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We study the phases of doped spin S = 1/2 quantum antiferromagnets on the square lattice,
as they evolve from paramagnetic Mott insulators with valence bond solid (VBS) order at doping
δ = 0, to superconductors at moderate δ. The interplay between density wave/VBS order and
superconductivity is efficiently described by the quantum dimer model, which acts as an effective
theory for the total spin S = 0 sector. We extend the dimer model to include fermionic S = 1/2
excitations, and show that its mean-field, static gauge field saddle points have projective symmetries
(PSGs) similar to those of ‘slave’ particle U(1) and SU(2) gauge theories. We account for the non-
perturbative effects of gauge fluctuations by a duality mapping of the S = 0 dimer model. The
dual theory of vortices has a PSG identical to that found in a previous paper (L. Balents et al.,
cond-mat/0408329) by a duality analysis of bosons on the square lattice. The previous theory
therefore also describes fluctuations across superconducting, supersolid and Mott insulating phases
of the present electronic model. Finally, with the aim of describing neutron scattering experiments,
we present a phenomenological model for collective S = 1 excitations and their coupling to superflow
and density wave fluctuations.

I. INTRODUCTION

In a previous paper1 (hereafter referred to as I), we de-
scribed the physics of two-dimensional superfluids in the
vicinity of a localization transition into a commensurate
Mott insulator. Our primary focus was on bosons on the
square lattice, and we demonstrated the role played by
the projective transformations (the PSG) of the vortices
in the superfluid under operations of the square lattice
space group. The present paper will extend our analysis
to paired electron models on the square lattice, with the
aim of justifying applicability to the cuprate supercon-
ductors. A simple physical argument based on universal-
ity was given in I clearly validating that analysis when
the superconducting state neighboring the Mott insula-
tor is an s-wave state with a large quasiparticle gap, and
it was claimed that the same description also holds for a
similarly gapped “strong pairing” d-wave state. In this
paper, we back up this claim with detailed microscopic
analysis of a set of models that incorporate local singlet
formation. Specifically, we find that most of the results
of I can be applied essentially unchanged, with the PSG
determined by the particle density of Cooper pairs. We
will also discuss the extent to which our results can be
applied to “weak pairing” d-wave superconductors with
gapless nodal quasiparticles.

Most of our analysis here will be carried out in the
context of the quantum dimer model. This model was
proposed by Rokhsar, Kivelson, and Fradkin2,7 as an ef-
fective theory of the S = 0 excitations of the insulat-
ing, paramagnetic phases of square lattice antiferromag-
nets. For generic parameters, the insulating dimer model
has a ground state which breaks the symmetry of the
square lattice space group with the development of va-
lence bond solid (VBS) order3,4,5,6. The dimer model was
also extended2,7 to allow for S = 0 charged excitations:

the Hilbert space was expanded to include bosonic holes
with density δ, and it was argued that the ground state is
a superfluid at finite δ (the pairing symmetry of this su-
perconducting state is somewhat unclear in these works,
and will be clarified below). The doped quantum dimer
model is therefore ideally suited to our primary purpose
here of describing the evolution from the VBS Mott in-
sulator to the superfluid as a function of increasing δ.

We will begin in Section II by reviewing the
formulation7,8 of the quantum dimer model as a compact
U(1) gauge theory (with gauge field Â) in the presence
of a background static matter field of charges ±1 on the
two sublattices of the square lattice. Upon doping, the
holes appear as two S = 0 dynamic bose fields biσ (i is
a square lattice site index and the index σ = ±1 labels
the sublattice upon which the boson primarily resides).
These bosons have charges σ under the compact U(1)

gauge field Â.

In Section III we show how the above theory of the
spin S = 0 sector can be extended to include S = 1/2
fermionic excitations fis (s =↑, ↓ is a spin label). These
fermionic ‘spinons’ also carry unit staggered charges
under the compact U(1) gauge field Â. While these
fermionic excitations are gapped and confined in the un-
doped insulator, the structure of our theory allows these
fermions to become gapless quasiparticles at nodal points
in a possible d-wave superconducting ground state at fi-
nite δ: they then become the conventional S = 1/2 Bo-
goliubov quasiparticles of this superconductor. With this
construction, we can directly discuss the pairing symme-
try of the superfluid states of the doped dimer model. We
will also consider collective S = 1 ‘triplon’ excitations in
Section V.

So far we have mainly defined the degrees of freedom of
our theory on the lattice scale, but this generally does not
specify its ultimate ground state or the quantum num-
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bers of its quasiparticles. In particular, we are consider-
ing a strongly interacting 2+1 dimensional compact U(1)
gauge theory, and the non-perturbative fluctuations of
Â must be treated with great care. Generally, for the
dimer models we consider here, these fluctuations drive
confinement at long scales. Nevertheless, it is useful to
initially neglect gauge fluctuations and to consider mean-
field saddle points with a fixed background Â. Such sad-
dle points describe (unstable) ‘spin liquid’ states, which
may be considered the progenitors of the superconduct-
ing and/or charge ordered Mott phases which appear as
ground states. A subsequent treatment of gauge fluc-
tuations describes this evolutionary descent via confine-
ment or the Higgs mechanism. Remarkably, we will find
in Section III C that, at least at the level of PSGs, the
spin liquid saddle points of the dimer model are related
to particular (generalized) saddle points of earlier slave-
particle U(1) (Refs. 9,10) or SU(2) (Ref. 11) gauge the-
ories. The particular saddle points appropriate to dimer
models, however, are distinct from those advocated as
candidate spin liquid states in the slave particle work.
They have appeared – without much attention – in Wen’s
PSG classification of symmetric spin liquids16 (the spe-
cific identifications of these spin liquids appear at the
end of Section III C). Our work thus resolves one ques-
tion posed in Ref. 16, as to how the (putative) spin liquid
states of the quantum dimer model fit into this classifica-
tion scheme. Beyond classification, the physical interpre-
tation we shall give to our dimer model saddle points, and
our subsequent non-perturbative treatment of gauge fluc-
tuations, lead us eventually to conclusions on the physical
properties of our theory which differ from those reached
in Refs. 11,12.

There is one situation in which it is clear that the Â
gauge fluctuations are relatively innocuous. This is the
moderate δ state in which the biσ are strongly condensed
and the square lattice symmetry is fully preserved: the
condensate acts like a Higgs field which quenches Â fluc-
tuations. Such a state is a superconductor, and we will
show in Section III D that microscopic energetic consid-
erations and the PSG constrain the pairing symmetry of
the superconductor; d- and s- wave (and other) pairings
emerge under suitable conditions.

So what is the fate of this putative d-wave supercon-
ductor as δ is reduced? As noted above, we know from
Refs. 3,8 that strong Â fluctuations produce a VBS in-
sulator at δ = 0, and so a careful treatment of Â fluc-
tuations must surely become increasingly important as δ
is reduced. In previous work10,13,14,15 on U(1) slave par-
ticle and related theories, the evolution between a finite
δ d-wave superconductor and a VBS insulator at δ = 0
was addressed in a mean-field theory (similar to that just
discussed above) but which also allowed for breaking of
the square lattice symmetry by the development of den-
sity wave/VBS order coexisting with superfluidity. This
had the advantage of explicitly displaying the evolution of
the gapless fermionic nodal quasiparticle excitations with
decreasing δ: the nodes present at larger δ disappeared

(due to collisions in pairs at the (reduced) Brillouin zone
boundaries) at a critical doping δ = δf , larger than the
doping δc at which the Mott transition occurs. For small
enough δ < δc, a fully-gapped insulating VBS state was
obtained. However, this work treated gauge or VBS fluc-
tuations in a cavalier manner, and the VBS order was
static and likely overestimated in magnitude.

In the application to the cuprates, we have in mind
that these insulating or supersolid states obtained in our
theory at finite doping are models of the situation near
doping δ = 1/8. There is much experimental evidence
(e.g. in La1.6−xNd0.4SrxCuO4 in Ref. 17) that exactly
at δ = 1/8 the superconductivity is strongly suppressed,
and perfect long-range order with a period of 4 lattice
spacings develops (as is also the case in Fig 9).

In Section IV, we will address the δ driven evo-
lution from a VBS insulator to a superconductor
in an approach which fully accounts for the non-
perturbative effects of the fluctuations of Â. No previous
analysis10,11,12,13,14,15,16 has accounted for strong gauge
fluctuations in this regime. However, we will only be able
to do this in the context of the S = 0 model of Section II:
non-zero S excitations will be neglected in Section IV.
While this is probably safe within the phases obtained
therein, neglect of gapless nodal S = 1/2 fermionic exci-
tations is likely invalid at the quantum critical points. A
full treatment which synthesizes the results of Sections III
and IV, and thus accounts for both strong Â fluctuations
and gapless S = 1/2 fermions at quantum critical points
is not available, and remains a challenging and important
open problem.

The analysis of the S = 0 sector in Section IV is carried
out by a duality mapping into a theory of vortices. The
resulting effective theory for the vortices has a structure
similar to the models considered in I, and can therefore
be similarly classified by an analysis of the action of the
PSG on the vortices. With the knowledge of the PSG,
many of the results of I can be directly applied here. We
will also present in Section IVB a mean-field analysis of
the dual vortex theory which results in a phase diagram
of the dimer model as a function of δ. It is important to
note that this dual mean-field theory accounts for non-
perturbative confining effects of the Â fluctuations: these
are built into the duality mapping.

II. QUANTUM DIMER MODEL

This section describes the doped quantum dimer
model2, viewed as an effective theory of the spin S = 0
sector of doped quantum antiferromagnets. The resulting
theory will be a compact U(1) gauge theory7,8 coupled to
two classes of matter fields: (i) static charges of ±1 on
the two sublattices, and (ii) dynamic bosons of charges
±1 with a total physical density δ (note: bosons of both
gauge charges contribute a positive number to the phys-
ical density).

The Hamiltonian of the quantum dimer model can be
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(a)

(b)
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FIG. 1: Elementary moves of the quantum dimer model. (a)
The resonance of two dimers around a plaquette, which occurs
with amplitude J in Eq. (2.3). (b) Hopping of a hole with the
amplitude t term in Eq. (2.7). The hole (represented by the
open circle) prefers to reside on one sublattice. This hole
is on the “wrong” sublattice (with high energy cost) in the
intermediate state above, which only acts as a technical tool
for effectively generating the same sublattice hopping in the
low energy limit. The constraint in Eq. (2.8) is obeyed on all
sites in all the states shown.

written as

Hqd = Hd + Hh + Ht (2.1)

The first term, Hd involves a diagonal energy and a res-
onance of dimers on a plaquette, as illustrated in Fig 1a.
Following Ref. 7, and the notation of Ref. 8, the dimers
are represented by the conjugate phase Âiα and integer
number Êiα variables which reside on the links of the
lattice:

[Âiα, Êjβ ] = iδijδαβ . (2.2)

The dimer number on a bond is ηiÊiα oriented to the
right or the top (ηi = +1 or -1 on the two sublattices).
The Hamiltonian for dimers on a plaquette is

Hd =
V

2

∑

iα

Ê2
iα + J

∑

i

cos
(

ǫαβ∆αÂiβ

)

(2.3)

Note that the co-efficient of the cosine has the “wrong”
sign. This is a consequence of the microscopics of the
electrons in the t-J model, if one adopts the natural sign
convention that a singlet dimer is created by an electron
pair-field operator (see Eq. (3.6)), and a given dimer cov-
ering corresponds to a product of such operators acting
on the vacuum.

The next two terms, Hh and Ht, describe the hop-
ping of holes in the doped dimer model, as illustrated in
Fig 1b. To maintain the description in terms of near-
est neighbor dimers, the holes must hop between sites
on the same sublattice. Consequently, the model has
two species of holes, one for each sublattice. This same-
sublattice hole hopping model is somewhat inconvenient
to work with under the duality mapping, and so we ex-
pand the Hilbert space of the model by additional high
energy states to allow us to express all hole motion in

terms of nearest neighbor hopping: we allow each hole
species to temporarily hop onto the “wrong” sublattice
in a state which has a large energy. This hole will quickly
hop back onto the “right” sublattice, and the two hop
process will have achieved the same sublattice hopping
we are seeking to model. This process is illustrated in
Fig 1b; the same strategy was used by Moessner et al.18

in their study of the doped dimer model. We represent

the two species of holes by the rotor phases φ̂i+, φ̂i− and
the conjugate number variables n̂i+, n̂i−. The commu-
tation relations are

[φ̂iσ , n̂jσ′ ] = iδijδσσ′ (2.4)

where σ = +,−. These holes reside primarily on the +
or − sublattices and will have opposite gauge charges.
The potential energy of the holes is described by Hh:

Hh =
U

2

∑

iσ

(n̂iσ −H − σηiW )2 +
∑

i6=j,σ

Λij n̂iσn̂jσ .

