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Mott insulator to super�uid transition in the Bose-Hubbard model: a strong-
ouplingapproa
hK. SenguptaDepartment of Physi
s, University of Toronto, 60 St. George Street, Toronto M5T 2Y4 ON, Canadaand Department of Physi
s, Yale university, New Haven, CT-06520-8120N. DupuisDepartment of Mathemati
s, Imperial College,180 Queen's Gate, London SW7 2AZ, UKand Laboratoire de Physique des Solides, CNRS UMR 8502,Université Paris-Sud, 91405 Orsay, Fran
e(Dated: De
ember 8, 2004)We present a strong-
oupling expansion of the Bose-Hubbard model whi
h des
ribes both thesuper�uid and the Mott phases of ultra
old bosoni
 atoms in an opti
al latti
e. By performingtwo su

essive Hubbard-Stratonovi
h transformations of the intersite hopping term, we derive ane�e
tive a
tion whi
h provides a suitable starting point to study the strong-
oupling limit of theBose-Hubbard model. This a
tion 
an be analyzed by taking into a

ount Gaussian �u
tuationsabout the mean-�eld approximation as in the Bogoliubov theory of the weakly intera
ting Bosegas. In the Mott phase, we reprodu
e results of previous mean-�eld theories and also 
al
ulate themomentum distribution fun
tion. In the super�uid phase, we �nd a gapless spe
trum and 
ompareour results with the Bogoliubov theory.PACS numbers: 05.30.Jp,73.43.Nq,03.75.LmI. INTRODUCTIONRe
ent experiments on ultra
old trapped atomi
 gaseshave opened a new window onto the phases of quan-tum matter.1,2 A gas of bosoni
 atoms in an opti
al ormagneti
 trap has been reversibly tuned between super-�uid (SF) and insulating ground states by varying thestrength of a periodi
 potential produ
ed by standingopti
al waves. This transition has been explained on thebasis of the Bose-Hubbard model with on-site repulsiveintera
tions and hopping between nearest neighboringsites of the latti
e.3 As long as the atom-atom intera
-tions are small 
ompared to the hopping amplitude, theground state remains super�uid. In the opposite limitof a strong latti
e potential, the intera
tion energy dom-inates and the ground state is a Mott insulator (MI) whenthe density is 
ommensurate, with an integer number ofatoms lo
alized at ea
h latti
e site.The Gross-Pitaevskii equation or the Bogoliubovtheory4 assume quantum �u
tuations to be small andare unable to des
ribe the SF-MI transition and the MIphase. The SF-MI transition is usually studied within astrong-
oupling perturbation theory whi
h assumes thekineti
 energy to be small and treats exa
tly the on-site repulsion. In the simplest version, the kineti
 en-ergy term is 
onsidered within mean-�eld theory.3,5,6,7The mean-�eld approximation is well known to give areasonable estimate of the 
riti
al on-site repulsion atwhi
h the MI-SF transition o

urs. Flu
tuation 
orre
-tions to the mean-�eld approa
h have also been 
onsid-ered within a systemati
 strong-
oupling expansion.8 Allthese approa
hes have given a reasonable des
ription ofthe MI phase and in parti
ular of the ex
itation spe
-

trum. However, they have not provided a des
ription ofthe SF phase.
In this work, we develop a strong-
oupling expansionof the Bose-Hubbard model whi
h allows us to extendthe treatment of Refs. 3,5,6,7 and des
ribe both theMI and SF phases. Our approa
h is similar to strong-
oupling expansions introdu
ed for the (fermioni
) Hub-bard model.9,10 In Se
. II, we derive an e�e
tive a
tion forthe Bose-Hubbard model in the strong-
oupling limit byperforming two su

essive Hubbard-Stratonovi
h trans-formations of the intersite hopping term. This e�e
tivea
tion involves the exa
t one- and two-parti
le Green'sfun
tions in the lo
al limit (i.e. in the absen
e of inter-site hopping). We then use the standard Bogoliubov ap-proximation: we perform a saddle-point (or mean-�eld)approximation and expand the a
tion to quadrati
 orderin the �u
tuations (Se
. III). In the MI phase, we re
overthe previous mean-�eld result:5,6 We �nd a gapped ex-
itation spe
trum whi
h be
omes gapless at the MI-SFtransition. We also 
al
ulate the momentum distributionfun
tion and study the 
riti
al behavior at the transition.In the SF phase, we obtain a gapless spe
trum (in agree-ment with Goldstone theorem) and 
ompute the Bogoli-ubov sound mode velo
ity. We 
ompare our results withthe Bogoliubov theory.
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2II. EFFECTIVE ACTION IN THESTRONG-COUPLING LIMITThe Bose-Hubbard model is de�ned by the Hamilto-nian
H = −t

