
APPLICATIONS  OF A THEOREM   OF  O.  SZASZ FOR THE
PRODUCT OF CESARO AND LAPLACE TRANSFORMS

C. T. RAJAGOPAL AND AMNON JAKIMOVSKI (AMIR)

TO THE LATE PROFESSOR OTTO SZASZ

1. Introduction and notation. Let s(u) be a function of bounded

variation in every finite interval of tt^O, assumed (for simplicity)

to be such that s(0) =0. The Cesa.ro transform of s(x) of order a = 0

is (as usual) defined to be

Ca(x) = sa(x)x~a = ax~"  I      (x — u)a~1s(u)du, a. > 0,

(1) J 0

C0(x) = s0(x) = s(x).

In a paper [5] some of whose results are generalized here, Ca(x) is

called (for convenience) the Riesz integral mean of s(x) of order a.

The Laplace transform of s(u) is defined as

/> CO

e-'»d{s(u)}, t>0,
o

whenever this integral exists, so that

e-'us(u)du, t > 0,
o

the last integral being absolutely convergent  [15, p. 41, Theorem

2.3a].
Following O. Szasz [13], we may call

e-tuCa(tt)du, a > 0, / > 0,
o

which is the Laplace transform of the Cesaro transform of order a of

s(u), a product of Cesaro and Laplace transforms of s(u).

The theorem referred to in the title is proved independently in

Rajagopal [S, Lemma 4] and in Szasz [13, §3]; it runs as follows.

Theorem A. If

(4) L{s(u), t} of (2) exists and tends to s as / —» + 0,
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then L{ Ca(u), t} of (3) exists as an absolutely convergent integral and

tends to s as J—>+0.

A variant of Theorem A, which in fact includes Theorem A and

is implicit in the proof of that theorem, may be stated thus:

Theorem A'. If

/a4-l /.»

La{s(u), t\ m- I    e-'us(u)Wdu, a > 0,
r(« + 1) J o

(5) converges absolutely for t > 0,

lim La{s(u), t} = 5,

then Lo{s(u), t},or the integral which represents L{s(u), t} in (2'),

is such that

L0{siu), t} converges absolutely for t > 0, lim Z,o{5(«), t} = s.
I-+0

Proof. A proof can be supplied exactly along the lines of either the

proof of Lemma 4 in Rajagopal [5, pp. 372-373] or the argument in

Szasz [13, p. 260 ]. In the former case, the main steps of the proof

are the two following. Writing La{s(u), t} =Lait) for the sake of

brevity, we have

J00  Laix) LQ(t)
—— (x - t)«-xdx = Via) ——,

t      xa+1 t

La(t) - Loit) = at f    [Lait) - £„(*)] —-dx -» 0
J t xa+1

as / -> + 0,

and it follows that L0it)^>s since La(t)—>s. For further details of the

proof the reader may consult [5], loc. cit.

Deduction of Theorem A from Theorem A'. Under condition

(4) of Theorem A, Proposition 1 of §2 below enables us to conclude

that

ta+l /» oo

- |    e~tusa(u)du converges absolutely for / > 0,
,,.        T(a+ 1) J0
(°)

lim - I    e~tusa(u)du = s.
.-.+0 r(« + 1) J o

Hence we can take 5«(w) instead of s(u)ua in Theorem A' and thereby

establish Theorem A.
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It may be pointed out in this connexion that Theorem A is not

an isolated result of its kind, Szasz himself [14] having proved an

interesting analogue of the theorem for the product of a regular

Hausdorff transform of {s„} and the Borel transform of {sn}.

This paper is designed mainly to cover certain aspects of Szasz's

work on the Laplace transform. One of its results is Theorem II of §4,

which is dependent on Theorem A', and is an "asymptotic" version

of Szasz's Theorem S of §4, similar to the asymptotic version of

Doetsch's Proposition 3 of §2 given by Hardy and Littlewood and

quoted as Theorem HL in §4. These asymptotic versions of Szasz's

and Doetsch's theorems, as well as certain other generalizations of

these theorems, may be derived from Theorem IF, another deduction

from Theorem A'. The generalizations mentioned last are those stated

as Corollaries II'. 1, IF.2 in §4; they, together with Theorem F of §3,

constitute a set of converse theorems for the Cesaro summability of

any order a^O of a function, whose Laplace transform or a modifica-

tion thereof exhibits a "standard" pattern of behaviour as t—>+0. A

counterpart of Theorem II', with a two-sided Tauberian condition

replacing the one-sided condition of Theorem II', is stated as Theo-

rem III' in §5; it has similar corollaries.