(2.5)
Here U > 0 is the hole self repulsion, 2H is the aver-
age hole density preferred by the chemical potential (we
are working at fixed chemical potential, and the actual
density, δ, in the ground state of the Hamiltonian may
be different), ηi = ±1 on the two sublattices, and 2UW
is the energy penalty for a hole to be on the “wrong”
sublattice. For W > 0, the + holes are preferred on the
ηi = 1 sublattice, and the − holes on the other. The off-
site interaction energy Λij is assumed to be repulsive, and
is required to stabilize insulating states away from zero
doping. We will discuss the case of general Λij , although
our numerical results later will be restricted to short-
range Λij ; long-range Coulomb interactions lead only to
minor modifications. The total density of holes on site i
is given by

δi =
∑

σ

〈n̂iσ〉 . (2.6)

The nearest neighbor hopping Hamiltonian for the two
hole species is

Ht = −t
∑

iασ

cos
(

∆αφ̂iσ + σÂiα

)

. (2.7)

Finally, there is a local constraint, which commutes
with all the terms in the Hamiltonian,

∆αÊiα +
∑

σ

σn̂iσ = ηi . (2.8)

This constraint ensures that there is either a hole on each
lattice site or a dimer emerging from it. It also allows
for a configuration with two dimers emerging from that
site if the extra gauge charge is compensated by an ad-
ditional hole from the “wrong” sublattice. This is the
intermediate state in Fig 1b which compared with the
other two states in that figure requires the excitation en-
ergy V/2 + UW . We see that for sufficiently large V
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we can safely set W equal to zero and still pay a price
for having a hole on the “wrong” sublattice. Choosing
both V and U sufficiently large also excludes unphysical
states with even larger excitation energies. Note that all
the states in Fig 1 obey Eq. (2.8).

We have already noted that the dimer resonance term
in Eq. (2.3) has the opposite sign from that usually found
for the Maxwell term in lattice gauge theories. We will
see below that this can have significant consequences for
the physics, and hence the structure of the dual theory.
Physically, the kinetic term in Eq. (2.3) favors an average

π flux per plaquette in the gauge field Âiα. The hole
propagation term, Eq. (2.7), however, clearly allows holes
to achieve lower kinetic energy if this flux is expelled.
Since the gauge field is dynamical, the system will choose
for itself what flux penetrates each plaquette on average,
based on a balance of these two competing energies, and
as pointed out by Kivelson and Fradkin7, the flux will
penetrate at δ = 0 and be expelled for large enough δ. In
a strongly confining phase, as occurs for δ = 0, however,
this flux has no physical significance, since the gauge field
is strongly fluctuating.

Mathematically, one may choose to view either the zero
or π flux states as vacua, provided fluctuations of this
flux are included. In particular, one may attempt to fix
the sign “problem” (J > 0) by shifting the gauge field

Âiα on certain links by π. However, this has the effect
of inducing a π flux per plaquette in the motion of the
φiσ holes in Eq. (2.7). If we were to perform such a
transformation, Hd and Ht would be replaced by

H′
d =

V

2

∑

i

Ê2
iα − J

∑

i

cos
(

ǫαβ∆αÂiβ

)

, (2.9)

H′
t = −t

∑

iασ

cos
(

∆αφ̂iσ + σÂiα + 2πgiα

)

, (2.10)

and the holes now move in a magnetic field giµ which
obeys

ǫµνλ∆νgiλ = hδµτ (2.11)

with h = 1/2.
For (most of) our purposes, it will generally not be

advantageous to make such a shift. This is physically
because our description of the Mott transition approaches
the critical point from the superconducting side, in terms
of the condensation of vortices of the superconducting
state. As discussed above, in the large δ region of the
dimer model where superconductivity occurs, zero flux is
favored. Hence this is a more natural point from which
to embark upon our (dual) investigation.

In the following section, however, in which we discuss
quasiparticle physics and pairing symmetry, we will con-
sider the physical content of this π-flux background. Our
intuition to expand around the zero flux configuration is
there confirmed, as we show that the π-flux background
is inconsistent with d-wave (or s-wave) pairing in the su-
perconductor, and applies instead to a yet more uncon-
ventional state.

III. ADDING FERMIONS AND SPIN TO THE

DIMER MODEL

In the context of the cuprates, a shortcoming of the
present approach – intrinsic to the dimer model – is the
neglect of fermionic spin-carrying quasiparticles. To un-
derstand the nature of this difficulty more deeply, we
discuss the results of a natural extension of the dimer
approach to include these S = 1/2 fermionic excitations.
The dimer model can also be extended to include collec-
tive S = 1 ‘triplon’ excitations, but we defer discussion
of these to Section V, until after we have performed a
duality analysis of the S = 0 dimer model in Section IV.

Readers mainly interested in the duality analysis of
the S = 0 dimer model at finite doping may skip ahead
to Section IV, and return to the present section upon a
second reading.

The strategy will be to first understand in more detail
the nature of the insulating states of this model when
undoped. Because in this model at half-filling all the
“matter” (holes and fermions) is gapped, the Polyakov
argument implies that the U(1) gauge theory must be in
a confining phase. Nevertheless, it is instructive to con-
sider formally the limit of weak gauge fluctuations, which
in practice applies for large J – of either sign. Then one
may view the insulator as a gapped U(1) state plus gauge
fluctuations, the latter – more specifically monopole pro-
liferation – ultimately leading to confinement on long
length scales, and with it, density wave order. This view
has the advantage that the superconducting state can be
seen as a “Higgs” phase obtained from the U(1) state.
Further, the insulator can be characterized by a PSG,
defining the manner in which the physical symmetries
are realized in the gauge theory. Here we will consider
two such PSGs, which correspond naturally to the phases
obtained for large positive and negative J .

We can better understand in this manner the nature of
the superconducting and insulating states in this model.
We will see that the former should be understood as a
“molecular” or “strong pairing” d-wave phase. The latter
can be seen to arise from either of two natural underly-
ing U(1) spin liquid states. These two U(1) states are
distinct, and characterized by different PSGs. They are,
however, both unstable at low energies to the various
charge ordered states discussed herein.

We proceed with a multi-pronged attack. First, we de-
scribe the symmetry of the bosonic dimer+hole Hamil-
tonian of Sec. II. We consider the two distinct cases in
which the ground state has an average zero or π gauge
flux per plaquette. These two cases give rise to distinct
PSGs which describe different putative insulating states.
With this in hand, we discuss the nature of the pairing
symmetry of superconducting states obtained from this
model. Next, we will augment the dimer+hole Hilbert
space by allowing each site to contain an unpaired elec-
tron (or spin), in addition to the end of a dimer or the
hole allowed up to now. Physical arguments give the gen-
eral form of the Hamiltonian with such unpaired electrons
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included. This form is further restricted by combining
the PSGs of the dimer+hole model and the requirement
that physical electrons transform properly. We discuss
how this analysis is related to slave particle formulations
of Mott insulating states and Wen’s analysis16 of their
PSGs. With the full form of the dimer+hole+electron
Hamiltonian determined, we confirm the symmetry anal-
ysis of the superconducting states by a direct investiga-
tion of the effective Bogoliubov-deGennes quasiparticle
Hamiltonian.

A. Projectively realized symmetries of the doped

dimer model

It is clear that, even without including fermionic exci-
tations, the dimer model in Sec. II already requires a non-
trivial projective realization of certain symmetry opera-
tions of the space group. This is so because the staggered
static gauge charges (and the staggered potential termW

in Eq. (2.5)) näively break lattice symmetries. To over-
come this, unit translations and π/2 rotations about a
dual lattice site must be accompanied by the transfor-

mations n̂+ ↔ n̂−, φ̂+ ↔ φ̂−, Â → −Â, Ê → −Ê to
leave the dimer model invariant. Actually, it will prove
useful to discuss projective symmetries with respect to a
fixed average background U(1) flux. This will make con-
tact with Wen’s notion of projective symmetry analysis
of slave particle saddle points. We will consider the two
cases of zero and π average flux per plaquette.

For compactness, we will in this section denote the
boson operators by

biσ = e−iφ̂iσ . (3.1)

Further, it is sometimes helpful to take the limitW → ∞,
corresponding to a “microscopic” dimer+hole model in
which two holes of course cannot occupy the same site.
In this case the type 1 holes live only on the A sublattice,
and conversely the type 2 holes live only on the opposite
B sublattice. One then defines a single boson field via

bi =

{

e−iφ̂i+ for i ∈ A sublattice

e−iφ̂i− for i ∈ B sublattice
, (3.2)

i.e. bi = biσ if i is on the σ sublattice. For W → ∞,
all finite energy states can be described in terms of the
bi operator. For W < ∞, this is not the case, but bi
defined as above is still useful and represents properly
the low energy hole degrees of freedom.

1. Zero flux background

First, and simplest, is the case of zero flux, the näive
choice for J < 0 (note that which saddle point is chosen
by the system is however a dynamical question, which
will in general depend upon all the degrees of freedom,

and may vary as other parameters in the Hamiltonian are
varied). In this case, one can easily see that the only non-
trivial required aspect of transformations of the bosons is
the interchange of the two boson flavors – and associated
change of the sign of gauge fields – for space group oper-
ations that interchange the two sublattices. Specifically,
these are unit translations (or generally translations by
an odd number of total lattice units), π/2 rotations about
a dual lattice site, and inversions through a row/column
of the dual lattice. However, there is a mathematical
freedom to compose each space group operation with a
global U(1) phase rotation. That is, for an operation
which preserves the two sublattices, one may take a pri-
ori

biσ → bG(i)σe
iχ(G). (3.3)

Similarly, for an operation that interchanges the two sub-
lattices,

biσ → bG(i),−σe
iχ(G) . (3.4)

Using the definition Eq. (3.2), both these equations are
replaced simply by

bi → bG(i)e
iχ(G). (3.5)

Here G(i) is the site i is mapped to under the space
group operation G, and χ(G) is the phase, which we take
as the same for both boson flavors, and can be chosen
differently for each G. Note that this phase rotation is
not a U(1) gauge rotation (which would be opposite for
the two boson flavors) unless eiχ(G) = ±1. Since the
hole fields are not themselves physical, it is not a priori
obvious which value of χ(G) is the correct one.

An important constraint on χ(G) is that any sequence
of space group operations which compose to the triv-
ial identity operation in the original space group should
compose to a pure gauge U(1) transformation in the
PSG. The square of an inversion or the fourth power of
a π/2 rotation must be a pure U(1) gauge transforma-
tion. Hence the phase e4iχ(I) = 1 if I is an inversion,
while e8iχ(R) = 1 if R is a π/2 rotation. Other similar
constraints can be applied with more detailed considera-
tions.

For the doped dimer model, we can further refine this
by using the physical interpretation of the hole opera-
tors. Consider the action of the physical singlet pair field
operator on a bond:

Ψiα = c†i,sǫss′c†i+êα,s′ , (3.6)

with α = x, y. Clearly, this operator, when acting on
a state in which the bond in consideration is occupied
by two holes, annihilates the holes and creates a dimer.
Hence we require

Ψiα = µαbibi+êα
eiηiÂiα . (3.7)

Here we have introduced two unknown coefficients, µx, µy

(these are assumed independent of i, as can be argued is
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generally true). To determine them, we use the known
transformation properties of the pair field defined from
Eq. (3.6). First, it is invariant under inversion through
the row/column of the dual lattice dividing the two sites
of the pair. This implies e2iχ(I) = 1 (actually this is true
for all inversions). Then eiχ(I) = ±1, and for such values
the phase rotation in Eq. (3.4) is a gauge U(1) rotation.
Thus we can always choose

eiχ(I) = 1. (3.8)

Second, consider a π/2 rotation. Under rotation around
site i, Eq. (3.6) implies Ψix → Ψiy, Ψiy → Ψi−êx,x, while
from Eq. (3.7), one finds

Ψix → e2iχ(R) µx

µy
Ψiy, (3.9)

Ψiy → e2iχ(R) µy

µx
Ψi−êx,x. (3.10)

Hence

e2iχ(R) =
µx

µy
= ±1. (3.11)

No further requirements on χ(R) and µα follow from
symmetry alone. The two choices in Eq. (3.11) simply
represent different possible PSGs. Note that this choice
is directly related to the pairing symmetry of the super-
conducting state. If µx = µy, then a uniform condensate
〈bi〉 = constant represent an s-wave paired state, while
for µx = −µy, the same condensate represents dx2−y2 -
wave pairing. More generally, using Eq. (3.7), one can
show

ΨiyΨi+êx,y

ΨixΨi+êy ,x
=

(

µy

µx

)2

e−iηiǫαβ∆αÂiβ , (3.12)

where the curl in the exponential on the right hand side
is the gauge flux through the plaquette with site i at
the lower-left corner. Hence for the zero background flux
states we consider in this subsubsection, using Eq. (3.11),
one sees that

ΨiyΨi+êx,y

ΨixΨi+êy ,x
= 1. (3.13)

This allows for both s and d-wave pairing.