∑

〈r,r′〉

(ψ̂†
rψ̂r′ + h.c.)− µ

∑

r

n̂r +
U

2

∑

r

n̂r(n̂r − 1),(1)where ψ̂r, ψ̂
†
r are bosoni
 operators and n̂r = ψ̂†

rψ̂r. Thedis
rete variable r labels the di�erent sites (i.e. minima)of the opti
al latti
e. t is the hopping amplitude betweennearest sites 〈r, r′〉 and U the on-site repulsion. The op-ti
al latti
e is assumed to be bipartite with 
oordinationnumber z. The density, i.e. the average number n ofbosons per site, is �xed by the 
hemi
al potential µ.We write the partition fun
tion Z as a fun
tional in-tegral over a 
omplex �eld ψ with the a
tion S[ψ∗, ψ] =
∫ β

0
dτ{

∑

r
ψ∗

r
∂τψr + H [ψ∗, ψ]} [τ is an imaginary timeand β = 1/T the inverse temperature℄. Introdu
ing anauxialiary �eld φ to de
ouple the intersite hopping termby means of a Hubbard-Stratonovi
h transformation,9,10we obtain

Z =

∫

D[ψ∗, ψ, φ∗, φ]e−(φ|t−1φ)+[(φ|ψ)+c.c.]−S0[ψ
∗,ψ]

= Z0

∫

D[φ∗, φ]e−(φ|t−1φ)
〈

e(φ|ψ)+c.c.
〉

0

= Z0

∫

D[φ∗, φ]e−(φ|t−1φ)+W [φ∗,φ], (2)where we use the shorthand notation (φ|ψ) =
∑

a φ
∗
aψa =

∫ β

0
dτa

∑

ra
φ∗(ra)ψ(ra). t−1 denotes the inverse of theintersite hopping matrix de�ned by trr′ = t if r, r′ arenearest neighbors and trr′ = 0 otherwise. S0 and Z0are the a
tion and partition fun
tion in the lo
al limit(t = 0). 〈· · · 〉0 means that the average is taken with

S0[ψ
∗, ψ]. In the last line of (2), we have introdu
ed thegenerating fun
tion W [φ∗, φ] = ln〈exp

∑

a(φ
∗
aψa+c.c.)〉0of 
onne
ted lo
al Green's fun
tions:11

GRc
{ai,bi}

= (−1)R〈ψa1
· · ·ψaR

ψ∗
bR

· · ·ψ∗
b1〉

=
(−1)Rδ(2R)W [φ∗, φ]

δφ∗a1
· · · δφ∗aR

δφbR
· · · δφb1

∣

∣

∣

∣

∣

φ∗=φ=0

, (3)where {ai, bi} = {a1 · · · aR, b1 · · · bR}. Inverting Eq. (3),we obtain
W [φ∗, φ] =

∞
∑

R=1

(−1)R

(R!)2

′
∑

a1···bR

GRc
{ai,bi}

φ∗a1
· · ·φ∗aR

φbR
· · ·φb1 ,(4)where ∑′ means that all the �elds share the same valueof the site index. If we trun
ateW [φ∗, φ] to quarti
 order

in the �elds, we obtain the a
tion
S[φ∗, φ] = (φ|t−1φ) −W [φ∗, φ]

=
∑

a,b

φ∗a(t
−1
ab +Gab)φb

−
1

4

∑

a1,a2,b1,b2

GIIc
a1a2,b1b2φ

∗
a1
φ∗a2

φb2φb1 , (5)where G ≡ GI. Eq. (5) was used as a starting point byvan Oosten et. al. to study the instability of the MIwith respe
t to super�uidity.6 Their results are summa-rized in Appendix C and lead to the usual mean-�eldphase diagram shown in Fig. 1. It is tempting to go be-yond the mean-�eld approximation by 
onsidering Gaus-sian �u
tuations of the φ �eld about its mean-�eld value.The Green's fun
tion obtained in this way is however notphysi
al sin
e it leads in the SF phase to a spe
tral fun
-tion whi
h is not normalized to unity.13 Physi
al quan-tities like the ex
itation spe
trum, the velo
ity of theBogoliubov sound mode or the momentum distributionin the SF phase are therefore out of rea
h within thisapproa
h.
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FIG. 1: Phase diagram of the Bose-Hubbard model showingthe super�uid phase (SF) and the Mott insulating (MI) phasesat 
ommensurate �lling n. The dashed lines 
orresponds to a�xed density n = 0.2, n = 1 and n = 2. For a 
ommensuratedensity n, the MI-SF transition o

urs for U/(zt) = 2n +

1 + 2(n2 + n)1/2 (for n = 1, this yields U/(zt) ≃ 5.83, i.e.
U/t ≃ 23.31 for a two-dimensional atomi
 gas in a squareopti
al latti
e).These di�
ulties 
an be 
ir
umvented if one performs ase
ond Hubbard-Stratonovi
h de
oupling of the hoppingterm:
Z = Z0

