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Perturbation expansions and series acceleration procedures: Part-II.
Extrapolation techniques
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Abstract. Three new procedures for the extrapolation of series coefficients from a given
power series expansion are proposed. They are based on (i) 2 novel resummation identity,
(i) parametrised Euler transformation (PET) and (jii) a modified PET. Several examples taken
from the Ising model series expansions, ferrimagnetic systems, etc., are illustrated. Apart from
these applications, the higher order virial coefficients for hard spheres and hard discs have also
been evaluated using the new techniques and these are compared with the estimates obtained
by other methods. A satisfactory agreement is revealed between the two.

Keywords. Ising models; parametrised Euler transformation; virial coefficients; hard
spheres; hard discs. )

1. Introduction

The problem of extrapolation of power series arises in varied contexts. We may cite as
examples perturbation expansions associated with several statistical mechanical
models in the context of phase transitions and critical phenomena (Gaunt and
Guttman 1974). There are several problems in fluid mechanics (van Dyke 1975) and
other areas of model analysis where one resorts to extrapolation techniques when the
series appears to converge slowly or when one wants to extend its domain of
applicability. This is particularly reflected in the evaluation of higher order virial
coefficients of hard spheres and discs wherein the computed values of pressure from the
partial virial series are not in agreement with those anticipated from the molecular
dynamics calculations (Alder and Wainright 1960). Further, the exact evaluation of the
higher order virial coefficients involves enormous computational difficulty, for
example, to estimate the eighth virial coefficient in hard spheres, more than 600 cluster
integrals are to be calculated and this is a prohibitive task. Similarly in the context of
phase transitions, the various thermodynamic functions - (like magnetisation or
susceptibility) are reported as perturbation expansions in the appropriate field
variables. Here again, a knowledge of the coefficients of higher powers of the field
parameters is rendered difficult due to the labour involved in the enumeration (and
contribution) of graphs. Needless to emphasize that, in the absence of exact solutions
(even for idealised models) these coefficients assume a greater significance as these are
our only aids to obtain information about possible singular/critical properties.
Earlier approaches to this problem of extrapolation of a partial power series made
use of Darboux theorem (Darboux 1878) or curve fitting methods. In recent terms,
extensiveapplications of the so-called Padé approximations (Baker and Graves-Morris
1981), have demonstrated the usefulness of this approach. Stated briefly, the Padé
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approximant (PA)is a particular class of rational polynomial approximation to a given
function which is incompletely specified (eg., partial power series). Several generalis-
ations of pa, especially the so-called d log Padé approximants have been quite valuable
in providing estimates of the critical parameters for model systems (Hunter and Baker
1973; Baker and Hunter 1973). For multivariable power series, the partial differential
approximant (ppa) has been introduced (Chisholm 1973; Roberts et al 1975; Stilck and
Salinas 1981; Fisher and Styer 1982) for approximating functions of two or more
variables. Apart from these rigorous analyses, empirical /intuitive approaches have also

been employed (Carnahan and Starling 1969; Baram and Luban 1978) especially in
liquid state physics. '

2. Novel extrapolation procedures

In this paper, we present three methods hitherto unused in the context of extrapolation
of coefficients of a given power series. These are (i) A novel resummation identity based
on the expansion of Bessel functions (Sangaranarayanan and Rangarajan 1983a);
(i) parametrised Euler transformation (pEr) (Bhattacharyya 1982), and (iii) a modi-
fied version of pEr.

First, we apply the above methods to a few Ising model series expansions for which
the coefficients are known, 5o as to facilitate a comparison and later to other problems
suchas (i) the Ising ferrimagnets, (ii) many-fermion systems and (iii) the evaluation of
virial coefficients attempting to predict the as yet unknown (exact) ones.

3. Extrapolation from the identity

Consider a series given by

fley=% fp" (1)
n=0
For the series given by (1), an identity of the form
L S = T e (mp)T{ (1/m) @
n= n=0

formally holds. There is no restriction on the range of mto be used in (2) except possibly
those dictated by considerations of convergence. It is easy to see that (2) is indeed

formally true—as can be verified by comparing the coefficients of power of p on either
side of (2).

In (2), I(x) is the modified Bessel function (

a polynomial of degree n in the auxiliary vari
{ £} as indicated below ang &=1n=0

Abramovitz and Stegun 1964), T/ (1/m)is
able m and whose coefficients depend on

= 2, otherwise,
T{(m) is the polynomial sequence defined by

T{m =1 T{(m) = f, /m; Ti(m) = 4f, /m2 —1
T{(m)= 24f3/m* =3, fm; T (m) = 192f, /m* —16f, /m? +1, . . | (3)
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Note the resemblance in the structure of the above polynomial sequence to the well-
known Chebyshev polynomials (Abramovitz and Stegun 1964).