2. π flux background

Let us now turn to the more complicated case in which
half a quantum of background gauge flux pierces each
plaquette of the direct lattice. We write

Âiα → Aiα + Âiα, (3.14)

where Aiα is a classical c-number background vector po-
tential representing π flux per plaquette. An extremely
convenient and symmetrical choice for this section is

Aix = −Aiy =
π

4
ηi. (3.15)

One can readily see that, with this choice, the Hamil-
tonian remains invariant under the same translational
operations as for zero background flux, i.e. for a unit
translation,

T̂α : bi,σ → bi+êα,σ, (3.16)

and Âiβ → −Âi+êα,β etc. Rotations about dual lat-
tice sites, and inversions are also unchanged. Rotations
around direct lattice sites are, however, non-trivial. For
a π/2 rotation about a direct lattice site, one requires

bi1 → eiχ(R)ζibR(i)1, (3.17)

bi2 → eiχ(R)ζ∗i bR(i)2, (3.18)

where

ζi =











1 for (ix, iy) = (0, 0) (mod2),
−i for (ix, iy) = (1, 0) (mod2),
−1 for (ix, iy) = (1, 1) (mod2),
i for (ix, iy) = (0, 1) (mod2).

(3.19)

Note that, since ζi is real on the A sublattice, one has
simply

bi → eiχ(R)ζ∗i bR(i). (3.20)

We can now repeat the symmetry analysis done above
for zero background flux. As before, assuming the form of
Eq. (3.7), since the transformation law for inversions has
not changed, one still obtains Eq. (3.8). Under rotations,
however, one obtains the conditions

e2iχ(R) = −iµx

µy
= ±1. (3.21)

Note the important factor of i in Eq. (3.21) compared
to Eq. (3.11). This implies very different pairing states
if the bosons condensed in the π flux background. For
instance, if the holons condense uniformly, 〈bi〉 = const.,
then Ψiy = ∓iΨix = const.. This is incompatible with
either d- or s-wave pairing, and indeed with rotational
invariance (in a d-wave superconductor, rotational sym-
metry is unbroken for gauge-invariant observables).

One way to see this is to consider the ratio in Eq (3.12),
which becomes in this case

ΨiyΨi+êx,y

ΨixΨi+êy,x
= −1, (3.22)

irrespective of the spatial pattern of boson condensation.
In more conventional terms, the superconducting states
with holons condensed in the π-flux background have a
pair wavefunction of (1 ± i)sx2+y2 + (1 ∓ i)dx2−y2 form.
Again it is clear that such a complex linear combination
of extended s- and d-wave pairing breaks fourfold rota-
tional symmetry.
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B. Fermions

Having understood the possible PSGs of the
dimer+boson model, we are prepared to discuss fermionic
excitations. In principle, there are many distinct ways in
which the fermions might transform consistent with the
above PSGs. There is, however, clearly a physically pre-
ferred and simple choice. We proceed by allowing a site
to be occupied not only by a hole and an end of a dimer,
but also by an unpaired electron. This enlargement of
the Hilbert space is represented by a spin-1/2 fermion
mode on each site, described by canonical fermion cre-

ation/annihilation operators f †
is, fis (s is a spin-1/2 in-

dex). The original model is to be viewed as the fermion
vacuum. Clearly, the electron annihilation operator may
act on a site with such an unpaired electron to create a
hole and remove the fermion. Hence we require

cis ∼ b†ifis + · · · (3.23)

the ellipses are included to emphasize that of course mi-
croscopically the electron annihilation operator can cre-
ate other states. For instance, it may act upon a site
which is part of a dimer to annihilate the dimer, create a
hole on the site acted upon and create a fermion on the
other site shared by the dimer; such terms would be of
the form

cis ∼ · · · b†ieiÂiαǫss′f †
i+êα,s′ + · · · . (3.24)

Such additional terms are of quantitative importance in
analyzing a microscopic dimer+hole+fermion model. In
any case, all such terms are such that the constraint in
Eq. (2.8) is now expanded to

∆αÊiα +
∑

σ

σn̂iσ + ηi

∑

s

f †
isfis = ηi. (3.25)

This constraint makes it clear that the fis fermions carry
staggered U(1) gauge charge.

The single term in Eq. (3.23), however, suffices to de-
termine the transformation properties of the fis oper-
ators, from the requirement that the physical electron
operator cis is a scalar. First, we see that the fis fermion
carries a staggered gauge charge of opposite sign on the
two sublattices. Next, we note that with zero background
flux, bi is a scalar apart from the χ(G) factor discussed
in the previous section. Hence

fis → eiχ(G)fG(i)s, for zero background flux.
(3.26)

With the π flux background, Eq. (3.26) holds for trans-
formations other than the π/2 rotation about a direct
lattice site. For this, one has

fis → eiχ(R)ζ∗i fR(i)s, for π background flux. (3.27)

At this point we note that the similarity between
Eq. (3.23) and the means of introducing slave particle
“holon” and “spinon” operators in the U(1) mean field

(a)

(c)

δx

(b)

- t
~

- t’

FIG. 2: Extension of Fig 1 to include S = 1/2 excitations
in the dimer model. (a) Two S = 1/2 fermions forming a
singlet valence bond, representing Eq. (3.28). (b) A holon
and a S = 1/2 fermion exchanging positions, representing the
first term in Eq. (3.30). (c) Motion of a S = 1/2 fermion
involving rearrangement of valence bonds, representing the
second term in Eq. (3.30).

theory of the t−J model is not coincidental. Indeed, the
universal aspects of this discussion can all be recovered
as appropriate saddle points of that approach. They can
also be recovered from the SU(2) mean field theory, the
two approaches being interchangeable in this instance, as
will be returned to below.

Having discussed the transformation properties of the
fermions, we proceed to construct their Hamiltonian –
assuming initially zero background field. Physically, the
simplest allowed process is one in which a dimer converts
to a singlet fermion pair (see Fig 2):

H(1)
f = v

∑

i

f †
isfis (3.28)

+
∑

iα

δαe
−iηiÂiαf †

isǫss′f †
i+êα,s′ + H.c..

Here v represents the energy cost to introduce a single
fermion, and the sums over the repeated spin indices s, s′

are implicit. Taking v → ∞ recovers the original dimer
model. The coefficients δx, δy appear as “pair fields” for
the fis fermions. They are constrained by symmetry to
satisfy

δy = e−2iχ(R)δx = ±δx, for zero background flux.
(3.29)

We would also like to allow for hopping processes for
the fermions. A fermion can hop between neighboring
sites by exchanging places with a hole, or a fermion can
hop between second neighbor sites if an intermediate
neighboring site is connected to the destination site by a
dimer, the dimer reconnecting after the hop to the origin
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site. These processes are represented by

H(2)
f = −

∑

iα

t̃b†ibi+êα
f †

i+êα,sfis + H.c. (3.30)

−
∑

i

t′
[

f †
isfi+w,sΓi,i+w + f †

isfi+w,sΓi,i+w + H.c.
]

where

Γi,i+w = e−iηi(Âix+Âi+êx,y) + e−iηi(Âiy+Âi+êy,x),(3.31)

Γi,i+w = e−iηi(Âix−Âi+w,y) + e−iηi(Âi−êy,x−Âi−êy ,y),

and w = êx+ êy, w = êx− êy. The complicated-looking Γ
factors are simply the uniform superposition of the gauge
connections (exponential of the discrete line integral of
the gauge field) taken along the two shortest paths con-
necting diagonal sites. The equal superposition of both
paths is required to preserve inversion symmetry through
the (11) and (11) axes of the square lattice. We give these
t′ terms primarily for completeness, as they will not have
an important role in much of what follows.

By examination of Eqs. (3.28), (3.30), one sees that
the fis fermions hop unassisted (i.e. without accompa-
nying holes) only between sites of the same sublattice,
and experience pair fields on links connecting sites of op-
posite sublattices. This is indeed required by the stag-
gered gauge charge of the fis variables. It is thus some-
times convenient to define new variables via a particle-
hole transformation:

dis =

{

fis for ηi = +1,

ǫss′f
†
is′ for ηi = −1

(3.32)

These dis variables have a constant unit gauge charge on
every site and transform as global SU(2) spinors. They
should thus be identified as “spinons”. In these variables,
one finds that the constraint in Eq. (3.25) now takes the
form

∆αÊiα + b†i+bi+ − b†i−bi− +
∑

s

d†isdis = 1, (3.33)

while the Hamiltonian Hf = H(1)
f + H(2)

f has the form

Hf = v
∑

i

ηid
†
isdis +

∑

iα

tiαe
−iÂiαd†isdi+êα,s + H.c.

+t̃
[

∑

i∈A,α

b†i+x̂α
bid

†
isǫss′d†i+x̂α,s′

+
∑

i∈B,α

b†ibi+x̂α
d†isǫss′d†i+x̂α,s′ + H.c.

]

, (3.34)

and we have dropped the t′ terms for brevity. Here the
pairing terms for the fis fermions have become hopping
amplitudes:

tiα =

{

δiα for ηi = +1,
−δ∗iα for ηi = −1 .

(3.35)

From Eq. (3.34) one can clearly see that, if no holes
are present (or if the bi excitations are gapped), then
the t̃ term can be neglected, and the spinons dis obey
a simple tight-binding model. They indeed carry unit
gauge charge, since they are minimally coupled to Âiα.
We expect that the confining effects of Â fluctuations
will produce VBS order in the insulator, and also bind
the spinons into pairs which result in collective S = 0
and S = 1 excitations. Alternatively, the spinons can also
confine with holons to create charged S = 1/2 excitations
with the same quantum numbers as an electron.

In contrast, in the superconducting state (see Sec-
tion III D below) the bi are condensed, and then Hf has
the structure of the Bogoliubov theory of a superconduc-
tor, with the dis acting as the S = 1/2 Bogoliubov quasi-
particles; the bi condensate also acts like a Higgs field
which quenches the Â fluctuations. Indeed, if the bi con-
densate is strong enough, there is nothing in Eq. (3.34)
which prevents the appearance of gapless, nodal, Bogoli-
ubov quasiparticles in a d-wave superconducting state
(see also Section III D). In a superconductor which pre-
serves all lattice symmetries, the nodal quasiparticles will
appear above a critical doping δ = δf as a quartet near
the center of the Brillouin zone in a strong-pairing to
weak-pairing transition19. On the other hand, the su-
perconductor could also have broken lattice symmetries
(i.e. it is a supersolid) and then the transition at δ = δf
is associated with the pairwise collision of nodal points
at the reduced Brillouin zone boundaries13,14,20.

Finally, it is useful to rewrite the expression for the
physical electron field, Eq. (3.23), in the spinon variables:

cis ∼
{

b†idis for ηi = +1,

−b†iǫss′d†is′ for ηi = −1
(3.36)

At low energies, or in the W → ∞ limit, this can be
rewritten as

cis ∼ b†i+dis − b†i−ǫss′d†is′ , (3.37)

since the first and second terms contribute predominantly
on the A and B sublattices, due to the preferred locations
of the two hole species.

How does this change for the π flux background? The
needed form is obtained simply from Eqs. (3.28)-(3.34)
by shifting according to Eq. (3.14). One notes that the
dis spinons, being minimally coupled to the gauge field,
indeed propagate in this case according to a π-flux hop-
ping model. Specifically, the shift implies

δx → δ(π)
x = δxe

−iπ/4, (3.38)

δy → δ(π)
y = δye

+iπ/4, (3.39)

whence

tix → t
(π)
ix = ηiδxe

−iηiπ/4, (3.40)

tiy → t
(π)
iy = ηiδxe

−2iχ(R)e+iηiπ/4, (3.41)

for real δx. Further, it is interesting to note in this case
that the t′ terms in Eq. (3.30) vanish with the replace-

ment Âiα = Aiα due to destructive interference of the



9

two hopping paths around the plaquette containing the
two diagonal sites in question. Indeed, one can show from
symmetry arguments alone that a diagonal hopping term
is inconsistent with the π-flux PSG, using Eq. (3.27) for
rotations and Eq. (3.26) for inversions.