∫

D[ψ∗, ψ, φ∗, φ]e(ψ|tψ)−[(ψ|φ)+c.c.]+W [φ∗,φ]. (6)In Appendix A, we show that the auxiliary �eld of thistransformation has the same 
orrelation fun
tions as theoriginal boson �eld (hen
e the same notation for both�elds). The e�e
tive a
tion S[ψ∗, ψ] is obtained by inte-grating out the φ �eld in Eq. (6). This pro
edure was 
ar-ried out in detail in Ref. 10 in the 
ontext of the fermioni




3Hubbard model. Similarly, we obtain12
S[ψ∗, ψ] = −

∑

a,b

ψ∗
a(G

−1
ab + tab)ψb

+
1

4

∑

a1,a2,b1,b2

ΓII
a1a2,b1,b2ψ

∗
a1
ψ∗
a2
ψb2ψb1 , (7)where ΓII(τ1, τ2; τ3, τ4) is the (exa
t) two-parti
le vertexin the lo
al limit. In Eq. (7), we have negle
ted R-parti
le verti
es (R ≥ 3) whose amplitudes are given bythe (exa
t) lo
al R-parti
le verti
es ΓR.10 ΓII is lo
al inspa
e but has a 
ompli
ated time dependen
e (see Ap-pendix B). In the following, we approximate ΓII by itsstati
 value (obtained by passing to frequen
y spa
e andputting all Matsubara frequen
ies to zero). This approx-imation is justi�ed for energies mu
h below U where thefrequen
y dependen
e of the lo
al two-parti
le vertex isweak. At higher energies, its validity is more di�
ult toassess. Introdu
ing

g =
1

2
ΓII|static, (8)we �nally obtain

S = −

∫ β

0

dτdτ ′
∑

r,r′

ψ∗
r (τ)[G−1(r, τ ; r′, τ ′)

+tr,r′δ(τ − τ ′)]ψr′(τ
′) +

g

2

∫ β

0

dτ
∑

r

ψ∗
rψ

∗
rψrψr.(9)The a
tion (9) is the starting point of our analysis.It is analog to the original a
tion ∫ β

0
dτ{

∑

r
ψ∗

r
∂τψr +

H [ψ∗, ψ]} with two noteworthy di�eren
es: the �free�propagator involves the exa
t lo
al propagator G, andthe amplitude of the boson-boson intera
tion is given bythe exa
t lo
al two-parti
le vertex (approximated hereby its stati
 limit). The a
tion (9) yields the exa
t parti-tion fun
tion Z = Z0

∫

D[ψ∗, ψ]e−S and the exa
t Greenfun
tion −〈ψr(τ)ψ
∗
r′

(τ ′)〉 both in the lo
al (t = 0) and

non-intera
ting (U = 0) limits.9,10. By means of twosu

essive Hubbard-Stratonovi
h transformations of theintersite hopping term, we have thus performed a partialresummation of intera
tion pro
esses and obtained an ef-fe
tive a
tion whi
h provides a suitable starting point inthe strong-
oupling limit.III. MEAN-FIELD AND GAUSSIANAPPROXIMATIONSIn order to study the Mott and super�uid phasesfrom the strong-
oupling e�e
tive a
tion (9), we use thestandard Bogoliubov approximation: we �rst perform asaddle-point (or mean-�eld) approximation and then ex-pand the a
tion (9) to quadrati
 order in the �u
tuations.The saddle-point a
tion is given by
S

Nβ
= −(Ḡ−1 +D)ψ2

0 +
g

2
ψ4

0 , (10)where Ḡ = G(iω = 0), D = zt, andN is the total numberof latti
e sites. The saddle-point value ψ0 (assumed here,with no loss of generality, to be real) is obtained from
∂S/∂ψ0 = 0:

ψ2
0 =







Ḡ−1 +D

g
if Ḡ−1 +D > 0,

0 otherwise.
(11)The MI-SF therefore o

urs when Ḡ−1 + D = 0, inagreement with the results of Appendix C, whi
h leadsto the phase diagram shown in Fig. 1. Using 〈ψr〉 =

δ lnZ(J∗, J)/δJ∗
r
|J∗=J=0, where Z[J∗, J ] is given byEq. (A1) of appendix A, we obtain φ0 = Dψ0 where

φ0 is the mean value of the auxiliary �eld. Near theMI-SF transition, where Ḡ−1 + D ≈ 0, we then �nd
φ2

0 ≃ 2(D−1 + Ḡ)/ḠIIc in agreement with the result ofAppendix C.To quadrati
 order in the �u
tuations ψ̃r = ψr − ψ0,we obtain the a
tion
S =

1

2

∑

k,ω

(ψ̃∗(k, iω), ψ̃(−k,−iω))

(

−G−1(iω) + ǫk + 2gψ2
0 gψ2

0

gψ2
0 −G−1(−iω) + ǫ−k + 2gψ2

0

) (

ψ̃(k, iω)