By assuming F(p) to be exp(m p) and identifying 1/m with cos , (2) leads to the well-
known expansion (Abramovitz and Stegun 1964)

exp(p cos8) = Io(p)+2 Y, I.(p)cos(nb). (4)
n=1

Equation (2) is only one of the many identities of the Fourier-Bessel type. Many
variations of (2) also exist that provide similar expansions in terms of special functions
like the Legendre and Laguerre polynomials and generalisations to several variables are
also available (Rangarajan 1983) but are not reproduced here. What interests us in this
context is in demonstrating the application of (2) in deducing the extrapolated
coefficients of a given polynomial sequence. For example, the given sequence of
coefficients { f, },n =0,1,...(N— 1), can be extrapolated by exploiting the expansion

of the Bessel function in (2) to predict estimates for f and Sy+10 52y

3.1 Susceptibility series: simple cubic lattice

As an illustration, consider the reduced high témperature susceptibility series for a
simple cubic lattice (Domb and Sykes 1961).

=1+ 6z+30z%+1502° + 7262% 4+ 3510z°
+ 1671025 + 7949427 + . .. )
where z = tanh(J/kT). From (5),
4 = 1+ 62-+302% + 15023 (1 + 483471044z

+23016528923z2 + 109:49586782%) + . . . (6)
‘ 3
. The series in the parenthesis of (6) can be written as Y. f,2".
n=0
Using (2) let us rewrite the partial sequence {f,} as
2 2

Y fut =Y, e, (m2T7 (1/m). )

n=0 n=0

The right side of (7) can be expanded to obtain

i a1, (m2)T (1/m) =T (m) +T{(m)z + (mz2)*(To +T2)/4

n=0
+ (mz)*Ty/8+ . .. (8)

Let us recall that T (m) is defined by (3) and is determined entirely by the given series.
For convenience, we suppress the argument m and write T{ (m) as T{". The value of m
(the ‘auxilliary variable’) can be fixed by noting the efficient of z* as T m3/8 in (8) and
identifying this with f; in (6).

Since, by definition (equation (3)), Ty = f; /m, it follows that fim*/8 = f; and mcan
thus be estimated for this given polynomial sequence. In the susceptibility series being
considered (equation (6)) mis found to be 13-46. Using this value of mand by repeated
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application of the identity, the coefficients of z"(n = 8) can be evaluated as illustrated
below.

From (6),

= 1+ 62+ 3022+ 1502° + 7262% 4 3510z

(1447606837612 + 22:6478632522). 9)

2
The series in the brackets can be represented as Y. f¥z" Hence f% is given by f*

n=0
=f¥m?/8. The coefficient of z® can therefore be estimated. Table 1 shows the

- coefficients obtained using this method indicating satisfactory agreement with the
reported (exact) ones.

3.2 b.c.c. lattice

Similarly, the susceptibility series for the b.c.c. lattice is extrapolated from the
expansion: (Domb and Sykes 1961)

= 1482+ 562% + 39223 + 26842* + 1786425 + 118760z° + ... (9a)

m for this series is 18-798 using the earlier mentioned procedure. The final coefficients of
z2"(n = 7) are reported in table 2 and compared with other estimates.

3.3 Ising ferrimagnets

We shall now illustrate the new extrapolation procedure by applying it to anoth.er
recently studied Ising ferrimagnets (Bowers and Yousif 1983). In section 8 of our earlier
paper (Sangaranarayanan and Rangarajan 1984, hereafter referred to as Part-I), we

have reported the critical parameters for this system. Here we calculate the unknown
coefficients of the susceptibility series given by

11
=5 L &k . (10

n

=0
The coefficients a,(n < 7) are reported by Bowers and Yousif (1983) and we reproduce

Table 1. The estimated coefficients of z (n > §)

in the high temperature suscept-
ibility series for a simple cubic lattice.

