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1. Introduction

In this paper we discuss string compactifications on orientifolds to six and higher

dimensions. Orientifolds are a generalization of orbifolds [1,2,3,4] in which the orbifold

symmetry includes orientation reversal on the worldsheet (for a review see [5] and references

therein). Orientifolding allows one to construct new perturbative vacua that cannot be

obtained by usual Calabi-Yau compactification of string theory. One can thus explore

different regions in the moduli space of string vacua that were previously not accessible.

In six dimensions we focus on orientifolds of Type IIB theory compactified on a K3

orbifold to obtain six dimensional theories with N = 1 spacetime supersymmetry. It has

recently become clear that the dynamics of D = 6, N = 1 string theories is quite rich

and offers many surprises. There are points in the moduli spaces of these theories where

tensionless strings appear which makes it possible to have non-trivial dynamics in the

infra-red [6,7]. In particular, there can be phase transitions in which the number of tensor

multiplets can change. It is therefore quite interesting to analyze different branches of

the tensor-multiplet moduli space. Usual Calabi-Yau compactifications can give only one

tensor multiplet. In [8] an orientifold was constructed that has nine tensor multiplets. In

this paper we discuss some generalizations that give models with five, seven, nine, or ten

tensor multiplets with different gauge groups. Models with multiple tensor-multiplets can

also be obtained by compactifications of M-theory [6,9,10], or of F-theory [11,12]. The ori-

entifolds that we construct allow one to study the duals of some of these compactifications

as perturbative string theories.

In nine dimensions we consider an orientifold of Type IIB theory compactified on a

circle to obtain the dual of M-theory compactified on a Klein bottle. It is interesting to

note that the compactification of M-theory on a circle gives the Type IIA theory, on an

interval the E8 × E8 heterotic string [13], on a Möbius strip a CHL string[14,15], and on

a torus the Type II string [16]. Thus, compactification on a Klein bottle completes this

list of Ricci-flat compactifications to nine and ten dimensions. We also discuss some issues

regarding the compactification of Type I theory on a torus.

This paper is organized as follows. In section two we first discuss some generalities

about orientifolds. In section three we discuss orientifolds of toroidal compactifications. In

section four we discuss orientifolds of Type IIB theory compactified on K3 orbifolds. The

calculation of tadpoles and the relevant partition sums are summarized in the Appendix.
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2. Some Generalities about Orientifolds

In general our starting point will be some ZN orbifold of toroidally compactified

Type IIB theory. We can then take the orientifold projection (1 + Ωβ)/2, where Ω is

the orientation reversal on the worldsheet and β is some Z2 involution of the orbifold. If

the orbifold group ZN is generated by the element α, then the total projection we would

like to perform is given by ( 1+α+...+αN−1

N )( 1+Ωβ
2 ) in both the twisted and the untwisted

sectors of the orbifold. The orientifold group G can be written as G = G1 +ΩG2 such that

ΩhΩh′ ∈ G1 forh, h′ ∈ G2.

The closed string sector of the orientifold is obtained by projecting the spectrum of

the original orbifold onto states that are invariant under the orientifold symmetry. The

open-string sector of the orientifold arises as follows. Orientifolding introduces unoriented

surfaces in the closed-string perturbation theory. The unoriented surfaces such as the

Klein bottle can have tadpoles of R-R fields in the closed string tree channel. The tadpoles

correspond to the fact that the equations of motion for some R-R fields are not satisfied

because the orientifold plane acts as the source of the R-R fields [1]. By including the right

number of D-branes which are also sources for the R-R fields with opposite charge, one can

cancel these tadpoles. This introduces the open-string sector with appropriate boundary

conditions and Chan-Paton factors. As we shall see, sometimes the Klein bottle amplitude

turns out to have no tadpoles; in these cases there is no need to introduce the open-string

sector, and the closed-string sector by itself describes a consistent theory.

An open string can begin on a D-brane labeled by i and end on one labeled by j. The

label of the D-brane is the Chan-Paton factor at each end. Let us denote a general state

in the open string sector by |ψ, ij〉. An element of G1 then acts on this state as

g : |ψ, ij〉 → (γg)ii′ |g · ψ, i
′j′〉(γ−1

g )j′j , (2.1)

for some unitary matrix γg corresponding to g. Similarly, an element of ΩG2 acts as

Ωh : |ψ, ij〉 → (γΩh)ii′ |Ωh · ψ, j′i′〉(γ−1
Ωh)j′j . (2.2)

2



The relevant partition sums for the Klein bottle, the Möbius strip, and the cylinder

are respectively
∫ ∞

0
dt/2t times

KB : TrU+T
NSNS+RR

{

Ωβ

2

1 + α+ ...+ αN−1

N

1 + (−1)F

2
e−2πt(L0+L̃0)

}

MS : Trλλ
NS−R

{

Ωβ

2

1 + α+ ...+ αN−1

N

1 + (−1)F

2
e−2πtL0

}

C : Trλλ′

NS−R

{

1

2

1 + α+ ...+ αN−1

N

1 + (−1)F

2
e−2πtL0

}

.