C. Connection to slave particle theories

We comment briefly on the connection of the above dis-
cussion to the U(1) and SU(2) slave particle approaches
to the t−J model. The dimer model Hamiltonian above
can be regarded as a theory of fluctuations around par-
ticular mean-field states of these approaches. This po-
tentially allows one to connect to other gauge-theoretic
scenarios and phases which are not within the purview of
the dimer model. First consider the U(1) approach.9,10

One introduces microscopically holon and spinon fields
via

cis = b†ifis, (3.42)

with the constraint b†i bi+f
†
isfis = 1. Eq. (3.42) should be

compared with Eq. (3.23). Note that here there is only a
single species of holon on each site, so we must compare
directly to the dimer model in the large W limit. In the
path integral Lagrangian, this constraint is implemented
by a Lagrange multiplier Ai0:

L0 = −
∑

i

iAi0(b
†
i bi + f †

isfis − 1). (3.43)

The electron hopping (t) and Heisenberg (J) terms of the
t−J model are decoupled with matrix fields Qij , Qij ,∆ij

leading to quadratic terms in the bosons and fermions of
the form

L1 =
∑

ij

(

Qijb
†
ibj +Qijf

†
isfjs + ∆ijf

†
isǫss′f †

js′ + H.c.
)

(3.44)

Comparison with the effective Hamiltonians in the
dimer+hole+fermion model (for large W ) above shows
that one can obtain the same form at the quadratic
level by taking a saddle point with iAi0 = vηi, Qij , Qij

non-zero only when i, j are on the same sublattice, and
∆ij ,∆ij non-zero only when i, j are on opposite sub-

lattices. For the π-flux case, Qij , Qij actually are non-
zero only between sites separated by an even number of
lattice spacings in the x and y directions (correspond-
ing to the vanishing of the t′ couplings with this back-
ground, and hence to a four-sublattice structure of the
bosons). Phase fluctuations of these matrix fields be-
come the spatial components of the gauge fields of the
dimer+hole+fermion model.

Next, consider the SU(2) slave particle
formulation.11,12 In this case, one represents the
electrons by an SU(2) doublet of bosons, biσ, and a

spin-1/2 fermion dis, with the electron represented as

cis =
1√
2

(

b†i+dis + b†i−ǫss′d†is′

)

. (3.45)

Up to a sign change in bi− (due to our trivially different
conventions), this is the same form as Eq. (3.37). The

slave particles are constrained by ψ†
is

~τ
2ψis + b†i~τbi = 0,

where the doublet

ψis =

(

dis

ǫss′d†is′

)

, (3.46)

and ~τ is the vector of Pauli matrices acting in the doublet
space. These constraints lead to three Lagrange multi-
pliers Ap

i0 (p = 1, 2, 3):

LSU(2)
0 = −

∑

ip

i ~Ai0 ·
(

ψ†
is

~τ

2
ψis + b†i~τbi

)

. (3.47)

Of particular interest is the p = 3 component of this
constraint which takes the form

b†i+bi+ − b†i−bi− +
∑

s

d†isdis = 1. (3.48)

Comparing Eq. (3.48) with our Eqs. (3.25), (3.33), we see
that they differ in that Eqs. (3.25), (3.33) contain an ad-
ditional fluctuating electric field contribution. This is a
reflection of the different manner in which the gauge fluc-
tuations are realized on the lattice, rather than a funda-
mental distinction. If we begin with a theory with a con-
straint as in Eq. (3.48), and imagine integrating out some
high energy degrees of freedom, then the gauge invari-
ance permits the electric field contribution in Eqs. (3.25),
(3.33) to appear in the renormalized theory; thus, the
main difference is that in our dimer model approach this
contribution in already included in the bare theory.

As we will see in Section IV, in our duality analysis
the electric field term is a large contribution to the l.h.s.
of Eq. (3.25), which dominates that of the f fermions. In
contrast, in the mean-field saddle points of Refs. 11,12,
the dominant contribution to Eq. (3.48) arises from the

fermion d†isdis term, with the d fermions occupying a half-
filled band (the d fermions also contribute a large term
to the duality analysis of Section IV in Eq. (3.33), but
not in a manifestly translationally invariant manner.21).
We will comment further on the physical distinction be-
tween these two approaches in Section IV. Decoupling
the hopping and Heisenberg interactions in the Hamilto-
nian gives quadratic terms for the slave particles of the
form:

LSU(2)
1 =

∑

ij

c1ψ
†
isUijψjs + c2b

†
iUijbj , (3.49)

with

Uij =

(

−χ∗
ij ∆ij

∆∗
ij χij

)

. (3.50)
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Our dimer+hole+fermion model described by Hqd + Hf

in Eqs. (2.1), (3.34) can be described in the above SU(2)
formulation by taking a saddle point with −iA3

i0 = vηi.
In particular, our physical interpretation requires that we
take the saddle point value −v ∼W large so that the biσ
holes reside primarily on their respective sublattices. In
contrast, in previous work11,12 on the SU(2) gauge the-
ory superficially different saddle points were chosen: they
worked with a spatially uniform value of −iA3

i0 so that
only one species of the bosons was preferentially occupied
in the ground state. However, saddle points in these two
classes can be mapped onto each other by a SU(2) gauge
transformation generated by the unitary matrix iτ1 act-
ing only on the ηi = −1 sublattice. This gauge transfor-
mation maps our staggered −iA3

i0 saddle point to a spa-
tially uniform saddle point. The same gauge transforma-

tion acting on LSU(2)
1 interchanges the fermion hopping,

χij , and pairing, ∆ij , terms. So to obtain a saddle point

of LSU(2)
1 consistent with our Eq. (3.34) we need to take

the ∆ij of a form consistent with the tiα in Eq. (3.34).
The χij will be proportional to the t̃ times the square of
the bi condensate.

When the model is undoped and the holons are gapped,
〈bi〉 = 0, such states fit into Wen’s PSG classification
scheme for symmetric spin liquid states on the square
lattice. What are called the zero and π flux states in this
paper correspond, in the notation of Ref. 16, to the states
U1Cn00x, and U1Cn0n1, respectively (see Eqs (122) and
(135) of Ref. 16). These states are distinct in their
PSGs from the “staggered flux” and “pi flux” states of
Refs. 11,12, which are denoted U1Cn01n and SU2Bn0,
respectively in Ref. 16. Note that in Wen’s discussion,
the spin liquids U1Cn00x, and U1Cn0n1 obey the con-
straint in Eq. (3.48); consequently the fermion “chemical
potential” v in Eq. (3.28) or Eq. (3.34) is not an arbi-
trary parameter and must take a value that ensures that
Eq. (3.48) is obeyed. In our discussion, we have the addi-
tional fluctuating electric field contribution in Eq. (3.33),
and we treat Eqns. (3.28) and (3.34) as generic effective
Hamiltonians; large positive values of v, which lead to a
large spin gap and a small density of f fermions, are also
allowed.

D. Superconducting state

To obtain superconducting states of the doped (or un-
doped) dimer model, one clearly must condense some
charged particle. In fact, a conventional superconducting
state requires a condensation of both flavors of bosons,
〈biσ〉 6= 0 for both σ = ±. Condensation of only one of
the flavors breaks only the combination of physical U(1)
charge symmetry (since each holon carries charge +e)
and gauge U(1) symmetry. The orthogonal linear com-
bination is unbroken in that case. Explicitly, one can see
this from Eq. (3.37) and Eq. (3.34). When only one bo-
son is condensed, say 〈bi+〉 6= 0, then at mean-field level,
the electron and spinon become equivalent, in this case

cis ∼ 〈bi+〉dis. Replacing dis by cis in Eq. (3.34) and
dropping the t̃ term which vanishes since one of the two
bosons is uncondensed, one sees that one has no anoma-
lous electron pairing terms. One might also imagine con-
densing not the individual holon fields but instead just

the quadratic forms 〈b†i+bj−〉 6= 0 and 〈b†i+b
†
j−〉 6= 0. This

will certainly break the charge U(1) symmetry, and in-
deed follows if we condensed both holons individually.
However, if the individual holons remain uncondensed,
there is a residual unbroken Z2 gauge symmetry under
biσ → zibiσ, with zi = ±1. Thus such a state is an
anomalous superconductor (SC∗), which we do not wish
to consider here.

It is simplest to think about the “conventional” super-
conducting state in the bi and fis variables. Condensa-
tion of both flavors of holon then simply means that 〈bi〉
is non-zero on both sublattices. Then, from Eq. (3.23),
we can regard the fis variables as essentially electrons.
Formally, if the superconducting state does not break
translational symmetry, the holon condensate will have
uniform amplitude,

〈bi〉 = |b|e−iφi , (3.51)

so we shift fis → e−iφifis, after which cis ∼ |b|fis. This
gives

H(1)
f → v

∑

i

f †
isfis (3.52)

+
∑

iα

δαe
i(φi+φi+êα )f †

isǫss′f †
i+x̂α,s′ + H.c.,

where we have dropped the gauge field which is gapped by
the Higgs mechanism in this phase. The rescaled fermion
fis can now be regarded as the electron quasiparticle op-
erator, so that the pairing state can be read directly off
from Eq. (3.52). We see that the pair amplitude obeys

Ψ∗
iα ∼ δαe

i(φi+φi+êα ). (3.53)

This is in full agreement with the symmetry discussion
in Sec. III A.

Note that for the case of a zero flux background, the
pairing can be of dx2−y2 symmetry. This occurs e.g. for
a uniform holon condensate φi = 0 and δx = −δy =

1 (e2iχ(R) = −1), or for φi = πix and δx = δy = 1

(e2iχ(R) = 1). Nevertheless, the spectrum of Hf is fully
gapped in the limit relevant to the doped dimer model,
since there v ≫ δα. This corresponds to a “molecular”,
“BEC”, or “strong pairing” d-wave phase, where it is
well-known that gapless nodal excitations are absent.

It is amusing to consider the energetics behind the pair-
ing symmetry for one example. Let us take for simplicity
zero background flux, and choose the PSG with δx = δy,

e2iχ(R) = 1. To apply Eq. (3.53), we need to understand
the pattern of holon condensation. For simplicity, let us
ignore explicit (non-gauge mediated) holon-spinon inter-
actions, and gauge fluctuations. Then we may consider
the holons on their own, described by a hopping model.
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We imagine lowering the chemical potential for holons
until they condense, the condensate being built out of
the lowest energy modes. Consider a single holon exci-
tation. For simplicity, we consider the large W limit, so
that the flavor 1 holons prefer to sit on the A sublattice
and the other flavor sits on the B sublattice. ForW = ∞,
the lowest one-holon states are degenerate, consisting of
any superposition of one holon of type 1 on the A sub-
lattice, or any superposition of one holon of type 2 on
the B sublattice. One can then apply degenerate pertur-
bation theory to the holon hopping terms, to arrive at
an effective model of the type 1 holon hopping on the A
checkerboard sublattice and the type 2 holon hopping on
the B checkerboard sublattice. One expect that, allow-
ing for generalized hoppings in the original model, this
hopping Hamiltonian takes the form

H1h = teff
∑

〈ij〉

′
b†iσbjσ + · · · , (3.54)

where the prime on the sum indicates that the sum is
over nearest neighbors of the A(B) sublattice for σ = 1
(σ = 2). The ellipses indicate other further neighbor
terms that will generally be present. The single-holon
eigenstates of Eq. (3.54) are plane waves, with energy
Eσ(k) = 2teff(cos(kx + ky) + cos(kx − ky)) (momenta
are defined for the original square lattice). For teff < 0,
the minimum energy states have either kx = ky = 0, π.
These two are actually equivalent, and represent states
with constant bi on the A or B sublattice. For teff > 0,
the minimum energy states have kx = 0, ky = π or kx =
π, kx = 0, which are also equivalent and represent states
with bi alternating in sign on nearest-neighbor site of the
A or B sublattice, e.g. with bi+ = 1 on sites with xi, yi

both even and bi− = −1 on sites with xi, yi both odd. At
the one particle level, one expects then the condensate
which forms on doping to be a linear superposition of
these two flavors,

〈bi〉 = ψ1b
min
i+ + ψ2b

min
i− , (3.55)

where bmin
iσ is the minimum energy single-holon wave-

function with support only on the σ sublattice, either
constant or staggered on this sublattice depending upon
the sign of teff . The nature of the superposition that oc-
curs – i.e. the coefficients ψ1, ψ2 – will be determined by
holon-holon interactions. At a mean-field level, we can
simply construct a “Landau” effective action for ψ1, ψ2.
Since both flavors of bosons are separately conserved, it
should have U(1) × U(1) symmetry under rotations of
each field. Further, it should be symmetric under in-
terchange of the two flavors, by translation invariance,
which interchanges the two sublattices. One expects
therefore an effective (Euclidean) Lagrangian of the form

Leff = −r(|ψ1|2 + |ψ2|2)+u(|ψ1|2 + |ψ2|2)2 − v|ψ1|2|ψ2|2.
(3.56)

The nature of the condensate depends upon the sign of
v. For v > 0, one obtains |ψ1| = |ψ2|, while for v < 0,

one or the other amplitude vanishes. Since the latter
case clearly breaks translational symmetry, we focus on
the former. Then for teff < 0, the phases φi are constant
on all sites of one sublattice, which for teff > 0, the φi

alternate between 0 and π on the neighboring (diagonal
second neighbors on the original square lattice) sites of a
given sublattice.