ψ̃∗(−k,−iω)

)

, (12)where ψ̃(k, iω) is the Fourier transformed �eld of ψ̃r(τ)and ω a bosoni
 Matsubara frequen
y. ǫk, the Fouriertransform of −tr,r′ , is the boson dispersion in the absen
eof the one-site repulsion. A. Mott phase and the MI-SF transitionIn the Mott phase, where ψ0 = 0, the Green's fun
-tion G(k, iω) = −〈ψ(k, iω)ψ∗(k, iω)〉 
an be dire
tly reado� from Eq. (12): G−1(k, iω) = G−1(iω) − ǫk. Using



4Eq. (B2), one obtains
G(k, iω) =

1 − zk

iω − E−
k

+
zk

iω − E+
k

. (13)The two ex
itation energies E±
k

and the spe
tral weight
zk are de�ned by

E±
k

= −δµ+
ǫk
2

±
1

2

[

ǫ2
k

+ 4ǫkUx+ U2
]1/2

,

zk =
E+

k
+ δµ+ Ux

E+
k
− E−

k

, (14)where x = n0+1/2 and δµ = µ−U(n0−1/2). n0 ≡ n0(µ)is the (integer) number of bosons in the lo
al limit for a
hemi
al potential µ (see Appendix B).The ex
itation energies E+
k
,E−

k
, and the 
orrespond-ing spe
tral weight zk and 1 − zk, are shown in Figs. 2-3 in the MI n = 1 of a two-dimensional atomi
 gas ina square opti
al latti
e. The spe
trum exhibits a gap

E+
k=0 − E−

k=0 = (D2 − 4DUx + U2)1/2 whi
h de
reasesas U de
reases. The MI be
omes unstable against su-per�uidity when E+
k=0 = 0 or E−

k=0 = 0, whi
h agreeswith Eq. (C3) of Appendix C and leads to the phasediagram shown in Fig. 1. The gap E+
k=0 − E−

k=0 =

(D2−4DUx+U2)1/2 
loses at the transition if both E+
k=0and E−

k=0 vanish, whi
h o

urs at the tip of the Mottlob. The MI-SF transition then takes pla
e at �xed den-sity, whi
h is the situation of physi
al interest. Figs. 2-3 are obtained with a 
hemi
al potential δµ = −D/2,whi
h ensures that the MI-SF transition takes pla
e at�xed density n = 1 (see Appendix C). The de
reasingof the Mott gap is a

ompanied by an in
rease of spe
-tral weight at k = 0, whi
h diverges at the transition.Figs. 2-3 also show the results of the Bogoliubov theory(as applied to the original Hamiltonian (1)). The Bo-goliubov theory always predi
ts the ground-state to besuper�uid.6 Away from k = 0, it provides a good ap-proximation of the negative energy bran
h E−
k
but givesa poor des
ription of E+

k
.If we expand the equation E±

k=0 = 0 to order O(t2/U),we obtain
µ− Un0 +D(n0 + 1) +

D2

U
(n2

0 + n0) = 0,

µ− U(n0 − 1) −Dn0 −
D2

U
(n2

0 + n0) = 0, (15)whi
h di�ers from the energy 
al
ulation of Ref. 8 byterms of order O(t2/U). This dis
repan
y results fromthe negle
t of the one-loop 
orre
tion due to ΓII in the
al
ulation of the Green's fun
tion [Eq. (13)℄, whi
h alsogives a 
ontribution of order O(t2/U). However, evenwithout this term the phase diagram looks qualitativelysimilar to the Freeri
ks and Monien phase diagram.From the Green's fun
tion (13), we 
an also ob-tain the momentum distribution nk = 〈ψ∗
k
ψk〉 =

−
∫ 0

−∞ dωA(k, ω) = 1 − zk. nk measures the spe
tral
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� M X �FIG. 2: Top: Ex
itation energies E+
k

(solid line) and E−

k(dashed line) in the MI n = 1 for U = 30t. Bottom: Spe
tralweight zk (solid line) and 1−zk (dashed line). The dotted linesshow the result obtained from the Bogoliubov theory (whi
hpredi
ts the phase to be super�uid). [Γ = (0, 0), M = (π, π)and X = (π, 0).℄ Results shown in Figs. 2-5 are obtained fora two-dimensional atomi
 gas in a square opti
al latti
e.
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� M X �FIG. 3: Same as Fig. 2, but for U = 25t.weight of the negative energy E−
k
of the spe
trum. Deepin the Mott phase, the momentum distribution is roughly�at. Closer to the MI-SF transition, a peak developsaround k = 0. This peak diverges at the transition(Fig. 4).The 
riti
al theory of the SF-MI transition 
an be ob-
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kψk〉 in the MI n = 1for U = 30t (top) and U = 25 (bottom).tained from the a
tion (9) by expanding the inverse prop-agatorG−1(iω)−ǫk to quadrati
 order in k and ω. Notingthat ∂G−1(iω)/∂(iω)|iω=0 = ∂Ḡ−1/∂µ (and similarly forthe se
ond-order derivative), we obtain

