
A NOTE ON GENERALIZED TATJBERIAN THEOREMS

C. T. rajagopal

1. Introduction. Suppose that A(u) is a function of bounded varia-

tion in every finite interval of w^O, A(G) =0,' and that the 4>-trans-

form of A(u), namely,

$0) =  f  4>(ut)d{A(u)},
Jo

is convergent for t>0, the function <b(u) satisfying the following

conditions.

C(i) For m^O, <p(u) is positive, continuous, and monotonie de-

creasing;

(ii) </>(0) = l, fx((l>(u)/u)du is convergent;

(iii) for m^O, <¡>(u) has a continuous derivative —yp(u) which is,

on account of (i), negative and such that

*(«) =   f  *(x)dx;2

(iv) for m^O, \p(u) is monotonie decreasing and has a continuous

derivative.

Then a generalized Tauberian theorem in the sense in which the

expression is used in the present context is a "converse" theorem

which enables us to relate the behaviour of A(u) as u—»oo to that

of 3>(£) as /—>+0, under a suitable Tauberian condition. In the usual

terminology, such a theorem may be called an "O-inversionssatz"

when it has a Tauberian ol- or o/e-hypothesis and a conclusion which

relates lim sup (or inf) A(u), u—»oo, to lim sup (or inf) $>(/), /—»+o;

an "o-inversionssatz," when it assumes a Tauberian Ol- or O/e-condi-

tion and deduces the convergence of A(u) as u—»oo from that of <£(<)

as /-»+0.

It is the object of this note to show that the classical inversion

theorems of Karamata and Ramaswami, of the two kinds mentioned
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1 The condition A(0)=0 is included in the usual assumption that A(u) is normal-

ized.

2 The monotony of <f> and the convergence of the integral in (ii) ensure that

4>(tt)—>0 as îi—>». Hence f¡${u)du exists, <t>(u) —f2^(x)dx+ a constant, where the

constant is seen to be 0 by making u—* °°.

It may be noticed that the usual assumption, in addition to C(ii), of the existence

of /o[l — 4>(u)]/udu is implied in the fact lim„_o [l — <i>(«)]/« = lim„-.o—4>'(u)

= limUj.o i(u).
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above, which appear as corollaries in §4, can be treated uniformly by

means of two principal results, Theorems A and B of §3, embodying

a technique of Szász [6, 7].3

2. Lemmas. There are some results about the «P-transform which

are needed to establish our main theorems. These results are either

known or can be obtained by known methods and are collected below.

Lemma 1. (i) Suppose that, in the interval wííO, </>(«) is positive,

differentiable with continuous derivative, ultimately monotonie, and

tending to 0.

(ii) Suppose that A (w) is a function of bounded variation in every

finite interval of u ̂ 0, .4(0) =0. Then, if

$(0 =        <t>iut)d{Aiu)} converges for t = t0 > 0,
J 0

it follows that

$ik) = k \    tiuk)Aiu)du,       t(u) = - <p'(u).
Jo

This result is proved elsewhere [4, Lemma 2] as for the particular

case of the Laplace transform where <p(w)=e~u [8, p. 41, Theorem

2.3a].

Lemma 2. Suppose that (¡>(u) satisfies conditions C(i)-(iv) of §1 and

A («) is as in (ii) of Lemma 1. If

$(0 =        <f>(ut)d{Aiu)} converges for t > 0,
Jo

then the integral

Cx Aiiu) ru
*i(0 = l I    ipiut) ■——du, where Aiiu) m  I    Aix)dx,

Jo U Jo

converges for t > 0, and

A i(m) sup
lim inf- ^ lim inf $ (¿) ̂    lim _     i»i(/) g lim sup4>(¿)

u-»«        u í->+o i-»+o inf i->+o

M»)
g hm sup-•

These inequalities, with the omission of the extreme members,

3 Numbers in brackets refer to the references at the end of the paper.
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have been proved by Minakshisundaram [2, §2] just as for a similar

result of Szász in the case <piu) =e~u [7, Lemma l]. The inequalities,

with the omission of the middle members, can also be proved as for

their well known special case <j>iu) =e~u.