Now let us consider the pairing symmetry. As we as-
sumed δy = δx, we have from Eq. (3.53)

Ψiy

Ψix
= ei(φi+êx−φi+êy ). (3.57)

Since i+ êx, i+ êy are nearest neighbor sites on the same
sublattice, one finds

Ψiy

Ψix
=

{

1 for teff < 0,
−1 for teff > 0

(3.58)

Thus the pairing is s-wave or d-wave in these two cases,
respectively.

IV. DUALITY ANALYSIS OF THE DOPED

DIMER MODEL

This section returns to an analysis the of effective the-
ory of the total spin S = 0 sector presented in Sec-
tion II. For this limited theory, we claim that the fol-
lowing analysis properly accounts for the strong fluc-
tuations of the compact U(1) gauge field Â; a corre-
sponding, non-perturbative treatment of gauge fluctu-
ations has not so far been possible in the slave parti-
cle theories.10,11,12,13,14,15,16 The S = 1/2 fermions fis

are neglected below,21 and it is clear that this is surely
safe as long as the fis remain fully gapped. We noted
in Section III B that the structure of our theory allows
the appearance of gapless nodal fermionic excitations in
the superconducting phases, and that they do not signifi-
cantly modify the structure of the resulting superconduc-
tor. As long as such nodal excitations are present only for
a δ > δf for which the ground state is a superconductor
or a supersolid, the following analysis will apply for the
full range of δ. However, it is also possible that δf co-
incides with the position of a superconductor-insulator
transition: such a critical point will not be described by
the theories presented below and in I.

Before embarking upon our duality analysis, we re-
mark further on why the neglect of the fis fermions is
not as dangerous at it might näively seem, and why it is
amply compensated by the non-perturbative treatment
of gauge fluctuations. It is useful to refer back to our
key constraint equations Eq. (3.25), (3.33), and the cor-
responding constraint equation for the slave particle the-
ory in Eq. (3.48). In the earlier slave particle theories,
the dominant, order unity, and translationally invariant
contribution to the l.h.s. of Eq. (3.48) is provided by the

fermion density term d†isdis. However, by focusing on a
static gauge field saddle point, these theories do not allow
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a significant contribution to this constraint equation from
the ∆αÊiα term on the l.h.s. of Eqs. (3.25), (3.33) (such
contributions are only generated upon including fluctua-
tions about the static gauge saddle points). In our duality
approach below (and in the previous work3,7,8 on the un-

doped model) a large contribution is given by the ∆αÊiα

term: this is only possible because we account for strong
gauge fluctuations. The contribution of the f fermionic
term in Eq. (3.25), from either nodal or gapped excita-
tions, is small (note, however, that the contribution of
the d fermion term in our Eq. (3.33) is not small21), and

its neglect appears safe. Physically speaking, the ∆αÊiα

term counts the valence bonds on the links emerging from
a site, and so our approach here assumes that most of the
electrons appear in singlet pairs, rather than individually
in single particle states.

We proceed with a duality mapping of Hqd as in Ref. 8
and similar to that described in I. The cosine term in Ht

is written in the Villain form as

exp
(

t∆τ cos
(

∆αφ̂iσ + σÂiα

))

(4.1)

→
∑

{Jiσα}

exp

(

− J2
iσα

2t∆τ
+ iJiσα∆αφ̂iσ + iσJiσαÂiα

)

,

while that in Hd is written as

exp
(

−J∆τ cos
(

ǫαβ∆αÂiβ

))

→
∑

{Ba}

exp

(

− B2
a

2J∆τ
+ iBaǫαβ∆αÂiβ + iπBa

)

. (4.2)

Here Ba is an integer-valued dual magnetic field on the
sites of the dual lattice. Then we integrate over the φiσ

and Aiα and obtain the dual partition function

Zqd =
∑

{Jiσµ,Faµ}

exp

(

−g
2

∑

a

F 2
aµ − iπ

∑

a

Faτ

− 1

2e2

∑

iσ

[Jiσµ − (H + σηiW )δµτ ]
2

− ∆τ
∑

i6=j,σ

ΛijJiστJjστ

)

∏

iσ

δ (∆µJiσµ)

×
∏

aµ

δ

(

ǫµνλ∆νFaλ +
∑

σ

σJiσµ − ηiδµτ

)

(4.3)

where Jiσµ = (nσ, Jiσx, Jiσy) represent the integer val-
ued spacetime currents of the two species of holes, Faµ =
(−Ba,−Eiy, Eix, ) is the integer valued gauge flux, g =
1/(J∆τ) = V∆τ , and as in I, e2 = t∆τ = 1/U∆τ . The
iπFaτ term will be innocuous in the present subsection,
and we will return to a consideration of its effects in Sec-
tion IVC when we examine the signature of the electronic
pairing.
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FIG. 3: The values of the only non-zero components of the
fixed field Xaµ, Ya, and Ziµ. The circles (crosses) are the sites
of the direct (dual) lattice. In (c), only the µ = τ component
of Ziµ is non-zero and its values are shown.

We solve the constraints in Eq. (4.3) by parameterizing

Jiσµ = ǫµνλ∆νbaσλ

Faµ = ∆µNa + Xaµ −
∑

σ

σbaσµ (4.4)

The integer-valued fixed field Xaµ is defined as in Ref. 8
and is shown in Fig 3; it obeys the constraint

ǫµνλ∆νXaλ = ηiδµτ (4.5)

The degrees of freedom are integers baσµ on the links of
the dual lattice and integers Na on the sites of the dual
lattice.

Now we promote these integer-valued fields to real
fields by introducing a vortex fugacity yv and a monopole
fugacity ym. Then

Zqd =
∏

aσ

∫

dbaσµ

∫

dϑaσ

∫

dNa exp

[

− g

2

∑

a

(

∆µNa + Xaµ −
∑

σ

σbaσµ

)2

− iπ
∑

a

(

∆τNa + Xaτ −
∑

σ

σbaστ

)

− 1

2e2

∑

iσ

[ǫµνλ∆νbaσλ − (H + σηiW )δµτ ]
2

− ∆τ
∑

a6=a′,σ

Λijǫτνλ∆νbaσλǫτρ̺∆ρba′σ̺

+ yv

∑

aσ

cos(∆µϑaσ − 2πbaσµ)

+ ym

∑

a

cos

(

2πNa −
∑

σ

σϑaσ

)]

(4.6)

This is a theory of 2 vortex fields, ψ+ = eiϑ+ and
ψ− = eiϑ− which are coupled to 2 non-compact U(1)
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gauge fields b+µ and b−µ. There is also a Higgs field Na

which breaks the staggered component of the U(1) gauge
symmetries, as will become more explicit below.

We will henceforth not carry through the off-site Λij

terms explicitly in our analysis. As in I, we will assume
that their effects can be absorbed into a renormalization
of the value of e2. This is certainly the case for short-
range Λij , while for long-range Coulomb interactions, e2

will acquire momentum dependence which was noted in
I. Our numerical results below will be restricted to the
short-range case, but we do not expect significant modi-
fications for the long-range case.

To allow us to make direct contact with previous work
on the undoped dimer model, we use the parameteriza-
tion of Xaµ in Ref. 8 in terms of curl-free and divergence-
free fields (shown in Fig 3)

Xaµ = ∆µYa + ǫµνλ∆νZiλ. (4.7)

Inserting this in Eq. (4.6) and shifting Na → Na −Ya we
obtain

Zqd =
∏

aσ

∫

dbaσµ

∫

dϑaσ

∫

dNa exp

[

− g

2

∑

a

(

∆µNa + Eaµ −
∑

σ

σbaσµ

)2

− iπ
∑

a

(

∆τNa + Eaτ −
∑

σ

σbaστ

)

− 1

2e2

∑

iσ

[ǫµνλ∆νbaσλ − (H + σηiW )δµτ ]2

+ yv

∑

aσ

cos(∆µϑaσ − 2πbaσµ)

+ ym

∑

a

cos

(

2πNa −
∑

σ

σϑaσ − 2πYa

)]

, (4.8)

where Eaµ = ǫµνλ∆νZiλ is given by

Eaµ ≡ (−1)ax+ay

4
(0, 1,−1). (4.9)

It is convenient to introduce uniform (Aµ) and ‘staggered’
(Cµ) gauge fields defined by

ba+µ = Aaµ + Caµ

ba−µ = Aaµ − Caµ . (4.10)

The term proportional to g in Eq. (4.8) effectively breaks
the ‘staggered’ gauge symmetry associated with Cµ under
which ψ± have opposite gauge charges. The field Na is
the phase of the Higgs field which breaks this symmetry,
and as is conventional, we use a gauge transformation to
set this field equal to 0. Also, we transform from the
hard-spin to soft-spin variables to obtain the dual action

in its final form

Zqd =
∏

aµ

∫

dAaµ

∫

dCaµ

∏

aσ

∫

dψaσ exp

[

− 1

e2

∑

a

[ǫµνλ∆νAaλ −Hδµτ ]2

− 1

e2

∑

i

[ǫµνλ∆νCaλ − ηiWδµτ ]
2

− g

2

∑

a

(2Caµ − Eaµ)2 + 2iπ
∑

a

Caτ

−
∑

aσ

[

s|ψaσ|2 +
u

2
|ψaσ|4

]

− v
∑

a

|ψa+|2|ψa−|2

+
yv

2

∑

aσµ

[

ψ∗
a+µ,σe

2πi(Aaµ+σCaµ)ψaσ + c.c.
]

+
ym

2

∑

a

[

ψ∗
a−ψa+e

2πiYa + c.c.
]

]

. (4.11)

The similarity between Zqd above, and the dual theory
of bosons on a square lattice in I should now be evident.
The latter theory had a single vortex species, ψa, coupled
to a single non-compact U(1) gauge field Aaµ. Here in
Eq. (4.11) we have two vortex species, ψa+ and ψa−,
but they are coupled together by the monopole fugacity
term proportional to ym, effectively reducing the theory
to that of a single vortex field. The present partition
function also has 2 non-compact U(1) gauge fields, Aaµ

and Caµ, but the Caµ field has acquired a mass from the
Higgs phenomenon, as is clear from the term proportional
to g. This massive gauge field also has a complex Berry
phase term (with 2iπ in Eq. (4.11)), which is unimportant
here because the Caµ fluctuations are quenched. The
physical meaning of this quenching was already discussed
at the end of Sec. II: in this representation, the regime
of interest where the dimer resonance move has relatively
small amplitude corresponds to large g, and the π gauge
flux favored by this term (responsible for the complex
Berry phase term just mentioned) is expelled.

Given the close similarity between Zd in I and Zqd in
Eq. (4.11), it is evident that low energy fluctuations in
the vicinity of transitions between superfluid, supersolid,
and insulating phases of the quantum dimer model are
described by the same continuum quantum field theo-
ries as those in I. The most important fact determining
the character of these field theories is the particular pro-
jective representation of the square lattice space group
(PSG) that is realized by the saddle point under con-
sideration. In particular, all we need is the value of the
effective dual ‘magnetic’ flux f , and the corresponding
value of the unimodular complex number ω in I. Deter-
mining this requires a careful symmetry analysis of the
appropriate saddle point of Eq. (4.11), and this is carried
out in the following subsection.

Before turning to this symmetry analysis, it is useful
to make explicit contact between the dual partition func-
tion in Eq. (4.11), and previous dual representations3,8 of
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the undoped dimer model. The hole density vanishes in
this limit, and so the Aaµ flux is zero; this is achieved by
setting H = 0 in Eq. (4.11). Furthermore, the insulating
behavior requires a strong condensate of the ψa± fields,
and we can focus on the phase fluctuations of the con-
densate by writing ψa± = eiχa± . We also set the massive
field Caµ = 0. Then the action Zqd maps at low energies
to

Zqd =
∏

aµ

∫

dAaµ

∏

aσ

∫

dχaσ exp

[

− 1

e2

∑

a

[ǫµνλ∆νAaλ]
2

− yv

2

∑

aµ

(

∆µχa+ + ∆µχa−

2
+ 2πAaµ

)2

− yv

8

∑

aµ

(∆µχa+ − ∆µχa−)
2

+ ym

∑

a

cos (χa+ − χa− + 2πYa)

]

. (4.12)

The first two terms show that the Aµ gauge field is Hig-
gsed by χa+ + χa−, and so is innocuous. The last two
terms constitute a sine-Gordon model for χa+−χa−, with
on-site offset Ya: this is precisely the dual representation
of the undoped dimer model found earlier3,8.