S =

∫ β

0

dτ

∫

dr
[

r0|ψ
2
r
| +K1ψ

∗
r
∂τψr +K2|∂τψr|

2

+K3|∇ψr|
2 +

u

2
|ψr|

4
]

, (16)where
r0 ∝ Ḡ−1 +D,

K1 ∝
∂r0
∂µ

. (17)At all points on the MI-SF transition line ex
ept at theMott lob tip, r0 vanishes but K1 remains �nite. The
riti
al theory has then a dynami
al exponent z = 2. Atthe tip of the Mott lob where both r0 and K1 vanish, thedynami
al exponent z = 1. A similar analysis, based onthe e�e
tive a
tion S[φ∗, φ], 
an be found in Ref. 7.B. Super�uid phaseIn the SF phase (ψ0 6= 0), the Green's fun
tion ofthe ψ̃ �eld is obtained by inverting the 2 × 2 matrixpropagator in Eq. (12). For the diagonal 
omponent

G(k, iω) = −〈ψ̃(k, iω)ψ̃∗(k, iω)〉, we obtain
G(k, iω) =

(iω + δµ+ Ux)(iω − z+
k

)(iω − z−
k

)

(ω2 + E+2
k

)(ω2 + E−2
k

)
, (18)where

E±2
k

= −
Bk

2
±

1

2
(B2

k − 4Ck)1/2,

z±
k

=
Ãk

2
±

1

2
(Ã2

k − 4B̃k)1/2,

Ãk = 2δµ− 2(Ḡ−1 +D) − ǫk,

B̃k = −(2Ḡ−1 + 2D + ǫk)(δµ+ Ux) + δµ2 −
U2

4
,

Bk = 2B̃k − Ã2
k

+ (Ḡ−1 +D)2,

Ck = B̃2
k − (Ḡ−1 +D)2(δµ+ Ux)2. (19)From (18), we dedu
e the spe
tral fun
tion A(k, ω) =

− 1
π ImG(k, ω + i0+):
A(k, ω) =

(E+
k

+ δµ+ Ux)(E+
k
− z+

k
)(E+

k
− z−

k
)

2E+
k

(E+2
k

− E−2
k

)
δ(ω − E+

k
)

+
(E+

k
− δµ− Ux)(E+

k
+ z+

k
)(E+

k
+ z−

k
)

2E+
k

(E+2
k

− E−2
k

)
δ(ω + E+

k
)

−
(E−

k
+ δµ+ Ux)(E−

k
− z+

k
)(E−

k
− z−

k
)

2E−
k

(E+2
k

− E−2
k

)
δ(ω − E−

k
)

−
(E−

k
− δµ− Ux)(E−

k
+ z+

k
)(E−

k
+ z−

k
)

2E−
k

(E+2
k

− E−2
k

)
δ(ω + E−

k
).(20)The Green's fun
tion (18) has the desired physi-
al properties. The spe
tral fun
tion is normal-ized, ∫ ∞

−∞
dωA(k, ω) = 1, and has the 
orre
t sign:

sgn[A(k, ω)] = sgn(ω).13 There are four ex
itationbran
hes ±E±
k
, two of whi
h (±E−

k
) being gapless for

k → 0 (Fig. 5). However, for a given value of k, onlytwo bran
hes 
arry a signi�
ant spe
tral weight. Awayfrom k = 0, the spe
tral weight is almost 
ompletely ex-hausted by E+
k

and −E−
k
. In the vi
inity of k = 0, thetwo gapless bran
hes ±E−
k

exhaust the spe
tral weight.By expanding E−
k

in the vi
inity of k → 0, we �nd alinear spe
trum
E−

k
= c|k|, (21)where

c =

[

2t(Ḡ−1 +D)

α2 + 2γ(Ḡ−1 +D)

]1/2

,

α =
δµ2 + 2δµUx+ U2/4

(δµ+ Ux)2
,

γ =
U2(x2 − 1/4)

