaluza-Klein gauge field. T-dualizing in the
x1 fiber direction untwists the bundle to give a torus metric on T3

ds% = (27 R)*dy® + T—jdmf + Aryda} (4.10)

but turns on a B-field with field strength H = ndxy A dxs A dy corresponding to a constant
H-flux over T3.

For the elliptic conjugacy classes, the orbifold at the minimum of the potential can be
viewed as turning on magnetic flux tubes similar to the non-compact Melvin solutions [[{7]
g, fi9]. In the non-compact Melvin solution, the orbifolding action is a rotation in a plane
accompanied by a shift along a circle and this orbifold can be interpreted as a Melvin
background with magnetic flux of the Kaluza-Klein vector potential. The total flux in the
plane is a function of the angle of rotation in the plane and since the angle is continuous,
the flux can be changed continuously. By contrast, in the situation that we discuss in this
paper, the rotation angle is quantized because we are rotating the coordinate of a torus and
not of a plane. As we have seen, the only allowed rotation angles for T2 are 7/3, 7/2, =,
and 27/3 and consequently only a finite number of discrete values of the flux are allowed.

For the hyperbolic cases, the situation is more complicated and it is unclear whether
there is a relation of the reduction to a toroidal reduction with flux.

4.4 Generalizations

Generalizations to higher duality groups are very interesting and can be used to fix moduli
in a more realistic context preserving some supersymmetry. We will not analyze explicit
models here but instead present a number of general results that are useful for the analysis
of the Scherk-Schwarz potential in these cases.
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We consider a theory with a moduli space G(Z)\G/K with G non-compact semi-simple
and K the maximal compact subgroup.! Our prime example will be G = SL(N,R) and
K =SO(N).

For G(Z) (e.g. SL(N,Z)), many more conjugacy classes are possible and we will not
discuss them explicitly here. One general question of interest for a given conjugacy class is
whether the Scherk-Schwarz potential has a minimum, and if so, where in the moduli space
it lies. The following theorem is useful for addressing this question. See, for example, [F0]
for a proof.

Theorem. Fuvery finite order subgroup H C G(Z) C G with G non-compact semi-simple
is conjugate to a subgroup of the maximal compact subgroup K. Thus, there exists a matriz
S € G such that SHS™' = K, Cc K.

The space G/K is defined as a coset with the equivalence relation g ~ kg for every
g € G and k € K. If we denote the equivalence class of g by [g] then the coset is the set
{lg]} of all equivalence classes. The equivalence class of the identity [1] corresponds to the
entire group K. An element h of G acts on the coset by right multiplication [g] — [gh].
It is clear from the equivalence 1K = K1 ~ 1 that the point [1] in G/K is a fixed point
under the action of K by right multiplication. Therefore, by the theorem above, every
finite order subgroup H also has a fixed point on G/K. This property is closely related
to the fact that the spaces G/K have negative curvature. Indeed, the equivalence class
[S] is the desired fixed point under right-multiplication by H since SH = K15 ~ S. It is
also clear that since k'k = 1, the metric Ho = S!S is invariant under H-transformations:
htS'Sh = StS for all h € H. Because H leaves the metric invariant, it defines a symmetry
of the corresponding integer lattice in RY and can be used for orbifolding.

These results imply that any twist M that generates a finite order subgroup H is
conjugate by an SL(N,R) matrix S to an SO(N) matrix. By (P.3), it will result in a mass
matrix that is conjugate by S to a rotation generator. We have seen in section that in
this case when mass matrix is conjugate to a rotation generator, Vo = S or Hy = S'S is
a stable minimum of the Scherk-Schwarz potential. Using this physics input we conclude
that for the finite order twists H C SL(N,Z) the matrix S defines a minimum on the coset
of the Scherk-Schwarz potential at which V' = 0.

5. Conclusions

Even though we have focused here on duality twists in T? x S! compactifications, these
methods can be applied equally well to more general compactifications on higher tori and
other manifolds such as K3 and Calabi-Yau threefolds that have interesting duality symme-
tries. We have seen that there is a close relation between compactifications with perturba-
tive duality twists and orbifolds. Our considerations here are useful even for nonperturba-
tive duality twists and for duality twists that correspond to turning on internal RR-fluxes.

'Because K acts on the left and G(Z) on the right in our conventions in this paper, the coset should be
denoted by K\G/G(Z); however, with a slight abuse of notation, we adhere to the common usage, denoting
the moduli space by G(Z)\G/K.
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The structure of duality twists for higher groups is expected to be much richer because
many more conjugacy classes are possible. For general twists, the Scherk-Schwarz poten-
tial can be quite complicated and explicit extremization is not easy. However, the group
theoretic considerations discussed here provide an efficient way for finding the minima and
the properties of the theory at the minima. It would be interesting to elucidate further the
relation of duality twisting with compactifications with internal fluxes and to see if some
of the recent models that fix moduli with fluxes can be analyzed in this framework.

We have seen that in the type-II circle compactifications considered here with SL(2)
twists, only the elliptic conjugacy classes lead to stable minima. However, in more general
toroidal compactifications with higher groups, it is likely that other conjugacy classes also
lead to stable minima. For example, the parabolic conjugacy classes correspond to turning
on H-flux. It is known that in orientifolds of type-I on T, if additional orientifold charges
are present, the inclusion of 3-form fluxes can lead to gauged supergravities [pI} that
have stable minima [23, Bg). It would also be interesting to see in the more general cases
which twists lead to stable minima. In such more general situations, the twist groups may
have fixed sub-manifolds instead of fixed points in the moduli space where the potential
has a minimum. In such cases, only some of the moduli will be stabilized.

By considering a U-duality twist that has a unique fixed point on the moduli space,
one can construct models with or without supersymmetry in any dimension that stabilize
all moduli except the radius of the circle used for twisting. In the framework described
here we require an S! factor for twists but in more general situations where the manifold
of compactification has circle fibration, it might be possible to twist along this fiber in a
way analogous to F-theory [[, B3, F4]. If supersymmetry is broken, the classical analysis
would be quantum corrected but we expect that the existence and the location of the
minima which depend on considerations of symmetry should still be valid. It would be
interesting to explore further if these different techniques can be combined to construct
realistic models with few or no moduli.
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