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“Brillouin (1962) defined 'lnfotination’ on'a system in whicho—
outcomes are possible with the jth outcome having a prior probability

. as
pJ

=l wK E . 1n p. where K is a constant.
=1 P Pj

Every constraint and every additional condition imposed on the
possible freedom of choice of the outcomes immediately results in a
decrease of information.  In other words, constraints represent a
certain advance information I so that the new information I' = I-IC is
less than I,  Denoting I = =S, S can be spoken of as entropy of the
system, and I as negentropy (Brillouin, 1962). The second law of
thermodynamics implies that entropy S must always increase or at

“least remain constant.

There are situations in the population dynamics of one or two
loci in which an attempt can be made to relate changes in the population
mean fitness under selection to those in negentropy, However, the
analogy between mean fitness and negentropy is not as close as could

"be desired. Mean fitness is perhaps more analogous to negative
potential energy, since, as shown by Mandel (1959) and Mulholland and
Smith (1959), a population equilibrium state in a one gene - many
‘alleles system is stable if and only if the mean fitness is at a maxi-
mum. Also; the effect of seléction is usually regarded as conferrmg
greater 'order' on the population and it should, therefore, diminish

‘any quantity truly analogous to thermodynamic or to information
entropy. It is, therefore, of interest to note how entropy functions
may be defined for Mendelian populations. Attempts to define such
functions and to bring out their relationship with changes in mean
fitness under selection in one-locus and two-loci systems are reported
in this papers :
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Negentropy and mean fitness

ONE:- L, LOC us

We consider a populat1on with one locus and alleles H1 H ye e
H segregatmg w1th non-zero allehc frequencies Pyr Pgr oesee P so
n

thatz p, = L.
i=1

Arinachalam and Owen (1971) gave a general formulation to
partition genotypic variance into its components by adopting a genera-
lised F1sher1an approach in one- and two - 10c1 diallelic systems;

Let Wij be the fitness of the genotype HiHj’ with Wij =wi. o We
define by W: the fitness matrix,

>~

-
W= 0wy Yigooce e Yy
Wil Vi2 cr e Wy

nl Wh2t ot o “nn

Let w, be the marginal fitness of the gamete i given by
W,
E ij P;
i=l
If (p-) is the row veéctor, (Pl’ Pys +ee pn) and (p) the corresponding
column vector, the population mean fitness is given by V = (p-). W (p).
Li (1969) has shown that the change in mean fitness under natural
selection would be given exactly hy,

4V = G/V + Q where

G;

Bl

2
23 B (Wi -V)7 " ="additive genetic variance,
i=1 :

Q

i

(dp=). W (dp) where (dp ) is the row vector (dpl, see s dpn)

- denotmg changes in gene frequenc1es and (dp) the correspondmg

‘column vector. -

“ In the case of a diallelic locus, Q would represent the product
of dominance variance and (ap)©, the square of the change in gene
frequency of H, This analogiie would also extend to the multiple

“allelic case. Fisher (1958) postulated (under restrictions, see Aruna-

chalam and Owen loc, cit.) that, under slow selection in a large

‘random mating structure, the rate of change in mean fitness V would
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egsentially equal the additive genetic variance. A simple argument
for this in the above case would be that V; under slow selection; is
approximately equal to unity and that Q involving (dp)? being of second
order smallness ig negligible, "In clonal systems of reproduction, the
rate of change in mean fitness equals the genotypic variance, '

Let now P be the frequency of the 'ordered! genotype, H, HJ
(w hmre H is the maternal and Hg the paternal gamete). For mathe-

matical convenience, we distinguish the genotype HiHj from H . H.. The.

frequency of any of these genotypes by random association of gametes
under random mating is Pipj° .Thus it is easy to see that P, = ﬁ Pi' (1)
: i=1
The information I, as stated earlier, can be defined as

= =2 = P'j ln P] which is not entirely suited. to our context since
oy i

it contains the element of disorders. A corrected function can, hows-
ever, be constructed to provide the appropriate negentropy function as

1:_5:‘22 Pij 1D‘Pij —g_ P, lnpi —2: pj In pj
i 3 i S
where the correction terms correspond to the negentropy of the
gametes involved in the parents. :

Thus I =2 2 P, m P, -SSP Inp -5 P Inp
R ij ij SRR i RIS | .
1 J 1 J J 1
‘ from (I)

= : S .. k =
?Ej PiJ 1n i where @ij Pij/Pin

introduced by Kimura (1957) to indicate a departure from random
association of alleles. . Thus [ is a measure of order. in the sense of
association of alleles, notions of 'order' based on gene frequency
distribution having been eliminated. .

For small deviations of lorder!, P.. =p, pJ +ix where 'x ig of

' ,firét order smallness, ~Then In @ . = In( 1+ x/p,p, = x/p p to first
order : 1 H

It then easily follows that I =5 % (P,j - p,p.)z/p.p.. By

i i G
~Lagrange's method, it'can be easﬂy seen that the negentropy has a

unique stationary value (whlch is clearly zero) attained when Pi'
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P, pJ. Thus if C‘)( is the chi- squared value to test whether a sample of

N'genotypes conforms to Hardy- Wembe1g expectat1ons, then: X /N is
an approximate estimate of the negentropy,

The negentropy function under slow selectlon is of interest,
Let Wij' = 1+ mij where mij is of first order smallness. Write

T = E Z mij p. pJ. Then V-=-1 +:T, We shall simplify all expres =
H
sions to lst-order slnallness. 1f Pi' is the frequency of the genotype
HiHj after selection, J
1

P (14 m, (1 + T) = p,p,(l4m,,) (1-T
i ;5/Pi25/( ) = pypy(14myy) (1-T)

n 1
T Let m = (1nij E T)pj." Then P, the gene frequency of Hi after
4 J: ) ;
selection, is given by
; n . n

= (14m.) pp/HT = = p,p.(l+m, -T)
= ij = Fit; ij
J= j=1

= pyfpmy

( ,
At an equilibrium, P; = Py giving mi:O as the condition for a non-

degenerate equilibrium.