(2.3)

Here F is the worldsheet fermion number, and as usual 1+(−1)F

2 performs the GSO pro-

jection. The Klein bottle includes contributions both from the untwisted sector(U) and

the twisted sectors(T) of the original orbifold. Orientation reversal Ω takes NS-R sector to

R-NS sector, so these sectors do not contribute to the trace. The labels λ and λ′ refer to

the type of D-brane an open string ends on. For example, in a theory with both 5-branes

and 9-branes, λ and λ′ are either 5 or 9; one has to include the sectors 55 and 99 for the

Möbius strip, and the sectors 55, 99, 59, and 95 for the cylinder[17]. The tadpoles can be

extracted by factorizing the loop-amplitude in the tree channel. Tadpole cancellation then

determines the number of D-branes as well as the form of the γ matrices introduced earlier,

which in turn determines the open string sector completely. In fact in many examples that

we consider, spacetime supersymmetry and anomaly cancellation usually place powerful

constraints which determine the spectrum even without knowing the full form of the γ

matrices.

Many of the details of the tadpole calculation are similar to those discussed in [5,8,17]

and will not be repeated here. We give a collection of relevant partition sums and their

factorized forms in the tree channel in the Appendix.

3. Orientifolds of Toroidally Compactified Type IIB theory.

3.1. An Example in Nine Dimensions

Consider Type IIB theory compactified say in the X9 direction on a circle S9 of radius

r9. We can take an orientifold with the group {1, SΩ} where S is a half-shift along the

circle, X9 → X9 + πr9. The closed-string sector of this theory is obtained by projecting
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onto states that are invariant under SΩ. The massless bosonic spectrum of Type IIB theory

in ten dimensions consists of the metric gMN , the dilaton φ1, and a two-form B2
MN from

the NS-NS sector; a two-form B1
MN , a scalar φ2, and a four-form AMNPQ with self-dual

field strength from the R-R sector. The fields gMN , φ1, and B1
MN are all even under Ω,

whereas the fields AMNPQ, B2
MN , and φ2 are odd. If we were projecting only under Ω, we

would obtain the spectrum of Type I strings; the superscript 1 above refers to the fields

that survive this projection.

Now, if we expand a given field Ψ in terms of the Kaluza-Klein momentum modes Ψm

carrying quantized momentumm/R then the modes with evenm are even under S, whereas

the modes with odd m are odd. Thus, the combined projection under ΩS eliminates all

odd momentum modes of the fields gMN , φ1, and B1
MN , but all even momentum modes of

AMNPQ, B2
MN , and φ2. In particular, once we restrict ourselves to zero momentum modes

to obtain the massless spectrum in nine dimensions, we obtain the closed string sector of

the Type I string reduced to nine dimensions.

Let us now look at the open-string sector. As explained in the previous section,

open-string sector arises from the addition of D-branes to cancel tadpoles in the Klein

bottle amplitude. Now, because of the half-shift that accompanies Ω, only states with odd

winding appear in the crosscap state and are thus massive. Another way to see this is to

first compute the amplitude in the loop channel and then factorize in the tree channel.

The loop channel momentum sum gives a term proportional to
∑

m(−1)me
−tα

′
m

2

r2

9 where

t is the loop-channel parameter. To see the tadpoles in the tree channel we use Poisson

resummation formula and take the limit t→ 0 corresponding to long, thin tubes; it is easy

to see that in this limit the amplitude vanishes, and there is no tadpole. Therefore, to

obtain a consistent orientifold there is no need to add any branes.

To see what this theory is dual to, we compactify further on a circle S8 of radius

r8 in the direction X8. The Type IIB theory is T-dual to Type IIA under r8 → 1/r8,

and moreover the operation Ω in IIB is dual to R8Ω in IIA where R8 is the reflection

X8 → −X8 [5]. Now Type IIA theory is M-theory compactified on a circle S10 in the X10

direction. The operation R8Ω corresponds, in M-theory, to taking X8 → −X8, at the

same time flipping the sign of the three-form potential CMNP of the eleven dimensional
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supergravity. In M-theory we can interchange the two circles S8 and S10. Therefore, the

combined operation SΩ in Type IIB theory correponds, in M-theory, to X10 → −X10,

X9 → X9 + πr9 which is nothing but the Z2 transformation that turns the torus T9,10

into a Klein bottle. Notice that this is not a purely geometric operation in M-theory

but is accompanied by a simultaneous change of sign of the three-form potential. Under

the interchange of the two circles S10 and S8, the symmetry R8Ω in Type IIA theory is

conjugate to the symmetry (−1)FL , where FL is the spacetime fermion number coming

from the left-movers [18]. All R-R fields are odd under this symmetry and all NS-NS fields

are even. Thus, the strong coupling limit of the orbifold of Type-IIA theory under the

combined operation (−1)FL and X9 → X9 + πr9 is given by M-theory compactified on a

Klein bottle.