(δµ+ Ux)3
. (22)
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itation energies ±E±

k
and spe
tral weight in theSF phase n = 1 and U = 20.Our strong-
oupling approa
h therefore reprodu
es theBogoliubov (Goldstone) mode of the SF phase.As dis
ussed in Se
. III A, our strong-
oupling theoryis not an expansion order by order in t/U . For this rea-son, the 
omputation of the 
hemi
al potential from thesingle-parti
le Green's fun
tion, i.e. n = Tr(G), is notreliable. We have therefore used the 
hemi
al potentialobtained within the mean-�eld approximation dis
ussedin Appendix C.Fig. 5 also shows the results of the Bogoliubov theory(as applied to the Hamiltonian (1)) for the same 
hemi
alpotential µ. The Bogoliubov theory provides a good ap-proximation to E−

k
and therefore to the low-energy partof the ex
itation spe
trum. This implies that the velo
-ity of the gapless mode [Eq. (22)℄ 
an be approximatedby the Bogoliubov result c = [2t(µ+D)]1/2. Away from

k = 0, the Bogoliubov approa
h gives a rather poor de-s
ription of E+
k
.The Green's fun
tion G(k, iω) yields the momentumdistribution

nk = 〈ψ∗
kψk〉

= Nψ2
0δk,0 −

∫ 0

−∞

dωA(k, ω), (23)Apart from the 
ondensate 
ontribution Nψ2
0δk,0, themomentum distribution fun
tion is dire
tly given by thespe
tral weight of the negatives energies −E+

k
and −E−

k(Fig. 5).Fig. 6 shows the integrated spe
tral fun
tion ρ(ω) =
∫

d2k
(2π)2A(k, ω) for a 
ommensurate density n = 1. Deepin the Mott phase, ρ(ω) is essentially given by the non-intera
tion density of states of free bosons on the square

-1.0 -0.5 0.0 0.5 1.0
-5

0

5

( )D

/UFIG. 6: Integrated spe
tral fun
tion ρ(ω) =
∫

d2k
(2π)2

A(k, ω) inthe MI n = 1 (µ = U/2 −D/2): U/t = 80 (dashed line), 40(thin solid line)and 23.33 (thi
k solid line). The transition tothe SF phase o

urs for U/t ≃ 23.31.latti
e 
entered around −µ and U − µ and with relativespe
tral weigths −n0 and n0+1. The two peaks near ω =
−µ and ω = U−µ are due to the Van Hove singularities inthe density of states of free bosons. When de
reasing thevalue of U/t, the Mott gap de
reases and ρ(ω) stronglyin
reases at the gap edges. At the 
riti
al value U/t ≃
23.31, the gap 
loses and ρ(ω) diverges at ω = 0. Thisdivergen
e persists in the super�uid phase.IV. CONCLUSIONBy performing two su

essive Hubbard-Stratonovi
htransformations of the intersite hopping term, we haveshown how to derive an e�e
tive a
tion whi
h provides asuitable starting point to study the strong-
oupling limitof the Bose-Hubbard model. This a
tion 
an then beanalyzed by taking into a

ount Gaussian �u
tuationsabout the mean-�eld approximation as in the Bogoliubovtheory of the weakly intera
ting Bose gas. The main im-provement over previous related approa
hes5,6,7,8 is thepossibility to des
ribe both the Mott and SF phases.Both in the Mott and SF phases, we 
ompute the ex
ita-tion spe
trum and the momentum distribution. Our ap-proa
h 
learly shows how the ex
itation spe
trum, whi
his gapped in the MI phase, be
omes gapless at the MI-SFtransition.The strong-
oupling expansion presented in this papershould in prin
iple also applies to more 
ompli
ated situ-ations where for instan
e several atom spe
ies are presentin the opti
al latti
e.Note added: after 
ompleting this paper, we be
ameaware of two related works. Konabe et al.14 have stud-ied the single-parti
le ex
itation spe
trum in the Mottphase and obtained results similar to ours. The method



7used by these authors bears some similarities with thestrong-
oupling expansion dis
ussed in the present pa-per. Within a slave-boson representation of the Bose-Hubbard model, Di
kers
heid et. al.15 have dis
ussedboth the Mott and SF phases. Their results agree withours (whenever the 
omparison is possible).APPENDIX A: HUBBARD-STRATONOVICHTRANSFORMATIONSThe Green's fun
tions of the boson �eld ψ 
an be ob-tained from the generating fun
tion11
Z[J∗, J ] =

∫

D[ψ∗, ψ]e(ψ|tψ)−S0[ψ
∗,ψ]+[(J|ψ)+c.c.], (A1)

where J∗
r
, Jr are external sour
es. After the Hubbard-Stratonovi
h de
oupling of the intersite hopping term [seeEq. (2)℄ and the shift φ∗ → φ∗ − J∗,φ → φ − J of theauxiliary �eld, we obtain

Z[J∗, J ] =

∫

D[ψ∗, ψ, φ∗, φ]e−(φ−J|t−1(φ−J))+[(φ|ψ)+c.c.]−S0[ψ
∗,ψ]

= Z0

∫

D[φ∗, φ]e−(φ−J|t−1(φ−J))+W [φ∗,φ]. (A2)A se
ond Hubbard-Stratonovi
h de
oupling of the hopping term (with an auxiliary �eld ψ′) leads to
Z[J∗, J ] = Z0

∫

D[ψ′∗ψ′, φ∗, φ]e(ψ
′|tψ′)−[(ψ′|φ−J)+c.c.]+W [φ∗,φ]