From the Bessel

, From the series
Modified function identity

From per expansion (Domb and

n PET (equation 9) (equation 21) Sykes 1961)
8 37733787 3784222 378174:5 375174

©57) ©09) ©7) ' .
9 178816026 1800256-9 17990787 1769686

(1-04) (17) (1-6) '

10 846297996 8569919-4 85587049 8306670
(1-88) 31 (30) '

Th

e %, deviation from the series value is shown in parenthesis.
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~ them in table 3. From equation (27) of Part-f,
ko oc 00299771 K[ 1 +2:255638847(K%) + 4717026733(K?)?
+9:552288158(K?)*]
the value of m is estimated fo be 5-820548569 using the identity (7)
Hence, from the above equation,
1o o€ 0:0299771K + 006 7664K>[1 + 2:091215417(K?)
14234848221 (K2)?] | (1)

The coefficient of K? is given by f*m? x 0-067664/8 where f = 2:091215417. The final
values of d,,+1, Where n = 3 to 6 are reported in table 4. It is natural to expect that the
accuracy of these estimates will progressively decrease as n increases, Le., do is more
reliable as compared to a,,, etc. Consider now the remaining part (even) of the

g series (10)
11 x 3673 5
X = T[l +272697(K')? + 598325(K")*
F12377(K + .. .]
Table 2. The estimated coefficients of 2" in the susceptibility series for a b.c.c. lattice.
From the Series expansion
Modified identity value (Domb and
n PET (Equation 9a) From PET Sykes 1961)
7 — 7889796 7895159 789032
*(0:006) (0-06)
: 8 5233893 52451424 52486986 ' 5201048
ﬁ (0-6) 08) 09 _
9 34676489 34845995 348933403 34268104
(12) an (18
Values in parenthesis denote 7% deviation from the series expansion.
Table 3. The coefficients a, of the
ferrimagnetic susceptibility series
for a simple cubic lattice (equation
(10)) (Bowers and Yousif 1983).
n a,
0 3673
1 11018:18182
2 100161608:18163
3 248531985-45507
4 2197648117663-67529
5 5197379383038-48068
6 45463871209598494-26071
7 105248969765938227-28318
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Proceeding as in the earlier case, mis found to be 6-0257. Hence, a%,(n = 4 to 6)can be F

easily evaluated. The values of a,}n =38, 10, 12 in (28) of Part-I so obtained are
reported in table 4. '

3.4 Many fermion System: power series for the ground state energy

The ground state. energy ¢y(x) of a many-fermion system interacting via a square well

pair potential has been reported by Baker et al (1982) using the pa method. &o(x)can be v
represented as a power series in x the dimensionless density '

&o(x) = 1+D1x+D2x2+D3x3+D4x4+ - ' (12)

the coefficients beyond D, being unknown. Using the known D;sand (2) we estimated <
Ds to be 0066566 and hence [e0 (x)]7'* with this extra coefficient, A slightly better :

agreement was found with the estimates predicted from the ‘integral equation’ method
(Baker 1971) (table S).

v
4. Principles of pgr
i
While the pa and the continued fraction techniques have been extensively employed in :
the analysis of perturbation series in physical systems, the Euler transformation (eT)
Table 4. Extrapolated values of {a,} for the
ferrimagnetic susceptibility series s.c. lattice (equa-
tion 10),
a, from the
n identity PET %
8 997431 x 1020 9-4040406 x 1020 F
9 22009755 x 1021 2:1313536 x 102! ;
10 2:063295 x 1025 19453278 x 1025 !
11 44571196 x 1025 43161307 x 1025
12 45269747 x 1929 40241211 x 1029
13 93207972 x 1029 87404475 x 1029
Table 5, Comparison of the values of [¢, (x)]™ '/ by various methods,
Integral equation From Padé [1, 3] (Baker
X method (Baker 1971) equation 12 et al 1982) &‘
025 0-94981 095024 0-95025
05 0-88124 0-88180 0-88197
075 0-79391 0-79160 0-79197
10 0-694491 068723 0-68686
1-5 049758 048414 ‘ 047664
24 034211 033184 0-314928
—_——




Perturbation expansions and series acceleration 413

(Morse and Feshbach 1953) and its parametrised version, viz. PET (Bhattacharyya 1982)
have attracted relatively little attention in spite of their simplicity. Here we demonstrate
the application of the peT to the several Ising model series expansions and then for the
determination of the virial coefficients for hard spheres and hard discs.

For a slowly converging series, the ET (Knopp 1949) increases although not always,
the rate of convergence. The ET consists in transforming an alternating power

[ea]

series F(p) = Y, (—1)*f,p" into another series in p; where

n=0

p = (p/1+p) - (13)
and the transformed series can be written as o

F(p) = (1/1+p) ZO D, forl (14)
where

" n
Dih= % (—D’(r)f,, ofo =t (15)
r=0

A generalised version of ET, namely the pET has been proposed by Bhattacharyya (1982)
in the context of perturbation theory of atoms and it was shown that PET yields
significantly better results than the conventional PA.