It is amusing that we have an example of a compactification on a non-orientable

surface. Another example is M-theory on a Möbius strip which is dual to a CHL com-

pactification [14,15]. Recall that the E8 × E8 string is dual to M-theory on an interval

in the tenth direction: the two E8 factors live at the two endpoints of the interval [13].

Compactifying further on a circle, we obtain M-theory on a cylinder. The CHL string is

obtained as a Z2 orbifold of the heterotic string in nine dimensions. The orbifold symmetry

corresponds to an interchange of the two E8 factors accompanied by a half shift on the

circle. The combined operation is again X10 → −X10, X9 → X9 + πr9 which turns the

cylinder into a Möbius strip [19].

3.2. Type I Theory in Eight Dimensions

Type I theory compactified in the 8 and 9 directions to eight dimensions can be viewed

as an orientifold of the Type IIB theory on the torus T89. It is straightforward to find the

massless spectrum, but there is one subtlety in taking the T-dual of this theory which is

worth mentioning.

Let us T-dualize first in the X9 direction. T-duality is a one sided parity transform

[5] which means that in the RNS formulation of the superstring, only the left-moving

coordinate X̃9 and its fermionic partner Ψ̃9 change sign. Thus, T-duality takes Type IIB

theory to Type IIA theory, and takes Ω to R9Ω, where R9 is the reflection in the X9
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direction. If we dualize again in the X8 direction, we would get Type IIB theory back; Ω

goes to R89Ω, where R89 reflects both X8 and X9. This identification leads to the following

puzzle for the orientifold with the group {1, R89Ω}. Under Ω the four-form field AMNPQ is

odd, therefore the modes like AMNP9 and AMNP8 which are 3-forms in eight dimensions

would be even under the combined operation R89Ω and would survive the projection. But

N = 1 supersymmetry in D = 8 uniquely determines the massless field content and does

not allow a three-form potential. Therefore, supersymmetry is broken by this projection.

On the other hand, the orientifold with the group {1, R89Ω} is T-dual to the one with

the group {1,Ω}, and we cannot break supersymmetry by a T-duality transformation. We

should really have obtained the T-dual of Type I strings in eight dimensions. The reason

for this discrepancy is that Type IIB theory has an additional symmetry (−1)FL under

which all R-R fields are odd. The correct projection that gives the T-dual of Type I theory

involves the combined operation R89(−1)FL instead of just the geometric reflection.

It is easy to see this ambiguity on the worldsheet. In the Ramond sector, the zero

modes Ψ̃M correspond to the ΓM matrices of the spacetime Clifford algebra. Under the

T-duality transformation Ψ̃9 → −Ψ̃9, the spinors transform as

S → S

S̃ → Γ9ΓS̃,
(3.1)

where S and S̃ are the right-moving and left-moving spacetime spinors respectively, and Γ

as usual is the matrix that anticommutes with all ΓM matrices and squares to one. If we T-

dualize further in the X8 direction then S goes to itself, and S̃ goes to Γ8ΓΓ9ΓS̃ = Γ9Γ8S̃.

Let us now see how the massless fields from the Ramond-Ramond sector transform. The

vertex operator for an n-form field strength HM1...Mn
is proportional to S̄ΓM1...Mn

S̃ where

ΓM1...Mn = 1
n!

(ΓM1 ...ΓMn ± permutations). It is easy to see that the effect of T-duality

on the R-R field strengths HM1...Mn
and the corresponding potentials is to remove the 8, 9

indices if they are present and add them if they are not. For example, the vertex operator

for H1
M89 is proportional to S̄ΓMΓ8Γ9S̃. Under T-duality, it would map onto S̄ΓM S̃ which

is the vertex operator for the field strength of a scalar. Thus, B1
89 maps onto the scalar

φ2. However, because Γ8Γ and Γ9Γ anticommute with each other, there is a choice of sign

for the action on the R-R fields, which corresponds precisely to the choice between R89

and R89(−1)FL . This ambiguity is, of course, fixed by the correct choice of the orientifold

symmetry.
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4. Orientifolds of Type IIB theory on K3