A. Symmetries

As in I, we will analyze the symmetry properties of the
dual dimer model theory in Eq. (4.11) at a commensurate
density of holes appropriate to a proximate Mott insula-
tor. We assume this has the rational value δI which we
parameterize as

δI
2

=
p

q
, (4.13)

where p and q are relatively prime integers. In general (as
in I), the density of holes, δ, in the theory in Eq. (4.11)
is determined by the parameter H , and in the superfluid
or supersolid phases we may have δ 6= δI .

Proceeding as in I, we set the gauge field Aaµ equal

to a saddle point value Aaµ such that the flux is equal
to the density of each species of hole (+ or −). So we
choose Aaτ = Aax = 0 and

Aay =
δI
2
ax. (4.14)

For the staggered gauge field we have the saddle point
value Caµ = λ

2Eaµ with λ = 1/(1 + 4/e2g).
The main new subtlety here (beyond that of I) in the

symmetry analysis of Eq. (4.11) is the presence of the
fixed background fields Eaµ and Ya. These fields are not
explicitly invariant under the square lattice space group,

and so require additional transformations of the vortex
fields upon operations of the space group. These ad-
ditional transformation will modify the needed PSG, as
shown below.

Carrying out the space group operations in the pres-
ence of the Aaµ, Eaµ, and Ya, it can be shown that the
action remains invariant under the following field trans-
formations, which are the analog of the relations in Sec-
tion II.B of I:

Ty : ψ+(kx, ky) → ψ−(kx, ky)e−ikyeiπ/4

Ty : ψ−(kx, ky) → ψ+(kx, ky)e−ikye−iπ/4

Tx : ψ+(kx, ky) → ψ−(kx, ky − πδI)e
−ikxe−iπ/4

Tx : ψ−(kx, ky) → ψ+(kx, ky − πδI)e
−ikxeiπ/4

Rπ/2 : ψ+(kx, ky) →

1

q

q−1
∑

m,n=0

ψ−(ky + πnδI ,−kx + πmδI)ω
−mn

Rπ/2 : ψ−(kx, ky) → (4.15)

1

q

q−1
∑

m,n=0

ψ+(ky + πnδI ,−kx + πmδI)ω
−mn

To understand the degeneracy of the spectrum associated
with these transformations, it is useful to transform to a
basis of states which are eigenvectors of Ty. These are
expressed by the fields

ψ1 =
1√
2

(

e−iπ/8ψ+ + eiπ/8ψ−

)

ψ2 =
1√
2

(

e−iπ/8ψ+ − eiπ/8ψ−

)

. (4.16)

Then

Ty : ψ1(kx, ky) → ψ1(kx, ky)e−iky

Ty : ψ2(kx, ky) → −ψ2(kx, ky)e−iky

Tx : ψ1(kx, ky) → ψ2(kx, ky − πδI)e
−ikxeiπ/2

Tx : ψ2(kx, ky) → ψ1(kx, ky − πδI)e
−ikxe−iπ/2

R : ψ1(kx, ky) → 1

q

q−1
∑

m,n=0

ω−mn

× [ψ1 + iψ2](ky + πnδI ,−kx + πmδI)√
2

R : ψ2(kx, ky) → −1

q

q−1
∑

m,n=0

ω−mn (4.17)

× [ψ2 + iψ1](ky + πnδI ,−kx + πmδI)√
2

.

Now we observe that the Ty eigenvalues of the ψ1 fields
at momentum k are equal to those of the ψ2 fields at
k + (0, π). So these fields will mix with each other, and
cannot lead to orthogonal eigenmodes. It is convenient to
introduce a new collective field Ψ(k) which equals ψ1 at k
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and ψ2 at k+(0, π), and which is identified by the eigen-
value e−iky of Ty. Then, ignoring unimportant phase
factors, we have under the action of Tx:

Tx : Ψ(kx, ky) → Ψ(kx, ky + π − πδI) (4.18)

From this equation we see that the PSG of the present
fields has the same structure as that in Section I of I

TxTy = ωTyTx,

ω ≡ e2πif (4.19)

with the key parameter f specified by

f ≡ p̃

q̃
=

(1 − δI)

2
=

1

2
− p

q
, (4.20)

where p̃ and q̃ are also relatively prime integers. Note
that the value of f is half the density of electrons i.e. it
is the density of Cooper pairs in the Mott insulator. So
the low energy field theory of the present dimer model
is identical to that presented in I but with the PSG de-
termined by the density of Cooper pairs. We have also
explicitly diagonalized the spectrum of ψaσ vortices in
Zqd in Eq. (4.11) and verified that it did indeed have the
degeneracy required by such a PSG.

B. Mean field theory

We have seen above that the low energy continuum
theory of the quantum dimer model is identical to that al-
ready presented in I. We have already presented a mean-
field analysis of this continuum theory in Section II.D of
I, and so do not need to repeat it here. Rather, we will
work directly with the lattice action in Eq. (4.11) and
follow its mean-field phase diagram with increasing hole
density, δ.

To do a mean-field analysis of our dual dimer model
we consider the free energy corresponding to Eq. (4.11).
Rescaling the fields ψaσ, and neglecting an overall con-
stant, we can choose u = yv = 1 and obtain the free
energy (with r ≡ s− 2)

F =
1

2

∑

aσµ

∣

∣

∣
ψa+µ,σe

−2πi(Aaµ+σCaµ) − ψaσ

∣

∣

∣

2

+
∑

aσ

[

r|ψaσ |2 +
1

2
|ψaσ|4

]

+ v
∑

a

|ψa+|2|ψa−|2

− ym

2

∑

a

[

ψ∗
a−ψa+e

2πiYa + c.c.
]

+
1

e2

∑

a

[ǫµνλ∆νAaλ −Hδµτ ]
2

+
1

e2

∑

a

[ǫµνλ∆νCaλ − ηia
Wδµτ ]2

+
g

2

∑

a

(2Caµ − Eaµ)2 . (4.21)

For simplicity we will also set ym equal to 1, and, as
discussed below Eq. (2.8), we can safely choose W = 0.
We will set v equal to zero and do not discuss states
which break the σ → −σ symmetry. Such states break
the vortex-anti-vortex symmetry on average, and emerge
only for sufficiently large v.

We note that we have dropped the 2iπ
∑

a Caτ term
in Eq. (4.11), which was a consequence of the sign J > 0
in the dimer ‘resonance’ term Eq. (2.9). The massive
Caτ field has little effect on our analysis below, and it
therefore appears reasonable to ignore this term in our
mean-field theory.

This leaves us with the hole chemical potential (the
‘magnetic field’) H (in the superfluid phase, this picks a
hole density δ = 2H), the coupling constants e2 and g,
and the control parameter r. For the phase transition
between the superfluid and the insulating phase to be of
second order we have to choose e2 small. In our units,
we take e2 = 0.04.

We can now map out the phase diagram for zero dop-
ing. Instead of using r and g as parameters, let us use r
and the already introduced (below Eq. (4.14)) parameter

λ ≡ 1

1 + 4/e2g
. (4.22)

Note that the range 0 < g < ∞ gets mapped onto 0 <
λ < 1. Also, in the superfluid phase, and close to the
second order phase transition to this phase, the saddle
point approximation for the massive field Caµ becomes
exact such that Bstaggered = ǫτµν∆µCaν = ±λ/2.

As can be seen in Fig 4, for large enough r we are al-
ways in the superfluid phase, which is characterized by
the vortex vacuum 〈ψaµ〉 = 0. As we decrease r, we
enter an insulating state with 〈ψaµ〉 6= 0 via a second or-
der phase transition. Depending on the value of λ, this
can either be a columnar valence bond solid (VBS) state
(B), or a state with site density wave order (CDW) at
wavevector (π, π) (A). It turns out that the plaquette
state (C) always has a free energy slightly larger than
that of the columnar VBS state, for the parameters cho-
sen here. All these results are consistent with the mean
field phase diagram of our field theory for q = 2 in I.

In Fig 4 (and Figs 6-9) we have indicated the links of
the direct lattice by solid lines. The size of the (black)
bars living on these links is proportional to the vortex
kinetic energy

〈ψ∗
a+µ,σe

2πi(Aaµ+σCaµ)ψaσ + c.c.〉 , (4.23)

which we can physically interpret as the mean spin ex-
change energy of the electrons on the direct lattice. The
mean electron ring exchange energy determined by

〈ψ∗
a−ψa+e

2πiYa + c.c.〉 (4.24)

is depicted by (blue) boxes whose size is chosen to be
proportional to this quantity. If the exchange energy is
negative we have used a crossed box. Finally the (mean)
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FIG. 4: Mean field phase diagram for the doped dimer model
with zero doping. For large r our theory favors a vortex vac-
uum such that we are in the superfluid phase. Decreasing r
we enter one of the (condensed) insulating states. While for
smaller λ we find a columnar bond ordered state (B) whose
free energy is slightly lower than that of a plaquette state (C),
for larger values of λ we get a CDW state (A). The lines in-
dicate the links of the direct lattice. The black bars on these
links are proportional to the spin exchange energy or the elec-
tron pairing amplitude (see text). Similarly, the size of the
(blue) boxes depicts the ring exchange amplitudes which are
located on the dual lattice. If this amplitude is negative we
have used a (tiny) crossed box. Finally, the state A also shows
a finite mean hole density which is positive on one sublattice
(red bullets) and negative on the other (crossed circles). As
discussed in the text this CDW state is unphysical, and we
exclude the corresponding parameter values.

density of holes on the sites of the direct lattice is pro-
portional to

Bi ≡ ∆xAaiy − ∆yAaix . (4.25)

For H = 0 (zero doping) we expect this quantity to van-
ish, which indeed is the case for the bond ordered or
the plaquette state. However, the CDW state in Fig 4
shows a checkerboard pattern for Bi, which takes oppo-
site values on the two sublattices, and are depicted by
(red) bullets or crossed circles depending on whether Bi

is positive or negative. Clearly this CDW state is not in a
physically interesting regime of couplings for the original
dimer model as it applies to the cuprates (the electron
density is uniform in the Mott insulator at half-filling);
the lesson to be learned from this is that in our model
we cannot choose g too large. For concreteness, let us
choose g = 2/e2 = 50 such that for sufficiently small r
we are always in the columnar VBS state.

To discuss doping holes into an insulator, we will start
from a columnar bond ordered state and follow its fate as
we increase the chemical potential H . First of all, it is in-
structive to determine the critical value of r at which we
have the phase transition from a superfluid to an insulat-
ing state as a function of H . This transition occurs when
the ψaµ condense, and so a lower bound on the critical

FIG. 5: Lower bound for the superfluid to insulator transi-
tion, rc as a function of the hole density, δ, in the superfluid
state (δ = 2H). There is a second order transition at the
points shown into an insulator with the same density. For ir-
rational δ, this insulator is a floating Wigner solid. The ratio-
nal δ Mott insulators are expected to survive in fixed density
”Mott lobes” extending over a finite range of the “chemical
potential” H , and these can pre-empt the transition into the
incommensurate floating solids. The re-entrance of the curve
above at large H is in a regime of such large δ that we do not
expect our small doping theory to remain valid.

value of r = rc is obtained by locating the point at which
the lowest eigenvalue of the quadratic part of the ψaµ

free energy in Eq. (4.21) turns negative. A graph of the
lower bound of rc(H) is shown in Fig 5. Determination of
this lowest eigenvalue requires the Hofstadter spectrum
of ψaµ, and so the graph in Fig 5) has a shape similar to
the ground state energy of the Hofstadter butterfly. For
incommensurate values of H , the transition at the points
in Fig 5 is into a floating Wigner solid with hole density
δ = 2H . We expect that this will often be pre-empted
by a first order transition into a nearby commensurate
Mott insulator with hole density δ 6= 2H , but instead
at the rational value determined by the Mott insulator.
In the dual language of the ‘superconductor’, this Mott
insulator has expelled some of the ‘magnetic flux’ H .