For a power series, given by (1), the pET consists in effecting a change of variable from
p to p, using a parametrised function such as 1+ kp. One can hence rewrite (1) as -

Fle)y= 1 fkp + 1 —fkp ,,Z:o Ditur”
and Dyif, = fyr1 +kfy - (16)
Also,  F(p)= go f.0m+ lf_’:’ ;p + 1 +p " i Dif.p (17)
Making use of a ‘closure-like’ assumption, we now let

D,f,=0,
so that k= —(foai/fo) (18)

Hence, (17) becomes

r—1 -1
F(p) = ;‘f..p"+p’ﬁ<l—ﬂ'—’1)

f
2 T D (19)
1 + kp n=r+1
and in the asymptotic limit, the last term of (19) can be neglected so that
r—1 -1
Flp)= ¥, f..p"+p’ﬂ(1—-pf}“) . (20)
n=0 r

Equation (20) contains progressively higher orders of p as compared to the original
series (1) and hence can be employed to estimate the unknown coefficients of any power
series. : '
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5. Applications of pEt to Ising model series expansions

In §3 we considered some model series expansions and illustrated the use of the new
resummation identity to obtain estimates of higher order coefficients. Here we
demonstrate the use of per for the same problem.

(i) Consider the high temperature susceptibility series for the simple cubic lattice
given by (5).

Using eq. (20) it is easy to write (5)as
5 -1 :
1= f,,z"+26]g< —-ﬁ) : (21)
n=0 fé .

The coefficients of z*(n > 8) can be easily evaluated from the binomial expansion. The
results are presented in table 1 and compared with the series estimates.

(if) The same procedure is repeated for the susceptibility series of a b.c.c. lattice

(equation (9a)). The evaluated coefficients using PET are represented and compared in
table 2.

(i) Earlier (§8 of Part-I) we analysed the coefficients of a three-dimensional
ferrimagnet susceptibility series using the Bessel function identity. Here we report,ina
similar manner, the evaluated coefficients a, for the series given by (10). The two
methods yield almost the same values for a,s. The series (10) can be written as

1 =4 % 3673[1 + 002999771 K" +0-067664(K")?
+0-1415(K")* +0-286546769(K") "]

Using (20), the coefficients of (K")° to (K ’)'? have been estimated and the final estimates
of a, in (10) are reported in table 4.

The same procedure when repeated for the even terms of the series (10) yields the
coefficients of K® to K'? (table 4).

6. Estimation of virial coefficients

6.1 Hard spheres

6.la From the identity: The seven ter

: m virial series for hard spheres is given by
(Croxton 1975).

(P/pkT)y = 1+bp+ 0-625b%p2 + 0-2869b3 p3
+0-11036%p* + 0:0386b° p3 + 0-0127b6 o6 + . . . (22)
=14+bp+0625b%p + 0-:2869h3 p®
(140-384454513bp + 0-134541652b2p
+0-044266294b°p3).
The series in the brackets can be rewritten as,

1+B3p+ B¥p*+ B}p?

i
L
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where B¥ = 0:3844545b, B¥ = 0-13454165b%, B¥ = 0-04426629b3. Using these values,
m can be estimated as follows:

T,m*/8 = B¥

B¥ xm3/8m = 0:04426629b> i.e., m = 0-9597b
This m value cén be used to estimate Bg as shown below. From (22),

P/pkT = 14 bp +0-625b%p* + 0-2869b3p* +0-1103b*p*

(1 4 0-349954669bp + 0-115140525b% p?).

The coefficient of p® in the truncated series inside the parenthesis can be evaluated using
(2). Hence By is given by 0-004446b” and similarly By to By, can be estimated. The
results are summarised in table 6. , '

6.1b From per: The virial series can be written using PET as
P/pkT = 1 +bp +0:625b2p% + 0-2869b p> + 0-1103b* p*
+0-0386b° p3(1 —0-329015544bp) ™.

The values of B,(n > 8) can be obtained in a straightforward manner and are shown in
table 6. ‘

6.2 Hard discs

The evaluation of the virial coefficients of hard discs follows essentially the same lines as
those of the hard spheres. However, the uncertainties in the estimates of the lower order
virial coefficients introduce significant inaccuracies in the final estimates of other virial
coefficients.