4.1. General Remarks

Let us review some relevant facts about the K3 surfaces which can be represented as

ZN orbifolds of the 4-torus T 4 [20]. Let (z1, z2) be the complex co-ordinates on the torus,

and consider the ZN transformation generated by

g : (z1, z2) → (e2πi/Nz1, e
−2πi/Nz2). (4.1)

The ZN group must be a subgroup of SU(2) to obtain unbroken supersymmetry in six

dimensions. The torus T 4 is obtained by identifying a lattice Λ of points in R4, so the

orbifold group must leave the lattice invariant to have a sensible action on the torus. This

crystallographic condition allows only four possibilities: the groups Z2 and Z4 when Λ is

the square (SU(2)4) lattice given by the identifications zi ∼ zk +1,∼ zk + i, k = 1, 2; or Z3

and Z6 when Λ is the hexagonal (SU(3)2) lattice given by the identifications zi ∼ zk +1,∼

zk + e2πi/3, k = 1, 2. At a fixed point of a Zk symmetry there is a curvature singularity. A

smooth K3 can be obtained by blowing up the singularity by replacing a ball around the

fixed point by an appropriate smooth non-compact Ricci-flat surfaces Ek whose boundary

at infinity is S3/Zk.

In this section we consider two classes of orientifold projections (1 + Ωβ)/2 of Type

IIB theory on these orbifolds. In the first class of models we take β to be identity, whereas

in the second class we take β to be a specific Z2 involution S of K3 that has 8 fixed points.

We shall give an explicit description of this involution in the following subsections.

One immediate question is whether the projection leaves any supersymmetries unbro-

ken. In the case of Ω the combination Qα + ΩQ̃α of the left-moving and right-moving

supercharges will be invariant; supersymmetry will be broken by half, giving us N = 1

supersymmetry starting from N = 2. When we combine Ω with S, we do not want to

break the supersymmetry further, so S should leave all N = 2 supersymmetries invari-

ant. This is possible if the rotational part of the symmetry S is a subgroup of SU(2),

or equivalently if it leaves the holomorphic 2-form invariant. It is useful to consider the

example of Z2 orbifold. In this case we have α : (z1, z2) → (−z1,−z2) which generates
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a discrete subgroup of the SU(2) holonomy group of a smooth K3, and therefore leaves

two supercharges invariant giving us N = 2 supersymmetry. The symmetry S is given by

S : (z1, z2) → (−z1 + 1
2 ,−z2 + 1

2 ) which is a combination of a shift and a rotation [8]. The

shift has no effect on the supercharges; the rotation is again a subgroup of the holonomy

group SU(2) and therefore does not break any supersymmetries by itself. Thus the com-

bined operation SΩ gives N = 1 supersymmetry as required. Now, the Z2 orbifold admits

other involutions; for example, the Enriques involution E : (z1, z2) → (−z1 + 1
2 , z2 + 1

2)

which does not leave the holomorphic 2-form invariant, and cannot be used for orientifold-

ing if we want unbroken supersymmetry.

The closed-string sector of an orientifold can be determined by index theory and by

appropriate projection. Recall that the massless representations in D = 6 are labeled by

the representations of the little group which is Spin(4) ∼ SU(2) × SU(2). The massless

N = 1 supermultiplets are

1. the gravity multiplet: (3, 3) + (1, 3) + 2(2, 3),

2. the vector multiplet: (2, 2) + 2(1, 2)

3. the tensor multiplet: (3, 1) + (1, 1) + 2(2, 1)

4. the hyper multiplet: 4(1, 1) + 2(2, 1).

To determine the massless modes we need to know the Dolbeault cohomology [21],

and how the symmetry Ωβ acts on the cohomology. For a smooth K3, the nonzero Hodge

numbers are h00 = h22 = h02 = h20 = 1, and h11 = 20. Among the 2-forms the (0, 2),

(2, 0), and the Kähler (1, 1) form are self-dual, and the remaining 19 (1, 1) forms are anti-

self-dual. The manifolds Ek have (k−1) anti-self-dual (1, 1) harmonic forms, and one (0, 0)

form. In the orbifold limit, each fixed point that is repaired by Ek contributes (k−1) anti-

self-dual (1, 1) forms which together with the (1, 1) forms of the original torus that are

invariant under the orbifold group give the 20 (1, 1) forms of K3.

It is useful to think in terms of Type I theory compactified on a smooth K3. In this

case, the orientation reversal symmetry in ten dimensions, which we shall call Ω0 has the

effect of flipping the sign of AMNPQ, φ2, and B2
MN , leaving other massless fields invariant.