Lemma 3. Suppose that, for m^O, ^(m) is positive, differentiate with

continuous derivative, ultimately monotonie, and

f% OO y» 00

I    ^iu)du = 1, I    eixypiu)du ̂  0 (- » < x < oo).
«/ o «Jo

PÄere, ifpiu)^0foru^0,

t I    ypiut)piu)du,    t > 0,     converges as t —► + 0,
Jo

we Äaz>e

1   /•* /•"
lim — I    piu)du =   lim / I   \piut)piu)du.
i->» x J o f->+o   Jo

This lemma is a generalization for the «^-transform of Doetsch's

"positive" Tauberian theorem. It may be established as shown else-

where [4, Theorem l], by means of Pitt's "one-sided" modification

of Wiener's general Tauberian theorem [8, pp. 220-221, Theorem

13&] and the next lemma.

Lemma 4. Suppose that for «èO, \piu) is positive, differentiable, ulti-

mately monotonie. Then the hypotheses, />(m)^0 for w^O, fô\piu)du

exists,

t I    \piut)piu)du   exists for   t > 0,
Jo

ensure the conclusion

1   rx f°
lim sup — I    piu)du ^ C lim sup t I    ^iut)piu)du,

x-KB      X J o í-H-o     J o

C = a constant depending on ip only.

This result, due to Minakshisundaram [2, Theorem l], generalizes

a well known theorem of Hardy and Littlewood.

Lemma 5. Let <f>iu) satisfy the conditions C(i), (ii), (iii) of §1. Let

p U y» CO

S(u) =   J    s(x)dx,       Fit) =   J    <l>iut)siu)du.
Jo Jo
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Then the hypothesis

implies

sup
0 ^ lim _    us(u) < oo

«-»•» inf

osc S(u)   =   osc F(t).
«-*«> (—>+o

In particular, the hypothesis limBH.M us(u)=0 involves

lim S(u)   =   lim F(t)
U—»oo <-<-|-0

whenever the limit on the right side exists.

This result is also due to Minakshisundaram [2, §3.3]. Its particu-

lar case is the o-Tauberian theorem in the usual form, for the $>-

transform. The general case, as we shall see later, admits of a modifi-

cation which dispenses with the hypothesis lim sup us(u) < oo.

Lemma 6. If b(u)—>0 as u—»<» and ¡p(u) is any function integrable

in (0, =o), then tj^b(u)\p(ut)du exists for t>Q and tends to 0 as t—*+0.

The proof of this lemma is obvious and omitted.

In the passage from our main theorems to the results of Rama-

swami and Karamata referred to in §1, we require the next three

lemmas.

Lemma 7. //

lower bound {A («') — A (u)} ^ — w(X) for every  u > 0, X > 1,
«<«'<Xu

then

1   ru À
A(u)-I    A(x)dx > - w(\) -,        u > 0.

u J o X — 1

This is a result of Szász [6, Hilfssatz 1, (14), case ß = 0].

Lemma 8. //

lim inf   lower bound \A(u') — A(u)) ^ — w(\) —»0    as    1 < X—» 1,

then

1   ru
lim^4(«) = lim — I    A(x)dx
U—»SO Ii—»00      ii     J   Q

whenever the limit on the right side exists.
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This lemma is also given by Szász [6, Hilfssatz 3, case ß = 0].

Lemma 9. If

lim inf   lower bound \A(u') — A(u)\ ja — w(\) = o¿(X — 1)
tí—*«o «<«'<X«

as    1 < X —» 1,

then

1   /••
osc^4(«)  = osc— I    A(x)dx.

«—♦00 «—»00     U    J  0

Proof. We have, from Lemma 7,

A(u) — .— I    A(x)dx = ol(í), u—r oo.
u Jo

Therefore

If"
lim inf A(u) 2: lim inf— I    A(x)dx.

«—»00 «—»00 U     J 0

But since, in any case,

1  /•"
lim inf j4(w) ^ lim inf— I    A(x)dx,

«-»oo «-»to U   J 0

we get at once

If"
lim inf A(u) = lim inf— I    A(x)dx.

u—»« «—»«     u •) 0

The proof is now completed by establishing the equality of the cor-

responding upper limits, employing for the purpose an argument of

Karamata which I have discussed elsewhere [for example, 3, proof of

Theorem 1'].