2. Known auxiliary propositions. The new theorems of §§3, 4, 5

require for their proofs the following auxiliary propositions.

Proposition 1. If L{s(u), t} as defined in (2) exists, then

/a+l /» oo

L{s(u), t}  =- j     e~tusa(u)du,      a ^ 0, / > 0,
T(a + 1) J o

and the integral on the right side is absolutely convergent.

This is a well known result [15, pp. 73-74, §§8.1,8.2].

Proposition 2. Under condition (4) of Theorem A, a necessary and

sufficient condition for s(x) to converge (to s) as x—> oo is

s(x) — Ci(x) = x_1 I    ud{s(u)} = o(l), x—-> oo.
J o

This is Schnee's analogue, for the Laplace transform, of a classical

theorem of Tauber  [15, p. 187, Theorem 3b].

Proposition 3. // L{s(u), t} as defined in (2') exists and tends to

s as t—>+0, and if s(u) 2:0, then

S\(x) ~ sx,    or   Ci(x) —* s, as x—» <x>.



1954] APPLICATIONS OF A THEOREM OF 0. SZAsZ 373

This is Doetsch's "positive" Tauberian theorem which may be

proved by either Wiener's method [15, p. 221, Theorem 14] or

Karamata's method [3, Theorem 3.82].

3. Generalization of a classical Tauberian theorem. The follow-

ing theorem is due to Karamata [4, Satz A and footnote 13 to p.

35].

Theorem I. Let -£(x) be a positive and continuous function for x>0'

such that .£(wx) ~„£(x), m>0, x—>co. Let L{siu), t} defined as in (2)

be such that

(7) L{siu), t} ~ 5*-«.£(r1), a ^ 0, I -+ + 0.

Then it follows, from

ts(y) — s(x)~]-

x°l£(x)    J

r s(y)       *(*) 1      - °'
or lim     lim inf   lower bound    —-

kx-.i    *-»« zs»sxz      \~yaJZ(y)     xajQtix)A

that

s
six) ~-—■—■ xajr(x), x—» oo.

r(« + 1)    ^

The following theorem is a consequence of the above.

Theorem I'. If, in Theorem I, (7) is replaced by

(9) L{siu),t}^sJZit-1), l-> + 0,

and (8) by

,  , ryaCa(y)-xaCa(x)-\    )
either    lim    lim inf   lower bound    -

i<x->i     z->» igygxi       L xaJCix) J
(10) ^ >0, a>0,

rc-(y)    C.(*)"|
or     lim    lim inf   lower bound-

kx-h    «-.« zgi/gxi      L «£(y)    -C(*) J

without any other change, the conclusion will be altered to

Ca(x) ~5^(x), x—>■ 00.

Proof. By Proposition 1, (9) implies that

L{s*iu), t} ~ 5r(« + i)r^C(r»), / -»+ o,

which is (7) with sa(u) in place of s(u) and 5T(a +1) in place of s.
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Also (10) is the same as (8) with sa(u) instead of s(u). Hence, by

Theorem I, (9) and (10) lead to the conclusion of Theorem F.

It will be noticed that, when -£(x) =1 in Theorem I' and the second

alternative of hypothesis (10) of the theorem is chosen, we obtain

an analogue, for Cesaro and Laplace transforms of a function s(x),

of a theorem of Amnon Amir [l, p. 253, Corollary] for Cesaro and

Abel transforms of a sequence {sn}. When J^(x)=l and a = 0,

Theorems I and F both reduce to a classical Tauberian theorem.

The case =£(x) =1 of Theorem I' is in the same class as the special

forms assumed by Theorem IF of §4 in its corollaries.

4. Generalizations of a theorem of O. Szasz. Szasz's theorem in

question [ll, Theorem 1 ], stated below, is supplementary to Proposi-

tions 2, 3.