In the following we will choose r = −0.1 such that we
are in the insulating state at zero doping, and enter the
superfluid phase at around δ ≈ 0.15. Our mean field
theory also predicts that at high enough doping concen-
tration we are back in an insulating state, but we do not
expect our duality analysis to be valid at such large δ.

We do not make any pretense at completeness in the
following phase diagrams: they are merely representative
structures obtained for a sample set of parameters, and
other parameters can clearly give a wide variety of other
phases. However, all such phases will obey the general
constraints we have delineated in I.

In Figs. 6-9 we show the states for doping δ =
0, 1/32, 1/16, and 1/8. While at zero doping we are in a
columnar VBS state with vanishing hole density on the
sites, at doping δ = 1/32 we find a modified plaquette
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FIG. 6: Insulating state with columnar valence bond solid
(VBS) order at zero doping. This state is obtained by a
mean-field minimization of the free energy in Eq. (4.21) with
parameter values as discussed in the text. The significance of
the symbols on the square lattice above (and in Figs 7-9) are
as in Fig 4.

state and which shows a concentration of the mean hole
density at the corners of one plaquette of its 8 × 8 unit
cell. At the center of this plaquette frustration leads
to 〈ψa+〉 = 〈ψa−〉 = 0. The variation of charge den-
sity in the unit cell clearly results in a 2-dimensional
charge density wave with wave-vectors kx = (2π/8a, 0)
and ky = (0, 2π/8a) where a is the lattice spacing. It
should also be noted that as for the plaquette state (C)
in Fig 4, the state depicted in Fig 7 is invariant under ro-
tations by 90 degrees about the plaquette with 〈ψaσ〉 = 0.

Doubling the doping concentration δ, we find the state
depicted in Fig 8, which is similar to the previous state
but has a unit cell of half its size and leads to a mod-
ulation of the charge density with wave-vectors k± =
(2π/8a,±2π/8a). Finally at doping δ = 1/8, we find the
state depicted in Fig 9 which is also invariant under ro-
tations by 90 degrees about a plaquette with 〈ψaσ〉 = 0
and has a 4 × 4 unit cell. Since we are now close to the
second order phase transition to the superfluid phase,
the mean hole density is now distributed essentially uni-
formly over the lattice. However, there is still a weak 2-
dimensional hole density modulation with wave-vectors
kx = (2π/4a, 0) and ky = (0, 2π/4a)

C. Pairing symmetry

The analysis of this section has been carried out al-
most entirely in a dual representation of the underlying
electronic degrees of freedom. While this has the benefit

FIG. 7: An insulating state with a 8 × 8 unit cell for doping
δ = 1/32. The parameters are the same as for the δ = 0
state in Fig 6, apart from the change in H , the hole chem-
ical potential. This state is invariant under rotations by 90
degrees around the plaquette with 〈ψaσ〉 = 0. The mean hole
density indicated by the red bullets is concentrated near this
plaquette.

of properly accounting for the non-perturbative dynam-
ics of the compact U(1) gauge theory Hqd in Eq. (2.1),
it does obscure the physical interpretation of the phases
of the theory. We have already shown in I how the den-
sity wave order can be thoroughly characterized by the
dual vortex degrees of freedom. In this subsection we
want to determine and analyze the corresponding dual
representation of correlators which characterize the su-
perconducting order.

We already discussed the issue of the pairing symme-
try in Section III A and found that certain key deter-
mining factors could not be specified within the physics
of the dimer model alone. In Eq. (3.7) we related the
electron pairing field to the product of microscopically
determined co-efficients µα and degrees of freedom of the
quantum dimer model. Let us consider the two-point
correlation function for the pair field, at two pairs of
nearest-neighbor points 12, 34, where 2 is displaced in
direction α from 1, and 4 is displaced in direction β from
3 (see Fig 10 for an example). Then we can write the
pairing correlator as

〈Ψ12Ψ
∗
34〉 = µαµβG12;34 (4.26)

where G12;34 is a two-point correlator of the quantum
dimer model given by

G12;34 = 〈C†
34C12〉 , (4.27)

with the gauge-invariant hole pair annihilation operator

C12 = eiη1Â12e−iφ̂1+e−iφ̂2− . (4.28)
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FIG. 8: Insulating state evolving out of state in Fig 7 for
doping δ = 1/16 (other parameters as in Fig 6). As for the
state depicted in Fig 7 this state is symmetric under rotations
by 90 degrees. However, the unit cell is now 4 × 8.

FIG. 9: Insulating state for doping δ = 1/8 with a 4× 4 unit
cell, with parameters as in Figs. 6-8. Now we are close to the
phase transition to the superfluid phase and the mean hole
density is more evenly distributed.

We choose sites 1, 3 on the A sublattice (ηi = +1) and
sites 2, 4 on the B sublattice (ηi = −1) for concreteness.

It now remains to evaluate G12;34 within the context of
duality analysis of Section IV. We will show that this cor-
relator factorizes in the limit of large separation between
the points 12 and 34, with no dependence on the rela-

1

2

3 4

FIG. 10: Computation of the electron pair correlation func-
tion. The sites 1,3 have ηi = +1, while 2,4 have ηi = −1.
The current J31µ is equal to unity along the line connecting 3
to 1, and is zero elsewhere; other currents between two points
are defined similarly. We also define loop currents e.g. J1243µ

is unity only along the loop around the points 1,2,4,3. An
electron singlet pair is created on the link 1,2 and annihilated
on the link 3,4.

tive orientations or centers of 12 and 34. This is indica-
tive of superconducting Off-Diagonal Long Range Order
(ODLRO). The symmetry of the pairing state is then de-
termined by the dependence of 〈Ψ12Ψ

∗
34〉 on either pair

of neighboring points 34 or 12, separately. Consequently
the pairing symmetry of the superfluid ground state is
determined by the µα factors controlling the particular
PSG realized by the dimer model, and by the depen-
dence of G12;34 on 12 or 34 separately. We will see that,
for the large g limit on which we focus, G12;34 is also in-
dependence of the orientation or position of either pair
of points when they are well-separated. Thus the pairing
symmetry is determined entirely by the µα factors.

The correlatorG12;34 can be computed in our dual rep-
resentation by inserting the operator in Eq. (4.28), and
the corresponding operator at sites 3,4, into the trans-
formations leading to Eq. (4.3). After integrating over
the degrees of freedom on the direct lattice as before, the
correlation function is expressed as

G12;34 =
1

Zqd

∑

{Jiσµ,Faµ}

exp

(

−g
2

∑

a

F 2
aµ − iπ

∑

a

Faτ

− 1

2e2

∑

i

(

[Ji+µ + J31µ − (H + ηiW )δµτ ]
2

+ [Ji−µ − J24µ − (H − ηiW )δµτ ]
2
)

)

∏

iσ

δ (∆µJiσµ)

×
∏

aµ

δ

(

ǫµνλ∆νFaλ + J1243µ +
∑

σ

σJiσµ − ηiδµτ

)

(4.29)

Here the currents J12µ etc. are fixed background cur-
rents defined in Fig 10 associated with the presence of
the source terms of the correlator. Notice that the delta
function constraints in Eq. (4.29) differ importantly from
those in Eq. (4.3); consequently the solution of these con-
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straints in Eq. (4.4) is replaced by

Jiσµ = ǫµνλ∆νbaσλ

Faµ = ∆µNa + Baµ + Xaµ −
∑

σ

σbaσµ, (4.30)

where Baµ is a fixed background integer-valued field
which obeys

ǫµνλ∆νBaλ = −J1243µ. (4.31)

Therefore, Baµ is the “magnetic” field associated with the
current loop in Fig 10a; a convenient choice is to take only
Baτ non-zero along the links which pierce the current loop
in Fig 10a. Including the additional offset Baµ, we can
continue the analysis of Eq. (4.29) as before, and obtain
an expression corresponding to that in Eq. (4.6).

We now split the baσµ gauge fields into its uniform and
staggered components as in Eq. (4.10). Manipulating the
expressions in the action in Eq. (4.29) we find that they
can be split into those involving the uniform (Aaµ) and
staggered (Caµ) components respectively. While the re-
sulting action has decoupled contributions from Aaµ and
Caµ, it should be kept in mind that their fluctuations are
not truly independent. In particular, because the baσµ

must be integers, the Aaµ and Caµ must both be either
integers or half-integers. As we argue below, the Aaµ

field fluctuates strongly in the superfluid phase (so that
it can effectively be considered a continuous real field),
and so it appears reasonable to ignore such a constraint.
However it is possible we are overlooking some subtlety
here, and it may be worthwhile to re-examine this issue
in future work.

For the uniform component we obtain the terms in the
action

SA[J ] =
1

4e2

∑

a

(2ǫµνλ∆νAaλ + J31µ + J42µ − 2Hδµτ )
2
.

(4.32)
Notice that the source term here is the sum of the two
currents flowing from one pair field to the other, and so
upon coarse-graining it looks like the current of a charge
2 object (i.e. a Cooper pair) moving between 12 and
34. In the superfluid phase, the uniform gauge field Aaµ

is in its Coulomb phase because the vortex fields ψaσ

are gapped. So we can easily evaluate the expectation
value of the action in Eq. (4.32) by treating Aaµ as a real
variable controlled by the usual Maxwell action. In this
manner we deduce that the contribution of the uniform
component of the gauge field to G1234 is

∫

DAaµe
−SA[J]

∫

DAaµe−SA[0]
= (4.33)

exp

(

(∆µ(J31µ + J42µ))
1

−4e2∆2
λ

(∆ν(J31ν + J42ν))

)

.

The divergence of the currents is only non-zero at the lo-
cation of the Cooper pair source terms, and so we see that
the correlator is the magnetic energy of two ‘monopole’

sources at these locations. The square root of this corrre-
lator in the limit of infinite separation is the superfluid
order parameter, and this is given by the finite self-energy
of a single monopole. In addition, there is a 1/r inter-
action between the monopoles, and this power-law decay
arises from the superflow fluctuations in the dual super-
fluid.

We turn next to the contribution of the staggered field
Caµ to the action in Eq. (4.29). In the gauge Na = 0,
the relevant contribution to the action is

SC [J ] =
g

2

∑

a

(Baµ + Xaµ − 2Caµ)
2

+ iπ
∑

a

(Baτ + Xaτ − 2Caτ ) (4.34)

+
1

4e2

∑

a

(2ǫµνλ∆νCaλ + J31µ + J24µ − 2ηiWδµτ )2 .

We now shift 2Caµ by Baµ + Xaµ, and using Eqs. (4.5)
and (4.31) the action above can be written as

SC [J ] = 2g
∑

a

C2
aµ − 2iπ

∑

a

Caτ

+
1

4e2

∑

a

(

2ǫµνλ∆νCaλ − J12µ − J43µ

− ηi(2W + 1)δµτ

)2

. (4.35)

The most important property of this expression is that it
only involves the local currents J12µ and J43µ which are
entirely localized at the Cooper pair source terms. So
when these sources move far apart, the correlator factor-
izes into two contributions, one for each order parame-
ter insertion. Furthermore, because the staggered gauge
correlations of Eq. (4.11) decay exponentially with sep-
aration, it follows that these insertions can be evaluated
independently of each other. As discussed earlier, this is
indicative of ODLRO.

Next consider the dependence of G12;34 upon 34, keep-
ing 12 fixed and far away. For two sets of points 34 and
3′4′, one has

G12;34

G12;3′4′

=

∑

Caµ
e−SC [J12,J34]

∑

Caµ
e−SC [J12,J3′4′ ]

(4.36)

For large g, one clearly sees that the numerator and de-
nominator are dominated by Caµ = 0, independently of
J34 and J3′4′ . Hence there is no directional or other de-
pendence of G12;34 on either pair of points, and we can
conclude that G12;34 reaches a featureless constant in the
superfluid phase as 12 and 34 move apart from each other.
The pairing signature in Eq. (4.26) is determined by the
µα, as promised.

V. COLLECTIVE S = 1 ‘TRIPLON’

EXCITATIONS

We discussed the inclusion of non-zero spin excitations
in the dimer model in Section III, but focused entirely
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on fermionic S = 1/2 degrees of freedom. We also noted
in Section III B that neutral S = 1/2 excitations did not
survive in the insulator: instead they confined in pairs to
create stable, bosonic S = 1 ‘triplon’ excitations. It is to
this triplon excitation that we now turn our attention to.
In principle, the triplon can also survive as a stable exci-
tation into the supersolid or superfluid phases, provided
energy and momentum conservation constraints prevent
its decay into pairs of S = 1/2 Bogoliubov quasiparticles.