3. Main theorems.

Theorem A. Let <p(u) satisfy the conditions C(i)-(iv) of §1 and let

us writeip(u) = —<p'(u) as there. Let v(u) and its integral V(u) =föv(x)dx

be such that

(3.1) v(u) = oL(i), M—» =o,

V(u)rx      v(t
l       *(ut) —
Jo u

(3.2) t I    ty(ut)-du is convergent for t > 0 and bounded as t —» + 0.
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Then

rx Viu) rx        V(u)
Í3.3) ose   I -du =   ose    I    <piut)-

x-»«  Jo M2 «-»+0   Jo u2
du,

the integral on the right being convergent for t > 0 as a result of our

hypotheses.,4

Proof. By virtue of (3.1)

Viu)
(3.4) -= oL(\), «-co,

u

and so there is a constant K>0 such that

Viu)
(3.5) --^ - K, «è 0.

u

(3.5), in conjunction with (3.2), shows that we may choose p(u)

= u_1Viu)+k in Lemma 4 and conclude that

1 rx F(«)
lim sup — I      -du < <x>.

x->°°       X  J o U

Hence, integrating by parts, we have

Vi(x)       1   Ç*   Viiu)
-1-I      ——- du = O ¡¡il), x-><x>;

(3.6)

Vi(x) =  f   Viu)du.
Jo

Now (3.4) and (3.6) give successively

Vi(x)
(3.7) -LL=0L,1)t *-+«,,

x2

Vi(x) 1   rx   Viiu)
(3.8) —-^ = Onil) - - -Y-du = 0Ril), *-«>,

xl x J o       ul

and (3.7), (3.8) together give

Viiu)
(3.9) —^ = 0(1), «-»oo.

4 To avoid useless complications it may be supposed that, in this theorem as well

as in the next, V(u)/ui = 0(\), «-»+0.
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Further, Vi(2u)—Vi(u)=JlV(2u — x)dx, which gives, after an inte-

gration by parts,

(3.10) Vi(2u) - Vi(u) = uV(u) +  f   xv(2u - x)dx.
Jo

Using (3.1) and (3.9) in (3.10) we find that 0(u2) =uV(u)+oL(u2),

u—KV, and therefore

V(u)
(3.11) -^ = 0^(1), u ^oo.

u

(3.11) along with (3.4) leads to

sup V(u)
(3.12) 0 g lim.     —^ < oo,

«-»•o inf    u

and this makes the integral on the right side of (3.3) convergent

for />0 as we can see by recalling the condition C (ii) of §1. It is

further plain from (3.12) that we can take s(u) =u~2V(u) in Lemma 5

and reach the conclusion (3.3).

Lemma 1 shows that the conclusion (3.3) can also be written

rx V(u) r ru V(x)
(3.13) osc   I      -du  =  osc / I    \[/(ut)du I      -dx.

I-.00  J0        u2 l->+0   Jo Jo        x2

Theorem B. Let <j>(u) satisfy the conditions C (i)-(iv) of §1 and

further let \p(u) = —<b'(u) satisfy:

(3.14) uixty(u)du 9a 0 for any real x.
Jo

Suppose that

(3.15) V(u) = 0L(u), m-> oo,

f" V(u)
(3.16) t I    yp(ut)-du is convergent for t > 0 and tends toOast-^> + 0.

Jo u

Then

/ru V(x)
4/(ut)du I     -dx is convergent for t > 0,

o                 J 0      x2

rx V(u) r°° ru V(x)
(3.18) lim   I      -du  =   lim t I    \p(ut)du I

a:-»oo   J q U i—»4-0     J o Jo
dx

2

whenever the limit on the right exists.
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Proof. In consequence of (3.15) there is a constant K > 0 such that

Viu)/u + K}zO, and, in consequence of (3.16),

r00     vviu)     n
t I    ypiut)-\-K\du^K,

■Viu)
1^ + 0.