Theorem S. Under condition (4) of Theorem A, and the additional

condition

s(x) - d(x) = Ol(1), x^oo,

we have

si(x) ~ sx,    or   Ci(x) —> 5, asx—>oc.

The theorem which follows evidently supplements Theorem I in

the case J^(x) = 1; it reduces to Theorem S when a = 0 and its corol-

lary (which is obvious enough to need no proof) reduces to Proposi-

tion 2 when a = 0.

Theorem II. Let L{s(u), t}, defined as in (2), be such that

(11) L{s(u), t} ~ str", a ^ 0, / -> + 0.

Also let

s(x) S\(x)

x" xa+1/(a +1))

Then

Si(x) s
->- as x —> oo.
x«+V(a + 1)        T(a + 1)

In particular, when Ol (1) in (12) is altered to o(l) the above conclusion

will be simplified to

s
(13) s(x) ~-x", x—> oo.

r(« + i)
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Corollary II. // L{siu), t} as defined in (2) exists, then necessary

and sufficient conditions for (13) to be valid are (11) and (12) with oil)

instead of Ol(1).

We can deduce Theorem II as well as the immediately following

theorem, due to Hardy and Littlewood [4, Satz l ], from Theorem II'

following the latter.

Theorem HL. If L{siu), t} as defined in (2) exists, 5(m)^0, and

e~'"siu)du ~ jr<"-l> as t -> + 0, a > 0, 5 ^ 0,
o

then

5
5l(x) ~- X", X—► oo.

r(« + i)

Theorem II'. Under condition (5) of Theorem A', i.e. the condition

/a+l p oo

(5) lim   - I    trtus(u)wdu = s, a ^ 0,
«-.+o r(a + 1) J o

where the integral is assumed to converge absolutely for t>0, and the

additional condition

a+ 1 rx
(15) six)-I    s(u)wdu = Oz,(l), x—> oo,

xa+1 J0

we to e

Ci(x) —* 5 as x —> oo,

or equivalently

a+ 1 rx
siu)u"du —» 5 a5 x —> oo.

X»+!   Jo

In the proof of Theorem II', and in the deduction of Theorems HL

and III' from Theorem II', we use the following lemmas besides

Theorem A' and the propositions of §2.

Lemma 1. If a^O,

1   rx 1   fxa+ 1        /•«
(16) /„(x) a —■ I     siu)du — — I    - du I    siv)v"dv—>■ s

x J o x J o    «a+1        J o

as x —> oo,

^e«/o(x)-*(a:+l)5 a5 x->oo.
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Proof. The case a = 0 is trivial. In other cases we have, from the

definition of/a(x),

. rx a +1       ru rxdu ru

x\fo(x) — fa(x)\ =   I    - du I     s(v)vadv —    I    — I     s(v)dv
J 0    ua+1 J0 J 0    u J o

or

d   r   , , ,       a + 1  /** a+1  |"
— |xi/o(x) - fa(x)\\ = - I    s(v)vadv-I    s(v)vav-adv
dx xa+1 Jo x    Jo

a   rx

-\-I     s(v)dv.
x J 0

Integrating by parts the second integral on the right side, we get

d a+ 1  fx    a ru
— [x[fo(x) - fa(x) ] J =- I    —— du I    s(v)Vdv
ax x    J o  ua+1       J o

a   rx

H-I     s(v)dv = afa(x).
X  J o

An integration of the above equality from 0 to u gives

a   ru

fo(u)   = fa(u)   -\-■   I       fa(x)dx
U  J o

whence the required result follows when we let u—>oo.

Lemma 2. Ifa^O, then

a + 1  rx
lim Ci(x) = 5     implies     lim- I    s(u)uadu = s,
!-.» z->»   xa+1 J o

and conversely.

Proof. Ignoring the trivial case a = 0, we have, by an integration

by parts,

a + i rx a+ i rx
-■— I    s(u)uadu = - I    s(u)du
xa+l Jo x     Jo

a+1     rx ru
-a I     u" xdu I     s(v)dv

X«+! Jo J0

a + 1      rx
= (a + l)Ci(x)-a I     uaC\(u)du

Xa+1 Jo
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whence, letting x—>co, we establish the first part of the lemma.

