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Exact Counting of Black Hole Microstates
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The exact entropy of two-charge supersymmetric black holes in N = 4 string theories is computed
to all orders using Wald’s formula and the supersymmetric attractor equations with an effective ac-
tion that includes the relevant higher curvature terms. Classically, these black holes have zero area
but the attractor equations are still applicable at the quantum level. The quantum corrected macro-
scopic entropy agrees precisely with the microscopic counting and moreover the entire macroscopic
partition function matches the microscopic partition function for an infinite tower of fundamental

string states.

A distinctive feature of superstring theory is that its
spectrum often contains an infinite tower of BPS states
in a given topological sector. The first example of such
a tower of BPS states was noticed in the perturbative
spectrum of toroidally compactified superstring theories
[1, 2]. We will be interested here in the heterotic string
compactified on T* x T? where T is a 4-torus in {6789}
directions and T? is a 2-torus which we take to be a prod-
uct of two circles in the {45} directions. Consider now a
string state with winding number w along the x5 direc-
tion. In a given winding sector, there is a tower of BPS
states each in the right-moving ground state but carrying
arbitrary left-moving oscillations subject to the Virasoro
constraint Ny = 1 —nw, where Ny, is the left-moving os-
cillation number and n is the quantized momentum along
x5 [1, 2]. Note that Ny, is positive and hence a BPS state
that satisfies this constraint has negative n for positive
w for large Np. We will henceforth denote these states
by (n,w).

The number of such states is summarized conveniently
by a partition function

Z(B) =16 dye N, (1)

where N = n|lw| = Ni — 1. The factor of 16 comes
from the degeneracy of the right-moving supersymmetric
ground state. Since Ny, is the number operator for the
24 left-moving transverse bosons, the partition function
can be readily evaluated

(2)

where A(q) is the Jacobi discriminant function with ar-
gument ¢ = exp (—f). In terms of the Dedekind eta func-
tion 1(q), the discriminant is given by A(q) = n(q)*.

The number of states at level N is then given by the
inverse Laplace transform
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To find the asymptotic density at large N, we want to
take the high temperature limit or 8 — 0. It is convenient
to use the modular property of the discriminant
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Ase4°/B _, 0, we can then use the asymptotics A(q) ~
q and evaluate the integral
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in saddle-point approximation. The saddle point occurs
at B =2n/ V/N and the degeneracy has the characteristic
exponential growth dy ~ exp (47/n|w|).

This tower of states has played a crucial role in fur-
thering our understanding of dualities and black hole
physics. Heterotic string on T* x T? is dual to Type-IIA
on K3 x T? [3, 4]. Initial evidence for this duality came
from matching the low-lying BPS states and the super-
gravity action but a far more stringent test is obtained
by matching the entire infinite tower of BPS states. The
state (n,w) is dual to w NS5-branes wrapping Kz x S?
carrying n units of momentum which in turn is dual to
w D4-branes wrapping the K3 with a gas n DO-branes
on its worldvolume. The characteristic Hagedorn asymp-
totic density of such brane states was computed in [5]. In
fact, this partition function makes its appearance also in
topologically twisted Yang Mills theories on K3 which
provided one of the early hints of the stringy duality [6].
We will return to this dual description subsequently.

Another important application of this tower of states
comes from its relation to black hole entropy. The state
(n,w) corresponds to a charged extremal black hole in
four dimensions and one would expect that the logarithm
of dy for large N should match the Bekenstein-Hawking
entropy of this black hole. The corresponding black hole
solutions were obtained in [7] which can also be seen to
arise directly from the dimensional reduction of the un-
derlying winding string solution in five dimensions [8].
Classically, these black holes have zero area and would
appear to have zero entropy but the higher curvature
corrections to the supergravity action can correct the so-
lution. Assuming that the string corrections result in a



finite area horizon it was shown in [9] that the black hole
then has nonzero entropy in agreement with the loga-
rithm of the degeneracy. In particular, the nontrivial
functional dependence \/n|w| on the charges is correctly
reproduced. However, the precise numerical factor of 47
cannot be computed and the assumption of finite area
is in need of further evidence. Subsequent developments
have focused mostly on black holes carrying three or more
charges that have finite horizon area already classically
[10] so that the precise numerical factor can be computed
reliably within the supergravity approximation.

In this note we return to the two charge black holes
corresponding to the states (n,w) and show that it is
possible to take into account exactly all higher curvature
corrections to the entropy. After incorporating these cor-
rections and using the exact entropy formula due to Wald
[11-13] for the fully corrected action, the precise numer-
ical factor 47 in (5) can be computed. One can even
go further and in fact reproduce not only the asymptotic
density of states for large N but the entire partition func-
tion (2) of the whole tower of microscopic states.