= Z0

∫

D[ψ′∗ψ′, φ∗, φ]e(ψ
′|tψ′)−[(ψ′|φ)+c.c.]+[(ψ′|J)+c.c.]+W [φ∗,φ]. (A3)

From (A3) we dedu
e that Z[J∗, J ] is also the generatingfun
tion of the Green's fun
tions of the ψ′ �eld. ψ′ 
antherefore be identi�ed with the original boson �eld ψ.APPENDIX B: CALCULATION OF THE LOCALGREEN'S FUNCTIONS G AND GIIIn the absen
e of intersite hopping (t = 0), the states
|p〉 = (p!)−1/2(ψ̂†)p|0〉 (p ≥ 0 integer) are eigenstateswith eigenvalues ǫp = −µp+(U/2)p(p−1). [We 
onsidera single site and therefore drop the site index.℄ |0〉 is theva
uum of parti
les. This yields the partition fun
tion
Z0 =

∑∞
p=0 e

−βǫp . In the ground-state, for a given valueof the 
hemi
al potential µ, there are n0 bosons per site,where n0 is obtained from ǫn0
= minpǫp. The latter
ondition leads to n0 − 1 ≤ µ/U ≤ n0 if µ ≥ −U , and

n0 = 0 if µ ≤ −U . Note that n0 is integer (ex
ept when

µ/U = p is integer; the states |p〉 and |p + 1〉 are thendegenerate), even when the boson density n is not.The single-parti
le Green's fun
tion G(τ) =

−〈Tτ ψ̂(τ)ψ̂†(0)〉 is easily 
al
ulated using the 
lo-sure relation ∑∞
p=0 |p〉〈p| = 1. For τ > 0, one �nds

G(τ) = −
1

Z0

∞
∑

p=0

(p+ 1)e−(β−τ)ǫp−τǫp+1, (B1)and, in frequen
y spa
e,
G(iω) =

−n0

iω + ǫn0−1 − ǫn0

+
n0 + 1

iω + ǫn0
− ǫn0+1

, (B2)where ω is a bosoni
 Matsubara frequen
y.The two-parti
le Green's fun
tion 
an be 
al
ulated inthe same way. One �nds
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GII(τ1, τ2; τ3, τ4 = 0) = 〈Tτ ψ̂(τ1)ψ̂(τ2)ψ̂

†(0)ψ̂†(τ3)〉

=
1

Z0

∞
∑

p=0

e−βǫp
[

(p+ 1)(p+ 2)eτ1(ǫp−ǫp+1)+τ2(ǫp+1−ǫp+2)+τ3(ǫp+2−ǫp+1)θ(τ1 − τ2)θ(τ2 − τ3)

+(p+ 1)(p+ 2)eτ1(ǫp+1−ǫp+2)+τ2(ǫp−ǫp+1)+τ3(ǫp+2−ǫp+1)θ(τ2 − τ1)θ(τ1 − τ3)

+(p+ 1)2eτ1(ǫp−ǫp+1)+τ2(ǫp−ǫp+1)+τ3(ǫp+1−ǫp)[θ(τ1 − τ3)θ(τ3 − τ2) + θ(τ2 − τ3)θ(τ3 − τ1)]

+p(p+ 1)eτ1(ǫp−1−ǫp)+τ2(ǫp−ǫp+1)+τ3(ǫp−ǫp−1)θ(τ3 − τ1)θ(τ1 − τ2)

+p(p+ 1)eτ1(ǫp−ǫp+1)+τ2(ǫp−1−ǫp)+τ3(ǫp−ǫp−1)θ(τ3 − τ2)θ(τ2 − τ1)
]

. (B3)After a somewhat tedious 
al
ulation, we obtain for theFourier transform of the 
onne
ted part in the stati
limit:
ḠIIc =

∫ β

0

dτ1dτ2dτ3G
II(τ1, τ2; τ3, 0) − 2β[G(iω = 0)]2

= −
4(n0 + 1)(n0 + 2)

(2µ− (2n0 + 1)U)(Un0 − µ)2

−
4n0(n0 − 1)

(µ− U(n0 − 1))2(U(2n0 − 3) − 2µ)

+
4n0(n0 + 1)

(µ− Un0)(−µ+ U(n0 − 1))2

+
4n0(n0 + 1)

(µ− Un0)2(−µ+ U(n0 − 1))

+
4n2

0

(−µ+ U(n0 − 1))3

+
4(n0 + 1)2

(µ− Un0)3
. (B4)The stati
 limit of the two-parti
le vertex ΓII is equal to

−ḠIIc/Ḡ4.APPENDIX C: AUXILIARY-FIELD MEAN-FIELDAPPROACHIn this appendix, we review the mean-�eld resultsobtained from the a
tion S[φ∗, φ] [Eq. (5)℄.6 Within asaddle-point approximation, where the �eld φ0 is takenreal and assumed to be time and spa
e independent, wea
tion be
omes
S