To prove the converse part of the lemma we again ignore the

trivial case a = 0 and get, by an integration by parts,

a + 1 rx
(a + l)Ci(x) = —-■ I    siu)uau~adu

x    J0

a+ 1   rx a   rxa+ 1 /*"
=- |    siu)u"du -\-|    - du I    s(v)vadv

x«+1 J0 x J o    ua+l        J o

from which we reach the desired conclusion when x—> oo.

Lemma 3. If usiu) is nondecreasing for m^O and if, for a +1 >0,

/siu)du ~ A xa+1, x —» oo,
o

then

six) <~ (a + l)Axa, x—> oo

This is a well known result [15, p. 194, Corollary 4.4b].

The next lemma is a particular case of a classical theorem of

M. Riesz [3, Theorem 1.71 (C)].

Lemma 4. Let F(w) and Wiu) be two positive nondecr easing functions

of u defined for u>0 and let siu) be such that

siu) = 0[F(m)],        5,(w) = o[Wiu)}, as«-> oo.

Then, for any e such that 0 <e<l,

5e(tt) = o^-'lF'], w—► oo.

Proof of Theorem II'. By Theorem A',

/» oo
e~tusiu)du = s,

o

this integral converging absolutely for Z>0. Proposition 1 shows that

(17) can be written:

/I  09 /»  00e-'usiiu)du  =  lim /2 |    e-tuCi(u)udu = s,
o <->+o    J 0

this integral also converging absolutely for f>0. Applying to (18)

Theorem A'with siu) = G(w), a = l, we get

/I  09 /•  OOe-'uCiiu)du = s,      or      lim    |    e~tud{Ci(u)} = s,

0 <->+0   J 0
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since the integral involved in the last limit exists.1 Again Proposition

1 gives

/I   00 f*   00e-'us(u)du = t2 I    e~tusi(u)du

o J 0

and so, replacing s(m) by s(u)u", a>0, we obtain

/a+l /» oo

- j    e-'us(u)uadu

T(a+ I) Jo

fa+2 /» x /» u

= (a + 1)-■ I    e~tudu I    s(x)x"dx
;r(a + 2)J„ J0

where, by hypothesis (5), the left-hand member tends to 5 as t—>+0.

Hence, from the right-hand member,

/a+2 /% oo

(a + 1)  lim —- (    e-'ug(u)ua+1du = s
t->+o r(a + 2) J o

where

1     /•»
iT(«) = —77 I    s(x)x°dx.

ua+1 J o

The last step yields, when we use Theorem A' with (a + l) and g(u)

in place of a and s(u) respectively,

e~iug(u)du
o

(20)
/I 00    g— (u /• u

-  </«   f       5(x)xa(/x  =  5.
0      Ua+1          J o

From (17) and (20) we see that

/,M         (              a+ 1   ru )
e-,u<s(u)-I    s(x)x"dx\ du = 0.

o           (.               ua+1 J0 )

The multiplier { • • • } of e~tu in (21) is, when w->oo, 0L(1) by (15).

Now Proposition 3 is obviously true with the hypothesis s(u) =0z,(l)

instead of s(u) j^O; and so we can replace s(u) in Proposition 3 by the

multiplier { • • ■ } of e~tu in (21) and conclude that (16) holds with

5 = 0, as also the following (by Lemma 1):

1 The existence of the second integral in (19) is a consequence of the existence of

the integrals in (17) and (18), along with the fact that we may suppose, without loss

of generality, s(u) to be zero in some interval (0, 5), S>0.
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1   rx
(22) /o(x) = Ci(x)-• I    Ci(«)dM-»0 as x^ oo.

x J0

From (19) and (22), by an application of Proposition 2 with s(u)

replaced by Ci(u), we get at once the conclusion of Theorem II' in

the first form: Ci(x)—>5, x—>oo, and therefore (by Lemma 2) in the

second form as well.

In the above proof we have supposed that a>0. When a = 0, (21)

follows directly from (17) and (19) by subtraction, and (22) follows

from (21) without an appeal to Lemma 1. Hence the desired con-

clusion follows as before, Lemma 2 also being superfluous now.

Deduction of Theorem II from Theorem II'. In Theorem II',

replace siu) by s*(u) defined thus:

(0      in some interval (0, 5), 8 > 0,
s*(u) =  <

{siu)/ua for u > 8.