' 0

Hence, using Lemma 3, with piu) =w1Viu)+K, we obtain

1   r*rV(u)1   r*rViu)        "I
— I-h K \du-> K,
x Jo  L   u J

or

(3.19) - -^-¿«->0,
o

1   rx Viu)
- I     -—i
X Jo u

An integration by parts gives

ÇX ç.X    J/(M) ÇX ÇU      T/(T)

Fi(a;) =  I    Viu)du = a; I     -du —        du I      -dr
Jo J 0       u Jo        Jo        T

= x I     • • • —   I    du I     ... —   j    ¿M j
Jo Jo       Jo Ja       Jo

whence, choosing A suitably large and using (3.19), we get

(3.20) Wz) = oix2) + 0(1) + oix2) = oix2), x

By an integration by parts we also get

Viu) ,        FKs)   .      rx  Viiu)

Jo       u2 x2 Jo M3
du

from which it follows that

«/ 0

f " f " Vix)
t I    \piut)du I     -¿#

Jo Jo        *2

r°TV"i(M) /■«   7i(t)     1
(3-21) -J. b^ + 2/. — árJ^(m/)í/m

^0 T° J

/x + /2    (say)*

' Here we tacitly assume the convergence of I¡, h for />0 and therefore the truth

of (3.17). To justify this assumption we note that (i) Ii is convergent for />0 as a

result of (3.20) and the convergence of f"^(u)du; (ii) the integral in (3.22) is con-

vergent for t>0 as a result of (3.20) and the convergence of f"(<p{u)/u)du, so that

the second term on the right side of (3.21) which is the same as the integral in (3.22),

by Lemma 1, is also convergent for OO.
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where, by Lemma 1,

C Vi(u)
(3.22) I2 = 2 \    <l>(ut)-du.

Jo uz

From (3.20) we see that we can choose b(u) =u~2Vi(u) in Lemma 6,

reaching the conclusion lim t-.+oIi = 0. This, in conjunction with (3.21),

makes

Cx C V(x)
(3.23) lim I2   =   lim / I    \¡/(ut)du I-dx

t—+o .-»+o   Jo Jo      x2

which we have assumed to exist. Again (3.20) enables us to choose

s(u) =w3Vi(u) in Lemma 5 and obtain from (3.22)

cx Vi(i
lim 2 —-
I-.»      Jo M3

Vi(u)
lim 2 |        —— du  =   lim I2

í->+0

whence we get, integrating by parts the left-hand integral and using

(3.20) once more,

/••  V(u)
(3.24) lim —du  =  lim I2.

x-"¡  Jo U2 l->+0

The conclusion (3.18) of Theorem B now follows from (3.23) and

(3.24).

4. Applications.

Theorem 1. Suppose that<p(u) is subject to conditions C (i)-(iv) of

§1 and }p(u) = —<p'(u) as there. Suppose that A(u) is a function of

bounded variation in every finite interval of u S;0 and A(0) =0.

//

(4.1) lim inf— f   xd{A(x)\ ¿0,

(4.2) *(/) =   f  <t>(ut)d{A(u)\
Jo

is convergent for t>0 and bounded as ¿—»+0, then

lim inf A(u)  = lim inf $(/),
«—♦oo r—»4-0

(4.3)
1   ru

lim sup— I    A(x)dx = lim sup $(t).
«-»oo       U  J 0 i-»+0
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Proof. We can write (4.1) in the form

viu) =— I    a;á{^4(a;)}
u Jo

= Aiu)-f  A(x)dx = oz,(l),
« Jo

(4.4)

U —> oo.

Then

/• u /• u

(4.5) V(u)=\    v(x)dx=   I     {tr0(*) - <ri(z)}d*
Jo Jo

where

If
(To(w) = Aiu),       aiiu) = — I    Aix)dx.

u J0

Therefore

V(u)                     * *            If"
-= <7i(m) - <ti(u), o-iiu) = — I    <n(x)dx;

u u J o
(4.6)

t I    tiut)——du = *,(<) - $!(*)
Jo M

where

*x(/) e= í J    yf/iut)<riiu)du, 3>î(i) ■ í f    iiut)o-*iu)du.
Jo Jo

By Lemma 2,

sup   *
lim inf $(/) g lim inf $iit) ^ lim _     4>i (/) ^ lim sup $i(/)

i->+o t-»+o <->+o inf «-»+0
(4.7)

^ lim sup $(<)
!->+0

and so <£i(/) and &*(t) are bounded as i—>+0 as a result of our

assumption in (4.2) that <í»(¿) is bounded as t—>+0. Consequently,

from (4.6),

rx      viu)
(4.8) t\    Hut)——du = 0(1), <-» + 0.