6.2a Fromtheidentity: Let us write the virial series for hard discs in the form (Baram
and Luban 1978)

P/pkT = 1+ bp +0-782b%p* +0-5322b% p°
+0-3338b%p* + 0-1992b%p% + 01 143b5p®
+0:0647b7p7 . .. (23)

Table 6. The estimated values of the higher order virial coefficients for hard spheres—
(B,/BL1) (B, = 2n0%/3, o is the hard sphere diameter). -

Modified From the Bessel From PET Kratky Carnahan and
n PET function identity 1977 Starling 1969
7 0-013224 S — — — —
8 0-004457 0-004446 0-004179 0-00445 0-00427
9 0-001483 0-001463 0001375 0-00150 0-001343
10 0-0004884 0-000514 0-000452 0-00051 0-000412
11

0-0001594 0-0001697 00001488 — -




416 M V Sangaranarayanan and S X Rangarajan

where b = n0?/2, ¢ being the hard disc diameter. The m value is found to be 1-615.

- Using this m value and applying (2) successively the estimates of By to By can be
obtained and these are compared in table 7 with other reported values.

6.2b From per: The application of pET to the evaluation of the virial coefficients for
hard discs is more straightforward. Writing the virial series (23) as
1+bp+0782b%% + 0-5322b%p* + 0:3338b*p*
+0:1992b5p5(1 — 0-57379518bp) 1,

the estimates of By to By, can be obtained from the above expansion (table 7).

7. Modified pET

The peT method outlined in §4 can be viewed as the simplest of a hierarc_hy _of n_lethods
of extrapolation of the coefficients of a power series Ya,p" Its prescription is

Given {a},r=0,1,2,... (N +1), extrapolate
{aypridrs=12,. . as
+se1 = Ay, /ayfay,, or, equivalently,
Ayisir/Oy, = Ay pi/ay.

The intuitive justification for this is obviousl

convergence p. and consequently, for s sufficiently large, (NS L N — a constant
(= pc). PETcan be interpreted as a zeroth estimate for p, as (a, /a, +1) employing the last
two of the known coefficients alone.

The above interpretation suggests an immediate generalisation. If N is sufficiently
large, an obvious improvement can be expected by writing

y the assumption of a finite radius of

a a a
__J\’*P_S_#_J’_. but __N+s = Pey Exs
Anisy1 Ayyg AN s

where p,, ey, is the ‘e-algorithm limit’ for the sequence of ratios {ay_./ay_.. },r=0,1,

Table 7. The extrapolated values of B,/B}™! for hard discs (B, = n0?/2, ¢ is the hard disc

diameter).
Modified From
From the PET From per equation (10)
identity (this (this Padé [4, 3] Padé [3, 3] of Kratky
n (this paper) paper) paper)  Kratky (1978) Kratky (1978) (1978)
7 — 01174 — — — _
8 - 006724 0-06626 00647 0-0654 0-0650
9 003719 003914 0-03824 00359 00367 00362
10 002096 0-02267 0022073 00196 0-0205 00199
11 001205 0-01308 0-01274 _ — —
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Table 8. Extrapolated coefficients of magnetisation series for the two-
dimensional Ising model.

Darboux I app. Darboux II app.

Ninham Ninham Modified
n (1963) (1963) Exact PET PET Identity
8 16550 17020 17318 17409-6 16883-5 16314
(172) (0-52)
9 84830 - 86620 88048 8938504 82100 —
(1-62) (1-58)

The % deviation from the exact value is shown in brackets.

2, ..., N.Incontrast to the PET referred to above, such an estimate uses all or most* of
the ratios. Still better can be the choice,

aN+s/aN+s+1 = pc’ SN(I +X*/N+S), . (24)

where X* is a parameter to be estimated. At this stage, it is possible—for the sake of
simplicity—to use one ratio alone, i.e.,

aN/aN+1 =pc’8N(1+X*/N)a ' (25)

and deduce X*, employing the e-table for p,. :

Since p., &y can be evaluated using the e-table and ay/ay,, is known from the given
sequence, X* can be obtained easily. As anticipated, this new procedure seems to be
superior to the earlier ones. Several illustrations are presented below: |

(i) Consider the magnetisation series for the two-dimensional Ising model given by
equation (4) (Part-I). :

M=1+ i a, (x*)".

n=2
The limit a,/a, .+, is 0-162161507 (p,, &y) using EA.
ag/ar = 0-162161507(1 + X*/6). Hence X* = 1-60873453.
The estimated coefficients from ag onwards using p,, €y and X * are reported in table 8.