The result is Theorem II with 5r(a + l) instead of s. Consequently

Theorem II is proved.

Deduction of Theorem HL from Theorem II'. First suppose

that a>l. (14) can be written:

t"      C °° 5
(14') - I     e-lus*(u)u«-Hu ~-, /-> + 0,

T(a)Jo T(a)

where

(0 in an interval (0, 8), 8 > 0,
5*(m) = <

U(m)/«'*~1 for u > 8.

From the fact 5*(m)^0 and (14') it follows that there is a constant

c>0 such that, for all small t,

f    r"                                  t<*    cUi
c >- I     e-tus*iu)ua-1du > - I      e~tus*iu)ua-ldu

~ r(«)J„ - r(«)J0

tae-l    /.l/l

3: -• |       s*iu)ua~1du.
Tia)Jo

Hence, for all large x = l/t,

0 < — I    s*(u)u"-1du ^ ceVia + 1).
xaJ o

The last inequality, in conjunction with 5*(w) 3i0, gives
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(23) s*(x) - — |    s*(u)u°>-ldu = 0^(1), *-> oo.
xaJ a

Now (14') and (23) are the hypotheses (5), (15) respectively of

Theorem IF with a + l, s(u), s replaced by a, s*(u), s/T(a) respec-

tively. Hence the conclusion of Theorem IF in the second form

yields

a  rx
— I    s*(u)u"-1du
xaJo                                         s

or ~-1 x—> oo,

« c* , ..       *i(»)      r(«)
— I     s(u)du = a-
x"J o xa

which is the conclusion of Theorem HL.

Next let 0<a^l. We get from (14), by an application of Proposi-

tion 1,

£a+l /» oo ^

(14") —-I    e-t"sl*(u)uadu^-, /-> + 0,
r(a+l)J0 T(a+1)

where s*(u) is defined in terms of Si(u) and a + l precisely as s*(u)

in (14') is defined in terms of s(u) and a. Hence, arguing as before,

we get

a+ 1 rx s
-  I     S\(u)du ~-> x —» oo,
x°+! Jo T(a+ 1)

where us\(u) is obviously nondecreasing. Hence we reach the conclu-

sion of Theorem HL by means of Lemma 3 with Si(u), s/T(a + 2) in-

stead of s(u), A respectively.

Corollary II'. 1. Under the condition

/a-t-l /» oo

(6) lim - I    e~'usa(u)du = s

where the integral is assumed to converge absolutely for t>0 and the

additional condition

either   Ca(x) — Ca+i(x)) , s
(24) \  =0L(1), x-,oo,

or          La(x)                    1

we have

Ca+i(x) —» s as x —► oo.
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This corollary with the first alternative of hypothesis (24) can be

deduced from Theorem II' (as Theorem A from Theorem A') by

taking, in Theorem II', 5a(«) instead of siu) W and using the fact:

(a + 1) j    saiu)du = sa+i(x).
J o

The corollary with the second alternative of (24) follows from the

corollary with the first alternative of (24). For, as in the deduction

of Theorem HL from Theorem II', it can be proved that (6) and the

second alternative of (24) together imply the first alternative of (24).

Corollary II'.2. Corollary II'.1 can be restated with (6) alone

changed to (4).

For, (4) implies (6) by Proposition 1.

Corollaries II'.1 and II'.2 furnish generalizations of Theorem S

and Proposition 3, alternative to Theorems II and HL. These corol-

laries, with the first alternative of (24), are directly proved in

another paper [5] which also gives two of their applications.

Corollary II'.2 with the second alternative of (24) appears else-

where as a result reached along a different line of argument [5,

Theorem T]. It has a classical analogue, for Cesaro and Abel trans-

forms of a sequence {sn}, a proof of which is given by Amnon Amir

[l, Theorem 2.5].

5. Generalization of a theorem supplementary to Szasz's. A theo-

rem supplementary to Theorem S, with 0x,(l) in the additional con-

dition of Theorem S replaced by 0(1), appears as the case a = 0 of

the next theorem which can be deduced from Theorem II'.

Theorem III'. If, in Theorem II', we assume, instead of (15),

a+ 1   fx
(25) 5(x)-I    siu)uadu = 0(1), x—>• oo,

x"+1 J o

then the conclusion will be changed to

Ct(x) —> 5, e > 0.