The resulting theory has h11(= 20) hypermultiplets which come from the zero modes of

B1
MN and gMN . There is only one tensor multiplet from contracting B1

MN with the (0, 0)
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form. Now imagine performing a projection not with Ω0 but with Ω0T where T is some

geometric symmetry under which nT (1, 1) forms are odd and all others are even. In this

case, by contracting AMNPQ with these (1, 1) forms, one can obtain nT additional tensor

multiplets that are invariant under the combined operation Ω0T . At the same time, nT

hyper-multiplets are now projected out changing their total number to (20 − nT ). This

reasoning gives the simple equation

nT + nc
H = 20, (4.2)

where nc
H refers to the number of hypermultiplets arising from the closed string sector,

and nT + 1 is the total number of tensor multiplets. Moreover, no vector multiplets arise

from the closed string sector because there are no harmonic odd forms on K3, so starting

with even forms and the metric in ten dimensions, one cannot obtain a one-form vector

potential. We can thus read off the closed string spectrum immediately from the geometric

data of the orientifold.

In the orbifold limit, the orientifold symmetry Ω, for the purposes of counting of states,

is really a combination of Ω0T where T is some geometric symmetry that has nontrivial

action on the cohomology. This is because at each fixed point, Ω takes the sector twisted by

ρ to the one twisted by ρ−1. If we repair the singularity at the fixed point of a Zk symmetry

by the smooth surfaces Ek then the (k−1) (1, 1)-forms coming from Ek correspond to the

(k − 1) twisted sectors. If we think of the orbifold as a limit of a smooth K3, then except

in the case when α is a Z2 twist, we get a nontrivial action on the cohomology denoted

by T . This information is sufficient to work out the spectrum of the orientifold in the

closed-string sector.

Let us now discuss the massless bosonic spectrum coming from the NS open-string

sector. The states

ψµ
−1/2|0, ij〉λji, µ = 1, 2, 3, 4, (4.3)

belong to the vector multiplets whereas the states

ψm
−1/2|0, ij〉λji, m = 6, 7, 8, 9, (4.4)
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belong to the hypermultiplets. We have to keep only the states that are invariant under α

and Ωβ. For this purpose we need to know the form of the γ matrices defined in (2.1) and

(2.2) which are determined by the requirement of tadpole cancelation. The Chan-Paton

wave functions λij allowed by these projections determine the gauge group and the matter

representations.

There are some features of the tadpole calculation that are common to all orbifolds.

First, by the arguments given in [17], only 5-branes and 9-branes appear. Let v6 and v4

be the regularized volumes of the noncompact and the compact spaces in string units. If

we look at the the Klein bottle amplitude in the tree channel then non-zero tadpoles pro-

portional to v6v4 correspond to 10-form exchange requiring addition of 9-branes. Similarly

a term proportional to v6/v4 corresponds to the exchange of 6-forms from the untwisted

sector, requiring addition of 5-branes, and the terms proportional to v6 correspond to the

exchange of 6-forms from the twisted sector and must cancel without the addition of any

branes. Now with the orientifold group G = G1 + ΩG2, 9-branes can arise only if G2

contains the identity, and 5-branes arise only if G2 contains the element R that reflects

all four internal co-ordinates. In these cases the determination of the 10-form and the

untwisted 6-form tadpoles is identical to the calculation in [17] which requires 32 9-branes

with γT
Ω,9 = γΩ,9, and/or 32 5-branes with γT

Ω,5 = −γΩ,5.

4.2. Z2Orbifold

For the Z2 orbifold, the model in the first class with the projection (1 + Ω)/2 has

been discussed in [17], and the model in the second class with the projection (1 + SΩ)/2

in [8]. We would now like to consider a model that is closely related to the one in [8]. Let

us recall that in [8] the symmetry S was chosen to be such that S2 = 1. However, if we

are on a Z2 orbifold, then the symmetry can square to the element α that generates the

orbifold group. We choose

S : (z1, z2) → (iz1,−iz2). (4.5)

Now S has 4 fixed points and not 8. However, they are also the fixed points of α which

is a Z2 symmetry. So on the orbifold, the fixed point of S should be regarded as having
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Euler character 2 giving us the total Euler character of 8 in agreement with the Lefschetz

number [22].

Obviously, the spectrum consists of the closed string sector found in [8] giving us

nT = 8, nH = 12 and the gravity multiplet. However, because now neither R nor the

identity are elements of G2, there is no need to add any branes, and there is no open-string

sector. One nontrivial check is that the tadpoles of the R-R fields from the twisted sector

now have to cancel by themselves for the Klein bottle without any contribution from the

open-string sector. It is easy to see using the formulae in the Appendix that the tadpoles

from the untwisted sector cancel against those from the sector twisted by 1
2

giving us a

consistent theory. Gravitational anomalies cancel completely as expected.