I ter
- = Pp.P. -m, -m, -T)
Now Pij Pipj P1PJ( rnu m, rn £1JP1PJ

where Sij ig the dominance deviation.

{

Thus, negentropy 1 =3 % D. iP5 8 to first order smallness
1]
= dominance variance
When an equilibrium is. reached; I'accounts for the whole genotypic' -
variance, ginece the additive genetic variance vanishes at-an-equili-
brium given by m, = O, Otherwise; under slow selection we have the

equation, Genotypic variance = AV +1

where AV is the change in mean fitness per unit of time.  This pyro-
vides an interesting supplement to Fisher's fundamental theorem of
natural selection in one-locus systems with discrete generations,
random mating, large populations and slow selectiomn. :
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TWO LOCTL
Let Hl’ H2 be the two loe1 with alleles H1 hl' I—I2 hZ' Let

Pi(1:1 4) be the gametic frequencies of HIHZ’ hth thZ ax;d hIHZ

and PPy the gene frequencies of H and H respectwely( = P =
izl

}; pl+q1 = p2+q2 = 1). Let Wij be the fitness of the genotype HiHj SO

that W = ((Wi'j)) is the fitnéss matrix with Wi S Wi and w = w, .

The negentrop'y in a single locus system involved P.., the
frequency of the genotype H1H after selecuon. A simplified function;,
was, however; available for negentropy in the ‘single locus case, In

the two-loc¢i system, the corresponding function for negentropy, Iis
glven by

4

1= == (w DD /V In(w, Jp .D. /V) where V is the mean.

’65

i1 W

~:fitness = E. W1JP1PJ
i,j

/

Again an interesting case is provided by slow selection. We consider
therefore, only slow selection hereafter and expand expressmns to
first order smallness only.

wij‘Pin/V = (1+W;j ) (l—V'r)PiPJ, where the starred quantities

are small and of first order.

= (l4w., - V PP,
i] i ]

: s N, . B 1 i b3 - b
‘I ,%(Hwij A% )pipj n(1 Wi V)

b . b 1 P
+ Zi;?_j Pin(1+wiJ_ ’V Yin :

The first term is equal to zero and the second term will reduce, to
ZP (In'P)(1+a.) a.fter some snnphflca.tlon, Where @, = w, -V.and
1 i i ’ :

W= k wy,,P, as defined in Aruna.cha.la.m and Owen (1971, p. 84)
i i i '

1=2% P(lnP) (te)

AL/2 = = a, AP, + EP(In P) Alw,-V)
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Since 2 Eaf AP

Al =

Negentropy and mean fitness

:ZE(

-V) AP,

= ZEW AP
order (Arunachalam and Owen, 1971, Chapter 4) and‘ =P, (ln P )Aw =
i i i

after some algebra, we would find that

AV + 2 £(1n P.) (w. AP,
G 1 1 1

=P, AV),
i

DV to first:

It can easily be seén that Al will be equal to zero at a non-degenerate

equilibrium.

Fitness Matrix

When the system reaches a degenerate equilibrium,
-ln Pi will be undefined and hence" Al too:

Hle h,h, Hih; hiH,
Hle 97 f:l'.'OO'“ : 96 .96
h1hz 1.00 .97 . 96 .96
thz 96 .96 .98 100
hH; 96 .96 1.00 .98
Recombination ¥Fraction = 0. 04
Gen Alx 10 - AV x 100 ACF x 10 Pl PZ Py P4
1 . 0174 ~. 2520 -, 7049 . 201 . 201 2299 ;299
2 -, 0177 -. 0003 -.0165 . 202 L 202 0,298 . 298
3 ~.0168  -.0003 ~ -.0157° ".203 203 .297 297
4 ~. 0159 -, 0003 =, 0149 . 204 . 204 . 296 ;296
5 -. 0152 %0003 ~. 0141 ;205 . 2050000295 2295
6 -. 0144 ~. 0003 -. 0134 . 206 . 206 ;294 . 294
7 -.0137 ~. 0003 =.0128 . 207 . 207 . 293 .293
8 ,013077°-.0003 =, 0L22 208 208 w292 2292
9 -, 0124 -,0003 0116 .209 2209 291 291
10 ~70118 0002 =010 209 2209 22910 2291
50 -. 0020 -.0001‘ 200190229 229 .271" 4.271‘
100 =, 0003 -, 0000 -, 0003 J236 0236 cobd 264
400 0 0 0 . 238 L 238 262 . 262.,
Table 1: Changes in negentropy and mean fitness in'a two locus

systeln under slow selection (A= AV +ACFE see text)

011212
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To verify whether the derived relationship between ‘AT and AV
holds pood, the example of slow selectidn given by Karlin and Feldman
(1969) was considered and the selection process simulated i a com=-
puter until the system reached the non-degenerate equilibrium,

Py =P, =0,238 P, =P =0,262(Table 1). It was found that the
changes in I'and V were very gradual and slow, But the changes in
23501 Pi) (w, 4F, - P, AYV) denoted by CF in table 1, were fast as

would be expected-and AL, AV and ACF reached the null values
around generation 400, It would thus appear that the comiplications
due to epistatic interactions and linkage would be reflected in the teim
CF, under natural selection,

The results clearly show that the concept of negentropy in
fitness extends to two loci systems (excluding the neighbourhcod of a
degenerate equilibrium). How far it would extend to multi-loci
. systems 15 ar open quest1on.,
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