Proof. By Theorem II', Ci(x)—>s and so, recalling the first theorem

of consistency, we note that it suffices to establish the desired con-

clusion for 0<e<l. By (25) and the conclusion of Theorem II' in

the second form, we have siu) =0(1). Hence we have simultaneously

Siu)   = 0(1), 5i(w)  — SU  =  oiu), U—*  oo,
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or, if S(u) =s(u) —s, then S(u) =0(1), Si(u) =o(u), u—>oo. Lemma 4,

with s(u), V(u), W(u) replaced by S(u), 1, u respectively, now shows

that

Sf(u) — o(u*),    or    st(u) — su' = o(u')

which is the conclusion sought for 0<e<l.

Theorem III' has of course the following corollary taking the place

of the two corollaries to Theorem IF.

Corollary III'.l. Under the condition either (6) or (4), and the

additional condition

either   Ca(x) — Ca+i(x)1
(26) \  =0(1) , x^ oo,

or         Ca(x)                  )

we have, for any e>0,

Ca+t(x) —> s as x —> 00 .

Corollary III'.l, with the choice of the second alternative of its

two conditions, has an analogue for Cesaro and Abel transforms of a

sequence, proved by Amnon Amir [l, Theorem 3.3].

Applications of the theorems of this paper to Dirichlet's series are

exemplified by the following deduction from Corollary III'.l.

Corollary III'.2. Let

0 < Xi < X2 < • • • , X„-» oo,

(ax + a2 + • • • + an   for\n^u< X„+i,
s(u) =  <

(.0 for 0 ^ u < Xj.

Let

00

L{s(u), t] = E«r.e-X»(, t> 0,
n=l

tend to s as t—>+0. Then 2Za» *s summab!e-R(\n, e) to s for any e>0

provided X > 1 exists such that

(27) max      | an+i + an+2 + • • • + cm| = 0(1)     as n —> oo.

To prove Corollary III'.2 we observe that, by well known argu-

ments [2, Lemmas a, j3], (27) together with L{s(u), t} =0(1),

t—>+0, implies

«Ai + a2\2 + • • • + an\n = 0(X„), n —> w,
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or, in terms of Ca(x) which is now Riesz's typical mean of order a 2:0

of {sn} = {s(kn)} with respect to {Xn},

Coix) -Ci(x) =0(1), x^ oo,

whence the conclusion of Corollary 111'. 2 follows from that of Corol-

lary III'.l in the case a = 0.

Repeating in part the arguments which prove Corollary III'.2 and

using Theorem S (as in [6]), we can show that Corollary III'.2 has a

one-sided analogue in which (27) is replaced by the condition that, as

n—>oo,

(28) min      (a„+1 + a„+2 +■■■+«.)= 0^(1),      an = 0l(1),

which includes the special condition, anXn/(X»—X„_i) =0z,(l), whose

interesting feature is that it ensures also the relation lim sup sn = s as

w-*oo  [11, p. 127].

6. Concluding remarks. In one section of a publication already

referred to [3, §3.8], results are proved which are substantially the

same as the well known case a = 0, „£(x) = l of Theorem I and the

case a = 0 of Theorem II and Corollary II, stated here as Theorem S

and Proposition 2. The notes on these results [3, p. 104] contain a

reference to "generalizations of theorems of this section, where

fi<r)[ = L{siu), t} in the present notation with t = a] is assumed to

tend to infinity like a logarithmico-exponential function" of 1/cr or

1/t. It will be observed that, while Theorem I is such a generaliza-

tion, Theorem II and Corollary II are the only hitherto known

generalizations (of the kind in question) of Theorem S and Proposi-

tion   2,   with   logarithmico-exponential   function   (1/J)"   and   not

(i/t)'jZ(i/t).
A few references to papers, not already cited, which prove and ap-

ply analogues or generalizations of Theorem S for transforms other

than the Laplacian, are added here. The analogue of Theorem S for

Cesa.ro and Abel transforms of a sequence and certain applications

of the analogue have been given by Szasz himself [10; 12]; while the

analogues of Theorem S, as well as those of Theorems HL and I, for

certain other transforms, and their applications, are to be found in

Rajagopal [7, 8; 9].
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