Microscopically, we can also see the necessity of includ-
ing the triplon excitation by referring to previous anal-
yses using bond operators14,22,23. As discussed therein,
two electrons on sites at the ends of a square lattice link,
in addition to forming a spin singlet valence bond (a
dimer), can also be in a higher energy S = 1 combi-
nation. It is the motion of this S = 1 state that we wish
to examine here.

Clearly, establishing the stability of the triplon requires
an accounting of fluctuations of the compact U(1) gauge

field Â. So we need to work with dual fields of Section IV
to account for the S = 0 sector. It is cumbersome to
carry triplon through this duality analysis, and so we
will attempt to guess its effective action using symmetry
considerations.

Our approach will be to combine the approach of
Ref. 24 with the results of I and of Section IV. As in
Ref. 24, we represent the triplon by a real vector field ~ni,
where the arrow denotes a vector in spin space. The spin
operator on site j is related to ~nj by

~Sj ∝ ηi~nj ; (5.1)

so, on its own, ~ni is a measure of spin correlations at
the commensurate antiferromagnetic wavevector (π, π).
Given the short range antiferromagnetic couplings be-
tween the spins (or, alternatively, using the results the
microscopic calculation of Ref. 14), we follow Ref. 24 in
postulating the following phenomenological quantum lat-
tice model for the ~ni:

Sn0 =

∫

dτ
∑

j

[

1

2

(

∂~nj

∂τ

)2

+
s

2
~n2

j +
u

4

(

~n2
j

)2

]

+

∫

dτ
∑

〈jj′〉

c2

2
(~nj − ~nj′)

2
. (5.2)

Here s is a parameter which determines the gap towards
triplon excitations, u is a quartic non-linearity, and c is
a velocity. In the absence of any coupling to the S = 0
charged excitations, Eqs. (5.1), (5.2) predict that the the
lowest energy triplon excitation is at wavevector (π, π).

It is now useful to characterize universal aspects of the
vortex theory of Section IV using the methods of I. From I
we learn that for f = p̃/q̃ (p̃, q̃ relatively prime integers),
the low energy physics of the S = 0 sector is captured by
q̃ vortex fields ϕℓ, ℓ = 0, 1 . . . (q̃−1). The effective action
for the ϕℓ fields is as described in I. From these vortex

fields we can also construct the density operators

ρmn = ωmn/2

q̃−1
∑

ℓ=0

ϕ∗
ℓϕℓ+nω

ℓm, (5.3)

wherem, n are integers, representing Fourier components
of ‘density’-like observables (such as pairing amplitude,
exchange energy, or site charge density) at wavevector
2πf(m,n). Finally, from the ρmn we can Fourier trans-
form to real space and obtain δρ(r), the value the ‘den-
sity’ at the sites, links, and plaquettes of the square lat-
tice; the manner in which this is done, and the conven-
tions for r, are described below and in Eq. (2.26) of I.

We can now compute the effect of the S = 0 sector
on the triplon ~n excitation just as in Ref. 24. We as-
sume that the variations in δρ(r) modulate the exchange
constants between (and the amplitudes of) the ~nj, and
so write down the simplest local couplings between these
degrees of freedom:

Sn1 =

∫

dτ
∑

j

[

λ1δρ(rj)~n
2
j

+ λ2

∑

α

δρ(rj+êα/2)~nj · ~nj+êα

+ λ3

∑

α

δρ(rj)~nj−êα
· ~nj+êα

+ · · ·
]

(5.4)

We can now analyze Sn0+Sn1 as in Refs. 22,23,24. For
static condensed ϕℓ, as obtains in a commensurate Mott
insulator, we have a corresponding static modulation in
δρ(r). Its influence on the triplon excitation spectrum
can be as computed in Ref. 24. As was shown there, sim-
ple and natural choices for the modulations agree with
neutron scattering observations25,26,27,28 over a wide en-
ergy range. We leave for future work the extension of
these results to the case where the ϕℓ are fluctuating.

VI. CONCLUSIONS

The primary purpose of this paper was to present a
complete treatment of the interplay between VBS order
and superconductivity in a model of a doped S = 1/2
quantum antiferromagnet on the square lattice. We
aimed to do this in an approach which properly accounted
for strong gauge fluctuations even at non-zero hole con-
centrations, δ. While numerous previous studies have
studied the properties of effective gauge theories of quan-
tum antiferromagnets, essentially all have treated gauge
fluctuations only at δ = 0 (see however Ref. 29). As
we recall briefly below, several key characteristics of our
theory were special to δ = 0.

Our analysis here was carried out in the context of the
doped quantum dimer model7, which served as a conve-
nient effective theory for the spin S = 0 sector. By a
duality analysis of this model in Section IV, we obtained
a dual theory of vortices in the local paired-electron su-
perconducting order. As in a previous paper1 (referred to
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as I) on pure boson models, we found that these vortices
appeared in q̃ > 1 ‘flavors’ determined by the electron-
pair density in a proximate Mott insulator with δ 6= 0.
There is much evidence in the cuprates that they are
proximate to a Mott insulator with hole density δ = 1/8,
and by Eq. (4.20) this translates into a value q̃ = 16.
With the knowledge of q̃, we can then freely borrow over
essentially all of the results of I on the fluctuations of su-
perflow and charge/VBS order across superconducting,
supersolid, and insulating phases. The q̃ vortices trans-
form under projective representation of the square lat-
tice space group (PSG) which strongly constrains their
effective action. Any impurity-induced pinning of a vor-
tex also induces VBS/charge order by breaking the PSG
among the q̃ vortices. We presented a number of results
on features of impurity induced pinning of vortices in I,
and the present paper has provided the promised justi-
fication for their application to scanning tunnelling mi-
croscopy (STM) experiments on the cuprates.30,31,32,33,34

We also showed how the framework of the quantum
dimer model could be extended to include fermionic and
non-zero spin excitations. This led us to an unexpected,
and fairly explicit, connection between the dimer model
and previous9,10,11,12 slave-particle U(1) and SU(2) gauge
theories of quantum antiferromagnets. This connection
was established in the context of mean-field saddle points
in which all gauge fluctuations were quenched. Our
present analysis makes it quite clear that neglect of such
gauge fluctuations is dangerous at least at small δ: all
the PSG properties of vortices described in the previ-
ous paragraph emerged upon a careful treatment of such
fluctuations at δ 6= 0.

The relationship between these different approaches to
quantum antiferromagnets is neatly highlighted by the
key constraint equation in Eq. (3.33)

∆αÊiα + b†i+bi+ − b†i−bi− +
∑

s

d†isdis = 1, (6.1)

obeyed at every site of the lattice. Here Êiα is the integer-
valued electric field of a compact U(1) gauge field which
is a measure of the number of singlet valence bonds on
a link of the direct square lattice. The bi± are bosons
representing holes which carry opposite gauge charges,

and the d†is are S = 1/2 fermionic spinon degrees of
freedom. (It must be emphasized that this is merely a
kinematic description of theory, and the ultimate quan-
tum numbers of the emergent quasiparticles may well
be different.) In the SU(2) gauge-theoretic approaches
of Refs 11,12, the first valence bond term in Eq. (6.1)
is not explicitly included, although it will be generated
upon renormalizing the theory to a lower energy scale;
the constraint is satisfied primarily by a half-filled band
of d fermions. In our present dimer model approach, in

contrast, the fluctuating electric field term plays a cen-
tral role in Eq. (6.1); furthermore, we perform our duality
analysis about a fermionic vacuum in which there are two
and zero d fermions (for an average of one) on the two
sublattices respectively (the PSG ensures that this choice
of vacuum actually breaks no symmetries). Alternatively
stated in more physical terms, the previous analyses11,12

were carried out about a background of fermions occupy-
ing a half-filled band of single-particle states, while our
duality analysis assumes that the electrons are primarily
in paired singlet valence bond states. The consistency
of our approach with the modulations observed in STM
studies of the vortex lattice30 (discussed above), and the
absence (so far) of the staggered current patterns near
vortices predicted by the SU(2) gauge theory,35 may ten-
tatively be regarded as experimental evidence in support
of the approach advocated in I and the present paper.

While our duality analysis is best controlled when the
fermionic S = 1/2 quasiparticle excitations of the super-
conductor are fully gapped, the structure of our theory
does allow these quasiparticles to acquire a gapless nodal
structure in a superconductor, without a strong quali-
tative impact on any of the phases of our theory. Upon
decreasing δ from deep in the superconducting state, such
nodal quasiparticles can annihilate in pairs across a re-
duced Brillouin zone boundary in a superconductor at
δ = δf , as has been described in previous work13,14,20.
Alternatively, one can imagine that the nodal quasipar-
ticles persist in the superconducting phase right down
to the Mott insulator-to-superconductor transition: the
theory of I will clearly not apply to such a transition,
and obtaining the correct theory for this case remains an
important open problem.

Acknowledgments

We thank M. P. A. Fisher, E. Fradkin, S. Kivel-
son, T. Senthil, and X.-G. Wen for valuable discus-
sions. In particular, conversations with T. Senthil stim-
ulated us to discuss the relative contributions of the
electric field and fermion density to the constraints in
Eqs. (3.25), (3.33), (3.48), and (6.1). This research was
supported by the National Science Foundation under
grants DMR-9985255 (L. Balents), DMR-0098226 (S.S.),
and DMR-0210790, PHY-9907949 at the Kavli Institute
for Theoretical Physics (S.S.), the Packard Foundation
(L. Balents), the Deutsche Forschungsgemeinschaft un-
der grant BA 2263/1-1 (L. Bartosch), and the John
Simon Guggenheim Memorial Foundation (S.S.). S.S.
thanks the Aspen Center of Physics for hospitality. K.S.
thanks S. M. Girvin for support through ARO grant
1015164.2.J00113.627012.

1 L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and
K. Sengupta, cond-mat/0408329; this companion paper is

referred to as I in the text.

http://arXiv.org/abs/cond-mat/0408329


22

2 D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61,
2376 (1988).

3 N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989);
Phys. Rev. B 42, 4568 (1990).

4 S. Sachdev, Phys. Rev. B 40, 5204 (1989).
5 P. W. Leung, K. C. Chiu, and K. J. Runge, Phys. Rev. B

54, 12938 (1996).
6 R. Moessner and S. L. Sondhi, Phys. Rev. B 63, 224401

(2001).
7 E. Fradkin and S. A. Kivelson, Mod. Phys. Lett. B 4, 225

(1990).
8 S. Sachdev and M. Vojta, J. Phys. Soc. Jpn. 69, Suppl. B,

1 (2000), cond-mat/9910231.
9 G. Baskaran and P. W. Anderson, Phys. Rev. B 37, R580

(1988).
10 S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219

(1991), cond-mat/0402109.
11 X.-G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503 (1996);

Phys. Rev. Lett. 80, 2193 (1998).
12 P. A. Lee, N. Nagaosa, T.-K. Ng, and X.-G. Wen, Phys.

Rev. B 57, 6003 (1998).
13 M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999);

M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. B 62, 6721
(2000).

14 K. Park and S. Sachdev, Phys. Rev. B 64, 184510 (2001).
15 M. Vojta, Phys. Rev. B 66, 104505 (2002).
16 X.-G. Wen Phys. Rev. B 65, 165113 (2002).
17 J. M. Tranquada, J. D. Axe, N. Ichikawa, A. R. Mooden-

baugh, Y. Nakamura, and S. Uchida, Phys. Rev. Lett. 78,
338 (1997).

18 R. Moessner, S. L. Sondhi, and E. Fradkin, Phys. Rev. B
65, 024504 (2002).

19 L. S. Borkowski and C. A. R. Sa de Melo,
cond-mat/9810370.

20 M. Granath, V. Oganesyan, S. A. Kivelson, E. Fradkin,
and V. J. Emery, Phys. Rev. Lett. 87, 167011 (2001).

21 The duality analysis of Section IV is carried out with re-
spect to the f fermion vacuum, in that the f fermion
contribution to the l.h.s. of Eq. (3.25) is neglected. Note,
however, that this vaccuum does contain a large density
of d fermions: from Eq. (3.32), we see that there are two
d fermions on every site of the ηi = −1 sublattice (for
an average density of one d fermion per site), and this
is an important contribution to Eq. (3.33). Although the

d fermion contribution appears to break the translational
symmetry of the lattice, the PSG ensures that all physi-
cal observables of this saddle point preserve all square lat-
tice symmetries. The SU(2) gauge theory saddle points of
Refs. 11,12 also have an average density of one d fermion
per site on the l.h.s. of Eq. (3.48), but this is realized in an
explicitly translationally invariant manner by a half-filled
band of d fermions.

22 M. Vojta and T. Ulbricht, Phys. Rev. Lett. 93, 127002
(2004).

23 G. S. Uhrig, K. P. Schmidt, and M. Grüninger,
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