Jo u

(4.4) and (4.8) show that the hypotheses (3.1), (3.2) of Theorem A

obtain with the choice of viu) in (4.4); while (4.5) shows that, with

this choice of viu),
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f" V(u) r*   <n(u) c* du /•»
I      -du —   I      -du —   I      — I    (Ti(T)dT

Jo       u2 Jo        u Jo«2 Jo

l cx *
= — I    ai(u)du m (Ti(u).

x Jo

Therefore the conclusion of Theorem A in the form (3.13) yields

(4.9) osc ffi(tt) =   osc t I    \¡/(ut)<Ji(u)du =  ose  $i(/).
o—»oo í-»+0     J O í-»+0

Now (4.4) involves

1 "' v(u)

/

¿M H ö-i(m') — eri(w) = 0l(1) log -, u' > M—» oo,

or

lim inf  lower bound [o-i(m') — o-i(m)] = o¿(l) log X,    m —» oo.
«—♦oo «<«'<X«

Since log XgX — 1, X>0, the last step justifies our taking   A(u)

= <Ti(u) in Lemma 9 and inferring that

(4.10) osc <7i(w) = osc<7i(m).
«—»« «—»00

Using (4.10) and (4.7) in (4.9), we obtain

osc <ti(w) =   osc $i(/) ^   osc $(/).
«-»oo <-»+0 l-*+0

But since, from Lemma 2, we have in any case

osc Oi(u) ^   osc  i>(<),
«—♦oo ¿—♦+0

it follows that ose o-i(w)=osc í>(¿), or

(4.11) lim inf (Ti(u) = lim inf <f>(/),        limsupo-^«) = lim sup $(/).
«—♦oo Í—»+0 «-»oo !->+0

In order to pass from (4.11) to our conclusion (4.3) we need only

prove that

lim inf oi(u) = lim inf a0(u) ;
tí—* 00 tí—» 00

and this follows from (4.1) by the argument used for the same purpose

in the proof of Lemma 9.

Altering our choice of v(u) in (4.4) to v(u) =us(u), where s(u) is an
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integrable function, but arguing exactly as above, we can establish

the following corollary.

Corollary 1.1. The general case of Lemma 5 can be restated without

the condition lim sup ms(m) < oo, but with the extra condition Fit)

= 0(1), /—»+0, as well as the differentiability and ultimate monotony

of\p(u) imported from Lemma 4 through Theorem A.

In view of Lemmas 9, 7 we can restate Theorem 1 in the following

form.

Corollary 1.2. //, in Theorem 1, the hypothesis (4.1) is replaced by

lim inf lower bound {/!(«') — -4(m)} ^ — w(X) = oL(\ — 1)
«—>» «<«'<x«

as 1 < X —» 1
»

then the conclusion (4.3) can be improved to

osc^4(m) =   osc <£(/).
o->°° <->+0

Corollary 1.2 is substantially Ramaswami's oscillation theorem for

the «^-transform [5, Theorem 1.2] while Corollary 1.1 is the similar

theorem of Minakshisundaram [2, Theorem 3].

Theorem 2. Let <¡>iu) fulfill the conditions C(i)-(iv) of §1 and

further let ̂ («) = —<p'iu) be such that

I    uix^iu)du 9e 0 for any real x.
Jo

Ij

1   cu
(4.12) lim inf—        xd{Aix)} > - »,

«-*»        U  J o

(4.13) *(/) =  f  *(«/)d{i4(«)}
Jo

exists for t>0 and converges as t—>+0, ¿Ae«

^i(m) /•"
(4.14) lim—— =   lim  *(*),       ^(ií) =        ¿(«y*.

«->»       M í->+0 J o

Proof. We can state (4.12) in the form

v(u)    i r"   ,      i ^i(«)
(4.15) — «— I    «¿{i4(*)} =4(«)-—^ = Oi(l),   u -»».

M M  Jo M
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Then

V(u)rx        V(u)
t |    4>(ut)-du = $(<) - <Pi(<)
Jo u

(4.16) =o(l), t-+ + 0,

n oo Ai(u)

^(t) = t I    t(ut)-du, t > 0,

since, by hypothesis, <£(/)—>A (say) as t—>+0 and, by Lemma 2, $i(t)

—*A as í—»+0. (4.15) and (4.16) are the same as the hypotheses

(3.15) and (3.16) of Theorem B, with our choice of V(u). Therefore,

the conclusion (3.18) of Theorem B holds with

Ç* V(u)          fx A(u)          r* Ai(u)         Ai(x)
I      -du =   I      -du —  I      -du =-

Jo      m2 Jo       u J o       u2 x

and gives us

Ai(x) cK Ai(u)
lim- =   lim t I    \p(ut) -du =  lim  $i(/)
ï->»     x t-*+o   Jo u i—»+o

which leads to the desired conclusion on account of (4.16).