4.3. Z3 Orbifold

The orbifold symmetry in this case has nine fixed points of order 3 which contribute

two anti-self-dual (1, 1) forms each giving 18 in all. Out of the six 2-forms on the torus

one anti-self-dual (1, 1) form and the remaining three self-dual 2-forms are invariant under

α giving us 22 2-forms of the K3.

Let us first consider the projection under Ω. As explained in §4.1, at each fixed point

of the orbifold Ω interchanges the sector twisted by α to that twisted by α−1 besides

flipping the sign of all R-R fields. This means that of the two tensor multiplets coming

from each fixed point, only one will be invariant, giving us nT = 9 from the nine fixed

points, and nc
H = 11 from (4.2).

To determine the open-string sector we note that, by the general arguments mentioned

in §4.1, there will be 32 9-branes, and we can choose γΩ = 1 by a unitary change of basis

[17]. The requirement that (Ωα)2 = α2 implies

γα2 = γ2
α = γΩα(γ−1

Ωα)T . (4.6)

Using the fact the the γ matrices are unitary, and γΩα = γΩγα, we conclude that γα is

real. Furthermore, because γ3
α = 1, the only eigenvalues are cube-roots of unity. If n

eigenvalues are e2πi/3, then n will be e−2πi/3, and 32 − 2n will be 1. We can then write

γ in a block-diagonal form where in a 2n dimensional subspace it acts as a 2π/3 rotation
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and in 32 − 2n dimensional subspace it equals the identity matrix. This information and

anomaly cancellation is enough to determine that n = 8. We can also verify this by a

detailed calculation of tadpoles as discussed in the Appendix. The gauge group will then

be given by SO(16) × U(8) with hypermultiplets in (1, 28) + (16, 8). It is easy to see that

the anomaly terms proportional to tr(F 4) and tr(R4) vanish. It is not necessary for the

remaining anomaly to factorize because we have more than one tensor multiplet available,

and the anomalies can be canceled by the generalized Green-Schwarz mechanism as in

[23,24,8].

Let us now describe the action of S on the Z3 orbifold. It is given by

S : (z1, z2) → (−z1,−z2). (4.7)

S has 16 fixed points on the torus but on the orbifold they split into one singlet and five

triplets of Z3. The Euler character of the fixed point at the origin which is a singlet under

the Z3 is 3 and that of the 5 triplets is 1 each giving 8 altogether. Now, because S is just

a reflection of all co-ordinates, the orientifold with the projection (1 + SΩ)/2 is T-dual

to the one described in the previous paragraphs with the projection(1 + Ω)/2. T-duality

turns 9-branes into 5-branes, but the spectrum remains unchanged.

4.4. Z4 Orbifold

The Z4 orbifold has four fixed points of order 4. Each contributes three tensor mul-

tiplets out of which only one is invariant under the action Ω. No additional tensors arise

from the six doublets of fixed points of order 2. Altogether nT = 4, and nc
H = 16. In this

case both 5-branes and 9-branes will be present, and we can choose

γΩ,9 = 1, γΩ,5 = J ≡

[

0 −i
i 0

]

. (4.8)

The remaining algebra is determined in terms of the matrices γα,9 and γα,5. Tadpoles

are canceled if Tr (γα,9) = Tr (γα,9)
2

= Tr (γα,9)
3

= 0 and similarly for the matrices with

subscript 5. This determines the γ matrices completely. Moreover γα,9 = γα,5, and their

eigenvalues are such that each forth root of unity appears eight times. The gauge group is

U (8)×U (8)×U (8)×U (8) with hypermultiplets in (28, 1, 1, 1)+(1, 28, 1, 1)+(1, 1, 28, 1)+
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(1, 1, 1, 28)+(8, 8, 1, 1)+(1, 1, 8, 8)+(8, 1, 8, 1)+(1, 8, 1, 8). Once again the anomaly terms

proportional to tr
(

F 4
)

for each factor, and the coefficient of tr
(

R4
)

vanish.

Let us now consider the action of the symmetry S which is given by

S : (z1, z2) → (−z1 +
1 + i

2
,−z2 +

1 + i

2
). (4.9)

This form is determined by the requirement that S has to preserve the orbifold symmetries;

in particular, it should map a fixed point of a given order to a fixed point of the same

order. It is easy to check that eight (1, 1) forms are odd under S. The 16 fixed points form

four quartets under Z4. In addition, S leaves two doublets under α invariant which should

be regarded as fixed points on K3 with Euler character 2. The total Euler character of the

fixed point set adds up to 8.