Before proceeding further let us note the following cu-
rious fact. The curvature squared coupling in the four-
dimensional effective action for the heterotic string on T
is of the form

1 log A(q)
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with ¢ = e?™* where ) is the dilaton-axion field, R is the
curvature 2-form and the trace is in the tangent space
SO(1,3) representation [14]. The action with its coeffi-
cient can be deduced easily from S-duality and Green-
Schwarz mechanism. What is striking is that the Jacobi
discriminant function that we encountered in (2) makes
its appearance here in a completely different context. At
first sight this would appear to be little more than a
coincidence. After all, the argument ¢ in (6) depends
on a spacetime field whereas in (2) it depends on the
worldsheet temperature 3. The g-expansion in (6) gives
the nonperturbative corrections to the effective coupling
from 5-brane instantons [14] whereas the g-expansion in
(2) counts the spectrum of perturbative BPS winding
states. It turns out, however, that there is indeed a deep
and precise connection between the two that is provided
by the supersymmetric attractor mechanism [15-17], its
elegant implementation in supergravity using Wald’s for-
mula for higher derivative F-term corrections pioneered
n [18-22], and the recent proposal for the black hole
partition function in [23].

Let us summarize the relevant formalism [18-21, 23].
To be closer to the discussion in the literature, we work
in the dual description of Type-IIA on K3 x T? which
can be viewed as a special case of a Calabi-Yau 3-fold.
The resulting supergravity in four dimensions has N = 4
supersymmetry but it will be convenient for our purposes
to use the N = 2 notation of special geometry.

The vector multiplet moduli space of N = 2 supergrav-
ity with n, vector multiplets is parameterized by n, +

tr(R —iR*)?], (6)

1 complex projective coordinates X', T = 0,1,...,n,.
There are an infinite number of higher derivative correc-
tions to the Einstein-Hilbert action that are expected to
be relevant for the computation of the entropy. These F-
type corrections to the effective action are summarized
by the string-loop corrected holomorphic prepotential
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where Fj, are computed by the topological string am-
plitudes [24-28] and W? is the reduced chiral multiplet
[19, 29] that involves the graviphoton field strength. The
prepotential obeys the homogeneity relation

F(XT w?) = Hp2h, (7)

X1orF(XT, W2 + Wow F(XT, W?) =2F(XT, W?).
(8)
The moduli couple to the electromagnetic fields and as a
result vary with the radius in the back hole background.
Starting with arbitrary values at infinity, at the horizon
they approach an attractor point in the moduli space.
The values at the attractor point are determined by the

black hole attractor equations

pI = Re[CXI]v 9)

e{OFI <Xf 20526) } (10)

and C?W? = 256, where F; = 9F/0X! are the holo-
morphic periods. The scaling field C' is introduced so
that (CX!,CFy) is non-projective and transforms like
(p', qr) as a vector under the Sp(2n, + 2;Z) symplectic
duality group. The attractor equations are then deter-
mined essentially by symplectic invariance. For a recent
review of the leading order attractor equations and their
applications see [30].

The quantum corrected black hole entropy is given by
[18-21]

Spi = %Z(q,cxf —plCF) + glm[(ﬁacF]. (11)

The first set of attractor equations (9) can be solved by
OxT =p! + 2! (12)
™

in terms of the ‘potentials’ ¢!. Then the entropy (11)
can be written in a suggestive form [23] as

Seu(a,p) = F(9.p) — ¢ 57 F (¢, p). (13)

a¢f

in terms of a ‘free energy’ function

F(¢,p) = —nlm [F (pf + %¢I, 256)} . (14)



The potentials ¢! in this equation are determined in
terms of the charges by the second set of attractor equa-
tions (10)

1 - = 0
=—(CFr+CFj)=———=F . 15
qr 2( 1+ CFy) BYy (¢,p) (15)
Given the form of the entropy (14), it is natural to define
a ‘partition function’ as suggested in [23]

Zeu(¢',p") = 7@ =37 Qg pN)e?" T, (16)
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where (qr,p’) are the black hole degeneracies. The
Boltzmann entropy InQ(q,p) is then expected to agree
with the thermodynamic entropy Spu(g,p) in (13) for
large charges.

It would be very interesting to test the proposal (16)
for the black hole partition function by comparing it with
the microscopic partition function. For a general Calabi-
Yau compactification, such an explicit comparison is dif-
ficult for a number of reasons. On the supergravity side,
to make this comparison it is necessary to compute all
infinite terms Fy, in the prepotential (7). Even though
these are given in principle by the topological string, they
are not always explicitly computable. On the microscopic
side, the counting of states is complicated by the fact that
the number of BPS states can jump in N = 2 supersym-
metric theories [31]. This phenomenon is possibly related
to black hole fragmentation [32] and multiple basins of
attraction [33] as suggested in [23]. In addition, there
are subtleties having to do with the holomorphic anoma-
lies and the background dependence on hypermultiplet
moduli which complicate the picture further[23].