Nβ
= (D−1 + Ḡ)φ2

0 −
1

4
ḠIIcφ4

0, (C1)where D = zt. Ḡ and ḠIIc are the single-parti
le andtwo-parti
le lo
al Green's fun
tions in the stati
 limit

(see Appendix B). The ground-state energy per site E =
− limβ→∞

1
Nβ lnZ is then given by [see Eq. (2)℄

E = a0 + a2φ
2
0 + a4φ

4
0, (C2)where a0 = − limβ→∞

1
Nβ lnZ0 is the ground-state en-ergy in the lo
al limit, a2 = D−1 + Ḡ, and a4 = − 1

4 Ḡ
IIc.The mean-�eld value φ0 is obtained by minimizing E. φ0vanishes in the Mott phase (a2 > 0) and takes a �nitevalue in the SF phase (a2 < 0). The MI-SF transition isthen given by a2 = 0, whi
h leads to

δµ± = −
D

2
±

1

2

[

D2 + U2 − 4DUx
]1/2

, (C3)where n0 is the integer number of bosons in the lo
allimit for a 
hemi
al potential µ (see Appendix B). xand δµ are de�ned in Se
. III. For ea
h value of n0,Eq. (C3) de�nes a Mott lob in the U − µ phase diagram(Fig. 1), whose tip 
orresponds to δµ+ = δµ− = −zt/2and U/(zt) = 2n0 + 1 + 2(n2
0 + n0)

1/2. At the lob tip,
∂a2/∂µ = 0.In the SF phase, the order parameter φ0 is given by
φ2

0 = −a2/(2a4), and the ground-state energy takes thevalue
E = a0 −

a2
2

4a4
. (C4)From (C4), we dedu
e the mean boson density

n = −
∂E

∂µ
= n0 +

1

4

∂

∂µ

(

a2
2

a4

)

≃ n0 +
a2

2a4

∂a2

∂µ
, (C5)where the last equality holds near the MI-SF transition(a2 ≈ 0). We have used n0 = −∂a0/∂µ. We 
on
ludethat, at the MI-SF transition, the boson density remainspinned at the integer value n0 if ∂a2/∂µ = 0, whi
h 
or-responds to the tip of the Mott lob in the µ − U phasediagram (Fig. 1).1 M. Greiner, O. Mandel, T. Esslinger, T.W. Häns
h, and I.Blo
h, Nature 415, 39 (2002). 2 T. Stöferle, H. Moritz, C. S
hori, M. Köhl, and T.



9Esslinger, Phys. Rev. Lett. 92, 130401 (2004).3 M.P.A. Fisher, P.B. Wei
hman, G. Grinstein, and D.S.Fisher, Phys. Rev. B 40, 546 (1989); D. Jaks
h, C. Bruder,J.I. Cira
, C.W. Gardiner, and P. Zoller, Phys. Rev. Lett.81, 3108 (1998).4 See, for instan
e, L. Pitaevskii and S. Stringari, Bose-Einstein 
ondensation (Oxford University Press, 2003).5 K. Sheshadri, H.R. Krishnamurthy, R. Pandit, and T.V.Ramakrishnan, Europhys. Lett. 22, 257 (1993).6 D. Van Oosten, P. van der Straten, and H.T.C. Stoof, Phys.Rev. A 63,053601 (2001).7 S. Sa
hdev, Quantum Phase Transitions (Cambridge Uni-versity, Cambridge, England, 1999).8 J.K. Freeri
ks and H. Monien, Europhys. Lett. 26, 545(1994); ibid. Phys. Rev. B 53, 2691 (1996).9 S. Pairault, D. Séné
hal, and A.-M. S. Tremblay, Phys.Rev. Lett. 80, 5389 (1998); ibid., Eur. Phys. J. B 16, 85

(2000).10 N. Dupuis, Nu
l. Phys. B 617, 618 (2000); ibid
ond-mat/0105063.11 see, for instan
e, J.W. Negele and H. Orland, QuantumMany Parti
le Systems (Addison-Wesley, 1988).12 Here we negle
t the �anomalous� terms of the a
tion sin
ethey play no role in the following.1013 As noted by Pairault et. al.,9 strong-
oupling expansionsusually lead to a non-physi
al single-parti
le Green's fun
-tion (e.g. a negative spe
tral weight in fermion systems ora non-normalized spe
tral fun
tion).14 S. Konabe, T. Nikuni, and M. Nakamura,
ond-mat/0407229.15 D.B.M. Di
kers
heid, D. van Oosten, P.J.H. Denteneer,and H.J. Stoof, Phys. Rev. A 68, 043623 (2003).

http://arXiv.org/abs/cond-mat/0105063
http://arXiv.org/abs/cond-mat/0407229