If we consider the orientifold with the projection (1 + ΩS), then only 32 5-branes are

required. As in [8] we find nT = 8, nc
H = 12 from the closed-string sector. We can place

16 branes at a fixed point of α2 which is in a doublet of α that is left invariant by S,

and 16 at its image under α. For example, we can place 16 branes at the
(

1
2 ,

1
2

)

and

the remaining 16 at
(

i
2 ,

i
2

)

. In this case the gauge group is U(8) × U (8), with charged

hyper-multiplets in 2 (8, 8). This is exactly the spectrum of the model considered in [8]

for the Z2 orbifold. If we place 16 branes at the fixed point of α, and 16 at its image

under S, then the gauge group is U(4) × U(4) × U(4) × U(4) with hypermultiplets in

(4, 4, 1, 1) + (4, 1, 4, 1) + (1, 4, 1, 4) + (1, 1, 4, 4).

4.5. Z6 Orbifold

In this case, we get two tensors from the fixed points of order 6 and one each from the

four fixed points of order 3 giving us nT = 6 and nc
H = 14. The open-string sector has both

5-branes and 9-branes. The eigenvalues of the matrix γα,5 = γα,9 are as follows: 1 and −1

appear eight times each and the other sixth roots of unity appear four times each. The

resulting gauge-group is U(4) × U(4) × U(8) with hypermultiplets in (6, 1, 1) + (1, 6, 1) +

(4, 1, 8) + (1, 4, 8) from the 55 sector, and identical spectrum from the 99 sector. The 59

sector contributes hypermultiplets in (4, 1, 1, 4, 1, 1) + (1, 4, 1, 1, 4, 1)+ (1, 1, 8, 1, 1, 8).
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Appendix A. Tadpole Calculation

For evaluating the traces in the loop-channel we need the determinants of chiral bosons

and fermions with twisted boundary conditions. Let us denote by DF

[

a
b

]

the fermion

determinant of a chiral Dirac operator (▽z
− 1

2

) which corresponds to the path integral of a

complex chiral fermion with boundary condition ψ(σ1 + 2π , σ2) = −e2πiaψ(σ1 , σ2), and

ψ(σ1 , σ2 + 2π) = −e2πibψ(σ1 , σ2). It is straightforward to evaluate this determinant in

the operator formalism[25]. Writing q = e2πiτ , and using the standard relation between

the path integral and the operator formalism, it is equal to the trace Tr
H

(hb q
Ha). Ha is

the Hamiltonian of a chiral, twisted fermion:

Ha =

∞
∑

n=1

(n−
1

2
+ a)d†ndn + (n−

1

2
− a)d̄†nd̄n +

a2

2
−

1

24
(A.1)

The fermionic oscillators satisfy canonical anticommutation relations {d†n, dm} = δmn and

{d̄†n, d̄m} = δmn, and H is the usual Fock space representation of these commutations. The

group ZN acts on this Fock space through hdh−1 = −e−2πibd , hd̄h−1 = −e2πibd̄. The

trace equals (up to an arbitrary phase)

e2πiabq
a
2

2
− 1

24

∞
∏

n=1

(1 + qn− 1

2
+ae2πib) (1 + qn− 1

2
−ae−2πib) . (A.2)

Using the product representation of the theta function ϑ
[

a
b

]

(τ) with characteristics [26] ,

we see that

DF

[a

b

]

= Tr
H

(hb q
Ha) =

ϑ
[

a
b

]

(0|τ)

η(τ)
, (A.3)

where η(τ) is the Dedekind η function. The chiral boson determinant is the inverse of

the chiral fermion determinant, except for a = 1
2 when one needs to be careful about the

zero modes. Note that untwisted NS fermions with half-integer modings and antiperiodic

boundary conditions for the trace corresponds to a = 0, b = 0; an untwisted boson with

periodic boundary condition along the σ2 direction corresponds to a = 1
2 , b = 1

2 . Using

these formulae one can write down the traces by inspection. The tadpole calculation

corresponding to the 10-form and the untwisted 6-form exchange are identical to the one in

[17], and will not be repeated here. We shall be interested in the tadpole of only the 6-form
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from the twisted sector which corresponds to the boundary conditions for the determinant

for internal bosons that have only oscillator sums but no momentum or winding sums.