One virtue of the tower of states in N = 4 compactifi-
cation that we have considered is that it provides a partic-
ularly simple but nontrivial example for making a clean
comparison between black hole microstates and the ex-
act entropy formula. For this system, on the macroscopic
side the prepotential is explicitly computable. Moreover
on the microscopic side the exact partition function of
the microstates is also known and is given by (1). With
N = 4 supersymmetry we do not expect that the number
of BPS states would jump.

For Type-ITA on a Calabi-Yau manifold, in the large
volume limit, Fy and Fj are given by
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where A =1,...,n, and ¢y is the second Chern class and

Cryx are the intersection numbers of a basis {37} of 4-
cycles [29]. For a properly normalized basis of 2-forms
{wr} that are Poincaré dual to {%7}, the intersection
numbers are given by

C]JK:/ Wr\NwjN\wg. (18)
CcY3

In the special case of K3 x T?, there are 23 2-cycles of
which we take w; to be the 2-torus itself and w,,a =

2,...,23 to be the 22 2-cycles of K3. The N = 2 reduc-
tion of N = 4 is a bit subtle in supergravity because of
the extra gravitini multiplets. For the particular charge
configuration that we have chosen, however, the fields in
the gravitini multiplets are not excited. Hence we can
safely ignore them.

A major simplification for K3 x T? is that in (7), all
Fy, for h > 1 vanish. This can be seen most easily in
the corresponding topological string from the counting of
fermion zero modes. Moreover, Fy is given by its classical
value and receives no quantum corrections because Fy de-
termines the metric on the moduli space which is known
to receive no corrections in N = 4 supergravity. Thus,
the only nontrivial term in the prepotential comes from
F; which has already been computed in the literature in
a number of different ways — either directly from its defi-
nition [25, 34], or by using the holomorphic anomaly [24],
or from string-string duality [14] by requiring agreement
with (6). The fully quantum corrected prepotential then
takes a particularly simple form
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where ¢ = exp (47iX'/X?) and C,y is the intersection
matrix of K3 and we have used the fact that ¢ = 24
for K3. It can be seen using the action in [18, 35] that
2X1/X0 is the correctly normalized dilaton-axion field
A that couples to integral Pontryagin class so that the
action is then invariant under A — A + 1.

Now that we have the exact prepotential, let us see
what our charge configuration looks like in this basis.
The perturbative state (n, w) on the heterotic side is dual
to w 4-branes wrapping the K3 with n 0-branes sprinkled
on it. The 4-cycle is dual to the 2-form w; and hence we
have a nonzero magnetic charge p; = w and all other
magnetic charges are zero. The O-brane couples electri-
cally to the graviphoton field and hence gy = n and all
other electric charges are zero. we can readily evaluate
the free energy defined in (14)

1
F(6.p) = =3Cud"d" 25 g (8@ (20)
with
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In the large volume limit we can approximate the
second term in (20) by —4n%p'/#°. It is then easy

to solve the attractor equations for the set of charges
q* = (¢°,0,0,...,0) and with pa = (0,p1,0,...,0). The

solution is
p!
¢0 =27 T ¢a = 07 (22)
0]

and ¢! is undetermined. The entropy is given by

S = 47r\/p1|qo| = 47T\/’LU|7’L|, (23)

). (21)




which matches exactly with the logarithm of the degener-
acy (5) of the tower of states at large N. It is remarkable
that once the higher derivative corrections are included,
the attractor formalism is powerful enough to correctly
reproduce the entropy even for black holes that have zero
area classically. This result is implicit in some of the
early work [29] however there the focus is on computing
the corrections to the entropy of black holes that have
finite area already classically.

Encouraged by this, we would now like to reproduce
the exact degeneracy Q(g,pa) in (16) which is given by
the inverse Laplace transform,

1 22
(5" [ 1] 001 do® exp (767 5) + a0

a=1

Using the free energy (20), the Gaussian integrals over
{#*} can be performed immediately to get,

1 x do 1
1y L T \12 Nz [ Q0

where we have defined 2 = —¢°/p! and § = ¢' /¢ so that

q = exp 2miT with 7 = 20+27i/z and N = —p'qy = w|n).
We can use the modular property (4) to write the in-
tegral as

1
Q(Qoapl) ~ %/diﬁemc (25)

Ae=%)’
Here we have used the approximation —% ~ Q;I for small
x to perform the € integral. We thus see that for large
charge with 2 = 3, the black hole partition function (25)
matches with the microscopic partition function of un-
derlying states (3) up to a numerical factor.
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