Taking into account Lemma 7, we get at once from Theorem 2 the

following corollary.

Corollary 2.1. Theorem 2 can be restated with (4.12) changed to

lower bound {A (u') — A (u)} ^ — w(K) for every « > 0, X > 1
«<«'<x«

but without any other change.

Combining Corollary 2.1 with Lemma 8, we are obviously led to

the following corollary.

Corollary 2.2. Theorem 2 can be restated with the hypothesis (4.12)

changed to

lim inf  lower bound {A(u') — A(u)) = — w(\) —»0   as   1 < X —» 1,
«—♦oo «<«'<X«

and the conclusion (4.14) changed to

lim^4(«) =  lim $>(£).
u—♦» t—♦+()

Corollary 2.1 is essentially a combination of two theorems of

Karamata [l, Sätzen A, B] while Corollary 2.2 is a combination of

three of his theorems [l, Sätzen A, B, C].
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Remarks, (i) The following are well known examples of kernels

which satisfy the conditions C(i)-(iv) and the additional condition

/uix\¡/iu)du ¿¿ 0 (— 00  < £ < oo).
o

<t>iu) — eru, u ^ 0 [Laplace kernel] ;

<t>iu) = (1 + u)-p, p > 0, m à 0   [Stieltjes kernel];

<t>iu) = u/ieu — 1), u > 0 [Lambert kernel].

Theorems A and B, as well as Theorems 1 and 2 following from them,

are true for each of these kernels.

(ii) All the familiar applications of Theorem 2 to Dirichlet's series

[7, Theorems 3-6] can be carried out in like manner for the series

00

*(<) = Z aB0(X»<). t > 0, 0 < Xj < X2 < • • • , Xn -* oo,
n=l

obtained from (4.13), taking for A(u) the X-step function:

A(u) = «i + a2 + • ■ ■ + an     for Xn ^ m < Xn+i,

A(u) = 0 forO ^ m < Xi,

4>(u) being either the Stieltjes kernel or the Lambert kernel.

(iii) Corollaries 2.1 and 2.2 are limiting cases of results [4, Theorem

2] in which the hypothesis on

lower bound {A («') — A («)}
«<«'<x«

of either corollary is changed to a similar hypothesis on

lower bound {¿(m') - A(u)}/ue, ß > 0.
«<«'<x«
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TYPICALLY-REAL FUNCTIONS WITH ASSIGNED ZEROS

A. W. GOODMAN

1. Introduction. A function/(z)

00

(1.1) f(z)   =   TlbnZ"
71=0

is said to be typically-real of order p, if in (1.1) the coefficients bn

are all real and if either (I) f(z) is regular in |a| =S1 and 3/(ei9)

changes sign 2p times as z = eie traverses the boundary of the unit

circle, or (II) f(z) is regular in | z\ < 1 and if there is a p < 1 such that

for each r in p<r<l, $f(reie) changes sign 2p times as z = reie tra-

verses the circle \z\ =r. This set of functions is denoted by T(p).

The name typically-real was first suggested by Rogosinski [6]1

who studied these functions in the case p = i. The more general set

of functions T(p) was first introduced by Robertson [5; 4], and in a

recent paper by Robertson and Goodman [3] the sharp upper bound

for \bn\ in terms of \bi\, • • ■ , \bp\ was obtained, namely for n = p

+ 1, P + 2,

.      .        * 2k(n + p)\ .      .
(1.2) Í,   =Z - -\bk\.

11       ti (p+k)\(p- k)\(n-p- l)\(n2- k2)[      '

We shall see in what follows that the size of | o„| is also governed by

the locations of the zeros of f(z) for functions of the set T(p). More

precisely we shall prove the following theorem.

Theorem 1. Let

00

(1.3) f(z)  = Z" +    £    bnZ»

Presented to the Society, December 29, 1950; received by the editors May 19,

1950 and, in revised form, June 15, 1950.

1 Numbers in brackets refer to the references at the end of the paper.