(ii) Similarly, the susceptibility series for a s.c. lattice given by (6) is extrapolated and
the coefficients of ag, ag, etc., regarded as unknown, are estimated (table 1). They
compare well with the estimates obtained using other methods.

(iii) The extrapolated coefficients of the susceptibility series for a b.c.c. lattice given
by (9a) using this method, are reported in table 2. ' :

" (iv) Virial coefficients for hard spheres: From equation (44) of Part-], the limit of
the sequence { B, + /B, } is 0:298423784b and X * is 1-036061222. Using these values, the
virial coefficients Bg to By; were evaluated for hard spheres and table 6 shows the
comparison with other reported estimates.

* We can choose a subset of the ratios instead of the entire one. It is preferable to have a bias towards the
latter part, i.e, the subset to include ay/ay . 1, ay_/ays etc., in preference to ao/a,, etc.
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i : iscs:  Using equati L thelimit of the ¢
(v) Virial coefficients Jor hard discs: Using equation (41) of Part-I, ,;
sequence {B,.,,/B,} is estimated to be 0-55402543b and X* = 0-457960569. The

extrapolated virial coefficients obtained by this procedure are reported in table 7 and a
satisfactory agreement is noted.

8. Conclusion

coefficients for hard spheres and hard discs. The same method Whe_n applied to the
known Ising model series expansions provide reasonably accurate estimates for.hlgber
order coefficients starting from the lower older ones. However, complete lmpllcatlon
and the potentialities of this approach is yet to be explored. (ii) The .well-known PET,
despite its simplicity, provides a straightforward estimation for the higher order virial

N s

PET and the e-convergence algorithm (Shanks 1955; Wynn 1956) that was studied by us
is also very successful, in predicting the higher order coefficients as demons.tra?cd by us
in the known two-dimensional Ising model series expansion for magnetisation.

References

Abramovitz M and Ste
of Standards) :
Alder B J and Wainright J E 1960 J. Chem, Phys. 33 1439 g
Baker G A Jr 1971 Rev. Mod, Phys. 43 479 #

Baker G A Jr and Hunter D L 1973 Phys. Rev. 137 3377 )

Baker G A Jr and Graves Moris p 1981 in Encyclopaedia of mathematics (ed) Gran Carlo Rota (Reading,
Massachusetts: Addison Wesley) Vol 13

Baker G A Jr, Benofy L A, Fortes M, Llano M, Peltier S M and Plastind A 1982 Phys. Rev. A26 3575

Baram A and Luban M 1978 J. Phys. C12 Lé59

Bhattacharyya K 1982 Int. J. Quantum Chem, 22 307

Bowers R G and Yousif B Y 1983 Phys. Lett. A96 49

Carnahan N F ang Starling K E 1969 J. Chem. Phys, 51 635
Chisholm J S R 1973 Math. Comp. 27 841

Croxton C A 1975 | ntroduction to liquid state Physics (New York: John Wiley)
Darboux G 1878 J, Marh. ‘elem 6 1 377

Domb C and Sykes M F 1957 Proc. R. Soc. London A240 214
Domb C and Sykes M F 1961 J. Math. Phys. 2 63

gun I A 1964 (eds) Handbook of mathematical functions (New York: National Bureau

transitions and critical phenomeng (eds) CDomb and M S Green
(London: Academic Press) Vol 3 p 181

Hunter T L and Baher GAJri1973 Phys. Rev. BT 3346
Knopp K 1949 Theory and applications of infinite series (London: Blackie and Sons)

Morse P M and Feshbach M 1953 Methods of theoretical Physics (New York: McGraw-Hill)
Ninham B W 1963 7. Math. Phys. 4 679

Rangarajan S K 1984 (Unpublished)

Roberts D E, Griffiths H P and Wood D W 1975 J. Phys. A8 1365




¥ 4

Perturbation expansions dand series acceleration

Sangaranarayanan M V and Rangarajan S K 1983a Phys. Lett. A96 339
Sangaranarayanan M V and Rangarajan S K 1984 Pramana 22

Shanks D 1955 J. Math. Phys. 34 1

Stilck T J F and Salinas S R 1981 J. Phys. 4. 14 2027

Thompson C I Mathematical statistical mechanics (London: Macmillan Co.)
van Dyke M 1975 SIAM J. Appl. Math. 28 720

Wynn P 1956 Math. Tables 10 91

419