Let us first evaluate the traces in (2.3) for the Klein bottle. The total trace can be

written as
(1 − 1)v6

64N

∫ ∞

0

dt

t4
8

∑

a,b

Z
[a

b

]

, (A.4)

where the (1 − 1) refers to NSNS - RR exchange in the tree channel, v6 is V6/(4πα
′)3;

b = k/N, k = 1, ..., (N − 1) corresponding to the terms with αk in the trace. Only the

untwisted sector and the sector twisted by 1
2

contribute because for other twisted sectors

Ω is off-diagonal; a is therefore either 0, or 1
2 . From the untwisted sector we get

Z
[0

b

]

= 4 sin2(2πb)
ϑ
[

0
1

2

]2
ϑ
[

0
2b+ 1

2

]

ϑ
[

0
−2b− 1

2

]

η6ϑ
[ 1

2

2b+ 1

2

]

ϑ
[ 1

2

−2b− 1

2

]

; (A.5)

and from the sector twisted by 1
2

at each fixed point that is left invariant by αk, we get

Z
[

1
2

b

]

= −
ϑ
[

0
1

2

]2
ϑ
[ 1

2

2b+ 1

2

]

ϑ
[ 1

2

−2b− 1

2

]

η6ϑ
[

0
2b+ 1

2

]

ϑ
[

0
−2b− 1

2

] , (A.6)

where τ = 2it and b = k/N . Let us now turn to the traces for the cylinder. In this case,

in general we can have 55, 99, 59, or 95 sectors. The partition sum is given by

(1 − 1)v6
64N

∫ ∞

0

dt

t4

∑

λ,λ′,b

Z
[λλ′

b

]

Tr (γb,λ)Tr (γ−1
b,λ′), (A.7)

where λ and λ′ take values either 5 or 9, and γλ,b refers to the matrix γλ,αk for b = k/N .

We obtain

Z
[99

b

]

=Z
[55

b

]

= 4 sin2(πb)
ϑ
[

0
1

2

]2
ϑ
[

0
b+ 1

2

]

ϑ
[

0
−b− 1

2

]

η6ϑ
[ 1

2

b+ 1

2

]

ϑ
[ 1

2

−b− 1

2

]

,

Z
[59

b

]

=Z
[95

b

]

= −
ϑ
[

0
1

2

]2
ϑ
[ 1

2

b+ 1

2

]

ϑ
[ 1

2

−b− 1

2

]

η6ϑ
[

0
b+ 1

2

]

ϑ
[

0
−b− 1

2

] ,

(A.8)

with τ = it. The Möbius strip amplitude is given by

(1 − 1)v6
64N

∫ ∞

0

dt

t4

∑

λ,b

Z
[λλ

b

]

Tr (γT
bΩ,λγ

−1
bΩ,λ), (A.9)
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where only 55 and 99 sector contribute. We obtain

Z
[99

b

]

= tan2(πb)Z
[55

b

]

= −4 sin2(πb)
ϑ
[

0
1

2

]2
ϑ
[ 1

2

0

]2
ϑ
[

0
b+ 1

2

]

ϑ
[

0
−b− 1

2

]

ϑ
[ 1

2

b

]

ϑ
[ 1

2

−b

]

η6ϑ
[

0
0

]2
ϑ
[ 1

2

b+ 1

2

]

ϑ
[ 1

2

−b− 1

2

]

ϑ
[

0
b

]

ϑ
[

0
−b

]

, (A.10)

with τ = 2it

To factorize in the tree channel we use the modular transformations under τ → −1/τ :

ϑ

[

a

b

]

(τ) = (−iτ)−
1

2 e−2πiabϑ

[

−b

a

]

(−1/τ)

η(τ) = (−iτ)
− 1

2 η (−1/τ) ,

(A.11)

and take the limit t → 0. While writing the tadpoles we also have to take into account

that the tree channel length l is equal to 1/4t, 1/2t, and 1/8t for the Klein bottle, the

cylinder, and the Möbius strip respectively. The twisted-sector tadpole is then proportional

to (1−1)v6

8N

∫

dl. In this common normalization, we get,

KB : (16)2 sin2(2πb), a = 0, b 6= 0,

− 64, a =
1

2
, b 6= 0,

1

2
;

C : 4 sin2(πb)Tr (γb,λ)Tr (γ−1
b,λ), b 6= 0, λ = 5 or 9,

− Tr (γb,5)Tr (γ−1
b,9 ) − (9 ↔ 5) , b 6= 0;

MS : − 64 sin2(πb)Tr (γT
bΩ,9)Tr (γ−1

bΩ,9), b 6= 0,
1

2

− 64 cos2(πb)Tr (γT
bΩ,5)Tr (γ−1

bΩ,5), b 6= 0,
1

2
.

(A.12)

The Klein bottle contributes −64 from each sector twisted by 1
2 for each fixed point that

is left invariant by αk.
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Note Added:

In a paper [27] that appeared after this work was completed many of the orientifolds

of K3 discussed in §4 have been found independently.
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